当前位置:文档之家› 半导体车载冰箱电子制冷原理

半导体车载冰箱电子制冷原理

半导体车载冰箱电子制冷原理
半导体车载冰箱电子制冷原理

半导体车载冰箱电子制冷原理

(资料来源:中国联保网)半导体电子制冷又称热电制冷,或者温差电制冷,它是利用“帕尔帖效应”的一种制冷方法,与压缩式制冷和吸收式制冷并称为世界三大制冷方式。

1843年,法国物理学家帕尔帖在铜丝的两头各接一根铋丝,再将两根铋丝分别接到直流电源的正负极上,通电后,他惊奇的发现一个接头变热,另一个接头变冷;这个现象后来就被称为“帕尔帖效应”。

“帕尔帖效应”的物理原理为:电荷载体在导体中运动形成电流,由于电荷载体在不同的材料中处于不同的能级,当它从高能级想低能级运动时,就会释放出多余的热量。反之,就需要从外界吸收热量(即表现为制冷)。

所以,“半导体电子制冷”的效果就主要取决于电荷载体运动的两种材料的能级差,即热电势差。纯金属的导电导热性能好,但制冷效率极低(不到1%)。半导体材料具有极高的热电势,可以成功的用来做小型的热电制冷器。

经过多次实验,科学家发现:P型半导体(Bi2Te3-

Sb2Te3)和N型半导体(Bi2Te3-

Bi2Se3)的热电势差最大,应用中能够在冷接点处表现出明显制冷效果。

通上电源之后,冷端的热量被移到热端,导致冷端温度降低,热端温度升高,这就是著名的Peltiereffect。这现象最早是在1821年,由一位德国科学家ThomasSeeb

ack首先发现,不过他当时做了错误的推论,并没有领悟到背後真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeanPeltier,才发现背後真正的原因,这个现象直到近代随著半导体的发展才有了实际的应用,也就是[致冷器]的发明(注意,这种叫致冷器,还不叫半导体致冷器)。

由许多N型和P型半导体之颗粒互相排列而成,而NP之间以一般的导体相连接而成一完整线路,通常是铜、铝或其他金属导体,最後由两片陶瓷片像夹心饼乾一样夹起来,陶瓷片必须绝缘且导热良好,看起来像三明治.

电子冰箱简单结构为:将P型半导体,N型半导体,以及铜板,铜导线连成一个回路,铜板和导线只起导电作用,回路由12V直流电供电,接通电流后,一个接点变冷(冰箱内部),另一个接头散热(冰箱后面散热器)。

吉大《半导体光电子学》期末复习纲要

第一章: 基本概念与名词解释 1、光子学说的几个基本概念:相格、光子简并度等; 2、微观粒子的四个统计分布规律:麦克斯韦速率分布率、波耳兹曼分布率、费米分布率、玻色分布率; 3、原子、分子的微观结构,固体的能带; 4、热辐射和黑体辐射的几个概念:热辐射、朗伯体、视见函数、普朗克公式; 5、简述辐射跃迁的三种过程:自发辐射、受激吸收、受激辐射; 6、谱线加宽的类型及定义:均匀加宽、非均匀加宽、碰撞加宽;

第二章: 基本概念与名词解释 1、一般概念:激发态能级寿命、亚稳态能级、粒子数反转、 负温度、激活介质、增益饱和; 2、三能级系统、四能级系统的粒子数反转的形成过程; 3、关于介质中的烧孔效应、气体激光器中的烧孔效应的论述。理论推导与证明 1、粒子数密度的差值(式2-1-17,2-1-22); 2、均匀加宽与非均匀加宽的小信号增益系数(式2-2-14,2-2-15); 3、均匀加宽与非均匀加宽情况下的大信号反转粒子数密度、烧孔面积(式2-3-3,2-3-7); 4、均匀加宽与非均匀加宽情况下的大信号增益系数(式2-3-10,2-3-17);

第三章: 基本概念与名词解释 1、激光的几个特性:包括时间相干性、空间相干性、相干时间、相干长度、相干面积、相干体积、光子简并度; 2、有关谐振腔的基本概念:谐振腔、稳定腔、不稳定腔、介稳腔; 3、激光振荡的几个现象和过程:纵模、横模、模的竞争、空间 烧孔、兰姆凹陷、频率牵引、高斯光束、激光器最佳透过率。 理论推导与证明 1、普通光源相干时间与相干面积(式3-1-5,3-1-12); 2、激光产生的阈值条件(式3-3-11); 3、粒子数密度的差值的阈值(式3-3-18); 4、均匀加宽情况单模激光器的输出功率与最佳透过率(式3-6-9) 5、非均匀加宽情况单模激光器的输出功率(式3-6-18)。

半导体车载冰箱电子制冷原理

半导体车载冰箱电子制冷原理 (资料来源:中国联保网)半导体电子制冷又称热电制冷,或者温差电制冷,它是利用“帕尔帖效应”的一种制冷方法,与压缩式制冷和吸收式制冷并称为世界三大制冷方式。 1843年,法国物理学家帕尔帖在铜丝的两头各接一根铋丝,再将两根铋丝分别接到直流电源的正负极上,通电后,他惊奇的发现一个接头变热,另一个接头变冷;这个现象后来就被称为“帕尔帖效应”。 “帕尔帖效应”的物理原理为:电荷载体在导体中运动形成电流,由于电荷载体在不同的材料中处于不同的能级,当它从高能级想低能级运动时,就会释放出多余的热量。反之,就需要从外界吸收热量(即表现为制冷)。 所以,“半导体电子制冷”的效果就主要取决于电荷载体运动的两种材料的能级差,即热电势差。纯金属的导电导热性能好,但制冷效率极低(不到1%)。半导体材料具有极高的热电势,可以成功的用来做小型的热电制冷器。 经过多次实验,科学家发现:P型半导体(Bi2Te3- Sb2Te3)和N型半导体(Bi2Te3- Bi2Se3)的热电势差最大,应用中能够在冷接点处表现出明显制冷效果。 通上电源之后,冷端的热量被移到热端,导致冷端温度降低,热端温度升高,这就是著名的Peltiereffect。这现象最早是在1821年,由一位德国科学家ThomasSeeb

ack首先发现,不过他当时做了错误的推论,并没有领悟到背後真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeanPeltier,才发现背後真正的原因,这个现象直到近代随著半导体的发展才有了实际的应用,也就是[致冷器]的发明(注意,这种叫致冷器,还不叫半导体致冷器)。 由许多N型和P型半导体之颗粒互相排列而成,而NP之间以一般的导体相连接而成一完整线路,通常是铜、铝或其他金属导体,最後由两片陶瓷片像夹心饼乾一样夹起来,陶瓷片必须绝缘且导热良好,看起来像三明治. 电子冰箱简单结构为:将P型半导体,N型半导体,以及铜板,铜导线连成一个回路,铜板和导线只起导电作用,回路由12V直流电供电,接通电流后,一个接点变冷(冰箱内部),另一个接头散热(冰箱后面散热器)。

半导体制冷片工作原理

半导体制冷片工作原理 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。 半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A点的热量被移到B点,导致A点温度降低,B点温度升高,这就是着名的Peltier effect。这现象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。 二、致冷器件的结构与原理

半导体光电子学-试题

1 光电子器件按功能分为哪几类,每类大致包括哪些器件? 2 (1)光的基本属性是__波粒二象性___,光的粒子性典型现象有_光的反射____、__折射____以及______等。光波动性的典型体现有______、______、______等。 (2)两束光相互干涉的条件______、______、_______,最典型的干涉装置有_____、______。两束光干涉相消的条件______。 3 激光器的基本结构包括哪些,其中激光产生的充分条件和必要条件分别是什么?(激光工作介质激励源谐振腔)p63p71 4 简述激光的特点以及激光产生的条件。 方向性单色性相干性亮度大 受激辐射:首要条件,也是必要条件,但还不是充分条件。 工作物质必须具有亚稳态能级 粒子数反转谐振腔增益大于损耗 5 试简述为什么二能级系统不能产生激光。 P69 6 试以一个三能级原子系统为例,说明激光产生的基本原理。 P70 7 光纤的基本结构是什么,光纤传输光的基本原理是什么?P126 射线理论认为,光在光纤中传播主要是依据全反射原理。光线垂直光线端面射入,并与光纤轴心线重合时,光线沿轴心线向前传播。 光的波长必须在一定范围内才能实现传输,光纤中常用的波长有850纳米,1320纳米及1550纳米三个波段。 根据传输方式不同光纤分为多模光纤及单模光纤。多模光纤的直径为50/62.5μ

m,而单模光纤的直径为8.5μm 8 什么是光调制过程,其大体上可分为哪几类,激光外调制的种类包括哪些?P147 9 什么是内光电效应和外光电效应,内光电效应和外光电效应代表器件分别有哪些,是每种效应各举一例说明之。P200 外部光电效应:金属表面通过吸收入射光子流的能量从而释放电子,形成光生电流(真空光电二极管,光电倍增管)内部光电效应:通过吸收入射光子产生自由电荷载流子,例如PN结光电二极管,PIN光电二极管,雪崩光电二极管 10 光电探测技术的物理效应有哪些? P198 11 试论述光敏电阻器件中,光照强度与光电导率变化的关系。 12 试论述液晶的特点,以及液晶显示器的工作原理。 P257利用液晶的电光效应来工作在两块透明电极基板间夹持液晶状 态,当液晶厚度小于数百微米时,界面附近的液晶分子发生取向并保持有序性,当电极基板上施加受控的电场方向后就产生一系列电光效应,液晶分子的规则取向随即相应改变。液晶分子的规则取向形态有平行取向、垂直取向、倾斜取向三种,液晶分子的取向改变,即发生了折射率的异向性,从而产生光散射效应、旋光效应,双折射效应等光学反应。这就是LCD图像电子显示器最基本的成像原理

半导体中的电子状态(精)

第一篇 习题 半导体中的电子状态 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、 试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 第一篇 题解 半导体中的电子状态 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。 如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 解: 空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ; B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小;

半导体光电子学-考点

半导体光电子学 一、1.声子:晶格振动的能量量子,假想粒子,与晶格振动相联系,不能独立存在。 光子:传递电磁相互作用的规范粒子,无静止质量,具有能量和动量,能够独立存在。 2.量子阱:两种禁带宽度不同的但晶格匹配的单晶半导体薄膜以极薄的厚度交替生长,使得宽带隙材料中的电子和空穴进入两边窄带隙半导体材料的能带中,好像落入陷阱,这种限制电子和空穴的特殊能带结构被形象地称为量子阱。 超晶格:当量子阱结构中单晶薄层的厚度可与德布罗意波长或波尔半径相比拟时,由于量子尺寸效应,量子阱之间会发生很强耦合效应。 3.光子晶体:是指具有光子带隙特性的周期性电介质结构的人造晶体。 纳米线:一种具有在横向上被限制在100纳米以下,纵向无限制的一维结构材料。 4.施主杂质:半导体中掺杂的杂质能够提供电子载流子的特性。 受主杂质:半导体中掺杂的杂质能提供空穴载流子的特性。 杂质能级:半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产生附加的杂质能级。 5.激子复合:所谓激子是指处于束缚态的电子和空穴,激子复合的能量将以光的形式 释放。 俄歇复合:电子和空穴复合后将能量传递给另一个电子或空穴的现象。有 CHCC(复合后的能量给导带的电子并使其激发到导带更高能态)和 CHHS(复合后的能量给价带的空穴并使其激发到自旋-轨道裂带上)过 程。 二、采用能带图和文字描述导体,半导体和绝缘体的异同。 导体:价带全满,导带部分填充 半导体:价带全满,导带全空,但是禁带宽度较窄,电子易于激发到导带中去。 绝缘体:价带全满,导带全空,禁带宽度较大 三、光波导结构的实例,并进一步说明光波导在光电器件中的工作原理。 光波导主要有平面波导和条形波导,而条形波导又有增益波导,折射率波导,分布反馈波导实例: 如折射率波导:有源区和两侧限制区的折射率不同,有源区两侧解理面构成反射镜,在有源区电子受激发射出的光子由于有源区和限制区折射率的不同构成全反射,将光场限制在有源区内,光子只能在两侧解理面来回反射,激发出更多的光子,并在输出方向上传播。 四、双异质结未加偏压和加偏压的能带图 双异质结在激光器中的作用: (1)pn结处于正向电压时,异质结势垒降低,n区电子能够越过势垒和隧穿势垒而注入窄

半导体制冷片工作原理

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。 半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A点的热量被移到B点,导致A点温度降低,B点温度升高,这就是着名的Peltier effect。这现象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。 图(1) 致冷器件的作用原理致冷器的名称相当多,如 Peltier cooler、thermoelectric、thermoelectric cooler (简称或、thermoelectric module,另外又称为热帮浦 (heat pump)。 二、致冷器件的结构与原理

(完整版)制冷原理知识点整理(1)

·制冷原理思考题 1、什么是制冷? 从物体或流体中取出热量,并将热量排放到环境介质中去,以产生低于环境温度的过程。 自然冷却:自发的传热降温 制冷机/制冷系统:机械制冷中所需机器和设备的总和 制冷剂:制冷机中使用的工作介质 制冷循环:制冷剂一系列状态变化过程的综合 2、常用的四种制冷方法是什么? ①液体气化制冷(蒸气压缩式、蒸气吸收式、蒸气喷射式、吸附制冷) ②液体绝热节流 ③气体膨胀制冷 ①当液体处在密闭容器内,液体汽化形成蒸气。若容器内除了液体及液体本身的蒸气外不存在任何其他气体,也提出在某一压力下将达到平衡,处于饱和状态。 ②将一部分饱和蒸气从容器中抽出时,必然要再汽化一部分来维持平衡。 ③液体汽化时,需要吸收热量,这一部分热量称为汽化热。汽化热来自被冷却对象,因而被冷却对象变冷或者使它维持在环境温度以下的某个低温。 4、液体汽化制冷的四个基本过程是什么? ①制冷剂低压下汽化 ②蒸气升压 ③高压气液化 ④高压液体降压 5、什么是热泵及其性能系数? 制冷机:使用目的是从低温热源吸收热量 热泵:使用目的是向高温热汇释放能量 6、性能系数:W Q W W Q COP H /)(/0+== 7、劳伦兹循环

在热源温度变化的情况下,由两个与热源做无温差传热的多变过程及两个 等熵过程组成的逆向可逆循环,称为洛伦兹循环,这是变温条件下制冷系 数最大的循环。为了表达变温条件下可逆循环的制冷系数,可采用平均当 量温度这一概念,T0m表示工质平均吸热温度,Tm表示工质平均放热温度, ε表示制冷系数。洛伦兹循环的制冷系数相当于在恒温热源T0m和Tm间 工作的逆卡诺循环的制冷系数。 8、什么是制冷循环的热力学完善度,制冷剂的性能系数COP? 热力学完善度:实际制冷循环性能系数与逆卡诺循环性能系数之比 制冷剂的性能系数:制冷量与压缩耗功之比。 9、单级蒸气压缩制冷循环的四个基本部件? 压缩机:压缩和输送制冷剂,保持蒸发器中的低压力,冷凝器里的高压力 膨胀阀:对制冷剂节流降压并调节进入蒸发器的制冷剂的流量 蒸发器:输出冷量,制冷剂吸收被冷却对象的热量,达到制冷的目的 冷凝器:输出热量,从蒸发器中吸收的热量和压缩机消耗功所转化的热量在冷凝器中被冷却介质带走 10、蒸汽压缩式制冷循环,当制冷剂确定后,冷凝温度、蒸发温度有什么因素决定? 环境介质温度决定冷凝温度决定冷凝压力;制冷装置用途决定蒸发温度决定蒸发压力 11、过冷对循环性能有什么影响? 在一定冷凝温度和蒸发温度下,节流前制冷剂液体过冷可以减少节流后的干度。节流后的干度越小,他在蒸发器中气化的吸收热量越大,循环的性能系数越高。 12、有效过热无效过热对循环性能有哪些影响? 有效过热:吸入蒸气的过热发生在蒸发器本身的后部或者发生在安装与被冷却室内的吸气管道上,过热吸收的热量来自被冷却对象。 有害过热:由蒸发器出来的低温制冷剂蒸气在通过吸入管道进入压缩机之前,从周围环境吸取热量而过热,但没有对被冷却对象产生制冷效应。 13、不凝性气体对循环性能的影响 不凝性气体:在制冷机的工作温度、压力范围内不会冷凝、不会被溴化锂溶液吸收的气体。 原因:蒸发器、吸收器的绝对压力极低,易漏入气体 影响:①不凝性气体的存在增加了溶液表面分压力,使冷剂蒸气通过液膜被吸收时的阻力增加,吸收效果降低。 ②不凝性气体停留在传热管表面,会形成热阻,影响传热效果,导致制冷量下降。 ③不凝性气体占据换热空间,是换热设备的传热效果变差 ④压缩机的排气压力、温度升高,压缩机耗功增加 措施:在冷凝器与吸收器上部设置抽气装置 ①水气分离器:中间溶液喷淋,吸收水气,不凝性气体由分离器顶部排出,经阻油器进入真空泵排出。阻油器用于防止真空泵停机时,大气压力将油压入制冷系统中。 ②自动抽气:由引射器引射不凝性气体入气液分离器,打开放气阀排气。 14、单级蒸气压缩循环中,蒸发温度和冷凝温度对制冷循环性能的影响。 单位容积制冷量理论功率性能系数 蒸发温度下降下降上升下降 冷凝温度上升 ①无机化合物 ②有机化合物

半导体中的电子状态习题

第一篇 半导体中的电子状态习题 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性 说明之。 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 试指出空穴的主要特征。 解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ; B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 简述Ge 、Si 和GaAS 的能带结构的主要特征。 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小; (2) GaAs : a )E g (300K )= 1.428eV ,Eg (0K) = 1.522eV ; b )直接能隙结构; c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ; 1-5某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1)能带宽度; (2)能带底和能带顶的有效质量。 解:

半导体中的电子状态

第一章半导体中的电子状态 半导体的独特物理性质,决定于其中的电子,而电子的状态与运动则与原子的结合方式和排列规则有关。为了研究和利用半导体的这些物理性质,本章将简要介绍半导体单晶材料的电子状态及其运动规律。 研究固态晶体中电子状态的能带理论,已在固体物理学中比较完整地介绍过,本章仅作简要回顾,着重介绍几种重要半导体材料的能带结构。 §1.1半导体的晶格结构和结合性质 从固体物理学中已经知道,固态晶体具有多种结晶形态,分属7大晶系14种类型。结晶半导体大多数属于立方(cubic)晶系和六方(Hexagon)晶系,且都是四面体(tetradron)结构,只有少数半导体具有其他结构。固体中原子的结合,归结为5种方式。半导体中原子的结合以共价键为基础,化合物半导体包含有程度不等的离子键成分。 一、元素的电负性与原子的结合性质 从固体物理学中已经了解到:由于金属元素的原子对其价电子的束缚能力很弱,当金属原子与金属原子凝聚在一起时,所有原子全部电离而公有全部自由了的价电子,靠这些公有电子形成的电子云的束缚而结合在一起;而当金属原子与很容易接受一个外来电子的卤族元素原子凝聚在一起时,金属原子电离出来的电子则一对一地被卤族原子所接收,从而分别成为正负离子,靠离子键结合在一起。IV族元素的原子既不易失去其价电子也不易接受外来电子,当同种IV族元素的原子凝聚在一起时,相邻原子靠其公有价电子而结合在一起。分子晶体的组成原子因其外层电子数为8,是一种具有球对称性的稳定封闭壳层结构,当这些原子凝聚在一起时,其价电子的分布不会有什么变化。由此可见,原子以何种方式结合成固体,完全决定于其得到或失去电子的能力。 用电负性(electronegativity)来描述原子的这一能力。 1.电负性的定义 原子吸引其在化学键中与另一原子之公有电子偶的能力,其值为原子的电离能与电子亲和能之和。电离能指原子初次电离所需要的能量,亲和能则指中性原子获得一个电子所释放的能量。 2.一些元素的电负性及其变化规律 一些元素的电负性(Pauling尺度) Li 1.00 Be 1.50 B 2.00 C 2.50 N 3.00 O 3.50 F 4.00 Na 0.9 Mg 1.2 Al 1.5 Si 1.8 P 2.1 S 2.5 Cl 3.0 Cu 1.9 Zn 1.6 Ga 1.6 Ge 1.8 As 2.0 Se 2.4 Br 2.8 Ag 1.9 Cd 1.7 In 1.7 Sn 1.8 Sb 1.9 Te 2.1 I 2.5 Au 2.4 Hg 1.9 Tl 1.8 Pb 1.8 Bi 1.9 Phillips尺度(考虑了价电子屏蔽) Li 1.00 Be 1.50 B 2.00 C 2.50 N 3.00 O 3.50 F 4.00 Na 0.72 Mg 0.95 Al 1.18 Si 1.41 P 1.64 S 1.87 Cl 2.1 Cu 0.79 Zn 0.91 Ga 1.13 Ge 1.35 As 1.57 Se 1.79 Br 2.01 Ag 0.57 Cd 0.83 In 0.99 Sn 1.15 Sb 1.31 Te 1.47 I 1.63

半导体中的电子状态精

半导体中的电子状态(精)

作者:日期:

第一篇习题半导体中的电子状态 1- 1、什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性 说明之。 1- 2、试定性说明Ge、Si的禁带宽度具有负温度系数的原因 1- 3、试指出空穴的主要特征。 1- 4、简述Ge、Si和GaAS的能带结构的主要特征。 1- 5、某一维晶体的电子能带为 E(k)二E。1—0.1cos(ka)—0.3sin(ka) 1 其中E0=3eV,晶格常数a=5X0-11m。求: (1)能带宽度; (2)能带底和能带顶的有效质量。 第一篇题解半导体中的电子状态 1- 1、解:在一定温度下,价带电子获得足够的能量(》E g)被激发到导带成为 导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。 如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1- 2、解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge、Si的禁带宽度具有负温度系数。 1- 3、解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电 子的集体运动状态,是准粒子。主要特征如下: A、荷正电:+q ; B、空穴浓度表示为p (电子浓度表示为n); C、E P=-E n D、m p*=-m n*。 1- 4、解: (1) Ge、Si: a) Eg (Si : 0K) = 1.21eV ; Eg (Ge : 0K) = 1.170eV ; b) 间接能隙结构 C)禁带宽度E g随温度增加而减小;

半导体制冷片工作原理

半导体制冷片工作原理

————————————————————————————————作者: ————————————————————————————————日期:

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect 可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A点的热量被移到B点,导致A点温度降低,B点温度升高,这就是著名的Peltier effect。这现象最早是在1821年,由一位德国科学家ThomasSeeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。

半导体中的电子状态(精)

半导体中的电子状态(精)

第一篇 习题 半导体中的电子状态 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、 试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 第一篇 题解 半导体中的电子状态 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。 如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的 电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 解: 空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ; B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小;

半导体光电子学期末复习纲要(精)

《半导体光电子学》期末复习纲要 一、基本概念与名词解释: 第一章: 1、光子学说的几个基本概念:相格、光子简并度等; 2、微观粒子的四个统计分布规律:麦克斯韦速率分布率、波耳兹曼分布率、费米分布率、玻色分布率; 3、热辐射和黑体辐射的几个概念:热辐射、朗伯体、视见函数、普朗克公式; 4、简述辐射跃迁的三种过程:自发辐射、受激吸收、受激辐射; 5、谱线加宽的类型及定义:均匀加宽、非均匀加宽、碰撞加宽。 第二章: 1、一般概念:激发态能级寿命、亚稳态能级、粒子数反转、负温度、激活介质、增益饱和;2、三能级系统、四能级系统的粒子数反转的形成过程; 3、关于介质中的烧孔效应、气体激光器中的烧孔效应的论述。 第三章: 1、激光的几个特性:包括时间相干性、空间相干性、相干时间、相干长度、相干体积、光子简并度; 2、有关谐振腔的基本概念:谐振腔、稳定腔、不稳定腔、介稳腔; 3、激光振荡的几个现象和过程:模的竞争、空间烧孔、兰姆凹陷、频率牵引、高斯光束、激光器最佳透过率。 第四章: 1、光波导的几个基本概念:平板波导、矩形波导、光纤、导模、辐射模、阶跃型光纤、渐变型光纤、子午线、子午面、斜光线、吸收损耗、散射损耗、弯曲损耗、材料色散、波导色散、模间色散。 第五章: 1、有关光吸收的几个基本概念:本征吸收、晶格振动吸收、自由载流子吸收、激子吸收、杂质吸收; 2、光探测的一些基本效应:光电效应、光热效应、外光电效应、光电导效应、光电导驰豫、逸出功、电子亲和势、光伏效应、热释电效应、测辐射热计效应、温差电效应、帕尔帖效应、塞贝克效应、汤姆逊效应。 二、理论推导与证明: 第二章: 1、粒子数密度的差值(式2-1-17,2-1-22); 2、均匀加宽与非均匀加宽的小信号增益系数(式2-2-14,2-2-15); 3、均匀加宽与非均匀加宽情况下的大信号反转粒子数密度、烧孔面积(式2-3-3,2-3-7); 4、均匀加宽与非均匀加宽情况下的大信号增益系数(式2-3-10,2-3-17);

习题 半导体中的电子状态

习题与解答:是针对相应学习内容而编写的,内容分为七篇。分为简答、分析、论述、求解等类型。建议学习者首先自行解答,再阅读解答以行印证。 第一篇 习题 半导体中的电子状态 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说 明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、 试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 第一篇 题解 半导体中的电子状态 刘诺 编 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为 导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。 如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温 度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 解: 空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子 的集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ;

B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小; (2) GaAs : a )E g (300K )= 1.428eV , Eg (0K) = 1.522eV ; b )直接能隙结构; c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ; 1-5、 解: (1) 由题意得: [][])sin(3)cos(1.0)cos(3)sin(1.0022 2 0ka ka E a k d dE ka ka aE dk dE +=-= eV E E E E a k d dE a k E a k d dE a k a k a k ka tg dk dE o o o o 1384.1min max , 01028.2)4349.198sin 34349.198(cos 1.0,4349.198, 01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.183 1,0400222 2400222 121=-=??=+====∴==--则能带宽度对应能带极大值。 当对应能带极小值; 当)(得令 (2) ()() ()() () ()??????????-=??????????-=?????????? ??=?=??????????=?????????? ??=----------kg k d dE h m kg k d dE h m k n k n 27 1234 401 222*271234401 222*10925.110625.61028.2110925.110625.61028.2121带顶带底则 答:能带宽度约为1.1384Ev ,能带顶部电子的有效质量约为1.925x10-27 kg ,能带底部电子的有效质量约为-1.925x10-27kg 。

半导体中的电子状态

晶体结构晶格 §1晶格相关的基本概念 1.晶体:原子周期排列,有周期性的物质。 2.晶体结构:原子排列的具体形式。 3.晶格:典型单元重复排列构成晶格。 4.晶胞:重复性的周期单元。 5.晶体学晶胞:反映晶格对称性质的最小单元。 6.晶格常数:晶体学晶胞各个边的实际长度。 7.简单晶格&复式晶格:原胞中包含一个原子的为简单晶格,两个或者两个以上的称为复 式晶格。 8.布拉伐格子:体现晶体周期性的格子称为布拉伐格子。(布拉伐格子的每个格点对应一 个原胞,简单晶格的晶格本身和布拉伐格子完全相同;复式晶格每种等价原子都构成和布拉伐格子相同的格子。) 9.基失:以原胞共顶点三个边做成三个矢量,α1,α2,α3,并以其中一个格点为原点, 则布拉伐格子的格点可以表示为αL=L1α1 +L2α2 +L3α3 。把α1,α2,α3 称为基矢。 10.平移对称性:整个晶体按9中定义的矢量αL 平移,晶格与自身重合,这种特性称为平 移对称性。(在晶体中,一般的物理量都具有平移对称性) 11.晶向&晶向指数:参考教材。(要理解) 12.晶面&晶面指数:参考教材。(要理解) 立方晶系中,若晶向指数和晶面指数相同则互相垂直。 §2金刚石结构,类金刚石结构(闪锌矿结构) 金刚石结构:金刚石结构是一种由相同原子构成的复式晶格,它是由两个面心立方晶格沿立方对称晶胞的体对角线错开1/4长度套构而成。常见的半导体中Ge,Si,α-Sn(灰锡)都属于这种晶格。 金刚石结构的特点:每个原子都有四个最邻近原子,它们总是处在一个正四面体的顶点上。(每个原子所具有的最邻近原子的数目称为配位数) 每两个邻近原子都沿一个<1,1,1,>方向, 处于四面体顶点的两个原子连线沿一个<1,1,0>方向, 四面体不共顶点两个棱中点连线沿一个<1,0,0,>方向。

半导体制冷片工作原理

半导体制冷器的原理与使用 一、原理概述 半导体制冷器的用途很多 ,可用于制作便携冷藏/保温箱、冷热饮水机等。也用于电子器件的散热。目前制冷器所采用的半导体材料最主要为碲化铋,加入不纯物经过特殊处理而成 N 型或 P 型半导体温差元件。以市面常见的TEC1-12605为例,其 额定电压为:12v, 额定电流为5A,最大温差可达60摄氏度,外型尺寸为4 X 4 X 0.4Cm,重约25克。它的工作特点是一面制冷而一面发热。 接通直流电源后,电子由负极(-)出发,首先经过 P 型半导体,在此吸收热量,到了 N 型半导体,又将热量放出, 每经过一个NP 模组,就有热量由一边被送到另外一边,造成温差,从而形成冷热端。下图是一个致冷器的典型结构,由许多 N 型和 P 型半极体之颗粒互相排列而成, 而 N P 之间以一般的导体相连接而成一完整线路,通常是铜、铝或其他金属导体,最后用两片陶瓷片像汉堡包一样夹起来。 二、安装使用 制冷片的安装及使用很简单。在安装前,最好准备一点导热硅脂,然后,找一节干电池,接在制冷器两根引线上,就可感到一端明显发凉而另一端发热,记住引线的极性并确定好制冷器的冷、热端。 正式安装时,在制冷器两端均匀涂上导热硅脂,在CPU与散热器之间插入制冷片,请注意先试好的冷热面方向,冷面贴着CPU,热面与强力的(功率越高越好)散热片接触。然后想法固定好三者。要注意风扇的卡子不能太短,否则会很难固定。 固定好后,就可以给制冷片和风扇接上电源了(一定要注意极性),如果你机箱电源功率小于250W,我劝你别接到机箱电源上,否则有可能因电源功率不足,造成电脑无法正常工作。推荐使用外接电源,在12V电压下制冷片的制冷量和冷热面温差都比较合适。

光电子学作业

光电子学作业 第一章 1.以一个三能级系统为例,说明激光器的基本构成和产生激光的基本原理。 2.分析四能级与三能级工作物质的能级结构特征,并说明四能级结构工作物质在产生激光中的优势。 3.什么是增益饱和现象,均匀加宽和非均匀加宽介质中的增益饱和有什么不同? 4.多普勒加宽的物理机制是什么? 5.工作物质实现能态集居数分布反转的条件是什么? 6.试画出TEM 12,TEM 03 模的光强分布。 7.波长为入的高斯光束入射到位于z= l处的透镜上,为了使出射光束的束腰刚好落在样品表面上,透镜的焦距f应为多少?W1W0I I 8 .稳定腔的两块反射镜,曲率半径分别为R 1 = 40cm, R 2= 100cm,求腔长取值范围。 9. 某单横模He—Ne激光器,采用平凹腔,腔长L= 0.3m,凹面R= 1m, 平面镜输出,求输出镜面的光斑尺寸及光束的发散角。一束光通过长度为1m的均匀激活工作物质。如果出射光强是入射光强的2倍,求该物质的增益系数 G。 10. 设氦氖激光器的0.6328 谱线在增益曲线的G( v

0)/2处有一烧孔,增益曲线的半宽度为150MHz。计算与烧孔相对应的粒子速率有多大? 11. 叙述激光器的的模式、纵模、横膜的定义及形成机理 第二章 1.均匀加宽和非均匀加宽介质对激光器所能形成的激光振荡模式有何影响。 2.激光选模技术分几类? 3.常用的调Q 方法有几种,分别简述之。 4.分别简述几种常见的激光锁模的实现方法。 5. He—Ne激光器反射镜间距为0.2m,求最靠近632.8nm的纵模阶数,纵模频率间隔。如增益曲线宽度为1.5 x 109Hz则可能引起的纵模总数为多少? 6. 在红宝石调Q激光器中,有可能将几乎全部Cr3+离子激发到激光上能级并产生激光巨脉冲,设红宝石棒直径1cm长度 7.5cmCr3+离子浓度为 2x 1013/cm31脉冲宽度为10ns求输出激光的最大能量和脉冲功率。 第三章 1. 激光器按工作物质划分为几类,一类各举一个典型激光器,并给出典型波长转换效率及典型优点。 2. 为什么双异质结可以降低器件的阈值功率密度 3. 如何实现半导体激光器的单纵模振荡 4. 简述半导体激光器的主要特点及其如何产生激光的原理 第五章 思考题: 1. 如果一个纵向电光调制器没有起偏器,入射的自然光能否得到光强度调制,为什么?

半导体制冷的原理(精)

低温制冷装置 常用的低温制冷装置有贮液式制冷器、G-M循环制冷器、斯特林循环制冷器、VM制冷器等多种。 ①贮液式制冷器:将贮存低温液体的容器绝热,使需要冷却的电子元件、器件与这种液体直接或间接地接触。电子元件、器件引入的热量(或本身原有的热量)为液体蒸发所吸收,电子元件、器件即被冷却。这种制冷器可分为整体容器式和液体传输式两类。在整体容器式制冷器中,电子元件、器件直接装在低温液体的贮存容器内。液体传输式制冷系统包括低温液体存放容器、液体传输管路、冷头和必要的控制系统,靠重力或气体压力传输液体(图2)。这种制冷器使用时间不长就需要添加低温液体,应用受到限制。 ②G-M循环制冷机:由压缩机和膨胀机及其附属装置组成(图3)。压缩机压缩来自膨胀机的低压气体,提供一定压力的纯净工作物质氦气。膨胀机使高压气体在其内部膨胀而致冷。

③斯特林循环制冷机:斯特林循环由二个等容、二个等温组成的闭式循环。它有单级、双级二种。它是冷却电子器件的微型制冷机之一。它效率高、体积小、重量轻、操作简单、使用低温温区和冷量范围大。 ④VM制冷机:完全或主要靠热能进行工作,可直接由热量产生冷量。凡能使热腔保持足够高的温度和提供足够热的能源都可利用,如电能、化学燃烧能、放射性同位素(如钚 238)、太阳能等。这种制冷机是回热式制冷机的变种,又叫热泵制冷机(图4)。有时,只使用很少的电能用于克服活塞与汽缸之间的摩擦力。它振动小、不易损坏、寿命长、重量轻和体积小,适于野外和航空使用, 尤其适于在航天技术中应用。

⑤热电制冷器:又称半导体制冷器。它利用半导体的帕耳帖效应,即两种不同金属或半导体组成闭合回路时,通以直流电,引起材料两接点一个变冷一个变热的现象,组成多级的半导体PN结热电制冷器,通常用于红外和低温电子技术(图5)。它具有体积小、重量轻等优点。但制冷温度不能达到很低的程度。 ⑥辐射制冷器:主要是利用一部分宇宙空间的高真空(10-18帕)和星际的有效低温太空接受 3~4K的低温源,辐射制冷器(图6)是一种不需要任何热源和

相关主题
文本预览
相关文档 最新文档