当前位置:文档之家› 等腰三角形、等边三角形题型分类

等腰三角形、等边三角形题型分类

等腰三角形、等边三角形题型分类
等腰三角形、等边三角形题型分类

等腰三角形、等边三角形题型分类

【例题讲解】

一、利用等腰三角形的性质求角度

例1、等腰三角形一腰上的高与另一腰所在直线的夹角为30°,则这个等腰三角

形的顶角为( )

A .60°或120°

B .30°或150°

C .30°或120°

D .60°

例2、 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB.求∠A 的度数

例3、如图,△ABC 中,AB=AC ,D 在BC 上,AB 于⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°,求∠AFD 的度数

二、利用等腰三角形的性质证明线段关系

例1、已知:如图,△ABC 中,AB=AC ,BD 和CE 是△ABC 的角平分线,求证:BD=CE.

A

B C D E A B C D F E

例2、如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足, 求证:

① AC=AD;②CF=DF。

三、等腰三角形的判定

例1、如图,AB=DC,BD=CA,BD 与CA相交于点E,求证:△AED 是等腰三角形.

例2、在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC交AC于点E.

(1)求证:△ADE是等腰三角形;

(2)图中除△ADE是等腰三角形外,还有没有等腰三角形?若有,请一一写出来(不要求证明);若没有,请说明理由.

四、等腰三角形及等边三角形中的动点问题

例1、已知,△ABC 是边长3cm 的等边三角形.(1)动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动.设点P 的运动时间为(s ),那么t 为何值时,△PBC 是直角三角形?

(2)动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点B 出发,沿BC 向点C 运动,如果动点P 、Q 都以1cm/s 的速度同时出发. 设运动时间为t (s ),那么t 为何值时,△PBQ 是直角三角形?

(3) 动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发.设运动时间为t (s ),那么 当t 为何值时,△DCQ 是等腰三角形?

(4)动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发. 设运动时间为t (s ),连接PC. 请探究:在点P 、Q 的运动过程中△PCD 和△QCD 的面积是否相等?

(1) (2) (3) (4)

C Q B

P A Q D B C P A Q D B C P A B C P A

【巩固练习】

一、利用等腰三角形的性质求角度

1、如图,将△ABC 绕点A 逆时针旋转150°,得到△ADE ,这时点B ,C ,D 恰好在同一直线上,则∠B

的度数为 .

2、如图,在△ABC 中,AB=AC ,BD ,CE 是高,BD 与CE 相交于点O.

(1)求证:OB=OC ;

(2)若∠ABC=50°,求∠BOC 的度数.

3、如图,CA=CB,DF=DB,AE=AD ,求∠A 的度数

4、如图,△ABC 中,AB=AC ,D 在BC 上∠BAD=30°,在AC 上取点E ,使AE=AD,求∠EDC 的度数

F E A D B C A B C D E

5、AD 和BE 是△ABC 的高,H 是AD 与BE 或是AD 、EB 延长线的交点,BH=AC ,求∠ABC 的度数.

二、利用等腰三角形的性质证明线段关系

1、如图,已知:△ABC 中,AB =AC ,M 、D 、E 分别是BC 、AB 、AC 的中点.

(1)求证:MD =ME ; (2)若MD =3,求AC 的长.

2、如图,△ABC 中,AB=BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,∠BAD=45°,AD 与BE 交于点F ,连接CF .

(1)试判断BF 与AE 有什么样的数量关系.并说明理由;

(2)若CD=2,求AF 的长.

M E A B C D

3、已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.

(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.

三、等腰三角形的判定

1、已知:如图,在△ABC中,AB=AC,点E在CA的延长线上,EP BC,垂足为P,EP交AB于点F,求证:△AEF是等腰三角形.

2、如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE 相交于点F,试判断△AFC的形状,并说明理由.

四、等腰三角形及等边三角形中的动点问题

1、在等边ABC

?的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D,E处,请问:(1)在爬行过程中,CD 和BE始终相等吗?

(2)若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,所示,蜗牛爬行过程中CQE

∠的大小条件不变,求证:?

∠60

CQE

=

(3)如图。如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,则爬行过程中,DF始终等于EF是否正确?(1,2问自己作图)

三角形(知识点+题型分类练习)(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 三角形章节复习 全章知识点梳理: 一、三角形基本概念 1. 三角形的概念 由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。 2. 三角形的任意两边之和大于第三边。 三角形的任意两边之差小于第三边。(这两个条件满足其中一个即可) 用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。 已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b 解题方法: ①数三角形的个数方法:分类,不要重复或者多余。 ②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可 ③给出多条线段的长度,要求从中选择三条线段能够组成三角形 方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。 ④已知三角形两边的长度分别为a,b,求第三边长度的范围

方法:第三边长度的范围:|a-b|<c<a+b ⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长 方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。 二、三角形的高、中线与角平分线 1. 三角形的高 从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC的边BC上的高。 三角形的三条高的交于一点,这一点叫做“三角形的垂心”。 2. 三角形的中线 连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC上的中线。 三角形三条中线的交于一点,这一点叫做“三角形的重心”。 三角形的中线可以将三角形分为面积相等的两个小三角形。 3. 三角形的角平分线 ∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。 要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。 三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。 要求会的题型: ①已知三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度方法:利用“等积法”,将三角形的面积用两种方式表达,求出未知量。 三、三角形的稳定性 1. 三角形具有稳定性 2. 四边形及多边形不具有稳定性 要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。 四、与三角形有关的角

(完整版)相似三角形知识点与经典题型

相似三角形知识点与经典题型 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b = .②()a c a b c d b d ==在比例式::中, a 、d 叫比例外项, b 、 c 叫比例内项, a 、c 叫比例前项,b 、 d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2 b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即 2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2 1 5-= ≈0.618AB .即 AC BC AB AC == 简记为:1 2 长短==全长 注:黄金三角形:顶角是360 的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2 ::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项): ()() ()a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=??, 交换内项,交换外项. 同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=. (4)合、分比性质: a c a b c d b d b d ±±=?=. 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间

等腰三角形分类讨论综合

等腰三角形分类讨论综合 1.理解等腰三角形的性质和判定定理; 2.能用等腰三角形的判定定理进行相关计算和证明; 3.初步体会等腰三角形中的分类讨论思想; 4.体会在函数动点中寻找某些特殊的点形成的等腰三角形; 5.培养学生进行独立思考,提高独立解决问题的能力。 知识结构 【备注】: 1.此部分知识点梳理,根据第1个图先提问引导学生回顾学过的等腰三角形的性质,可以在黑板上举例让学生画图; 2再根据第2个图引导学生总结出题目中经常出现的一些等腰三角形的题型; 3.和学生一起分析二次函数背景下等腰三角形的基本考点,为后面的例题讲解做好铺垫。建议时间5分钟左右。 一.等腰三角形的性质: 二.等腰三角形常见题型分类:

三.函数背景下的等腰三角形的考点分析: 1.求解相应函数的解析式; 2.根据函数解析式求解某些特殊点的坐标; 3.根据点的位置进行等腰三角形的讨论:分“指定腰长”和“不指定腰长”两大类; 4.根据点的位置和形成的等腰三角形立等式求解。 【备注】: 1.以下每题教法建议,请老师根据学生实际情况参考; 2.在讲解时:不宜采用灌输的方法,应采用启发、诱导的策略,并在读 题时引导学生发现一些题目中的条件(相等的量、不变的量、隐藏的量 等等),使学生在复杂的背景下自己发现、领悟题目的意思;Array 3.可以根据各题的“参考教法”引导学生逐步解题,并采用讲练结合; 注意边讲解边让学生计算,加强师生之间的互动性,让学生参与到例题 的分析中来; 4.例题讲解,可以根据“教法指导”中的问题引导学生分析题目,边讲 边让学生书写,每个问题后面有答案提示; 5.引导的技巧:直接提醒,问题式引导,类比式引导等等; 6.部分例题可以先让学生自己试一试,之后再结合学生做的情况讲评; 7.每个题目的讲解时间根据实际情况处理,建议每题7分钟,选讲例题 在时间足够的情况下讲解。

相似三角形题型归纳总结非常全面

相似三角形题型归纳 一、比例的性质: 二、成比例线段的概念: 1.比例的项: 在比例式::a b c d =(即a c b d =)中,a ,d 称为比例外项,b , c 称为比例内项.特别地,在比例式::a b b c =(即a b b c =)中,b 称为a ,c 的比例中项,满足b ac 2=. 2.成比例线段: 四条线段a ,b ,c ,d 中,如果a 和b 的比等于c 和d 的比,即a c b d =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段. 3.黄金分割: 如图,若线段AB 上一点C ,把线段AB 分成两条线段AC 和BC (AC BC >),且使AC 是AB 和BC 的比例中项(即AC AB BC 2=?),则称线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,其中.AC AB AB ≈0618,BC AB =.AB ≈0382,AC 与AB 的比叫做黄金比.(注意:对于线段AB 而言,黄金分割点有两个.) 三、平行线分线段成比例定理 1.平行线分线段成比例定理 A

两条直线被三条平行线所截,所得的对应线段成比例,简称为平行线分线段成比例定理.如图:如果123////l l l ,则 AB DE BC EF =,AB DE AC DF =,BC EF AC DF = . A D B E C F 1 l 2 l 3 l A D B E C F 1 l 2l 3 l 【小结】若将所截出的小线段位置靠上的(如AB )称为上,位置靠下的称为下,两条线段合成的线段称为全,则可以形象的表示为 =上上下下,=上上全全,=下下 全全 . 2.平行线分线段成比例定理的推论 平行于三角形一边的直线,截其它两边(或两边的延长线),所得的对应线段成比例.如图:如果EF//BC ,则 AE AF EB FC =,AE AF AB AC =,BE CF AB AC = . A B C E F F E C B A 平行线分线段成比例定理的推论的逆定理 若 AE AF EB FC =或AE AF AB AC =或BE CF AB AC = ,则有EF//BC . 【注意】对于一般形式的平行线分线段成比例的逆定理不成立,反例:任意四边形中一对对边的中点的连线与剩下两条边,这三条直线满足分线段成比例,但是它们并不平行. 【小结】推论也简称“A ”和“8”,逆定理的证明可以通过同一法,做'//EF BC 交AC 于'F 点,再证明'F 与F 重合即可. 四、相似三角形的定义、性质和判定 1.相似图形 ①定义:对应角相等,对应边成比例的图形叫做相似图形.对应边的比例叫做相似比.相似图形是形状相同,大小不一定相同.相似图形间的互相变换称为相似变换. ②性质:两个相似图形的对应角相等,对应边成比例. 2.相似三角形的定义

等腰三角形中的分类讨论问题

等腰三角形中的分类讨论问题

关于等腰三角形中分类讨论问题的探讨所谓分类讨论思想,就是在解答数学题时有时无法用同一种形式去解决,而需要选定一个标准,根据这个标准将问题划分成几个能用不同形式去解决的小问题,将这些小问题一一解决,从而使问题得到解决,这就是分类讨论的思想。 对于分类讨论问题,初中教学阶段虽然没有对此方面的教学要求,但是需要用分类讨论的思想去解决的问题却经常遇见,华东师大版七年级下册教材中典型的分类讨论问题是在“等腰三角形”一节中,主要有由于几何图形性质不明确而需分类讨论的问题和几何图形之间的位置关系不明确而需分类讨论的问题。下面举例简要论述这两类问题: 一、当腰长或底边长不能确定时,必须进行分类讨论 例1、(1)已知等腰三角形的两边长分别为8cm 和10cm,求周长。 (2)等腰三角形的两边长分别为3cm和7cm,求周长。 分析:由等腰三角形的性质可知我们在解此题前,必须明确所给的边的定义,在这里哪条边是“腰”,哪条边是“底”不明确,而且还要考虑到三条线段能够构成三角形的前提,因此必须进行分类讨论。 解(1)因为8+8>10,10+10>8,则在这两种情况下都能构成三角形; 当腰长为8时,周长为8+8+10=26; 当腰长为10时,周长为10+10+8=28; 故这个三角形的周长为26cm或28cm。 解(2)当腰长为3时,因为3+3<7,所以此时不能构成三角形; 当腰长为7时,因为7+7>3,所以此时能构成三角形,因此三角 形的周长为:7+7+3=17; 故这个三角形的周长为17cm。

注意:对于此类题目在进行分类讨论时,必须运用三角形的三边关系来验证是 否能构成三角形。 二、当顶角或底角不能确定时,必须进行分类讨论 例2、等腰三角形的一个角是另一个角的4倍,求它的各个内角的度数; 分析:题目没有指明“顶角是底角的4倍”,还是“底角是顶角的4倍”因此必 须进行分类讨论。 解:(1)当底角是顶角的4倍时,设顶角为x,则底角为4x, ∴ 4x+4x+x=1800,∴ x=200,∴ 4x=800, 于是三角形的各个内角的度数为:200,800,800。 (2)当顶角是底角的4倍时,设底角为x,则顶角为4x, ∴ x+x+4x=1800,∴ x=300,∴ 4x=1200, 于是三角形的各个内角的度数为:300,300,1200。 故三角形各个内角的度数为200,800,800或300,300,1200。 例3、已知等腰三角形的一个外角等于1500,求它的各个内角。 分析:已知等腰三角形的一个外角等于1500,有两种情况:与一个底角相邻的 外角等于1500;与顶角相邻的外角等于1500。因此需要分类讨论; 解:(1)当顶角的外角等于1500时,则顶角=1800-1500=300, ∴每个底角=(1800-顶角)÷2=750; (2)当底角的外角等于1500时,则每个底角=1800-1500=300; ∴顶角=1800-底角?2=1800-300?2=1200; 故三角形各个内角的度数为300,750,750或1200,300,300。 三、当高的位置关系不确定时,必须分类讨论 例4、等腰三角形一腰上的高与另一边的夹角为250,求这个三角形的各个内角 的度数。 分析:由于题目中的“另一边”没有指明是“腰”还是“底边”,因此必须进行 分类讨论,另外,还要结合图形,分高在三角形内还是在三角形外。 解:设AB=AC,BD⊥AC; A (1)高与底边的夹角为250时,高一定在△ABC的内部, 如图1,∵∠DBC=250,∴∠C=900-∠DBC=900-250=650, D B C

最新相似三角形常见题型解法归纳.优选

A字形,A’形,8字形,蝴蝶形,双垂直,旋转形 双垂直结论:射影定理:①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项 ⑴△ACD∽△CDB→AD:CD=CD:BD→CD 2=AD?BD ⑵△ACD∽△ABC→AC:AB=AD:AC→AC2=AD?AB ⑶△CDB∽△ABC→BC:AC=BD:BC→BC2=BD?AB 结论:⑵÷⑶得AC2:BC2=AD:BD 结论:面积法得AB?CD=AC?BC→比例式证明等积式(比例式)策略 1、直接法:找同一三角形两条边变化:等号同侧两边同一三角形三点定形法 2、间接法:⑴3种代换①等线段代换;②等比代换;③等积代换; ⑵创造条件①添加平行线——创造“A”字型、“8”字型 ②先证其它三角形相似——创造边、角条件 相似判定条件:两边成比夹角等、两角对应三边比 相似终极策略: 遇等积,化比例,同侧三点找相似; 四共线,无等边,射影平行用等比; 四共线,有等边,必有一条可转换; 两共线,上下比,过端平行条件边。 彼相似,我角等,两边成比边代换。 (3)等比代换:若d c b a, , ,是四条线段,欲证 d c b a =,可先证得 f e b a =(f e,是两条线段)然 后证 d c f e =,这里把 f e 叫做中间比。 ①∠ABC=∠ADE.求证:AB·AE=AC·AD ②△ABC中,AB=AC,△DEF是等边三角形,求证:BD?CN=BM?CE. ③等边三角形ABC中,P为BC上任一点,AP的垂直平分线交AB、AC于M、N两点。 求证:BP?PC=BM?CN D C A word.

等腰三角形、等边三角形题型分类

等腰三角形、等边三角形题型分类 【例题讲解】 一、利用等腰三角形的性质求角度 例1、等腰三角形一腰上的高与另一腰所在直线的夹角为30°,则这个等腰三角 形的顶角为( ) A .60°或120° B .30°或150° C .30°或120° D .60° 例2、 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB.求∠A 的度数 例3、如图,△ABC 中,AB=AC ,D 在BC 上,AB 于⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°,求∠AFD 的度数 二、利用等腰三角形的性质证明线段关系 例1、已知:如图,△ABC 中,AB=AC ,BD 和CE 是△ABC 的角平分线,求证:BD=CE. A B C D E A B C D F E

例2、如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足, 求证: ① AC=AD;②CF=DF。 三、等腰三角形的判定 例1、如图,AB=DC,BD=CA,BD 与CA相交于点E,求证:△AED 是等腰三角形. 例2、在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC交AC于点E. (1)求证:△ADE是等腰三角形; (2)图中除△ADE是等腰三角形外,还有没有等腰三角形?若有,请一一写出来(不要求证明);若没有,请说明理由.

四、等腰三角形及等边三角形中的动点问题 例1、已知,△ABC 是边长3cm 的等边三角形.(1)动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动.设点P 的运动时间为(s ),那么t 为何值时,△PBC 是直角三角形? (2)动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点B 出发,沿BC 向点C 运动,如果动点P 、Q 都以1cm/s 的速度同时出发. 设运动时间为t (s ),那么t 为何值时,△PBQ 是直角三角形? (3) 动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发.设运动时间为t (s ),那么 当t 为何值时,△DCQ 是等腰三角形? (4)动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发. 设运动时间为t (s ),连接PC. 请探究:在点P 、Q 的运动过程中△PCD 和△QCD 的面积是否相等? (1) (2) (3) (4) C Q B P A Q D B C P A Q D B C P A B C P A

中考数学专题复习练习三等角型相似三角形题型压轴题

三等角型相似三角形 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示: 等角的顶点在底边上的位置不同得到的相似三角形的结论也不同,当顶点移动到底边的延长线时,形成变式图形,图形虽然变化但是求证的方法不变。此规律需通过认真做题,细细体会。 典型例题 【例1】如图,等边△ABC 中,边长为6,D 是BC 上动点,∠EDF =60° (1)求证:△BDE ∽△CFD (2)当BD =1,FC =3时,求BE 【思路分析】本题属于典型的三等角型相似,由题意可得∠B =∠C =∠EDF =60° 再用外角可证∠BED =∠CDF ,可证△BDE 与△CFD 相似排出相似比便可 求得线段BE 的长度 解:(1)∵△ABC 是等边三角形,∠EDF =60° ∴∠B =∠C =∠EDF =60° ∵∠EDC =∠EDF +∠FDC =∠B +∠BED ∴∠BED =∠FDC ∴△BDE ∽△CFD (2)∵△BDE ∽△CFD ∴ BE CD BD FC = ∵BD =1,FC =3,CD =5 ∴BE = 3 5 点评:三等角型的相似三角形中的对应边中已知三边可以求第四边。 【例2】如图,等腰△ABC 中,AB =AC ,D 是BC 中点,∠EDF =∠B , 求证:△BDE ∽△DFE 【思路分析】比较例1来说区别仅是点D 成为了BC 的中点,所以△BDE 与 △CFD 相似的结论依然成立,用相似后的对应边成比例,以及BD =CD 的条件 可证得△BDE 和△DFE 相似 解: ∵AB =AC ,∠EDF =∠B ∴∠B =∠C =∠EDF ∵∠EDC =∠EDF +∠FDC =∠B +∠BED ∴∠BED =∠FDC ∴△BDE ∽△CFD ∴ DF DE CD BE =又∵BD =CD ∴ DF DE BD BE =即DF BD DE BE = ∵∠EDF =∠B ∴△BDE ∽△DFE C A D B E F D A B

中考数学试题 等腰三角形

等腰三角形 一、选择题 1. (2014?广东,第9题3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17 考点:等腰三角形的性质;三角形三边关系. 分析:由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长. 解答:解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形; ②当等腰三角形的腰为7,底为3时,周长为3+7+7=17. 故这个等腰三角形的周长是17. 故选A. 点评:本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论. 2. (2014?广西玉林市、防城港市,第10题3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是() A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm 考点:等腰三角形的性质;解一元一次不等式组;三角形三边关系. 分析:设AB=AC=x,则BC=20﹣2x,根据三角形的三边关系即可得出结论. 解答:解:∵在等腰△ABC中,AB=AC,其周长为20cm, ∴设AB=AC=xcm,则BC=(20﹣2x)cm, ∴, 解得5cm<x<10cm. 故选B. 点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两腰相等是解答此题的关键.3.(2014·浙江金华,第8题4分)如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B的度数是【】

A.70°B.65°C.60°D.55° 【答案】B. 【解析】 4. (2014?扬州,第7题,3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=() (第1题图) A.3B.4C.5D.6 考点:含30度角的直角三角形;等腰三角形的性质 分析:过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.

相似三角形常见题型

相似三角形的常见题型 【知识要点】 1.如何选择相似三角行判定定理: ①已知一个角对应相等的,常用(两角型或夹角与一组对应边成比例) ②已知一组对边成比例的,常用(夹角与一组对应边成比例) ③只知道边的关系的,常用(三边对应成比例) 【学堂练习】 1.如图,□中,直线分别交、的延长线于P、S交、、于Q、E、R, 图中相似三角形的对数(不含全等三角形)共有 对。 2.如图,□中,交延长线于E交于F,∶=3∶ 2,则∶。 A R S D C Q E B

【经典例题】 例1、如图,在△中,∥,∥. (1)求证::: (2)若4,5,求的长. 例2、如图,∠1=∠2,=12,=15,=20,=25。证明:△∽△。 例3 E是边延长线上一点,交于F,交于G, 求证:(1)2·。(2) AE AB CB CF 。 A C D E 题 B C D E

例4、 如图,△中,D 是边上的中点,且=,⊥,与相交于点E , 与相交于点F 。 (1)求证:△∽△; (2)若S BC FCD ?==510,,求的长。 例5.如图, △是等边三角形,点分别在上,且与相交于点F. (1) △与△相似吗?说说你的理由. (2)2 ·吗?请说明理由.

例6.如图,⊥,⊥,、相交于点C,⊥,垂足为F。 (1)求证:111 AD BE CF +=。【随堂练习】D A F B E C

1.如图所示,∥, 32=DB AD ,则BC DE = 。 2.如图所示,∥,∥,1.8, 1.2,1,则 。 3.如图所示,∥,∥,则下列比例式正确的是( )。 A . BC DE BD AD = B . FC BF EC AE = C . BC DE AC DF = D .BC BF AC DF = 4. 如图,在正三角形中,D 、E 分别在、上,且 AD AC =1 3 ,=,则有( ) A. △∽△ B. △∽△ C. △∽△ D. △∽△ 5、如图,在ABC △中,90C =o ∠,在AB 边上取一点D ,使BD BC =,过D 作DE AB ⊥交AC 于E ,86AC BC ==,.求DE 的长. A C D E 第1题图 A B C E D F 第3题图 A B C E D F 第2题图 A D C E 第4题图

等腰三角形中的分类讨论问题

关于等腰三角形中分类讨论问题的探讨 所谓分类讨论思想,就是在解答数学题时有时无法用同一种形式去解决,而需要选定一个标准,根据这个标准将问题划分成几个能用不同形式去解决的小问题,将这些小问题一一解决,从而使问题得到解决,这就是分类讨论的思想。 对于分类讨论问题,初中教学阶段虽然没有对此方面的教学要求,但是需要用分类讨论的思想去解决的问题却经常遇见,华东师大版七年级下册教材中典型的分类讨论问题是在“等腰三角形” 一节中,主要有由于几何图形性质不明确而需分类讨论的问题和几何图形之间的位置关系不明确而需分类讨论的问题。下面举例简要论述这两类问题: 、当腰长或底边长不能确定时,必须进行分类讨论 例1、(1)已知等腰三角形的两边长分别为8cm和10cm,求周长。 (2)等腰三角形的两边长分别为3cm和7cm,求周长。 分析:由等腰三角形的性质可知我们在解此题前,必须明确所给的边的定义,在这里哪条边是“腰”,哪条边是“底”不明确,而且还要考虑到三条线段能够构成三角形的前提,因此必须进行分类讨论。 解(1)因为8+8>10,10+10>8,则在这两种情况下都能构成三角形; 当腰长为8 时,周长为8+8+10=26; 当腰长为10 时,周长为10+10+8=28; 故这个三角形的周长为26cm或28cn。 解(2)当腰长为3 时,因为3+3<7,所以此时不能构成三角形; 当腰长为7 时,因为7+7>3,所以此时能构成三角形,因此三角形的周 长为:7+7+3=17; 故这个三角形的周长为17cm。 注意:对于此类题目在进行分类讨论时,必须运用三角形的三边关系来验证是否能构成三角形。 二、当顶角或底角不能确定时,必须进行分类讨论例2、等腰三角形的一个角是另一个角的4 倍,求它的各个内角的度数;分析:题目没有指明“顶角是底角的4 倍”,还是“底角是顶角的4 倍”因此必须进行分类讨论。

相似三角形动点问题题型归纳报告

相似中动点问题 题型一位似图形 例1如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1). (1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形; (2)分别写出B、C两点的对应点B′、C′的坐标; (3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标. 例2如图,图中的小方格都是边长为1的正方形,△ABC与△A′ B′ C′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上. (1)画出位似中心点0; (2)求出△ABC与△A′B′C′的位似比; (3)以点0为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.

题型二 动点存在问题 1如图,在△ABC 中,AB=8,BC=7,AC=6,有一动点P 从A 沿AB 移动到B ,移动速度为2单位/秒,有一动点Q 从C 沿CA 移动到A ,移动速度为1单位/秒,问两动点同时移动多少时间时,△PQA 与△BCA 相似。 2、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似? (3) 当t 为何值时,△APQ 的面积为5 24 个平方单位? y x O P Q A B

3、如图所示,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D 开始向点A以1厘米/秒的速度移动。如果P、Q同时出发,用t (秒)表示移动时间(0≤t≤6),那么: ⑴当t为何值时,⊿QAP为等腰直角三角形? ⑵求四边形QAPC的面积;并提出一个与计算结果有关的结论; ⑶当t为何值时,以点Q、A、P为顶点的三角形与⊿ABC相似? 4、如图,在梯形ABCD中,A D∥BC, AD=3,DC=5, AB=42,∠B=45°, 动点M从B点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动,动点N同 时从C点出发沿线段CD一每秒1个单位长度的速度向 终点D运动,设运动的时间t秒。 (1)、求BC 的长。 (2)当M N∥AB时,求t的值. A B C D Q P A C B D N

等腰三角形中的分类讨论问题归类

初中数学等腰三角形的分类讨论 等腰三角形是一种特殊而又十分重要的三角形,就是因为这种特殊性,在具体处理问题时往往又会出现错误,因此,同学们在求解有关等腰三角形的问题时一定要注意分类讨论。那么在什么情况下应该分类讨论呢?本文分以下几种情形讲述。 一、遇角需讨论 例1. 已知等腰三角形的一个内角为75°则其顶角为( ) A. 30° B. 75° C. 105° D. 30°或75° 简析:75°角可能是顶角,也可能是底角。当75°是底角时,则顶角的度数为 180°-75°×2=30°;当75°角是顶角时,则顶角的度数就等于75°。所以这个等腰三角形的顶角为30°或75°。故应选D 。 说明:对于一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解。 二、遇边需讨论 例2. 已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。 简析:已知条件中并没有指明5和6谁是腰长谁是底边的长,因此应由三角形的三边关系进行分类讨论。当5是等腰三角形的腰长时,这个等腰三角形的底边长就是6,则此时等腰三角形的周长等于16;当6是腰长时,这个三角形的底边长就是5,则此时周长等于17。故这个等腰三角形的周长等于16或17。 说明:对于底和腰不等的等腰三角形,若条件中没有明确哪是底哪是腰时,应在符合三角形三边关系的前提下分类讨论。 三、遇中线需讨论 例3. 若等腰三角形一腰上的中线分周长为9cm 和12cm 两部分,求这个等腰三角形的底和腰的长。 简析:已知条件并没有指明哪一部分是9cm ,哪一部分是12cm ,因此,应有两种情形。 若设这个等腰三角形的腰长是x cm ,底边长为y cm ,可得???????=+=+,1221,921y x x x 或???????=+=+.92 1,1221y x x x 解得???==,9, 6y x 或???==.5, 8y x 即当腰长是6cm 时,底边长是9cm ;当腰长是8cm 时,底边长是5cm 。 说明:这里求出来的解应满足三角形三边关系定理。

特殊三角形常见题型

八年级上册第二章 特殊三角形 一、将军饮马 例1 如图,在正方形ABCD 中,AB=9,点E 在CD 边上,且DE=2CE ,点P 是对角线AC 上的一个动点,则PE+PD 的最小值是( ) A 、3 B 、10 C 、9 D 、9 【变式训练】 1、如图,在矩形ABCD 中,AD=4,∠DAC=30°,点P 、E 分别在AC 、AD 上,则PE+PD 的最小值是( ) A 、2 B 、2 C 、4 D 、 2、如图,∠AOB=30°,P 是∠AOB 内一定点,PO=10,C ,D 分别是 OA ,OB 上的动点,则△PCD 周长的最小值为 3、如图,∠AOB=30°,C ,D 分别在OA ,OB 上,且OC=2, OD=6,点 C D 分别是AO ,BO 上的动点,则CM+MN+DN 最小值为 4、如图,C 为线段BD 作AB ⊥BD ,DE ⊥BD ,连结AC ,CE . (1,BD=12,设CD=x .用含x 的代数式表示AC+CE 的长; (2)请问点C 满足什么条件时,AC+CE 的值最小并求出它的最小值; (3)根据(2)中的规律和结论,请构图求出代数式 的最小值 二、等腰三角形中的分类讨论 例2(1)已知等腰三角形的两边长分别为8cm 和10cm ,则它的周长为 (2)已知等腰三角形的两边长分别为8cm 和10cm ,则它的腰长为 (3)已知等腰三角形的周长为28cm 和8cm ,则它的底边为 【变式训练】 1、已知等腰三角形的两边长分别为3cm 和7cm ,则周长为 2、已知等腰三角形的一个角是另一个角的4倍,则它的各个内角的度数为 3、已知等腰三角形的一个外角等于150°,则它的各个内角的度数为 4、已知等腰三角形一腰上的高与另一边的夹角为25°,则它的各个内角的度数 5、已知等腰三角形底边为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为 6、在三角形ABC 中,AB=AC ,AB 边上的垂直平分线与AC 所在的直线相交所得的锐角为40°,则底角∠B 的度数为 7、如图,A 、B 是4×5的网格中的格点,网格中每个小正方形的边长都是单位1,请在图中清晰地标出使以A 、B 、C 为顶点的三角形是等腰三角形的所有格点C 的位置 三、两圆一线定等腰 例3在平面直角坐标系xOy 中,已知点A (2,3),在坐标轴上找一点P , 使得△AOP 是等腰三角形,则这样的点P 共有 个 【变式训练】 E B C A D P 第2题 B O A P C D 第1题 B O A C N 第3题 A B x y O E C

相似三角形经典题型

(1)以上各种判定均适用. (2)如果一个直角三角形得斜边与一条直角边与另一个直角三角形得斜边与一条直角边对应成比例,那么这两个直角三角形相似. (3)直角三角形被斜边上得高分成得两个直角三角形与原三角形相似. 注: 射影定理:在直角三角形中,斜边上得高就是两直角边在斜边上射影得比例中项。每一条直角边就是这条直角边在斜边上得射影与斜边得比例中项。 如图,Rt △A BC中,∠BAC =90°,AD 就是斜边B C上得高, 则AD 2=BD ·DC,AB 2=BD ·BC ,AC 2=CD ·BC 。 知识点8 相似三角形常见得图形 1、下面我们来瞧一瞧相似三角形得几种基本图形: (1)如图:称为“平行线型”得相似三角形(有“A型”与“X型”图) (2) 如图:其中∠1=∠2,则△A DE ∽△ABC 称为“斜交型”得相似三角形。(有“反A 共角型”、 “反A 共角共边型”、 “蝶型”) (3) 如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”) (4)如图:∠1=∠2,∠B =∠D ,则△A DE∽△A BC ,称为“旋转型”得相似三角形。 2、几种基本图形得具体应用: (1)若DE ∥BC(A 型与X型)则△ADE ∽△ABC (2)射影定理 若CD 为R t△AB C斜边上得高(双直角图形) 则Rt △ABC ∽Rt △ACD ∽Rt △CBD 且AC 2=AD ·AB ,CD 2=AD ·BD ,B C2=BD ·AB; (3)满足1、AC 2=A D·A B,2、∠ACD=∠B,3、∠ACB=∠AD C,都可判定△A DC ∽△ACB . (4)当或AD ·AB=A C·AE 时,△A DE∽△ACB. 知识点9:全等与相似得比较: 三角形全等 三角形相似 两角夹一边对应相等(ASA) 两角一对边对应相等(AAS) 两边及夹角对应相等(SAS) 三边对应相等(SSS) 相似判定得预备定理 两角对应相等 两边对应成比例,且夹角相等 三边对应成比例 A B C D E 1 2 A A B B C C D D E E 12412E C A B D E A B C (D )E A D C B (1)E A B C D (3)D B C A E (2)C D E A B

等腰三角形三线合一典型题型[1]

等腰三角形三线合一专题训练 姓名 例1:如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。 求证:BC=AB+DC。 变1:如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E 是AD边中点。求证:CE⊥BE。 变2:如图,四边形ABCD中,AD∥BC,E是CD上一点,且AE、BE分别平分∠BAD、∠ABC. (1)求证:AE⊥BE;(2)求证:E是CD的中点;(3)求证:AD+BC=AB. 变3:△ABC是等腰直角三角形,∠BAC=90°,AB=AC.⑴若D为BC的中点,过D作DM⊥DN分别交AB、AC于M、N,求证:(1)DM=DN。 ⑵若DM⊥DN分别和BA、AC延长线交于M、N。问DM和DN有何数量关系。 (1)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且BE=CF,EF交BC于点D. 求证:DE=DF. D C A E (2)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且,EF交BC于点D,且D为EF B C E A D M N D C B A M N D C B A

的中点.求证:BE=CF. D B C F A E 利用面积法证明线段之间的和差关系 1、如图,在△ABC中,AB=AC,P为底边BC上的一点,PD⊥AB于D,PE⊥AC于E,?CF⊥AB于F,那么PD+PE与CF相等吗? 变1:若P点在直线BC上运动,其他条件不变,则PD 、PE与CF的关系又怎样,请你作图,证明。 F

F 1、已知等腰三角形的两边长分别为4、9,则它的周长为() A 17 B 22 C 17或22 D 13 根据等腰三角形的性质寻求规律 例1.在△ABC 中,AB=AC ,∠1= 12∠ABC ,∠2=12∠ACB ,BD 与CE 相交于点O ,如图,∠BOC 的大小与∠A 的大小有什么关系? 若∠1=13∠ABC ,∠2=13 ∠ACB ,则∠BOC 与∠A 大小关系如何? 若∠1=1n ∠ABC ,∠2=1n ∠ACB ,则∠BOC 与∠A 大小关系如何? 会用等腰三角形的判定和性质计算与证明 例2.如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD?将这个 等腰三角形周长分成15和6两部分, 求这个三角形的腰长及底边长. 利用等腰三角形的性质证线段相等 例3.如图,P 是等边三角形ABC 内的一 点,连结PA 、PB 、PC ,?以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ . (1)观察并猜想AP 与CQ 之间的 大小关系,并证明你的结论. (2)若PA :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由. 例1、等腰三角形底边长为5cm ,腰上的中线把三角形周长分为差是3cm 的两部分,则腰长为( ) A 、2cm B 、8cm C 、2cm 或8cm D 、不能确定 例2、已知AD 为△ABC 的高,AB=AC ,△ABC 周长为20cm ,△ADC 的周长为14cm ,求AD 的长。 例3、如图,已知BC=3, ∠ABC 和∠ACB 的平分线相交于点O ,OE ∥AB ,OF ∥AC ,求△OEF 的周长。 例4、如图,已知等边 △ABC 中,D 为AC 上中点,延长BC 到E ,使CE=CD ,连接DE ,试说明 DB=DE 。 A C A D A B F C O E

相似三角形题型讲解

相似三角形题型讲解 相似三角形是初中几何的重要内容,包括相似三角形的性质、判定定理及其应用,是中考必考内容,以相似三角形为背景的综合题是常见的热点题型,所以掌握好相似三角形的基础知识至关重要,本讲就如何判定三角形相似,以及应用相似三角形的判定、性质来解决与比例线段有关的计算和证明的问题进行探索。 一、如何证明三角形相似 例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。 分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。本例除公共角∠G 外,由BC ∥AD 可得∠1=∠2,所以△AGD ∽△EGC 。再∠1=∠2(对顶角),由AB ∥DG 可得∠4=∠G ,所以△EGC ∽△EAB 。 评注:(1)证明三角形相似的首选方法是“两个角对应相等的两个三角形相似”。(2)找到两个三角形中有两对角对应相等,便可按对应顶点的顺序准确地把这一对相似三角形记下来。 例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线, 求证:△ABC ∽△BCD 分析:证明相似三角形应先找相等的角,显然∠C 是公共角,而另一组相等的角则可以通过计算来求得。借助于计算也是一种常用的方法。 证明:∵∠A=36°,△ABC 是等腰三角形,∴∠ABC=∠C=72° 又BD 平分∠ABC ,则∠DBC=36° 在△ABC 和△BCD 中,∠C 为公共角,∠A=∠DBC=36° ∴△ABC ∽△BCD 例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD ,∠BCE=∠BAD 求证:△DBE ∽△ABC A B C D E F G 12 3 4A B C D

全等三角形题型归类及解析

全等三角形难题题型归类及解析 一、角平分线型 角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,?PN ⊥CD 于N ,判断PM 与PN 的关系. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。 求证:∠ABE=∠C ; 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。 . 5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B ) 2 1P F M D B A C E A B C D E P D A C M N

6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E . 若BD 平分∠ABC ,求证CE= 1 2 BD ; 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。 如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平 分 ∠BAC 、∠ACB , 求证:AC=AE+CD . 二、中点型 由中点应产生以下联想: 1、想到中线,倍长中线 利用中心对称图形构造8字型全等三角形 3、在直角三角形中联想直角三角形斜边上的中线 4、三角形的中位线 2、已知:如图,ABC △中,45ABC ∠=°, CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =; (2)求证:1 2 CE BF = E D C B

相关主题
文本预览
相关文档 最新文档