当前位置:文档之家› 清华大学现代信号处理教学大纲

清华大学现代信号处理教学大纲

清华大学现代信号处理教学大纲
清华大学现代信号处理教学大纲

第一章随机信号

1.1 信号的分类

1.1.1 信号的统计特性

1.1.2 按概率分布分类

1.1.3 平稳信号

1.2 两个随机信号的二阶统计量

1.3 两个随机信号的统计关系

1.3.1 统计独立、统计不相关、正交

1.3.2 正交的几何解释与物理意义

1.3.3 正交的两个典型应用

1.3.4 相关的应用

1.4 信号变换

1.5 随机信号通过线性系统

第二章参数估计理论

2.1 估计子的性能

2.1.1 估计子的定义

2.1.2 无偏估计、有偏估计、渐近无偏估计

2.2 Fisher信息与Cramer-Rao下界

2.3 Bayes估计

2.3.1 损失函数、风险函数

2.3.2 Bayes估计

2.4 最大似然估计

2.5 线性均方估计

2.5.1 线性均方LMS

2.5.2 正交性原理

2.6 最小二乘估计

2.6.1 矩阵方程的求解

2.6.2 Gaussian-Markov定理

2.6.3 加权最小二乘

第三章现代谱估计

3.1 ARMA谱估计与系统辨识

3.1.1 平稳ARMA过程

3.1.2 ARMA过程的功率谱密度

3.1.3 ARMA功率谱估计的两种线性方法

3.1.4 ARMA功率谱密度的特例

3.1.5 修正Y ule-Walker方程

3.1.6 AR阶数确定的奇异值分解方法

3.1.7 AR阶数确定的信息量准则法

3.1.8 扩展MYW方程

3.1.9 AR参数估计的总体最小二乘法

3.2 最大熵谱估计

3.2.1 信息量、熵

3.2.2 最大熵1(MEM1)、最大熵2(MEM2)

3.2.3 Levinson递推

3.2.4 Burg算法

3.3 Pisarenko谐波分解

3.3.1 Pisarenko分解

3.3.2 谐波恢复的ARMA建模法

3.4 扩展Prony方法

3.5 MUSIC方法

3.5.1 阵列信号处理问题

3.5.2 最优波束形成器

3.5.3 子空间方法

3.5.4 MUSIC方法

3.5.5 改进的MUSIC方法

3.6 ESPRIT方法

3.6.1 基本ESPRIT方法

3.6.2 TLS-ESPRIT方法

3.6.3 ESPRIT方法的另一种形式

3.6.4 广义Rayleigh商

第四章自适应滤波器

4.1 匹配滤波器

4.2 Wiener滤波器

4.2.1 线性最优滤波器

4.2.2 正交性原理

4.2.3 维纳滤波器

4.3 Kalman滤波器

4.3.1 Kalman滤波问题(一步预报)

4.3.2 新息过程

4.3.3 Kalman滤波算法

4.4 LMS自适应算法

4.4.1 梯度下降算法

4.4.2 基本的LMS算法

4.4.3 自适应学习速率参数

4.4.4 LMS算法的改进

4.5 RLS算法

4.5.1 RLS算法

4.5.2 统计性能分析

4.5.3 LMS、RLS、Kalman滤波算法的性能比较

4.6 仿射投影算法

4.7 LMS格型滤波器

4.7.1 对称的格型结构

4.7.2 格型滤波器设计准则

4.7.3 格型自适应算法

4.8 自适应滤波器的算子理论

4.8.1 滤波器算子的基本要求

4.8.2 从信号处理角度理解投影算子

4.8.3 投影矩阵与正交投影矩阵

4.8.4 投影算子的应用:前、后向预测滤波器

4.8.5 投影矩阵和正交投影矩阵的递推计算

4.9 LS格型滤波器

4.10 自适应谱线增强器和陷波器

4.10.1 谱线增强器与陷波器的传递函数

4.10.2 陷波器设计

4.10.3 自适应谱线增强器的设计

4.11 广义旁瓣对消器

4.12 盲自适应多用户检测

4.12.1 盲多用户检测的典范表示

4.12.2 LMS多用户检测算法

4.12.3 RLS多用户检测算法

4.12.4 盲多用检测的Kalman滤波算法

第五章高阶统计分析

5.1 高阶矩与高阶累积量

5.1.1 单个随机变量的高阶矩与高阶累积量

5.1.2 多个随机变量的高阶矩与高阶累积量

5.1.3 随机信号的高阶矩与高阶累积量

5.1.4 矩与累积量的转换关系

5.1.5 累积量的估计公式

5.2 矩与累积量的性质

5.2.1 性质

5.2.2 高阶累积量的优点

5.3 高阶谱

5.4 双谱在目标识别中的应用

5.5 BBR公式

5.6 FIR系统辨识

5.6.1 RC算法

5.6.2 FIR系统辨识的累积量方法

5.6.3 阶数确定

5.7 因果ARMA模型辨识

5.7.1 AR参数的辨识

5.7.2 MA辨识

5.8 高斯有色噪声中的谐波恢复

5.8.1 复信号高阶累积量的定义

5.8.2 谐波过程的累积量

5.9 非高斯有色噪声中的谐波恢复5.10 自适应滤波

5.10.1 基于累积量的MMSE准则

5.10.2 RLS算法

5.10.3 应用

DSP技术与算法实现学习报告

DSP技术与算法实现学习报告 一.课程认识 作为一个通信专业的学生,在本科阶段学习了数字信号处理的一些基本理论知识,带着进一步学习DSP技术以及将其理论转化为实际工程实现的学习目的,选择了《DSP技术与算法实现》这门课程。通过对本课程的学习,我在原有的一些DSP基础理论上,进一步学习到了其一些实现方法,系统地了解到各自DSP芯片的硬件结构和指令系统,受益匪浅。 本门课程将数字信号处理的理论与实现方法有机的结合起来,在简明扼要地介绍数字信号处理理论和方法的基本要点的基础上,概述DSP的最新进展,并以目前国际国内都使用得最为广泛的德克萨斯仪器公式(TI,Texas Instruments)的TMS320、C54xx系列DSP为代表,围绕“DSP实现”这个重点,着重从硬件结构特点,软件指令应用和开发工具掌握出发,讲解DSP应用的基础知识,讨论各种数字信号处理算法的实现方法及实践中可能遇到的主要问题,在此基础上实现诸如FIR、IIR、FFT等基本数字信号处理算法等等。 1.TI的DSP体系 TI公司主要推出三大DSP系列芯片,即TMS320VC2000,TMS320VC5000,TMS320VC6000系列。 TMS320VC200系列主要应用于控制领域。它集成了Flash存储器、高速A/D转换器、可靠的CAN模块及数字马达控制等外围模块,适用于三相电动机、变频器等高速实时的工控产品等数字化控制化领域。 TMS320VC5000系列主要适用于通信领域,它是16为定点DSP芯片,主要应用在IP 电话机和IP电话网、数字式助听器、便携式音频/视频产品、手机和移动电话基站、调制调解器、数字无线电等领域。它主要分为C54和C55系列DSP。课程着重讲述了C54系列的主要特性,它采用改进哈弗结构,具有一个程序存储器总线和三个数据存储器总线,17×17-bit乘法器、一个供非流水的MAC(乘法/累加)使用的专用加法器,一个比较、选择、存储单元(Viterbi加速器),配备了双操作码指令集。 TMS320VC6000系列主要应用于数字通信和音频/视频领域。它是采用超长指令字结构设计的高性能芯片,其速度可以达到几十亿MIPS浮点运算,属于高端产品应用范围。

最新语文教学大纲

语文教学大纲 一、课程性质与任务 语文是最重要的交际工具,是人类文化的重要组成部分。工具性与人文性的统一,是语文课程的基本特点。 语文课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:指导学生正确理解与运用祖国的语言文字,注重基本技能的训练和思维发展,加强语文实践,培养语文的应用能力,为综合职业能力的形成,以及继续学习奠定基础;提高学生的思想道德修养和科学文化素养,弘扬民族优秀文化和吸收人类进步文化,为培养高素质劳动者服务。 二、课程教学目标 中等职业学校语文课程要在九年义务教育的基础上,培养学生热爱祖国语言文字的思想感情,使学生进一步提高正确理解与运用祖国语言文字的能力,提高科学文化素养,以适应就业和创业的需要。指导学生学习必需的语文基础知识,掌握日常生活和职业岗位需要的现代文阅读能力、写作能力、口语交际能力,具有初步的文学作品欣赏能力和浅易文言文阅读能力。指导学生掌握基本的语文学习方法,养成自学和运用语文的良好习惯。引导学生重视语言的积累和感悟,接受优秀文化的熏陶,提高思想品德修养和审美情趣,形成良好的个性、健全的人格,促进职业生涯的发展。 三、教学内容结构 本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。 1. 基础模块是各专业学生必修的基础性内容和应该达到的基本要求,教学时数为160~180学时。 2. 职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~36学时。 3. 拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。基础模块、职业模块和拓展模块,均从阅读与欣赏、表达与交流两个方面提出教学内容和教学要求,通过语文实践活动提高学生综合运用语文的能力。 四、教学内容与要求 (一)基础模块 1. 阅读与欣赏 正确认读并书写3 500个常用汉字。

数字信号处理教案

数字信号处理教案 余月华

课程特点: 本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。 本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。 鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。基本掌握了课堂教学内容后, 再去做作业。在学习中, 要养成多想问题的习惯。 课堂讲授方法: 1. 关于教材: 《数字信号处理》 作者 丁玉美 高西全 西安电子科技大学出版社 2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。. 3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述. 4. 要求、辅导及考试: a. 学习方法: 适应大学的学习方法, 尽快进入角色。 课堂上以听为主, 但要做课堂笔记,课后一定要认真复习消化, 补充笔记,一般课堂教学与课外复习的时间比例应为1 : 3 。 b. 作业: 大体上每两周收一次作业, 一次收清。每次重点检查作业总数的三分之一。 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩。 c. 辅导: 大体两周一次。 d. 考试: 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容。 课程的基本内容与要求 第一章. 时域离散信号与时域离散系统 1. 熟悉6种常用序列及序列运算规则; 2. 掌握序列周期性的定义及判断序列周期性的方法; 3. 掌握离散系统的定义及描述方法(时域描述和频域描述); 4. 掌握LSI 系统的线性移不变和时域因果稳定性的判定; 第二章 时域离散信号与系统的傅立叶变换分析方法

DSP常见算法的实现

3.6 常见的算法实现 在实际应用中虽然信号处理的方式多种多样,但其算法的基本要素却大多相同,在本节中介绍几种较为典型的算法实现,希望通过对这些例子(单精度,16bit )的分析,能够让大家熟悉DSP 编程中的一些技巧,在以后的工作中可以借鉴,达到举一反三的效果。 1. 函数的产生 在高级语言的编程中,如果要使用诸如正弦、余弦、对数等数学函数,都可以直接调用运行库中的函数来实现,而在DSP 编程中操作就不会这样简单了。虽然TI 公司提供的实时运行库中有一些数学函数,但它们所耗费的时间大多太长,而且对于大多数定点程序使用双精度浮点数的返回结果有点“大材小用”的感觉,因此需要编程人员根据自身的要求“定制”数学函数。实现数学函数的方法主要有查表法、迭代法和级数逼近法等,它们各有特点,适合于不同的应用。 查表法是最直接的一种方法,程序员可以根据运算的需要预先计算好所有可能出现的函数值,将这些结果编排成数据表,在使用时只需要根据输入查出表中对应的函数值即可。它的特点是速度快,但需要占用大量的存储空间,且灵活度低。当然,可以对上述查表法作些变通,仅仅将一些关键的函数值放置在表中,对任意一个输入,可根据和它最接近的数据采用插值方法来求得。这样占用的存储空间有所节约,但数值的准确度有所下降。 迭代法是一种非常有用的方法,在自适应信号处理中发挥着重要的作用。作为函数产生的一种方法,它利用了自变量取值临近的函数值之间存在的关系,如时间序列分析中的AR 、MA 、ARMA 等模型,刻画出了信号内部的特征。因为它只需要存储信号模型的参量和相关的状态变量,所以所占用的存储空间相对较少,运算时间也较短。但它存在一个致命的弱点,由于新的数值的产生利用了之前的函数值,所以它容易产生误差累积,适合精度要求不高的场合。 级数逼近法是用级数的方法在某一自变量取值范围内去逼近数学函数,而将自变量取值在此范围外的函数值利用一些数学关系,用该范围内的数值来表示。这种方法最大的优点是灵活度高,且不存在误差累积,数值精度由程序员完全控制。该方法的关键在于选择一个合适的自变量取值区间和寻找相应的系数。 下面通过正弦函数的实现,具体对上述三种方法作比较。 查表法较简单,只需要自制一张数据表,也可以利用C5400 DSP ROM 内的正弦函数表。 迭代法的关键是寻找函数值间的递推关系。假设函数采样时间间隔为T ,正弦函数的角频率为ω,那么可以如下推导: 令()()()T T ω?β?αω?-+=+sin sin sin 等式的左边展开为 T T side left ω?ω?sin cos cos sin _+= 等式的右边展开为 ()T T side right ω?βωα?sin cos cos sin _-+= 对比系数,可以得到1,cos 2-==βωαT 。令nT =?,便可以得到如下的递推式: [][][]21cos 2---=n s n s T n s ω

新语音信号处理实验指导2015年秋

《语音信号处理》 实验指导书 哈尔滨理工大学 自动化学院 电子信息科学与技术系 2014.10

语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。同时,语言也是人与机器之间进行通信的重要工具,它是一种理想的人机通信方式,因而可为信息处理系统建立良好的人机交互环境,进一步推动计算机和其他智能机器的应用,提高社会的信息化程度。语音信号处理是一门新兴的学科,同时又是综合性的多学科领域和涉及面很广的交叉学科。虽然从事这一领域研究的人员主要来自信号与信息处理及计算机应用等学科,但是它与语音学、语言学、声学、认知科学、生理学、心理学等许多学科也有非常密切的联系。 20世纪60年代中期形成的一系列数字信号处理的理论和算法,如数字滤波器、快速傅立叶变换(FFT)等是语音信号数字处理的理论和技术基础。随着信息科学技术的飞速发展,语音信号处理取得了重大的进展:进入70年代之后,提出了用于语音信号的信息压缩和特征提取的线性预测技术(LPC),并已成为语音信号处理最强有力的工具,广泛应用于语音信号的分析、合成及各个应用领域,以及用于输入语音与参考样本之间时间匹配的动态规划方法;80年代初一种新的基于聚类分析的高效数据压缩技术—矢量量化(VQ)应用于语音信号处理中;而用隐马尔可夫模型(HMM)描述语音信号过程的产生是80年代语音信号处理技术的重大发展,目前HMM已构成了现代语音识别研究的重要基石。近年来人工神经网络(ANN)的研究取得了迅速发展,语音信号处理的各项课题是促进其发展的重要动力之一,同时,它的许多成果也体现在有关语音信号处理的各项技术之中。 为了深入理解语音信号数字处理的基础理论、算法原理、研究方法和难点,根据数字语音信号处理教学大纲,结合课程建设的需求,我们编写了本实验指导书。

数字信号处理教案

数字信号处理教案

课程特点: 本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。 本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。 鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。基本掌握了课堂教学内容后, 再去做作业。在学习中, 要养成多想问题的习惯。 课堂讲授方法: 1. 关于教材: 《数字信号处理》 作者 丁玉美 高西全 西安电子科技大学出版社 2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。. 3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述. 4. 要求、辅导及考试: a. 学习方法: 适应大学的学习方法, 尽快进入角色。 课堂上以听为主, 但要做课堂笔记,课后一定要认真复习消化, 补充笔记,一般课堂教学与课外复习的时间比例应为1 : 3 。 b. 作业: 大体上每两周收一次作业, 一次收清。每次重点检查作业总数的三分之一。 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩。 c. 辅导: 大体两周一次。 d. 考试: 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容。 课程的基本内容与要求 第一章. 时域离散信号与时域离散系统 1. 熟悉6种常用序列及序列运算规则; 2. 掌握序列周期性的定义及判断序列周期性的方法; 3. 掌握离散系统的定义及描述方法(时域描述和频域描述); 4. 掌握LSI 系统的线性移不变和时域因果稳定性的判定; 第二章 时域离散信号与系统的傅立叶变换分析方法

语文教学大纲

语文教学大纲 一、指导思想 高中阶段是人生求学的黄金时段。为让学生掌握高中语文的特点,明白语文学习的思路和方法,热爱语文,全身心地投入到语文学习之中,学得知识,夯实基础,练好学习语文的基本功,培养语文素养,为学生的终身学习奠定基础,使其终身受益。 二、教学目标 培养学习尖子,榜样带动全体;注重学生的转差工作,转差效果突出,力争在考试绝大多数学生过90分,取得令人满意的成绩。 三、教学要求:按大纲规定,完成教材知识点的传授任务和知识能力的迁移,必须做到基础知识习题化,基本方法灵活化,基本能力熟练化,重点、难点通俗化,薄弱环节要强化。然后再深化三基,强化重、难点,达到知识熟练,方法会用,技能娴熟,促进能力的目的。 四、教学步骤:课文教学,采用启发式和探究式相结合的教学方法;作业和课后检测,采用‘测(或练)、改、评、补’的形式。 五、教材特点 (一)教科书分为必修和选修两个部分,必修共五册,共用三个学期完成教与学的任务,其他时间学习选修部分。 (二)必修教材的基本框架:每册教材共分四个部分,即“阅读鉴赏”“表达交流”“梳理探究”“名著导读”。 1、阅读鉴赏:这是教材的主体部分,内容是反映当今时代特色的作品。学习重点各不相同:有侧重对形象性较强的文学作品的鉴赏,有侧重对思变性较强的说理文章进行思考和领悟,有侧重应用性较强的文章的阅读和理解。 重点学习古诗文,现代文课文有所取舍(精讲三分之一),剩余的课文作为课外阅读材料。 2、表达交流:这部分包括“写作”与“口语交际”两部分。写作分4专题;“口语交际”共设计五次活动。 3、梳理探究:每册共有3个专题,学生可据自己的兴趣、爱好有选择的学习探究。 4、名著导读:每册有2部导读。主要是激发学生的阅读兴趣,培养良好的阅读习惯,提高思考能力与欣赏水平。六、教学方式 积极倡导自主、合作、探究的学习方式 语文课堂教学应为学生创设良好的自主学习情境,帮助他们树立主体意识,根据各自的特点和需要,调整学习心态和策略,探寻适合自己的学习方法和途径。而合作学习有利于在互动中提高学习效率,有利于培养合作意识和团队精神。因此,我们鼓励学生在个人钻研的基础上,积极参与讨论,善于倾听、吸纳他人的意见,学会宽容和沟通,学会协作和分享。为了改变过于强调接受学习、死记硬背、机械训练的状况,我们提倡并实施在课堂上开展自主、合作、探究的学习方式,努力提高组织教学和引导学生学习的质量。可从三个方面落实实施:一是落实课前预习和疑难问题收集制;二是落实课堂教学,突出学生的主体地位,努力为学生创设交流和表达的时空空间;三是组织语文学习兴趣小组,教会学生积极开展合作探究式学习。 七、落实日常教学 面对学生薄弱的语文基础,强化训练,夯实基础,落实日常教学是关键。在日常教学中,主要抓好以下的环节: (一)阅读方面,充分利用“经典”与“名著”扩展学生的阅读面,培养学生自学语文的能力。精选较有思想性、篇幅短小的文言短文,提供给学生阅读,养成学生每周阅读翻译文言文的习惯,努力通过学生的自身积累和教师的指导,从阅读习惯、语感等多方面提升学生阅读能力,培养学生阅读浅显文言文的能力。 (二)在写作方面,坚持每周几篇课外练笔,每两周一次大作文的训练。 小作文,从写景、记人、叙事等方面分阶段、有针对性地训练学生的观察、构思、措辞、造句等能力。大作文从观察与感受、想象与联想、再现客观事物、表现主观情感等方面,让学生把握写作运动的内部规律,从根本上提高写作能力。 (三)口语训练方面,结合诗歌教学,开展诗歌朗诵训练,扫除学生练习口语的心理障碍,训练学生大胆开口的习惯。在具体操作方面,结合单元教学,穿插“说服别人”、“拒绝别人”、“劝慰、鼓励别人”等不同目的的语文口语训练,使学生能自由流畅地表述自己的见解,养成文明得体的说话习惯。 (四)日常语文教学还贯穿写字、背诵等基础

清华大学大学物理习题库量子物理

清华大学大学物理习题库:量子物理 一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为??。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhc m eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为??的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2??的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ??- E K (C) h ??- E K (D) h ??+ E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量?与反冲电子动能E K 之比??/ E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若?粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则?粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ]

《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲 (10级) 编号:40023600 英文名称:Digital Signal Processing 适用专业:通信工程;电子信息工程 责任教学单位:电子工程系通信工程教研室 总学时:56 学分:3.5 考核形式:考试 课程类别:专业基础课 修读方式:必修 教学目的:数字信号处理是通信工程、电子信息工程专业的一门专业基础课,通过本课程的学习使学生建立数字信号处理的基本概念、掌握数字信号处理的基本理论、基本分析方法和数字滤波器的基本设计方法,具有初步的算法分析和运用MATLAB编程的能力,了解数字信号处理的新方法和新技术。为学习后续专业课程和从事数字信号处理方面的研究工作打下基础。 主要教学内容及要求: 1.绪论 了解数字信号处理的特点,应用领域,发展概况和发展局势。 2.时域离散信号和时域离散系统 了解连续信号、时域离散信号和数字信号的定义和相互关系;掌握序列的表示、典型序列、序列的基本运算;掌握时域离散系统及其性质,掌握时域离散系统的时域分析,掌握采样定理、连续信号与离散信号的频谱关系。 3.时域离散信号和系统的频域分析 掌握序列的傅里叶变换(FT)及其性质;掌握序列的Z变换(ZT) 、Z变换的主要性质;掌握离散系统的频域分析;了解梳状滤波器,最小相位系统。 4.离散傅里叶变换(DFT) 掌握离散傅里叶变换(DFT)的定义,掌握DFT、ZT、FT、DFS之间的关系;掌握DFT的性质;掌握频域采样;掌握DFT的应用、用DFT计算线性卷积、用DFT分析信号频谱。 5.快速傅里叶变换(FFT) 熟悉DFT的计算问题及改进途经;掌握DIT-FFT算法及其编程思想;掌握IDFT的高效算法。 6.数字滤波网络 了解滤波器结构的基本概念与分类;掌握IIR-DF网络结构(直接型,级联型,并联型);掌握FIR-DF网络结构(直接型,线性相位型,级联型,频率采样型,快速卷积型)。 7.无限冲激响应(IIR)数字滤波器设计 熟悉滤波的概念、滤波器的分类及模拟和数字滤波器的技术指标;熟悉模拟滤波器的设计;掌握用冲激响应不变法设计IIR数字滤波器;掌握用双线性变换法设计IIR数字滤波器。 8.有限冲激响应(FIR)数字滤波器设计 熟悉线性相位FIR数字滤波器的特点;掌握FIR数字滤波器的窗函数设计法;掌握FIR数字滤波器的频率抽样设计法;了解FIR数字滤波器的切比雪夫最佳一致逼近设计法。 本课程与其他课程的联系与分工:先修课程:信号与系统,复变函数与积分变换,数字电路;后续课程有:DSP原理及应用,语音信号处理,数字图像处理等。

(word完整版)七年级语文教学大纲

(一)、阅读 1、在小学的基础上扩大识字量,认识3500个左右的常用字。 2、用普通话正确、流利、有感情的朗读课文。养成默读的 习惯,并有一定 的速度(阅读一般的现代文每分钟500字左右)。初步掌握精读和略读的方法。 3、整体感知课文,体会作者的态度、观点、感情,理解课 文的内容和思路,理会词句在语言环境中的意义和作用。对 课文内容、语言和写法有自己的心得,能提出看法或疑问。 4、在阅读中了解叙述、描写、说明、议论、抒情等表达方 式。 5、学习欣赏文学作品,感受作品中的形象,欣赏优美、精 彩的语言。 6、诵读古代诗词和浅易文言文,能借助工具书理解内容, 背诵一定数量的名篇。 7、养成读书看报的习惯。学会浏览、检索、摘录、制作卡 片、写读书笔记等读书方法。课外自读每学年不少于80万字(其中文学名著2—3部)。 8、熟练使用常用字典词典。学会运用其他工具书和多种媒 体。 (二)、写作 9、能写记叙文、简单的说明文、简单的议论文和一般的应

用文。 10、根据写作需要,确定表达的内容和中心,做到感情真实,内容具体,中心明确,语言通顺,注意简洁得体。 11、选择恰当的表达方式,合理安排内容的先后和详略,条 理清楚的表达自己的意思。运用联想和想象,丰富表达的内 容。鼓励有创意的表达。 12、不写错别字,正确使用标点符号,格式正确,书写规范、端正、整洁。 13、养成观察分析周围事物、收集积累语言材料、勤动笔多 修改的习惯。 14、作文每学年一般不少于14次,字数不少于0.7万,其他练笔不少于1万字。45分钟能完成500字左右的习作。(三)、口语交际 15、口语交际要讲究文明和修养,态度自然,尊重对方,注 意对象和场合。 16、耐心专注的倾听,了解对方的意思,领会意图,抓住中 心和要点。 17、讲普通话,做到语音清晰,语句连贯,条理清楚,能准 确表达自己的想法和心情,并努力使对方理解。 18、复述转述,力求完整准确;讨论发言,围绕话题,简洁 明了;讲述见闻, 内容具体,语言生动。

清华大学《大学物理》习题库试题及答案--08-电学习题答案

清华大学《大学物理》习题库试题及答案--08-电学习 题答案 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

一、选择题 1.1003:下列几个说法中哪一个是正确的? (A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向 (B) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同 (C) 场强可由定出,其中q 为试验电荷,q 可正、可负,为试验电荷所受的电场力 (D) 以上说法都不正确 [ ] 2.1405:设有一“无限大”均匀带正电荷的平面。取x 轴垂直带电平面, 坐标原点在带电平面上,则其周围空间各点的电场强度随距离平面的位置坐 标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负): [ ] 3.1551:关于电场强度定义式,下列说法中哪个是正确的? (A) 场强的大小与试探电荷q 0的大小成反比 (B) 对场中某点,试探电荷受力与q 0的比值不因q 0而变 (C) 试探电荷受力的方向就是场强的方向 (D) 若场中某点不放试探电荷q 0,则=0,从而=0 [ ] 4.1558:下面列出的真空中静电场的场强公式,其中哪个是正确的? [ ] q F E / =F E /q F E =E F F E F E ( x

(A)点电荷q 的电场:(r 为点电荷到场点的距离) (B)“无限长”均匀带电直线(电荷线密度)的电场:(为带电直线到场点的垂直于直线的矢量) (C)“无限大”均匀带电平面(电荷面密度)的电场: (D) 半径为R 的均匀带电球面(电荷面密度)外的电场:(为球心到场点的矢量) 5.1035:有一边长为 a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为 (A) (B) (C) (D) [ ] 6.1056:点电荷 Q 被曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变 (B) 曲面S 的电场强度通量变化,曲面上各点场强不变 (C) 曲面S 的电场强度通量变化,曲面上各点场强变化 (D) 曲面S 的电场强度通量不变,曲面上各点场强变化 [ ] 7.1255:图示为一具有球对称性分布的静电场的E ~r 关系曲线。请指出该静电场是由下列哪种带电体产生的 (A) 半径为R 的均匀带电球面 (B) 半径为R 的均匀带电球体 (C) 半径为R 的、电荷体密度为的非均匀带电球体 2 04r q E επ= λr r E 302ελπ= r σ02εσ = E σr r R E 3 02εσ=r 0 3εq 4επq 0 3επq 0 6εq Ar =ρ q 1035图 q

数字信号处理 详细分析 采样

离散傅里叶变换 一、问题的提出:前已经指出,时域里的周期性信号在频域里表现为离散的值,通常称为谱线;而时域里的离散信号(即采样数据)在频域里表现为周期性的谱。 推论:时域里的周期性的离散信号,在频域里对应为周期性的离散的谱线。 由于傅里叶变换和它的反变换的对称性,我们不妨对称地把前者称为时域的采样,后者称为频域的采样;这样,采用傅里叶变换,时域的采样可以变换成为频域的周期性离散函数,频域的采样也可以变换成列域的周期性离散函数,这样的变换被称为离散傅里叶变换,简称为DFT。图3-1就是使用采样函数序列作离散傅里叶变换的简单示例。 (a )时域的采样在频域产生的周期性 (b )频域的采样在时域产生的周期性 图3-1 采样函数的离散傅里叶变换 上图就是使用采样函数序列作离散傅立叶变换的简单示例,在时域间隔为s t 的采样函数 序列的DFT 是频域里间隔为s s t f 1 =的采样函数序列;反之,频域里间隔为s f 的采样函数序列是时域里间隔为w W f T 1=的采样函数序列,如图3-1(b)所示。 由于在离散傅立叶变换中,时域和频域两边都是离散值,因此它才是真正能作为数字信号处理的变换,又由于变换的两边都表现出周期性,因此变换并不需要在),(+∞-∞区间进行,只需讨论一个有限周期里的采样作变换就可以保留全部信息。 表3-1为傅立叶变换和傅立叶级数的关系

二、DFT 的定义和性质 离散傅里叶变换(DFT )的定义为: 1、非周期离散时间信号)(n x 的Fourier 变换定义为:ωωωd e n x e X n j j -∞ ∞-∑ =)()( (1) 反变换:ωπωππωd e e X n x n j j ?-= )(21)( )(ωj e X 的一个周期函数(周期为)π 2,上式得反变换是在)(ωj e X 的一个周期内求积分的。这里数字信号的频率用ω来表示,注意ω与Ω有所不同。设s f 为采样频率,则采样周期为 f T 1 =,采样角频率T s π2=Ω,数字域的频率s s f πω2= 式1又称为离散时间Fourier 变换(DTFT )2、周期信号的离散Fourier 级数(DFS ) 三、窗函数和谱分析 1、谱泄露和栅栏效应 离散傅立叶变换是对于在有限的时间间隔(称时间窗)里的采样数据的变换,相当于对数据进行截断。这有限的时间窗既是DFT 的前提,同时又会在变换中引起某些不希望出现的结果,即谱泄露和栅栏效应。 1)谱泄露 以简单的正弦波的DFT 为例,正弦波具有单一的频率,因而在无限长的时间的正弦波,应该观察到单一δ函数峰,如下图示,但实际上都在有限的时间间隔里观察正弦波,或者在时间窗里作DFT ,结果所得的频谱就不再是单一的峰,而是分布在一个频率范围内,下图(b )示。这样信号被时间窗截断后的频谱不再是它真正的频谱,称为谱泄露。

数字信号处理GUI

西安工业大学北方信息工程学院毕业设计(论文)开题报告 题目:数字信号处理实验教学平台设计 系别光电信息系 专业光电信息工程 班级 B100106 姓名彭牡丹 学号 B10010638 导师稀华 2013年11月20日

1 毕业设计(论文)综述 1.1 题目背景和意义 自 20 世纪 60 年代以来,随着计算机和信息学科的飞速发展,数字信号处理技术应运而生并迅速发展,目前已经形成为一门独立且成熟重要的新兴学科。如今已广泛地应用于通信、语音、图像、遥感、雷达、航空航天、自动控制和生物医学[1]等多个领域。特别在教学方面,此课程已普遍成为大学本科电子通信专业必修的主干课和重要的专业基础课,已成为信息化建设不可缺少的环节。 “数字信号处理”课程主要包括离散时间信号及系统、离散傅立叶变换DFT、快速傅立叶变换FFT、数字滤波器设计及实现和数字信号系统的应用等内容,如何帮助学生理解与掌握课程中的基本概念、分析方法以及综合应用能力,是教学所要解决的关键问题,但是该课程理论性强,公式繁琐,需要实验辅助学生理解。因此研究数字信号处理虚拟实验技术能够有效地弥补数字信号处理理论教学的不足,所以本课题需要借助一些软件平台来完成数字信号处理课程中重要的实验内容的仿真分析。 1.2 国内外相关研究状况 对于教学平台设计,现在教学方面有很多研究方法,不同的的科研目标用的是不同的软件平台,国内外也提出了多种研究方法。 例如,在做交互式教学实验平台设计时,周强、张兰、张春明[2]等人运用的是Tornado 软件。此设计以 Tornado 专业课程为例,提出教学网络化的预期目标,结合课程内容的实践性特点,依据分层教学的指导理念,以先进的网站开发技术(Dreamweaver、B/S、ASP 等)为支撑手段,对面向 Tornado 的交互式教学实验平台进行设计与实现。通过小范围测试,基本实现了教师发布教学信息、上机实验、问题互助解答、学生在线自测、师生交互平台等教学功能,并在此基础上凸显出对学生进行分级以提供个性化教学的特色。在研究网络的教学实验平台设计,赵迎新、徐平平、夏桂斌[3]等人用的是无线传感器网络的研究方法。此设计研究并开发了一种应用MSP430微控制器芯片和CC2420无线收发模块架构的无线传感器网络的教学实验平台,设计并实现了系统的总体架构、硬件电路、软件接口与数据汇聚模式,根据实践教学要求,设计了基于该平台系统的基本实验要求与操作步骤,给出了对不同层次实践教学的目标要求,最后给出教学实践效果的评价。还有谢延红[4]提出的开放式 Linux 实验教学平台设计与实现。此研究针对 Linux 实验教学中存在的实验环境不够灵活、实验学习时间受限和无法实时沟通的问题,此研究提出了“个网络平台,条技术路线,

高频电子线路教学大纲

《高频电子线路》课程标准 一、课程基本信息 表1 课程基本信息 二、课程性质及与其他课程的关系 《高频电子线路》是电子信息工程专业的一门专业必修课。研究高频信号的产生、发射、接收和处理的有关电路,主要解决无线电广播、电视和通信中发射与接受的有关技术问题,通过学习使学生掌握非线性电子电路中基本单元电路的工作原理、分析方法、主要性能指标等,获得信息传递技术必备的理论知识,为学习后续课程以及从事有关的工程技术工作和科学研究工作打下一定的基础。培养认真细致、一丝不苟的工作作风。 先修课程:《电路基础》、《模拟电子技术》、《数字电子技术》 后续课程:《电子测量与仪器》、《语音信号处理》 三、课程目标 通过本课程的学习,使学生具备应用型技能型人才所必需的高频电子线路在整机中的应用能力,掌握高频电子线路的基本原理、基本知识和基本技能,为学习后续课程及将来从事实际工作打好基础。通过理论和实践教学,使学生掌握高频电子线路各单元电路的基本组成、基本工作原理和典型电路的应用,初步具备高频电子线路的识图能力和实际应用能力,掌握基本的实践技能。为进一步学习电子、通信类的专业知识和职业技能打下良好基础。 (一)知识目标 通过本课程的学习,逐渐地使学生系统、完整地了解和掌握高频电子线路的基本概念和基本原理,了解高频电子线路在无线电通信系统中的作用和地位。 (二)能力目标 通过本课程的学习可以使学生掌握线性电路近似法、线性时变电路分析方法、高频电路基本分析方法,并会运用这些方法分析电路,解决实际电路中遇到的一些问题。使学生受到

严格的科学思维和科学研究初步训练,逐步培养能在电子信息科学与技术、计算机科学与技术及相关领域从事科学研究、教学、科技开发、产品设计及管理工作的能力。 (三)素质目标 通过本课程的学习,使学生提高分析、判断和解决问题的能力,并将所学知识运用到实践中去,从而开拓他们的创新能力。 四、课程内容及学时分配 表2 课程内容与学时分配

《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲 课程编号: 11322617,11222617,11522617 课程名称:数字信号处理 英文名称:Digital Signal Processing 课程类型: 专业核心课程 总学时:56 讲课学时:48 实验学时:8 学分:3 适用对象: 通信工程专业、电子信息科学与技术专业 先修课程:信号与系统、Matlab语言及应用、复变函数与积分变换 执笔人:王树华审定人:孙长勇 一、课程性质、目的和任务 《数字信号处理》是通信工程、电子信息科学与技术专业以及电子信息工程专业的必修课之一,它是在学生学完了信号与系统的课程后,进一步学习其它专业选修课的专业平台课程。本课程将通过讲课、练习、实验使学生掌握数字信号处理的基本理论和方法。为以后进一步学习和研究奠定良好的基础。 二、课程教学和教改基本要求 数字信号处理是用数字或符号的序列来表示信号,通过数字计算机去处理这些序列,提取其中的有用信息。例如,对信号的滤波,增强信号的有用分量,削弱无用分量;或是估计信号的某些特征参数等。总之,凡是用数字方式对信号进行滤波、变换、增强、压缩、估计和识别等都是数字信号处理的研究对象。 本课程介绍了数字信号处理的基本概念、基本分析方法和处理技术。主要讨论离散时间信号和系统的基础理论、离散傅立叶变换DFT理论及其快速算法FFT、IIR和FIR数字滤波器的设计以及有限字长效应。通过本课程的学习使学生掌握利用DFT理论进行信号谱分析,以及数字滤波器的设计原理和实现方法,为学生进一步学习有关信息、通信等方面的课程打下良好的理论基础。 本课程将通过讲课、练习、实验使学生掌握数字信号处理的基本理论和方法。为以后进一步学习和研究奠定良好的基础,应当达到以下目标: 1、使学生建立数字信号处理系统的基本概念,了解数字信号处理的基本手段以及数字信号处理所能够解决的问题。 2、掌握数字信号处理的基本原理,基本概念,具有初步的算法分析和运用MATLAB编程的能力。 3、掌握数字信号处理的基本分析方法和研究方法,使学生在科学实验能力、计算能力和抽象思维能力得到严格训练,培养学生独立分析问题与解决问题的能力,提高科学素质,为后续课程及从事信息处理等方面有关的研究工作打下基础。 4、本课程的基本要求是使学生能利用抽样定理,傅立叶变换原理进行频谱分析和设计简单的数字滤波器。 三、课程各章重点与难点、教学要求与教学内容

小学1--6年级语文教学大纲

小学1--6年级语文教学大纲 小学一年级语文教学大纲 (一)汉语拼音 1.能读准汉语拼音的声母、韵母、声调和整体认读的音节。学会拼音方法,能熟练地拼读音节,有条件的可以逐步做到直呼音节。学读轻声。能利用汉语拼音帮助识字、阅读、学习普通话。 2.能默写声母、韵母并抄写音节,在四线格上写得正确、工整。(二)识字、写字 3.学会常用汉字450个左右。掌握汉字的基本笔画、笔顺规则、间架结构和常用的偏旁部首。 4.能借助汉语拼音读准字音,能按汉字的基本笔画、笔顺、偏旁和结构,分析、记忆字形,能初步理解字义。 5.学过的词语能正确读、写,懂得意思,大部分能在口头语言中运用,一部分能在书面语言中运用。 6.练习用铅笔写字,写得正确、端正、整洁,执笔方法和写字姿势正确。培养良好的写字习惯。 7.会按照田字格里的范字写字。培养写字兴趣。 8.学习使用和保管写字用具。 (三)听话、说话 9.能听懂别人说的一段话和一件简单的事。能听懂老师的提问和同学的回答。 10.听话能集中注意力,不随便插话。 11.学习说普通话。能用完整的语句回答老师提出的问题。看图或观察简单事物后,能说几句意思完整、连贯的话。 12.能当众说话,口齿清楚,声音响亮。学习使用礼貌语言。 (四)阅读 13.学习正确、流利、有感情地朗读课文。要求发音正确,声音响亮,按句逗停顿,不唱读。能背诵指定的课文。 14.能理解课文中的词语和句子。能结合句子理解词语。懂得一句话表达一个完整的意思。 15.认识自然段。了解课文内容。 16.能阅读浅显的注音读物,初步了解内容。 17.读书的姿势正确,养成爱惜书本的良好习惯。 (五)作文 18.能用学过的部分词语写完整、通顺的句子。 19.学习观察简单的图画和事物,练习写句子。 20.学习使用句号、问号。

清华大学《大学物理》试题及答案

热学部分 一、选择题 1.4251:一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) (B) (C) (D) [ ] 2.4252:一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) (B) (C) (D) 0 [ ] 3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能和平均平动动能 有如下关系:(A) 和都相等 (B) 相等,而不相等 (C) 相等,而不相等 (D) 和都不相等 [ ] 4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为: (A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 3 [ ] 5.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)? (A) 66.7% (B) 50% (C) 25% (D) 0 [ ] 6.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(EK /V ),单位体积内的气体质量,分别有如下关系:(A) n 不同,(EK /V )不同,不同 (B) n 不同,(EK /V )不同,相同 (C) n 相同,(EK /V )相同,不同 (D) n 相同,(EK /V )相同,相同 [ ] 7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 (A) 温度相同、压强相同 (B) 温度、压强都不相同 (C) 温度相同,但氦气的压强大于氮气的压强 (D) 温度相同,但氦气的压强小于氮气的压强 [ ] 8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。这些说法中正确的是 (A) (1)、(2)、(4);(B) (1)、(2)、(3);(C) (2)、(3)、(4);(D) (1)、(3) 、(4); [ ] 9.4039:设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同 温度的氧气和氢气的速率之比为 (A) 1 (B) 1/2 (C) 1/3 (D) 1/4 [ ] 10.4041:设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令 和分别表示氧气和氢气的最概然速率,则: (A) 图中a表示氧气分子的速率分布曲线; /=4 (B) 图中a表示氧气分子的速率分布曲线; /=1/4 (C) 图中b表示氧气分子的速率分布曲线; /=1/4 (D) 图中b表示氧气分子的速率分布曲线; /= 4 [ ] m kT x 32= v m kT x 3312 =v m kT x /32=v m kT x /2 =v m kT π8= x v m kT π831=x v m kT π38= x v =x v εw εw εw w εεw ρρρρρ2 2H O /v v ()2 O p v ()2 H p v ()2 O p v ()2 H p v ()2O p v ()2H p v ()2 O p v ()2 H p v ()2 O p v ()2 H p v

相关主题
文本预览
相关文档 最新文档