当前位置:文档之家› 恶性肿瘤的细胞分子生物学基础(Y2015)_首医大研究生_VP-灰度

恶性肿瘤的细胞分子生物学基础(Y2015)_首医大研究生_VP-灰度

恶性肿瘤的细胞分子生物学基础(Y2015)_首医大研究生_VP-灰度
恶性肿瘤的细胞分子生物学基础(Y2015)_首医大研究生_VP-灰度

分子生物学课后题

第一章 1、简述细胞的遗传物质,怎样证明DNA是遗传物质? 答:核酸是细胞内的遗传物质,包括脱氧核糖核酸(|DNA)和核糖核酸(RNA)两类,DNA是主要的遗传物质,具有储存遗传信息,将遗传信息传递给子代,物理化学性质稳定,有遗传变异能力适合作为遗传信息的特性,T2噬菌体侵染实验证明了DNA是遗传物质,将蛋白质被35S标记和DNA被32P 标记的T2噬菌体分别侵染E.coli后,发现进入宿主细胞的只有32P标记的DNA,而无35S标记物,所产生的子代噬菌体只含有32P标记的DNA,无S标记的蛋白质,因此证明DNA是遗传物质。 2、研究DNA的一级结构有什么重要的生物学意义? 答:DNA的一级结构是指DNA分子中的核苷酸排列顺序,它反映了生物界物种的多样性和复杂性,任何一段DNA序列都可以反映出它的高度的个体性和种族特异性,另外DNA一级结构决定其高级结构,研究DNA一级结构对阐明遗传物质结构、功能及表达调控都极其重要。 3、简述DNA双螺旋结构与现在分子生物学发展的关系。 答:DNA双螺旋结构具有碱基互补配对原则具有极其重要的生物学意义,它是DNA复制、转录、逆转录等基因复制与表达的分子基础。DNA为双链,维持了遗传物质的稳定性。 4、DNA双螺旋结构有哪些形式?说明其主要特点和区别。 答:主要有B-DNA,A-DNA,E-DNA形式 B-DNA:每一螺周含有10个碱基对,两个核苷酸之间夹角为36度 A-DNA:碱基对与中心倾角为19度,螺旋夹角为32.7度 E-DNA:左手螺旋,每圈螺旋含12对碱基,G=C碱基对非对称地位于螺旋轴附近。 第二章 1、简述DNA分子的高级结构。 答:1、单链核酸形成的二级结构(发夹结构)2、反向重复序列(十字架结构,每条链从5'--3'方向阅读)3、三股螺旋的DNA(一条链为全嘌呤核苷酸链,另一条链为全嘧啶核苷酸链)4、DNA的四链结构5、DNA结构的动态性与精细结构6、DNA的超螺旋结构与拓扑学性质。 2、什么是DNA的拓扑异构体,它们之间的相互转变依赖于什么? 答:DNA不同的空间分子构象又称拓扑异构体它们之间转换依赖于连环数L。连环数是指双螺旋DNA中两条链相互缠绕交叉的总次数。 3、简述真核生物染色体的组成,它们是如何组装的? 答:真核生物的染色体在间期表现为染色质,染色质是以双链DNA作为骨架与组蛋白和非组蛋白及少量各种RNA等共同组成的丝状结构的大分子物质、 组装的顺序:DNA—核小体链—纤丝—突环—玫瑰花结—螺旋圈—染色体 4、简述细胞内RNA的分布结构特点 答:成熟的RNA主要分布在细胞质中,无论是真核或原核细胞质中,成千上万种的RNA都分为三大类:1、转运RNA 2、信使RNA 3、核蛋白体RNA。细胞核内的RNA统称为nRNA. 5、简述细胞内RNA的结构特点以及与DNA的区别。 答:1、碱基组成不同,RNA分子主要是A G C U 而DNA以T代替U。 2、RNA分子中的核糖都是D-核糖,而DNA则是D-2-脱氧核糖。 3、RNA分子中有许多稀有,微量碱基,而DNA除个别外,不含有稀有碱基 4、RNA分子中嘌呤碱基与嘧啶碱基不一定相等。 5、RNA分子具有逆转录作用,RNA翻译成蛋白质是遗传物质,是遗传信息的传递结合表达者。 6、RNA分子具有催化功能。 6、引起DNA变性的主要因素有哪些?核酸变性后分子结构和性质发生了哪些变化? 答:①加热②极端PH值③有机溶剂,尿素和酰胺等 核酸变性后氢键被破坏而断裂,双链变为单链,而磷酸二酯键并未锻裂在A260nm 处呈现增色效应。DNA溶液的黏度大大下降、沉淀速度增加、浮力密度上升。紫外吸收光谱升高。酸碱滴定曲线改变,生物活性丧失等。 7、检测核酸变性的定性和定量方法是什么?具体参数如何? 答:在DNA变性过程中,紫外吸收光谱的变化时检测变性最简单的定性和定量方法。核酸在260nm 处具有特征的吸收峰,便是为A260nm。以50ug/ml DNA溶液在A260下测定,三者的A260数值为:

分子生物学复习资料终结版

1 绪论 1.1 分子生物学的基本概念 ①分子生物学---广义:在分子水平上研究生命现象,或用分子的术语描述生物现象的学科。 狭义:核酸与蛋白质水平上研究基因的复制,基因的表达(包括RNA转录、蛋白质翻译),基因表达的调控以及基因的突变与交换的分子机 制。 ②序列假说:核酸片段的特异性,完全由其碱基序列决定,而且这种序列是一种蛋白质氨 基酸的密码 ③中心法则:DNA的遗传信息经RNA一旦进入蛋白质,也就不可能再行输出。 ④三大原则:Ⅰ、构成生物大分子的单体是相同的; Ⅱ、生物大分子单体的排列决定了不同生物性状的差异和个体特征; Ⅲ、所有生物遗传信息表达的中心法则是相同的 ⑤分子生物学是研究细胞内大分子的结构、功能和相互作用特点和规律,并通过这些规律认识生命现象的一门科学。 1.2 分子生物学的发展简史 ①细胞学说: (1)以下3点是必修一上的内容: a细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞产物所组成。 b细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用。 c新细胞可以从老细胞中产生。 (2)以下7点是百度到的内容: a.细胞是有机体,一切动植物都是由单细胞发育而来,并由细胞和细胞产物所构成; b.所有细胞在结构和组成上基本相似; c.新细胞是由已存在的细胞分裂而来; d. 生物的疾病是因为其细胞机能失常; e. 细胞是生物体结构和功能的基本单位; f 生物体是通过细胞的活动来反映其功能的; g. 细胞是一个相对独立的单位,既有他自己的生命,又对于其他细胞共同组成的整体的生命起作用。 ②正向遗传学:在不知道基因化学本质的前提下,仅依靠表型突变体在世代间的传递规律来研究基因的特征和染色体上的位置,描述基因突变和染色体的改变,分析它们对生物形态和生理特征所产生的效应。 ③反向遗传学:通过转基因办法来确定某一基因的功能。 ④George Beadle和Edward Tatum提出“一个基因一个酶”假说 Avery围绕肺炎链球菌的成就第一个动摇了“基因是蛋白质”的理念,为“DNA是遗传物质”的理论建立奠定了基础 Chargaff 法则:A+C=T+G Nirenberg在一周内破解了第一个遗传密码:UUU——苯丙氨酸 Jacob和Monod发现乳糖操纵子模型 Pardee,Jacob,Monod命名的“Pa-Ja-Mo”实验结果证明:基因通过一种RNA严格地控制着蛋白质的合成。这种RNA被命名为“信使RNA”

最新肿瘤分子生物学复习题

一肿瘤流行病学 肿瘤流行病学 肿瘤流行病学是研究人群中肿瘤的发生、发展、分布规律及其影响因素的一门学科,以阐明肿瘤的流行规律、拟订肿瘤的防治对策及检验肿瘤防治对策效果。 肺癌危险因素 1. 吸烟; 2. 职业因素:接触砷的无机化合物、石棉、二氯甲醚、铬及其他化合物,镍冶炼、芥子体、氯乙烯、煤油、焦油和石油中的多环芳烃,烟草的加热产物、硫酸烟雾等; 3. 氡:广泛存在于自然界的土壤、岩石、建筑材料中; 4. 空气污染:城市中每天燃烧的大量化石燃料以及柏油路的铺设和机动车辆的使用,均可导致居民密集区空气的污染; 5. 饮食营养失衡:(体重下降)在致癌的环境因素中,饮食和营养是重要构成部分,营养状况能够通过改变表遗传来导致癌症发生,尤其是维生素和必需氨基酸; 6. 人乳头瘤病毒感染; 7. 机体免疫力低下,内分泌失调,及家庭遗传对肺癌的发生/可能起到一定作用。 二癌基因与抑癌基因 癌基因 基因组中存在的一类能促进细胞分裂并有潜在致癌作用的基因。 癌基因活化的机制 逆转录病毒的转导;病毒插入,进入或靠近宿主细胞原癌基因而增强后者的表达;点突变,在ras癌基因中特别重要;染色体移位,不同染色体的一部分合并,造成基因重排,表达增加,如CML患者9号和22号染色体移位;基因扩增。抑癌基因 是一类可以抑制细胞分裂,并有抑制癌变作用的基因,突变或缺失而功能失活后能使正常细胞转化为肿瘤细胞。 抑癌基因的失活机制 Knudson氏的两次打击论: 二个等位基因中的一个缺失; 另一个等位基因突变; 基因5,端CpG岛胞嘧啶(C-5)高度甲基化,抑制抑癌基因的转录。 P53基因的功能 阻滞细胞周期;促进细胞调亡;参与DNA损伤修复,维持基因组稳定;抑制肿瘤血管生成 三细胞信号传导 G protein G蛋白,由α、β、γ三个不同亚基组成的GTP结合蛋白,具有GTP酶活性和七个跨膜结构域,在细胞信号通路中起信号转换器或分子开关的作用。 Second messenger 第二信使,受细胞外信号的作用,在胞质溶胶内形成或向胞质溶胶释放的细胞内小分子。通过作用于靶酶或胞内受体,将信号传递到级联反应下游,如cAMP、cGMP、Ca2+、IP3和DAG等。 Receptor tyrosine kinase (RTK) 受体酪氨酸激酶,细胞表面一类具有细胞外受体结构域、可使酪氨酸磷酸化的跨膜受体蛋白,在细胞信号的跨膜转导中发挥重要作用。 MAP kinase cascade MAP激酶级联式反应,是多种生长因子及其他信号分子与RTK作用后信号传导的下游通路,级联式反应中的最后一个

硕士研究生分子生物学复习题答案

硕士研究生分子生物学复习(JUJU) 一、名词解释 1. 基因(gene):是指核酸分子中贮存遗传信息的遗传单位,是指贮存有功能的蛋白质多肽链或RNA序列信息及表达这些信息所必需的全部核苷酸序列。 2. 基因组(genome):是指细胞或生物体中,一套完整单倍体的遗传物质的总和。基 因组的结构主要指不同的基因功能区域在核酸分子中的分布和排列情况,基因组的功能 是储存和表达遗传信息。 3. 基因家族(gene family):是指核苷酸序列或编码产物的结构具有一定程度同源性的一组基因。同一个家族的基因成员是由同一祖先基因进化而来。 4?假基因(pseudogene):在多基因家族中,某些成员并不能表达出有功能的产物,这些基因称为假基因,用书表示。假基因与有功能的基因同源,原来也可能是有功能的基因,由于缺失、倒位或点突变等原因失去活性,成为无功能的基因,它们或者不能转录,或者转录后生成无功能的异常多肽。 5. 质粒(plasmid ):是存在于细菌细胞质中的一类独立于染色体的遗传成分,它是由 环形双链DNA组成的复制子。质粒DNA分子可以持续稳定的处于染色体外的游离状态,但在一定条件下又会可逆的整合到宿主染色体上,随染色体的复制而复制,并通过细胞 分裂传递到后代。 6. 基因超家族(gene superfamily ):是指一组由多基因家族及单基因组成的更大的基因 家族。它们的结构有程度不等的同源性,可能是由于基因扩增后又经过结构上的轻微改变,因此它们可能都起源于相同的祖先基因。但是它们的功能并不一定相同,这一点正 是与多基因家族的差别。这些基因在进化上也有亲缘关系,但亲缘关系较远。如免疫球蛋白超家族。 7. 卫星DNA(satellite DNA )为非编码区串联重复序列。通常存在于内含子和间隔DNA 内。重复次数从数次至数百次,甚至几十万次,串联重复单位从最短的2bp起,长短 不等。这类重复顺序组成卫星DNA的基础。可分为三类:大/小/微卫星DNA。8.基因多态性:是指由于等位基因间在特定位点上DNA序列存在差异造成的,一般发生在基因序列中不编码蛋白质的区域和没有重要调节功能的区域。 9. 操纵子(operator):是阻遏蛋白识别与结合的一小段DNA序列,转录过程存在阻遏调控机制的基因中均含有这样的序列。操纵子紧接在启动子下游,通常与启动子有部分重叠。 10. 顺式作用元件(cis-acting elements ):是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的DNA序列。原核生物中主要是启动子、阻遏蛋白结合位点、正调控蛋白结合位点、增强子等。真核生物中包括启动子、上游启动子元件、增强子、加尾信号和一些反应元件等。 11. 反式作用因子(trans-acting elements ):在真核生物中,基因特异性转录因子称为 反式作用因子,这些因子通常是通过与增强子或上游启动元件结合而发挥作用。反式作 用因子通过与通用转录因子及RNA聚合酶相互作用而刺激转录,这些相互作用促进前起始复合物的形成。 12. 增强子(enhancer):是一种较短的DNA序列,能够被反式作用因子识别与结合。反式作用因子与增强子元件结合后能够调控(通常为增强)临近基因的转录。增强子序列通常是数个形成一簇,位于转录起始点上游-100~-300bp处,但在基因之外或某些内含子中也有增强子序列。 13. 启动子(promoter ):是RNA聚合酶特异性识别和结合的DNA序列。启动子具有

细胞分子生物学

细鳞斜颌鲴种群的遗传分化及系统发生生物地理学研究 武震M100102115水生生物学 摘要:细鳞斜颌鲴(Xenocypris microlepis)属鲤形目,鲤科,鲴亚科,鲴属。俗称:沙姑子、黄片。我们将以中国各水系细鳞斜颌鲴种群为研究对象,以基因组微卫星标记和线粒体D-loop标记为线索,研究细鳞斜颌鲴种群的遗传分化及系统发生生物地理学特征,探讨相互间的遗传结构、亲缘关系和系统进化关系,为进一步开发和利用细鳞斜颌鲴资源奠定基础。 关键字:细鳞斜颌鲴,线粒体D-loop标记,微卫星标记,遗传分化, 亲缘关系, 系统进化 1.研究背景 细鳞斜颌鲴属中下层鱼类,平时喜生活于江河干支流水域,到了产卵季节,有一定的短距离洄游现象,上溯至适合条件的产卵场进行集群产卵。产后,亲鱼分散游动,离开产卵场,至秋季有一部分群体进入干流附属的湖泊或支流中进行索饵、育肥,冬季则又返回干流水深的潭穴中越冬。细鳞斜颌鲴的食性很杂,自全长2厘米以上的夏花鱼种开始,除摄食少量浮游生物外,主要是腐屑、底泥以及底生硅藻和摇蚊幼虫等底生生物。它在不同类型的水体中,均以腐殖质有机碎屑、腐泥及着生藻类为主要食物。其生长在头两年速度较快,2龄鱼的平均体重可达479克。细鳞斜颌鲴通常2冬龄性成熟,生殖季节在华中和华南地区为4―6月。成熟雌鱼的体重变化在415―1100克以上。平均每千克体重的鱼怀卵量为20万粒左右。产粘性卵,呈浅黄色。产出时卵径为0.8―1.2毫米。雄鱼在生殖季节,有珠星出现。广泛存在于东部各水系之中。故各水系之间的种群长期存在地理隔离,基因交流困难,是一个良好的进化生态学研究材料。国内对此鱼的研究也不多,且多为形态学方面的资料,研究其分子进化和群体遗传,有助于了解该种的资源状况,同时能够为生态学相关理论提供依据。 2.方法 2.1采样 分别采钱塘江,长江,珠江水系细鳞斜颌鲴,每条水系定5—7个点,如钱

研究生-分子生物学Ⅱ笔记整理版

分子生物学Ⅱ 专题一细胞通讯与细胞信号转导(一)名词解释 (1)信号分子(signal molecule):是指在细胞间或细胞内进行信息传递的化学物质。 (2)受体(receptor):是指细胞中能识别信息分子,并与之特异结合、引起相应生物效应的蛋白质。 (3)蛋白激酶(protein kinase):是指使蛋白质磷酸化的酶。 (二)简答分析 (1)细胞通讯的方式及每种作用方式的特点。 答: (2)膜受体介导的信息传递途径的基本规律。

答:配体→膜受体→第二信使→效应蛋白→效应。(3)试以肾上腺素、干扰素、胰岛素、心纳素为例,阐述其信息转导过程。 答:①肾上腺素:cAMP-PKA途径; 过程:首先肾上腺素与其受体结合,使G蛋白被激活;然后G蛋白与膜上的腺苷酸环化酶相互作用,后者将ATP转化为cAMP;最后cAMP磷酸化PKA,从而产生一系列生物学效应。 ②胰岛素:受体型TPK途径; 过程:胰岛素与其靶细胞上的受体结合后,可使其受体中的TPK激活,随后通过下游的Ras途径继续传递信号,直至发生相应的生物学效应。 ③干扰素:Jak-STAT途径; 过程:首先干扰素与受体结合导致受体二聚化,然后受体使JAK(细胞内TPK)激活,接着JAK将下游的STAT磷酸化形成二聚体,暴露出入核信号,最后STAT进入核内,调节基因表达,产生生物学效应。 ④心钠素:cGMP-PKG途径; 过程:心钠素与其受体结合,由于该受体属于GC型酶偶联受体,具有鸟苷酸环化酶的的活性,因此结合后可直接将GTP转化为cGMP,进而激活下游的PKG,最终产生一系列的生物学效应。

(4)类固醇激素是如何调控基因表达的? 答:类固醇激素穿膜后与细胞内(或核内)受体结合,使受体变构形成激素受体活性复合物并进入细胞核中,然后以TF的形式作用于特异的DNA序列,从而调控基因表达。 专题二基因分析的策略 (一)名词解释 (1)分子杂交(molecular hybridization):是指具有一定同源序列的两条核酸单链(DNA或RNA)在一定条件下,按碱基互补配对原则经退火处理,形成异质双链的过程。(2)核酸分子杂交技术:是指采用杂交的手段(方式),用一已知序列的DNA或RNA片段(探针)来测检样品中未知核苷酸顺序。 (3)探针(Probe):是指用来检测某特定核苷酸序列的标记DNA或RNA片段。 (4)增色效应:是指DNA变性时260nm紫外吸收值增加的现象。 (5)解链温度(Tm):是指加热DNA溶液,使其对260nm 紫外光的吸光度达到其最大值一半时的温度,即50%DNA 分子发生变性的温度。 (6)转基因:是指是借助基因工程将确定的外源基因导入

细胞和分子生物学实验重点知识点汇总

细胞和分子生物学实验重点知识点汇总 Experiment1细胞有丝分裂 间期:有明显的细胞核,染色质分布较均均,由于染色质易与碱性染料结合,故细胞核的染色比细胞质深。核中可见1~3个染色较浅的呈球状的核仁 前期:细胞核膨大,染色质逐渐螺旋化为丝状的染色丝,其后染色丝进一步缩短变粗,形成一定形态和书目的染色体(这时候的每条染色体由两条染色单体组成,但在光镜下一般不易看清),核膜、核仁逐渐消失 中期:每条染色体中的成对染色单体逐渐分开(但着丝粒仍未分离)全部染色体(2n=16)移向细胞中央的赤道面上,形成赤道板。在赤道板到两面有许多纺锤丝连接细胞两极和染色体的着丝点,成为纺锤体,但不易观察到,此时染色体形态最典型 后期:着丝粒纵裂为二。这是,每条染色体的两条染色单体已完全分开,由于纺锤丝的牵引,分别向细胞的两极移动,形成了数目相等的两组染色体(这是所观察到的染色体数目比原来增加1倍,是由于S期内DNA含量倍增的结果) 末期:染色体移到两极并解旋为染色质,细胞中部出现细胞板,并逐渐向边缘发展。当染色质构成核网时,核膜、核仁重新出现。细胞板达到两边,分裂结束,形成两个子细胞,细胞又进入间期状态。 Experiment2动物染色体的制备 原理:染色体只有在分裂期的细胞,特别是中期细胞中表现出典型形态便于观察和计数,所以必须采取特殊的技术方法,从发生有丝分裂的组织和细胞悬液中得到。最常用的途径是从骨髓细胞、血淋巴细胞和组织培养的细胞中制备。骨髓细胞数量多、分裂旺盛,不需体外培养和无菌操作,便于取材。 秋水仙素的作用:抑制纺锤体的形成,使细胞停留在分裂中期 KCl低渗溶液:使细胞膨胀,促使中期染色体散开 固定液:有固定作用,对染色体还有一定的分散作用 Giemsa染色液:染色 结果:低倍镜下,可见到许多大笑不等被染成紫红色呈圆形的间期细胞核以及分散在它们之间的中期分裂象。小鼠染色体一般呈“U”形,染色体2n=40

肿瘤分子生物学资料

非病毒性生物载体(化学和物理方法) 由于病毒载体是一类外源性的核酸结构材料, 且病毒本身存在一些无法解决的问题, 故不少研究人员正在努力寻找一些人体本身的生物结构材料来作为人类基因治疗的载体, 如人体细胞某些核酸结构材料.非病毒载体广义上讲就是除了病毒载体外的所有基因治疗 载体。本质:模仿病毒 非病毒载体具有较好的临床应用前景,但需要解决对靶细胞转染的定向性、转染效率低、表达时间短、全身应用及保存不稳定性等问题。在多学科的共同努力,非病毒基因载体的基因治疗将不断降低不良反应,提高疗效。 1) 裸DNA(naked DNA)(基因枪,水压法) 将目的基因连接在表达质粒或噬菌体中直接注射而不依赖其它物质介导,是最简单的非病毒载体系统。将质粒直接导入动物组织,诱导动物的免疫系统对所表达的蛋白质产生体液免疫或细胞免疫,即基因疫苗。Nakamura等将荧光素酶基因的裸DNA直接接种到小鼠胃浆膜下,发现该基因能在胃部明显高表达,一次接种后的高表达时间可持续12h之久,其他临近器官则无明显基因表达。肌内注射后可直接诱导相应的免疫反应,也可检测到DNA明显表达。电穿孔(electroporation)技术和微粒子轰击法(microparticle bombardment,即基因 枪)的出现,大大提高了裸DNA的转染效率,而且可使DNA直接到达细胞核,避免了各种酶对DNA的降解。Dietrich等采用该方法将白介素12/自介素2基因质粒转染皮下负荷Lewis肺癌的裸鼠,证明能明显减慢肿瘤生长、减少肿瘤转移、延长宿主生存期。 2) 脂质体和脂质复合物(Liposome and lipoplexes) 脂质体能够介导极性大分子穿透细胞膜,携带DNA进入细胞。脂质体可分为中性脂质体、负电性脂质体、正电性脂质体。它一般都带有一个疏水基团,保证脂质体分散在水介质中时形成脂双层结构,有效保护分子中的疏水部分,将氨基暴露在水介质中,后者通过静电引力与DNA结合并将DNA大分子压缩成可运输的小单元,成三明治状,形成脂质体复合物。增加分子中N+数目以及N+与疏水链的距离即有利于基因转移。阳离子脂质体与DNA形成的复合物颗粒大小从50 am到1 pm不等;体外细胞试验中大颗粒的转染效率优于小颗粒。物理因素如Zeta 电位、粒子大小、DNA/J]旨质体比例和介质离子强度等都影响脂质复合物的稳定性、复合物的形成和转染效率。脂质体DNA复合物局部注射,报告基因仅表达在注射点周围;肝门静脉、动脉血管注射后主要分布在肝脏[5]。脂质体或脂质复合物也可直接应用于病变部位,如气管内给药可使肺泡上皮细胞中的p半乳糖苷酶基因表达,给予P53凋亡诱导基因可使早期肺肿瘤缩小。使用精蛋白或组蛋白来源的肽压缩DNA后,则DNA被包裹在脂质囊内部,如脂质/鱼精蛋白/DNA复合物,后者是研究的最热门的系统之一。该复合物粒子大小介于100 am 到250 am之间,比传统脂质复合物小3—4倍,介导基因转移的效果优于传统脂质复合物。氯喹可在一定条件下提高阳离子脂质体介导基因传染,因其可提高内吞体的pH而有效抑制内吞体与溶酶体的融合作用,促进复合物从内吞体中释放。联用电穿孔技术或者结合灭活病毒或其肽片段作为膜激动剂能提高复合物进入细胞核的能力。静脉注射脂质体/DNA复合物,对肿瘤部位超声处理可增加肿瘤组织对脂质体/DNA复合物的摄取和表达。 3) 阳离子多聚物(Polyplex) 阳离子聚合物表面的正电荷可与带负电的基因形成带正电荷的复合物,该复合物借静电作用吸附于细胞表面,通过细胞内吞而将基因导入细胞,并获得表达。目前研究较多的阳离子聚合物主要有多肽类:聚赖氨酸、聚谷氨酸及其衍生物;多聚胺类:聚乙烯亚胺、聚丙烯亚

分子生物学考研参考习题讲课教案

分子生物学考研参考 习题

分子生物学考研习题 一、名词解释 1.中心法则(Central Dogma) 2.反向重复序列(IR) 3.DNA链的呼吸作用 4.Cot曲线(Cot1/2) 5.DNA变性,复性 6.DNA的熔解温度(Tm) 7.基因组 8.C-值矛盾 9.基因家族 10.基因簇 11.割裂基因,Intron 内元,Exon 外元 12.卫星DNA 13.半保留复制 14.岗崎片段 15.复制单位replicon 16.复制体replisome 17.先导链,后随链 18.突变(mutation) 19.移码突变(frame-shift mutation) 20.无义突变(nonsense mutation),错义突变(missense mutation),同义突变(samesense mutation) 21.组成型突变(constitutive mutation) 22.突变热点(Mutation Hotpoint) 23.增变基因(mutator gene ) 24.限制-修饰系统(restriction and modificaion) 25.光裂合酶修复(photo reactivation Repair) 26.切除修复(Excision Repair) 27.重组修复(Recombinative—Repair) 28.SOS修复(SOS Repair) 29.转录(transcription) 30.有义链(sense strand) ,反义链(antisense strand) 31.启动子(promoter) 32.终止子(terminator) 33.核酶(ribozyme); 34.核内不均一RNA(hnRNA) 35.反式拼接(trans-splicing)

细胞分子生物学名词解释最全版

, 内膜系统的膜结构破裂后自己重新封闭起来的小囊泡(主要 是内质网和高尔基体), 是异质性的集合体, 形态、大小及功能常因生物种类和细胞类型不同而异。据微体内含有的酶的不同可分为过氧化物酶体、糖酵解酶体和乙醛酸循环体。在蛋白质合成过程中,同一条mRNA分子能够同多个核糖体结合,同时合成若干条蛋白质多肽链,结合在同一条mRNA上的核糖 叠的多肽链相互作用的蛋白质,能够加速正确折叠的进行或提供折叠发生所需要的微环境。动物体细胞在体外可传代的次数,与物种的寿命有关,它们的增殖能力不是无限的, DNA在核小体连接处断裂成核小体片 色体末端的特殊结构,即染色体末端DNA 序列的多个重复,其作用是保护和稳定染色 RNA 依赖性DNA 聚合酶,为一种核糖核蛋白酶,是合成端粒必需的酶。在双线期中,交叉数目逐渐减少,在着丝粒两侧的交叉向两端移动.这个现象称为 成染色体联会的两条同源染色体互相紧靠,进而缠绕在一起,基质开始附着到染色丝上,成为一条短而粗的染色体。据染色体被拉向两极所受到的力的不同,后期可分为后期A 和后期B,此时的染色体 启动DNA复制的关键因子,是真核细胞DNA M期促进因子。

能够促使染色体凝集,使细胞由G2期进入M 物质多肽的形式合成,其N末端含有作为通过膜时之信号的氨基酸序列。引导前体多肽 是指具有摄取、处理及提呈抗原能力的细胞,能摄取病原体蛋白并将其加工将成短肽段,呈递给T细胞。 ,从中 于高等真核细胞中,是内层核被膜下纤维蛋白片层,纤维纵横排列整齐呈纤维网络状。 成串排列在一起,主要集中在染色体的着丝 DNA和组蛋白构成,是染色质的基本结构 在一定时期的特种细胞的细胞核内, 它由不表达的DNA序列组成, 分裂过程中,核仁出现周期性变化。一般在分裂前期逐渐消失,其纤丝和颗粒成分散失于核质之中;在分裂末期又重新出现。核仁的形成常与特定染色体的一定区域密切相关。 色体片段, 通过次缢痕与染色体主要部分相连。 指染色体组在有丝分裂中期的表型, 是染色体数目、大小、 是卵母细胞进行第一次减数分裂时, 停留在双线期的染色体。含4条染色单体,形似灯刷。 由核内有丝分裂产生的多股染色单体平行排列而成。

分子生物学试题整理

一、植物组织培养:狭义指对植物体组织或由植物器官培养产生的愈伤组织进行培养直至生成完整植株。广义:无菌操作分离植物体一部分(即外植体)接种到培养基,在人工条件下培养直至生成完整植株。生物技术中的一个基本技术。 MS:MS培养基是Murashige和Skoog于1962年为烟草细胞培养设计的,特点是无机盐和离子浓度较高,是较稳定的离子平衡溶液,它的硝酸盐含量高,其营养丰富,养分的数量和比例合适,不需要添加更多的有机附加物,能满足植物细胞的营养和生理需要,因而适用范围比较广,多数植物组织培养快速繁殖用它作为培养基的基本培养基。 愈伤组织愈伤组织callus在离体培养过程中形成的具有分生能力的一团不规则细胞,多在植物体切面上产生。 cDNA文库:包含细胞全部的mRNA信息的反转录所得到的cDNA的集合体。 胚状体:是指植物在离体培养条件下,非合子细胞经过胚胎发生和发育的过程形成的胚状结构,又称体细胞胚。 体细胞杂交:体细胞杂交又称体细胞融合,指将两个GT不同的体细胞融合成一个体细胞的过程。融合形成的杂种细胞,兼有两个细胞的染色体。 分子标记:是指在分子水平上DNA序列的差异所能够明确显示遗传多态性的一类遗传标记。 基因工程原称遗传工程,亦称重组DNA技术,是指采用分子生物学手段,将不同来源的基因,按照人类的愿望,在体外进行重组,然后将重组的基因导人受体细胞,使原有生物产生新的遗传特性,获得新品种,生产新产品的技术科学。 细胞培养指动物、植物和微生物细胞在体外无菌条件下的保存和生长。过程:①取材和除菌;②培养基的配制;③接种与培养。 生物反应器是适用于林木细胞规模化培养的装置。 生物技术biotechmlogy:也称生物工程,是指人们以现代生命科学为基础,结合其他基础学科的科学原理,采用先进的工程技术手段,按照预先的设计改造生物体或加工生物原料,为人类生产出所需产品或达到某种目的。 外植体explant:从植物体上分离下来的用于离体培养的材料。 植物细胞的全能性:植物每一个具有完整细胞核的体细胞,都含有植物体的全部遗传信息,在适当条件下,具有发育成完整植株的潜在能力。 再分化:脱分化的分生细胞(愈伤组织)在一定的条件下,重新分化为各种类型的细胞,并进一步发育成完整植株的过程。 器官发生organogenesis:亦称器官形成,一般指脊椎动物个体发育中,由器官原基进而演变为器官的过程。各种器官形成的时间有早有晚,通过器官发生阶段,各种器官经过形态发生和组织分化,逐渐获得了特定的形态并执行一定的生理功能 体细胞胚胎发生:单细胞或一群细胞被诱导,不断再生非合子胚,并萌发形成完整植株的过程。 PCR:聚合酶链式反应是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。Recombinant DNA重组DNA:是指采用分子生物学手段,将不同来源的基因,按照人类的愿望,在体外进行重组,然后将重组的基因导人受体细胞,使原有生物产生新的遗传特性,获得新品种,生产新产品的技术科学。 细胞融合:两个或多个细胞相互接触后,其细胞膜发生分子重排,导致细胞合并、染色体等遗传物质重组的过程称为细胞融合。 悬浮培养:悬浮培养是细胞培养的基本方法,不仅为研究细胞的生长和分化提供了一个

5细胞分子生物学基础范文

第三章细胞的分子基础 一、名词解释 1、原生质 2、biological macromolecules 3、核酸 4、磷酸二酯键 5、peptide bond 二、选择题 【A1型题】 1、细胞中的下列化合物,哪些属于生物小分子( ) A.蛋白质B.糖类C.酶D.核E.以上都不对 2、原生质是指( ) A.人细胞内的所有生命物质B.蛋白质C.糖类D.无机化合物E.有机化合物3、细胞内结构最简单,含量最多的化合物是( ) A.葡萄糖B.氨基酸C.甘油D.H2O E.磷酸 4、构成蛋白质分子和酶分子的基本单位是( ) A.氨基酸D.核苷酸C.脂肪酸D.核酸E.磷酸 5、维持蛋白质一级结构的主要化学键是( ) A.氢键B.离子键C.疏水键D.肽键E.二硫键 6、组成核酸的基本结构单位是( ) A.核苷酸B.氨基酸C.碱基D.戊糖E.磷酸 7、维持多核苷酸链的化学键主要是( ) A.酯键B.糖苷键C.磷酸二酷键D.肽键E.离子键 8、核苷与磷酸之间,通过什么键连接成单核苷酸( ) A.糖苷键B.酯键C.氢键D.肽键E.离子键 9、由含氮碱基、戊糖、磷酸3种分子构成的化合物是( ) A.氨基酸B.核苷酸C.脂肪酸D.葡萄糖E.核酸 10、关于核酸,下列哪项叙述是正确的( ) A.核酸最初是从细胞核中分离出来,因具酸性,故称为核酸 B.核酸最初是从细胞质中分离出来,因具酸性,故称为核酸 C.核酸最初是从细胞核中分离出来,因具碱性,故称为核酸 D.核酸最初是从核仁中分离出来,因具酸性,故称为核酸 E.以上全错 11、下列哪种元素被称为生命物质的分子结构中心元素,即细胞中最重要的元素( ) A.氢(H) B.氧(O) C.碳(C) D.氮(N) E.钙(Cn) 12、细胞中的下列哪种化合物属生物小分子( ) A.蛋白质B.酶C.核酸D.糖E.胆固醇 13、细胞中的下列化合物中,哪项属于生物大分子( ) A.无机盐B.游离水C.过氧化氢酶D.胆固醇E.葡萄糖 14、核糖与脱氧核糖的主要区别是在于其分子的哪一 位碳原子所连羟基上脱去了一个氧原子( ) A.第一位B.第二位C.第三位D.第四位E.第五位 15、DNA和RNA彻底水解后的产物相比较( ) A.碱基相同,核糖不同B.碱基不同,核糖相同

细胞与分子生物学考题

细胞与分子生物学考题 Chapter 3 Protein Structure & Function 1. The primary, secondary, tertiary and quaternary structures of proteins. N972010028 黄琴淑 (1) 一级结构 (primary structure) :蛋白质的序列称之为蛋白质的「一级结构」。 (2) 二级结构 (secondary structure) : 一级结构上的胺基酸间可交互作用,利用醯胺键上的C=O键与胺基形成氢键。这样形成的简单又有规则的结构,称之为二级结构 (secondary structure)。蛋白质有α螺旋 (helix)与 beta 折曲平面 (pleated sheet); 两种主要 而且规则的二级结构,由这些简单的结构又可组合成一些独立折叠的单元,称之为模组(motif)。 (3) 三级结构 (tertiary structure) :蛋白质的三级结构是由一条多月生(polypeptide)链组成,可包含一个或多个模组。 (4) 四级结构 (quaternary structure):蛋白质的三级结构是由一条多月生(polypeptide)链组成,可包含一个或多个模组。一个含有多个次单元蛋白质中,每个次单元都是一个三级结构,次单元间可能有疏水性作用,盐桥等交互作用而形成四级结构,所以含有多个次单元的蛋白质才有四级结构 (quaternary structure)。 第壹题参考资料 蛋白质的一级结构 将蛋白质中胺基酸顺序视为整体构造,是一种用有机化学词语来描述分子的完全方法。自很多不同蛋白质的顺序分析中可以看出,每种蛋白质都有其独特的结构,而顺序排列即是该种系的特性。在少数的情形中,特殊的器官或组织也具有特定结构的蛋白质,更进一步的,蛋白质可以如细胞分裂一般很正确地被复制出相同顺序的蛋白质。我们可以参考牛的胰岛素(Bovine insulin);更正确地说,是参考proinsulin。Proinsulin为生物活性贺尔蒙的先质(precursor),藉着正常牛的胰脏岛状细胞仔,细地做成的一种特定构造。牛的胰岛素和其他哺乳类的胰岛素几乎是相同的,通常只有一个胺基酸不同,即A链中第8,9或10位置胺基酸的改变。这些相似性使得这方面的研究迅速扩展,虽然在不同种类中,胺基

2015年研究生分子生物学课后答案

第一次课 举例说明人的基因组成或结构变化引起的相关疾病 (要求:1特定某个基因名称、定位、大小及组成等基本特征。2基因组成或结构变化的过程、结果和表型)。 疾病:严重复合免疫缺陷病(XL-SCID) 名称:受体γ链(γc)基因突变引起。 定位:编码基因位于Xq12~131 组成:γc基因8个外显子的135种基因突变,其中5个突变热点;最常见的突变类型是单个碱基置换(错义突变和无义突变),其次为剪接部位突变、缺失和插入突变 结果:该基因编码的产物为白介素(如IL-4,IL-21)。这些白介素和受体涉及了很多T,B细胞的分化和常熟。当基因突变时,无功能蛋白质产物生成,导致白介素信号的广泛缺失,进而引起免疫系统功能的丧失。 第三次课 1、请叙述肝细胞对胰高血糖素或肾上腺素的反应过程。 简洁答案:肾上腺素能受体激活——与Gi偶联——AC活性下降——cAMP活性下降——平滑肌舒张。胰高血糖素能受体——激活Gs、增加AC活性——cAMP——PKA(增加肝糖原分解) 叙述答案:肾上腺素和胰高血糖素中的任何一种激素同肝细胞膜上相应受体结合后激化G 蛋白,G蛋白化a亚基,a亚基激化腺苷酸环化酶(AC),AC催化小分子信使cAMP的产生,cAMP结合PKA,通过变构调节作用激化PKA,PKA通过磷酸化作用激化或抑制各种效应蛋白,继续传递信号,PKA激活磷酸化酶b激酶,促进糖原的分解代谢,糖原分解成1-磷酸葡萄糖,然后进一步分解为6-磷酸葡萄糖随后进入血液。激活的PKA计入细胞核使cAMP反应元件结合蛋白(CREB)磷酸化。磷酸化的CREB结合于cAMP反应元件(CRE),并与CREB结合蛋白(CBP)结合。与CREB结合后的CBP作用于通用转录因子(包括TFIIB),促进CFIIB 等通用转录因子与启动子结合激活基因的表达。 2、细胞膜在信号转导的过程中起到怎样的作用? 答案1:屏障作用,位于细胞膜的某些能特异性地与外源性物质结婚,并诱发细胞产生某些特定的生理生化反应,并最终产生生物学效应的物质。 答案2: 每个细胞在机体内并非孤立地存在,而是不断受到其生活环境中各种理化因素的影响。各种信号,如化学、机械、电刺激信号,一般首先作用于细胞膜,膜上某些特异性蛋白质能选择性地接受某种特定信号,引起细胞膜两侧电位变化或细胞内发生某些功能改变;细胞膜的这种作用称为跨膜信号转导功能。 细胞通过位于胞膜或胞内的受体感受胞外信息分子的刺激,经复杂的细胞内信号转导系统的转换而影响其生物学功能,这一过程称为细胞信号转导,这是细胞对外界刺激做出应答反应的基本生物学方式。其中,水溶性信息分子如肽类激素、生长因子及某些脂溶性信息分子(如前列腺素)等,不能穿过细胞膜,需通过与膜表面的特殊受体相结合才能激活细胞内信息分子,经信号转导的级联反应将细胞外信息传递至胞浆或核内,调节靶细胞功能,这一过程称为跨膜信号转导。其过程包括:①胞外信号被质膜上的特异性受体蛋白识别,受体被活化; ②通过胞内信号转导物(蛋白激酶,第二信使等) 的相互作用传递信号;③信号导致效应物

研究生分子生物学知识点

分子生物学知识点总结 1.蛋白质组(proteome):proteins expressed by a genome, 即基因组表达的 全套蛋白质。蛋白质组学(Protemics)则是以蛋白质组为研究对象,从整体角度,分析细胞或组织内蛋白质构成的动态变化和活动规律的科学。(相互作用网络PPI) 2.表达蛋白质组学研究的基本流程:蛋白样品的制备及定量-总蛋白的双向凝 胶电泳(染色)-凝胶分析软件分析-胶内酶解(胰肽酶)-质谱分析(肽质量指纹图谱)-数据库搜索鉴定蛋白性质 3.双向凝胶电泳:相互垂直的两个方向上,分别基于蛋白质不同的等电点和分 子量,先经等电聚焦电泳(isoelectric focusing, IEF),再经变性聚丙烯酰胺凝胶电泳(SDS-PAGE)把复杂的蛋白质成分分离。 4.比较蛋白质组学:通过比较同一个体肿瘤细胞(组织)与正常细胞(组织) 之间蛋白质在表达数量、表达位置和修饰状态上的差异,发现与肿瘤发病或者发展有关的分子标记,用来作为肿瘤诊断的肿瘤相关蛋白。 5.软电离:所谓“软电离”是指样品分子电离时保留整个分子的完整性,不会 形成碎片离子。 6.肿瘤血清蛋白质分析方法(tumor serologic proteome analysis, SERPA): 是从肿瘤免疫学观点出发建立的一种蛋白质组学和肿瘤免疫学相结合的方法。 SERPA其实验过程如下: ①双向电泳分离肿瘤组织(细胞)总蛋白质; ②转膜; ③建立western blotting蛋白质印迹反应图谱(与患者或正常人血清反应); ④软件分析确定差异反应的蛋白质斑点; ⑤质谱鉴定和生物信息对肿瘤组织平行胶(replica gel)中相应的差异蛋白 质点进行鉴定,筛选出肿瘤分子标志物; ⑥用ELISA、免疫组化等方法对该分子标志物进行原位验证,或者进一步分 析该蛋白功能,研究其在肿瘤进展中发挥的作用。 7.蛋白质芯片:是将大量蛋白质分子按预先设置的排列固定于一种载体表面, 形成微阵列,根据蛋白质分子间特异性结合的原理,构建微流体生物化学分析系统,以实现对生物分子的准确、快速、大信息量的检测。 8.功能蛋白质组学:是指对蛋白质间、蛋白质与DNA/RNA间的相互作用的研究。 以细胞内与某个功能有关或某种条件下的一群蛋白质为主要研究内容,由此建立细胞内外信号传递的复杂网络。研究方法主要有: ●蛋白质芯片技术 目前常用蛋白质芯片有: 1. SELDI-TOF-MS蛋白质芯片 2. 抗体芯片 3. 靶蛋白质芯片 4. 液相蛋白质芯片 ●噬菌体展示技术 ●酵母双杂交系统 ●免疫共沉淀

分子生物学笔记:癌症

癌症 在医学上,癌是指起源于上皮组织的恶性肿瘤,是恶性肿瘤中最常见的一类。相对应的,起源于间叶组织的恶性肿瘤统称为肉瘤。有少数恶性肿瘤不按上述原则命名,如肾母细胞瘤、恶性畸胎瘤等。一般人们所说的“癌症”习惯上泛指所有恶性肿瘤。 肿瘤是机体在各种致瘤因素作用下,局部组织的细胞在基因水平上失去对其生长的正常调控导致异常增生与分化而形成的新生物。新生物一旦形成,不因病因消除而停止生长,他的生长不受正常机体生理调节,而是破坏正常组织与器官,这一点在恶性肿瘤尤其明显。与良性肿瘤相比,恶性肿瘤生长速度快,呈浸润性生长,易发生出血、坏死、溃疡等,并常有远处转移,造成人体消瘦、无力、贫血、食欲不振、发热以及严重的脏器功能受损等,最终造成患者死亡。 病因 恶性肿瘤的病因尚未完全了解。多年的流行病学研究及实验和临床观察,发现环境与行为对人类恶性肿瘤的发生有重要影响。据估计约80%以上的恶性肿瘤与环境因素有关。各种环境的和遗传的致癌因素可能以协同或序贯的方式引起细胞非致死性的DNA损害,从而激活原癌基因或(和)灭活肿瘤的抑制基因,加上凋亡调节基因和(或)DNA修复基因的改变,使细胞发生转化。被转化的细胞可先呈多克隆性增生,经过一个漫长的多阶段演进过程,其中某个克隆相对无限制扩增,通过附加突变,选择性形成不同特点的亚克隆,从而获得浸润和转移能力,形成恶性肿瘤。因此,肿瘤从本质上来说是一种基因病。 1. 外界因素 (1)化学因素:如烷化剂、多环芳香烃类化合物、氨基偶氮类、亚硝胺类、真菌毒素和植物毒素等,可诱发肺癌、皮肤癌、膀胱癌、肝癌、食管癌和胃癌等。 (2)物理因素:电离辐射,如X线可引起皮肤癌、白血病等,紫外线可引起皮肤癌,石棉纤维与肺癌有关,滑石粉与胃癌有关,烧伤深瘢痕和皮肤慢性溃疡均可能发生癌变等。 (3)生物因素:主要为病毒,其中1/3为DNA病毒,2/3为RNA病毒。DNA病毒如EB病毒与鼻咽癌、伯基特淋巴瘤有关,人类乳头状病毒感染与宫颈癌有关,乙型肝炎病毒与肝癌有关。RNA病毒如T细胞白血病/淋巴瘤病毒与T细胞白血病/淋巴瘤有关。此外,幽门螺杆菌感染与胃癌发生也有关系。 2. 内在因素 (1)遗传因素:真正直接遗传的肿瘤只是少数不常见的肿瘤,遗传因素在大多数肿瘤发生中的作用是增加了机体发生肿瘤的倾向性和对致癌因子的易感性,如结肠息肉病、乳腺癌、胃癌等。 (2)免疫因素:先天性或后天性免疫缺陷易发生恶性肿瘤,如丙种蛋白缺乏症患者易患白血病和淋巴造血系统肿瘤,肾移植后长期应用免疫抑制剂的患者,肿瘤发生率较高,但大多数恶性肿瘤发生于免疫机能“正常”的人群,主要原因在于肿瘤能逃脱免疫系统的监视并破坏机体免疫系统,机制尚不完全清楚。 (3)内分泌因素:如雌激素和催乳素与乳腺癌有关,生长激素可以刺激癌的发展。 鉴别诊断 根据不同部位的肿瘤所应鉴别的疾病也不相同,如肺癌需要和肺结核、结节病、肺部良性肿瘤等疾病相鉴别。

相关主题
文本预览
相关文档 最新文档