当前位置:文档之家› 第三章 电火花加工工艺规律3

第三章 电火花加工工艺规律3

第三章 电火花加工工艺规律3
第三章 电火花加工工艺规律3

第三章 电火花加工工艺规律

3.1 电火花加工的常用术语

电火花加工中常用的主要名词术语和符号如下:

1.工具电极

电火花加工用的工具是电火花放电时的电极之一,故称为工具电极,有时简称电极。由于电极的材料常常是铜,因此又称为铜公(如图3-1所示)。

图3-1 电火花加工示意图2.放电间隙

放电间隙是放电时工具电极和工件间的距离,它的大小一般在0.01~0.5 mm 之间,粗加工时间隙较大,精加工时则较小。

3.脉冲宽度ti(μs)

脉冲宽度简称脉宽(也常用ON 、TON 等符号表示),是加到电极和工件上放电间隙两端的电压脉冲的持续时间(如图3-2所示)。为了防止电弧烧伤,电火花加工只能用断断续续的脉冲电压波。一般来说,粗加工时可用较大的脉宽,精加工时只能用较小的脉宽。 图3-2 脉

冲参数与脉冲电压、电流波形4.脉冲间隔to(μs))

脉冲间隔简称脉间或间隔(也常用OFF 、TOFF 表示),它是两个电压脉冲之间的间隔时间(如图3-2所示)。间隔时间过短,放电间隙来不及消电离和恢复绝缘,容易产生电弧放电,烧伤电极和工件;脉间选得过长,将降低加工生产率。加工面积、加工深度较大时,脉间也应稍大。

5.放电时间(电流脉宽)te(μ

s)

21—工具电极;2—工件;

3—脉冲电源;4—伺服进给系统

放电时间是工作液介质击穿后放电间隙中流过放电电流的时间,即电流脉宽,它比电压脉宽稍小,二者相差一个击穿延时td 。ti 和te 对电火花加工的生产率、表面粗糙度和电极损耗有很大影响,但实际起作用的是电流脉宽te 。

6.击穿延时t d (μs)

从间隙两端加上脉冲电压后,一般均要经过一小段延续时间t d ,工作液介质才能被击穿放电,这一小段时间t d 称为击穿延时(见图3-2)。击穿延时t d 与平均放电间隙的大小有关,工具欠进给时,平均放电间隙变大,平均击穿延时t d 就大;反之,工具过进给时,放电间隙变小,t d 也就小。

7.脉冲周期t P (μs)

一个电压脉冲开始到下一个电压脉冲开始之间的时间称为脉冲周期,显然t P =t i +t o (见图3-2)。

8.脉冲频率f P (Hz)

脉冲频率是指单位时间内电源发出的脉冲个数。显然,它与脉冲周期t P 互为倒数,即

9.有效脉冲频率f e (HZ) 有效脉冲频率是单位时间内在放电间隙上发生有效放电的次数,又称工作脉冲频率。

10.脉冲利用率λ

脉冲利用率λ是有效脉冲频率f e 与脉冲频率f p 之比,又称频率比,即亦即单位时间内

有效火花脉冲个数与该单位时间内的总脉冲个数之比。

11.脉宽系数τ

脉宽系数是脉冲宽度t i 与脉冲周期t p 之比,其计算公式为

12.占空比ψ

占空比是脉冲宽度t i 与脉冲间隔t o 之比,ψ=t i /t o 。粗加工时占空比一般较大,精加工时占空比应较小, 否则放电间隙来不及消电离恢复绝缘,容易引起电弧放电。

13.开路电压或峰值电压(V)

开路电压是间隙开路和间隙击穿之前td 时间内电极间的最高电压(见图3-2)。一般晶体管方波脉冲电源的峰值电压=60~80 V ,高低压复合脉冲电源的高压峰值电压为175~300 V 。峰值电压高时,放电间隙大,生产率高,但成形复制精度较差。

14.火花维持电压

火花维持电压是每次火花击穿后,在放电间隙上火花放电时的维持电压,一般在25 V 左右,但它实际是一个高频振荡的电压(见图3-2)。

15.加工电压或间隙平均电压U(V)

加工电压或间隙平均电压是指加工时电压表上指示的放电间隙两端的平均电压,它是多个开路电压、火花放电维持电压、短路和脉冲间隔等电压的平均值。

16.加工电流I(A)

加工电流是加工时电流表上指示的流过放电间隙的平均电流。精加工时小,粗加工时大,间隙偏开路时小,间隙合理或偏短路时则大。

17.短路电流Is(A)

p

p 1t f =

p

e

f f =λo

i i

p i t t t t t +==τ

短路电流是放电间隙短路时电流表上指示的平均电流。它比正常加工时的平均电流要大20%~40%。

18.峰值电流(A)

峰值电流是间隙火花放电时脉冲电流的最大值(瞬时),在日本、英国、美国常用Ip 表示(见图3-2)。虽然峰值电流不易测量,但它是影响加工速度、表面质量等的重要参数。在设计制造脉冲电源时,每一功率放大管的峰值电流时预先计算好的,选择峰值电流实际是选择几个功率管进行加工。19.短路峰值电流(A)

短路峰值电流是间隙短路时脉冲电流的最大值(见图3-2),它比峰值电流要大20%~40%,与短路电流Is 相差一个脉宽系数的倍数,即

20 短路(短路脉冲)

放电间隙直接短路,这是由于伺服进给系统瞬时进给过多或放电间隙中有电蚀产物搭接所致。间隙短路时电流较大,但间隙两端的电压很小,没有蚀除加工作用。

21 电弧放电(稳定电弧放电)

由于排屑不良,放电点集中在某一局部而不分散,导致局部热量积累,温度升高,如此恶性循环,此时火花放电就成为电弧放电。由于放电点固定在某一点或某一局部,因此称为稳定电弧,常使电极表面积炭、烧伤。电弧放电的波形特点是td 和高频振荡的小锯齿基本消失。

22 过渡电弧放电(不稳定电弧放电,或称不稳定火花放电)

过渡电弧放电是正常火花放电与稳定电弧放电的过渡状态,是稳定电弧放电的前兆。波形特点是击穿延时很小或接近于零,仅成为一尖刺,电压电流表上的高频分量变低或成为稀疏的锯齿形。

3.2 影响材料放电腐蚀的因素

1.极性效应对电蚀量的影响

在电火花加工时,相同材料(如用钢电极加工钢)两电极的被腐蚀量是不同的。其中一个电极比另一个电极的蚀除量大,这种现象叫做极性效应。如果两电极材料不同,则极性效应更加明显。在生产中,将工件接脉冲电源正极(工具电极接脉冲电源负极)的加工称为正极性加工(如图3-3所示),反之称为负极性加工(如图3-4所示)。

图3-3 “正极性”接线法图 3-4 “负极性”接线法在实际加工中,

极性效应受到电极及电极材料、加工介质、电源种类、单个脉冲能量等多种因素的影响,其中主要原因是脉冲宽度。

在电场的作用下,放电通道中的电子奔向正极,正离子奔向负极。在窄脉宽度加工时,由于电子惯性小,运动灵活,大量的电子奔向正极,并轰击正极表面,使正极表面迅速熔化和气化;而正离子惯性大,运动缓慢,只有一小部分能够到达负极表面,而大量的正离子不能到达,因此电子的轰击作用大于正离子的轰击作用,正极的电蚀量大于负极的电蚀量,这时应采用正极性加工。

s s ?i

I ?=τ

在宽脉冲宽度加工时,因为质量和惯性都大的正离子将有足够的时间到达负极表面,由于正离子的质量大,它对负极表面的轰击破坏作用要比电子强,同时到达负极的正离子又会牵制电子的运动,故负极的电蚀量将大于正极,这时应采用负极性加工。

在实际加工中,要充分利用极性效应,正确选择极性,最大限度地提高工件的蚀除量,降低工具电极的损耗。

2.覆盖效应对电蚀量的影响

在材料放电腐蚀过程中,一个电极的电蚀产物转移到另一个电极表面上,形成一定厚度的覆盖层,这种现象叫做覆盖效应。合理利用覆盖效应,有利于降低电极损耗。

在油类介质中加工时,覆盖层主要是石墨化的碳素层,其次是粘附在电极表面的金属微粒粘结层。碳素层的生成条件主要有以下几点:

(1)要有足够高的温度。电极上待覆盖部分的表面温度不低于碳素层生成温度,但要低

于熔点,以使碳粒子烧结成石墨化的耐蚀层。

(2) 要有足够多的电蚀产物,尤其是介质的热解产物──碳粒子。

(3) 要有足够的时间,以便在这一表面上形成一定厚度的碳素层。

(4) 一般采用负极性加工,因为碳素层易在阳极表面生成。

(5) 必须在油类介质中加工。

影响覆盖效应的主要因素有如下:

(1) 脉冲参数与波形的影响。增大脉冲放电能量有助于覆盖层的生长,但对中、精加工有相当大的局限性;减小脉冲间隔有利于在各种电规准下生成覆盖层,但若脉冲间隔过小,正常的火花放电有转变为破坏性电弧放电的危险。此外,采用某些组合脉冲波加工,有助于覆盖层的生成,其作用类似于减小脉冲间隔,并且可大大减少转变为破坏性电弧放电的危险。

(2) 电极对材料的影响。铜加工钢时覆盖效应较明显,但铜电极加工硬质合金工件则不大容易生成覆盖层。

(3) 工作液的影响。油类工作液在放电产生的高温作用下,生成大量的碳粒子,有助于碳素层的生成。如果用水做工作液,则不会产生碳素层。

(4) 工艺条件的影响。覆盖层的形成还与间隙状态有关。如工作液脏、电极截面面积较大、电极间隙较小、加工状态较稳定等情况均有助于生成覆盖层。但若加工中冲油压力太大,则覆盖层较难生成。这是因为冲油会使趋向电极表面的微粒运动加剧,而微粒无法粘附到电极表面上去。

在电火花加工中,覆盖层不断形成,又不断被破坏。为了实现电极低损耗,达到提高加工精度的目的,最好使覆盖层形成与破坏的程度达到动态平衡。3.电参数对电蚀量的影响电火花加工过程中腐蚀金属的量(即电蚀量)与单个脉冲能量、脉冲效率等电参数密切相关。

单个脉冲能量与平均放电电压、平均放电电流和脉冲宽度成正比。在实际加工中,其中击穿后的放电电压与电极材料及工作液种类有关,而且在放电过程中变化很小,所以对单个脉冲能量的大小主要取决于平均放电电流和脉冲宽度的大小。

由上可见,要提高电蚀量,应增加平均放电电流、脉冲宽度及提高脉冲频率。

但在实际生产中,这些因素往往是相互制约的,并影响到其它工艺指标,应根据具体情况综合考虑。例如,增加平均放电电流,加工表面粗糙度值也随之增大。

4.金属材料对电蚀量的影响

正负电极表面电蚀量分配不均除了与电极极性有关外,还与电极的材料有很大关系。当脉冲放电能量相同时,金属工件的熔点、沸点、比热容、熔化热、气化热等愈高,电蚀量将愈少,愈难加工;导热系数愈大的金属,因能把较多的热量传导、散失到其它部位,故降低了本身的蚀除量。因此,电极的蚀除量与电极材料的导热系数及其它热学常数等有密切的关

系。

5.工作液对电蚀量的影响

电火花加工一般在液体介质中进行。液体介质通常叫做工作液,其作用主要是:

(1) 压缩放电通道,并限制其扩展,使放电能量高度集中在极小的区域内,既加强了蚀除的效果,又提高了放电仿型的精确性。

(2) 加速电极间隙的冷却和消电离过程,有助于防止出现破坏性电弧放电。

(3) 加速电蚀产物的排除。

(4) 加剧放电的流体动力过程,有助于金属的抛出。目前,电火花成形加工多采用油类做工作液。机油粘度大、燃点高,用它做工作液有利于压缩放电通道,提高放电的能量密度,强化电蚀产物的抛出效果,但粘度大,不利于电蚀产物的排出,影响正常放电;煤油粘度低,流动性好,但排屑条件较好。

在粗加工时,要求速度快,放电能量大,放电间隙大,故常选用机油等粘度大的工作液;在中、精加工时,放电间隙小,往往采用煤油等粘度小的工作液。

采用水做工作液是值得注意的一个方向。用各种油类以及其它碳氢化合物做工作液时,在放电过程中不可避免地产生大量碳黑,严重影响电蚀产物的排除及加工速度,这种影响在精密加工中尤为明显。若采用酒精做工作液时,因为碳黑生成量减少,上述情况会有好转。所以,最好采用不含碳的介质,水是最方便的一种。此外,水还具有流动性好、散热性好、不易起弧、不燃、无味、价廉等特点。但普通水是弱导电液,会产生离子导电的电解过程,这是很不利的,目前还只在某些大能量粗加工中采用。

在精密加工中,可采用比较纯的蒸馏水、去离子水或乙醇水溶液来做工作液,其绝缘强度比普通水高。

3.3 电火花加工工艺规律

3.3.1 影响加工速度的主要因素

电火花成形加工的加工速度,是指在一定电规准下,单位时间内工件被蚀除的体积V 或质量m。一般常用体积加工速度vw=V/T(单位为mm3/mm)来表示,有时为了测量方便,也用质量加工速度vm=m/t(单位为g/mm)表示。

在规定的表面粗糙度、规定的相对电极损耗下的最大加工速度是电火花机床的重要工艺性能指标。一般电火花机床说明书上所指的最高加工速度是该机床在最佳状态下所达到的,在实际生产中的正常加工速度大大低于机床的最大加工速度。影响加工速度的因素分电参数和非电参数两大类。电参数主要是脉冲电源输出波形与参数;非电参数包括加工面积、深度、工作液种类、冲油方式、排屑条件及电极对的材料、形状等。

1. 电规准的影响

所谓电规准,是指电火花加工时选用的电加工参数,主要有脉冲宽度t i(μs)、脉冲间隙t o(μs)及峰值电流I p等参数。

1.脉冲宽度对加工速度的影响

单个脉冲能量的大小是影响加工速度的重要因素。对于矩形波脉冲电源,当峰值电流一定时,脉冲能量与脉冲宽度成正比。脉冲宽度增加,加工速度随之增加,因为随着脉冲宽度的增加,单个脉冲能量增大,使加工速度提高。但若脉冲宽度过大,加工速度反而下降(如图3-5)。这是因为单个脉冲能量虽然增大,但转换的热能有较大部分散失在电极与工件之中,不起蚀除作用。同时,在其它加工条件相同时,随着脉冲能量过分增大,蚀除产物增多,排气排屑条件恶化,间隙消电离时间不足导致拉弧,加工稳定性变差等。因此加工速度反而降低。

i

图3-5 脉冲宽度与加工速度的关系曲线

2.脉冲间隔对加工速度的影响

在脉冲宽度一定的条件下,若脉冲间隔减小,则加工速度提高(如图3-6)。这是因为脉冲间隔减小导致单位时间内工作脉冲数目增多、加工电流增大,故加工速度提高;但若脉冲间隔过小,会因放电间隙来不及消电离引起加工稳定性变差,导致加工速度降低。

在脉冲宽度一定的条件下,为了最大限度地提高加工速度,应在保证稳定加工的同时,尽量缩短脉冲间隔时间。带有脉冲间隔自适应控制的脉冲电源,能够根据放电间隙的状态,在一定范围内调节脉冲间隔的大小,这样既能保证稳定加工,又可以获得较大的加工速度。

o

图3-6 脉冲间隔与加工速度的关系曲线

3.峰值电流的影响

当脉冲宽度和脉冲间隔一定时,随着峰值电流的增加,加工速度也增加(如图3-7)。因为加大峰值电流,等于加大单个脉冲能量,所以加工速度也就提高了。但若峰值电流过大(即单个脉冲放电能量很大),加工速度反而下降。

此外,峰值电流增大将降低工件表面粗糙度和增加电极损耗。在生产中,应根据不同的要求,选择合适的峰值电流。

e

图3-7 峰值电流与加工速度的关系曲线

3.3.1.2 非电参数的影响

1.加工面积的影响

图3-8是加工面积和加工速度的关系曲线。由图可知,加工面积较大时,它对加工速度没有多大影响。但若加工面积小到某一临界面积时,加工速度会显著降低,这种现象叫做“面积效应”。因为加工面积小,在单位面积上脉冲放电过分集中,致使放电间隙的电蚀产物排除不畅,同时会产生气体排除液体的现象,造成放电加工在气体介质中进行,因而大大降低加工速度。

从图3-8可看出,峰值电流不同,最小临界加工面积也不同。因此,确定一个具体加工对象的电参数时,首先必须根据加工面积确定工作电流,并估算所需的峰值电流。

2.排屑条件的影响

在电火花加工过程中会不断产生气体、金属屑末和碳黑等,如不及时排除,则加工很难稳定地进行。加工稳定性不好,会使脉冲利用率降低,加工速度降低。为便于排屑,一般都采用冲油(或抽油)和电极抬起的办法。

1) 冲(抽)油压力的影响度的关系曲线

在加工中对于工件型腔较浅或易于排屑的型腔,可以不采取任何辅助排屑措施。但对于较难排屑的加工,不冲(抽)油或冲(抽)油压力过小,则因排屑不良产生的二次放电的机会明显增多,从而导致加工速度下降;但若冲油压力过大,加工速度同样会降低。这是因为冲油压力过大,产生干扰,使加工稳定性变差,故加工速度反而会降低。图3-9是冲油压力和加工速度关系曲线。

冲(抽)油的方式与冲油压力大小应根据实际加工情况来定。若型腔较深或加工面积较大,冲(抽)油压力要相应增大。图3-8 加工面积与加工速度的关系曲线

图3-9 冲油压力和加工速度的关系曲线2)“抬刀”对加工速度的影响为使放电间隙中的电蚀产物迅速排除,除采用冲(抽)油外,还需经常抬起电极以利于排屑。在定时“拾刀”状态,会发生放电间隙状况良好无需“拾刀”而电极却照样抬起的情况,也会出现当放电间隙的电蚀产物积聚较多急需“拾刀”时而“抬刀”时间未到却不“抬刀”的情况。这种多余的“拾刀”运动和未及时“抬刀”都直接降低了加工速度。为克服定时“抬刀”的缺点,目前较先进的电火花机床都采用了自适应“抬刀”功能。自适应“拾刀”是根据放电间隙的状态,决定是否“拾刀”。放电间隙状态不好,电蚀产物堆积多,“抬刀”频率自动加快;当放电间隙状态好,电极就少抬起或不抬。这使电蚀产物的产生与排除基本保持平衡,避免了不必要的电极抬起运动,提高了加工速度。

图3-10为抬刀方式对加工速度的影响。由图可知,同样加工深度时,采用自适应“抬刀”比定时“抬刀”需要的加工的时间短,即加工速度高。同时,采用自适应“拾刀”,加工工件质量好,不易出现拉弧烧伤。

3.电极材料和加工极性的影响

在电参数选定的条件下,采用不同的电极材料与加工极性,加工速度也大不相同。由图3-11可知,采用石墨电极,在同样加工电流时,正极性比负极性加工速度高。

图3-10 抬刀方式对加工速度的影响 图3-11 电极材料和加工极性对加工速度的影响

在加工中选择极性,不能只考虑加工速度,还必须考虑电极损耗。如用石墨做电极时,正极性加工比负极性加工速度高,但在粗加工中,电极损耗会很大。故在不计电极损耗的通孔加工、取折断工具等情况,用正极性加工;而在用石墨电极加工型腔的过程中,常采用负极性加工。

从图3-11还可看出,在同样加工条件和加工极性情况下,采用不同的电极材料,加工速度也不相同。例如,中等脉冲宽度、负极件加工时,石墨电极的加工速度高于铜电极的加工速度。在脉冲宽度较窄或很宽时,铜电极加工速度高于石墨电极。此外,采用石墨电极加工的最大加工速度,比用铜电极加工的最大加工速度的脉冲宽度要窄。

由上所述,电极材料对电火花加工非常重要,正确选择电极材料是电火花加工首要考虑的问题。

4.工件材料的影响

在同样加工条件下,选用不同工件材料,加工速度也不同。这主要取决于工件材料的物理性能(熔点、沸点、比热、导热系数、熔化热和汽化热等)。

一般说来,工件材料的熔点、沸点越高,比热、熔化潜热和气化潜热越大,加工速度越低,即越难加工。如加工硬质合金钢比加工碳素钢的速度要低40~60%。对于导热系数很高的工件,虽然熔点、沸点、熔化热和气化热不高,但因热传导性好,热量散失快,加工速度也会降低。

5.工作液的影响

在电火花加工中,工作液的种类、粘度、清洁度对加工速度有影响。就工作液的种类来说,大致顺序是:高压水>(煤油+机油)>煤油>酒精水溶液。在电火花成形加工中,应用最多的工作液是煤油。

3.3.2 影响电极损耗的主要因素

电极损耗是电火花成型加工中的重要工艺指标。在生产中,衡量某种工具电极是否耐损耗,不只是看工具电极损耗速度vE 的绝对值大小,还要看同时达到的加工速度vw ,即每蚀除单位重量金属工件时,工具相对损耗多少。因此,常用相对损耗或损耗比作为衡量工具电极耐损耗的指标,即

i 1—石墨 正极性 i e =42 A 1—石墨 负极性 i e =42 A 1—紫铜 负极性 i e =42 A 3—石墨 负极性 i e =14 A 3—紫铜 负极性 i e =14 A ^

^^^^

图3-12 电极损耗长度说明

图式中的加工速度和损耗速度若以mm3/min 为单位计算,则为体积相对损耗θ;若以g/min 为单位计算,则为重量相对损耗θE ;若以工具电极损耗长度与工件加工深度之比来表示,则为长度相对损耗θL 。在加工中采用长度相对损耗比较直观,测量较为方便(如图3-12所示),但由于电极部位不同,损耗不同,因此长度相对损耗还分为端面损耗、边损耗、角损耗。在加工中,同一电极的长度相对损耗大小顺序为:角损耗>边损耗>端面损耗。

电火花加工中,电极的相对损耗小于1%,称为低损耗电火花加工。低损耗电火花加工能最大限度地保持加工精度,所需电极的数目也可减至最小,因而简化了电极的制造,加工工件的表面粗糙度Ra 可达3.2 μm 以下。除了充分利用电火花加工的极性效应、覆盖效应及选择合适的工具电极材料外,还可从改善工作液方面着手,实现电火花的低损耗加工。若采用加入各种添加剂的水基工作液,还可实现对紫铜或铸铁电极小于1%的低损耗电火花加工。

图3-13 脉冲宽度与电极相对损耗的关系

1. 电参数对电极损耗的影响

1) 脉冲宽度的影响

在峰值电流一定的情况下,随着脉冲宽度的减小,电极损耗增大。脉冲宽度越窄,电极损耗θ上升的趋势越明显(如图3-13所示)。所以精加工时的电极损耗比粗加工时的电极损耗大。

脉冲宽度增大,电极相对损耗降低的原因总结如下:

(1) 脉冲宽度增大,单位时间内脉冲放电次数减少,使放电击穿引起电极损耗的影响减少。同时,负极(工件)承受正离子轰击的机会增多,正离子加速的时间也长,极性效应比较明显。(2) 脉冲宽度增大,电极“覆盖效应”增加,也减少了电极损耗。在加工中电蚀产物(包括被熔化的金属和工作液受热分解的产物)不断沉积在电极表面,对电极的损耗起补偿作用。但如这种飞溅沉积的量大于电极本身损耗,就会破坏电极的形状和尺寸,影响加工效果;如飞溅沉积的量恰好等于电极的损耗,两者达到动态平衡,则可得到无损耗加工。由于电极端

h j —角部损耗长度

h c —侧面损耗长度

h d —

端面损耗长度

i

面、角部、侧面损耗的不均匀性,因此无损耗加工是难以实现的。

2) 峰值电流的影响

对于一定的脉冲宽度,加工时的峰值电流不同,电极损耗也不同。

用紫铜电极加工钢时,随着峰值电流的增加,电极损耗也增加。图3-14是峰值电流对电极相对损耗的影响。由图可知,要降低电极损耗,应减小峰值电流。因此,对一些不适宜用长脉冲宽度粗加工而又要求损耗小的工件,应使用窄脉冲宽度、低峰值电流的方法。

由上可见,脉冲宽度和峰值电流对电极损耗的影响效果是综合性的。只有脉冲宽度和峰值电流保持一定关系,才能实现低损耗加工。

e

图3-14 峰值电流与电极相对损耗的关系

3) 脉冲间隔的影响

在脉冲宽度不变时,随着脉冲间隔的增加,电极损耗增大(如图3-15所示)。因为脉冲间隔加大,引起放电间隙中介质消电离状态的变化,使电极上的“覆盖效应”减少。

随着脉冲间隔的减小,电极损耗也随之减少,但超过一定限度,放电间隙将来不及消电离而造成拉弧烧伤,反而影响正常加工的进行。尤其是粗规准、大电流加工时,更应注意。

o

图3-15 脉冲间隔对电极相对损耗的影响

4) 加工极性的影响

在其他加工条件相同的情况下,加工极性不同对电极损耗影响很大(如图3-16所示)。当脉冲宽度ti小于某一数值时,正极性损耗小于负极性损耗;反之,当脉冲宽度ti大于某一数值时,负极性损耗小于正极性损耗。一般情况下,采用石墨电极和铜电极加工钢时,粗加工用负极性,精加工用正极性。但在钢电极加工钢时,无论粗加工或精加工都要用负极性,

i

否则电极损耗将大大增加。

图3-16 加工极性对电极相对损耗的影响2. 非电参数对电极损耗的影响

1) 加工面积的影响

在脉冲宽度和峰值电流一定的条件下,加工面积对电极损耗影响不大,是非线性的。当电极相对损耗小于l%,并随着加工面积的继续增大,电极损耗减小的趋势越来越慢。当加工面积过小时,则随着加工面积的减小而电极损耗急剧增加。

2) 冲油或抽油的影响(如图3-18所示)

由前面所述,对形状复杂、深度较大的型孔或型腔进行加工时,若采用适当的冲油或抽油的方法进行排屑,有助于提高加工速度。但另一方面,冲油或抽油压力过大反而会加大电极的损耗。因为强迫冲油或抽油会使加工间隙的排屑和消电离速度加快,这样减弱了电极上的“覆盖效应”。当然,不同的工具电极材料对冲油、抽油的敏感性不同。如用石墨电极加工时,电极损耗受冲油压力的影响较小;而紫铜电极损耗受冲油压力的影响较大。

由上可知,在电火花成型加工中,应谨慎使用冲、抽油。加工本身较易进行且稳定的电火花加工,不宜采用冲、抽油;若非采用冲、抽油不可的电火花加工,也应注意冲、抽油压力维持在较小的范围内。

图3-18 冲油压力对电极相对损耗的影响

冲、抽油方式对电极损耗无明显影响,但对电极端面损耗的均匀性有较大区别。冲油时电极损耗呈凹形端面,抽油时则形成凸形端面(如图3-19所示)。这主要是因为冲油进口处所含各种杂质较少,温度比较低,流速较快,使进口处“覆盖效应”减弱的缘故。

实践证明,当油孔的位置与电极的形状对称时用交替冲油和抽油的方法,可使冲油或抽油所造成的电极端面形状的缺陷互相抵消,得到较平整的端面。另外,采用脉动冲油(冲油不连续)或抽油比连续的冲油或抽油的效果好。图3-19 冲油方式对电极端部损耗的影响3) 电极的形状和尺寸的影响

在电极材料、电参数和其他工艺条件完全相同的情况下,电极的形状和尺寸对电极损耗影响也很大(如电极的尖角、棱边、薄片等)。如图3-20(a)所示的型腔,用整体电极加工较困

冲油抽油

难。在实际中首先加工主型腔(如图3-20(b)所示),再用小电极加工副型腔(如图3-20(c)所示)。

图3-20 分解电极图

4) 工具电极材料的影响

工具电极损耗与其材料有关,损耗的大致顺序如下:银钨合金 < 铜钨合金 < 石墨(粗规准) < 紫铜 < 钢 < 铸铁 < 黄铜 < 铝。

3.3.3 影响表面粗糙度的主要因素

表面粗糙度是指加工表面上的微观几何形状误差。电火花加工表面粗糙度的形成与切削加工不同,它是由若干电蚀小凹坑组成的,能存润滑油,其耐磨性比同样粗糙度的机加工表面要好。在相同表面粗糙度的情况下,电加工表面比机加工表面亮度低。

工件的电火花加工表面粗糙度直接影响其使用性能,如耐磨性、配合性质、接触刚度、疲劳强度和抗腐蚀性等。尤其对于高速、高压条件下工作的模具和零件,其表面粗糙度往往决定其使用性能和使用寿命。3.3.4 影响加工精度的主要因素

电加工精度包括尺寸精度和仿型精度(或形状精度)。影响精度的因素很多,这里重点探讨与电火花加工工艺有关的因素。

1.放电间隙

电火花加工中,工具电极与工件间存在着放电间隙,因此工件的尺寸、形状与工具并不一致。如果加工过程中放电间隙是常数,根据工件加工表面的尺寸、形状可以预先对工具尺寸、形状进行修正。但放电间隙是随电参数、电极材料、工作液的绝缘性能等因素变化而变化的,从而影响了加工精度。间隙大小对形状精度也有影响,间隙越大,则复制精度越差,特别是对复杂形状的加工表面。如电极为尖角时,而由于放电间隙的等距离,工件则为圆角。因此,为了减少加工尺寸误差,应该采用较弱小的加工规准,缩小放电间隙,另外还必须尽可能使加工过程稳定。放电间隙在精加工时一般为0.0l ~0.1 mm ,粗加工时可达0.5 mm 以上(单边)。

2.加工斜度

电火花加工时,产生斜度的情况如图3-21所示。由于工具电极下面部分加工时间长,损耗大,因此电极变小,而入口处由于电蚀产物的存在,易发生因电蚀产物的介入而再次进行的非正常放电(即“二次放电”),因而产生加工斜度。

3.工具电极的损耗

在电火花加工中,随着加工深度的不断增加,工具电极进入放电区域的时间是从端部向上逐渐减少的。实际上,工件侧壁主要是靠工具电极底部端面的周边加工出来的。因此,电极的损耗也必然从端面底部向上逐渐减少,从而形成了损耗锥度(如图3-22所示),工具电极的损耗锥度反映到工件上是加工斜度。

3.3.5 电火花加工表面变化层和机械性能

1.表面变化层

在电火花加工过程中,工件在放电瞬时的高温和工作液迅速冷却的作用下,表面层发生了很大变化。这种表面变化层的厚度大约在0.01~0.5 mm 之间,一般将其分为熔化层和热影响层,如图3-23所示。

(a ) 型腔(b ) 加工主型腔(c )

加工副型腔

1) 熔化层

熔化层位于电火花加工后工件表面的最上层,它被电火花脉冲放电产生的瞬时高温所熔化,又受到周围工作液介质的快速冷却作用而凝固。对于碳钢来说,熔化层在金相照片上呈现白色,故又称为白层。白层与基体金属完全不同,是一种树枝状的淬火铸造组织,与内层的结合不很牢固。熔化层中有渗碳、渗金属、气孔及其他夹杂物。熔化层厚度随脉冲能量增大而变厚,一般为0.01~0.1 mm。2) 热影响层

热影响层位于熔化层和基体之间,热影响层的金属被熔化,只是受热的影响而没有发生金相组织变化,它与基体没有明显的界限。由于加工材料及加工前热处理状态及加工脉冲参数的不同,热影响层的变化也不同。对淬火钢将产生二次淬火区、高温回火区和低温回火区;对未淬火钢而言主要是产生淬火区。

3) 显微裂纹

电火花加工中,加工表面层受高温作用后又迅速冷却而产生残余拉应力。在脉冲能量较大时,表面层甚至出现细微裂纹,裂纹主要产生在熔化层,只有脉冲能量很大时才扩展到热影响层。不同材料对裂纹的敏感性也不同,硬脆材料容易产生裂纹。由于淬火钢表面残余拉应力比未淬火钢大,故淬火钢的热处理质量不高时,更容易产生裂纹。脉冲能量对显微裂纹的影响是非常明显的。脉冲能量愈大,显微裂纹愈宽愈深;脉冲能量很小时,一般不会出现显微裂纹。

2.表面变化层的机械性能

1) 显微硬度及耐磨性

工件在加工前由于热处理状态及加工中脉冲参数不同,加工后的表面层显微硬度变化也不同。加工后表面层的显微硬度一般比较高,但由于加工电参数、冷却条件及工件材料热处理状况不同,有时显微硬度会降低。一般来说,电火花加工表面外层的硬度比较高,耐磨性好。但对于滚动摩擦,由于是交变载荷,尤其是干摩擦,因熔化层和基体结合不牢固,容易剥落而磨损,因此,有些要求较高的模具需把电火花加工后的表面变化层要预先研磨掉。

2) 残余应力

电火花表面存在着由于瞬时先热后冷作用而形成的残余应力,而且大部分表现为拉应力。残余应力的大小和分布,主要与材料在加工前热处理的状态及加工时的脉冲能量有关。因此对表面层质量要求较高的工件,应尽量避免使用较大的加工规准,同时在加工中一定要注意工件热处理的质量,以减少工件表面的残余应力。

3) 疲劳性能

电火花加工后,工件表面变化层金相组织的变化,会使耐疲劳性能比机械加工表面低许多倍。采用回火处理、喷丸处理甚至去掉表面变化层,将有助于降低残余应力或使残余拉应力转变为压应力,从而提高其耐疲劳性能。采用小的加工规准是减小残余拉应力的有力措施。

3.3.6 电火花加工的稳定性

在电火花加工中,加工的稳定性是一个很重要的概念。加工的稳定性不仅关系到加工的速度,而且关系到加工的质量。

1.电规准与加工稳定性

一般来说,单个脉冲能量较大的规准,容易达到稳定加工。但是,当加工面积很小时,不能用很强的规准加工。另外,加工硬质合金不能用太强的规准加工。

脉冲间隔太小常易引起加工不稳。在微细加工、排屑条件很差、电极与工件材料不太合适时,可增加间隔来改善加工的不稳定性,但这样会引起生产率下降。t i/I p很大的规准比t i/I p 较小的规准加工稳定性差。当t i/I p大到一定数值后,加工很难进行。对每种电极材料对,必须有合适的加工波形和适当的击穿电压,才能实现稳定加工。

当平均加工电流超过最大允许加工电流密度时,将出现不稳定现象。

2.电极进给速度

电极的进给速度与工件的蚀除速度应相适应,这样才能使加工稳定进行。进给速度大于蚀除速度时,加工不易稳定。

3.蚀除物的排除情况

良好的排屑是保证加工稳定的重要条件。单个脉冲能量大则放电爆炸力强,电火花间隙大,蚀除物容易从加工区域排出,加工就稳定。在用弱规准加工工件时必须采取各种方法保证排屑良好,实现稳定加工。冲油压力不合适也会造成加工不稳定。

4.电极材料及工件材料

对于钢工件,各种电极材料的加工稳定性好坏次序如下:

紫铜(铜钨合金、银钨合金) > 铜合金(包括黄铜) > 石墨> 铸铁> 不相同的钢> 相同的钢;

淬火钢比不淬火钢工件加工时稳定性好;硬质合金、铸铁、铁合金、磁钢等工件的加工稳定性差。

5.极性

不合适的极性可能导致加工极不稳定。

6.加工形状

形状复杂(具有内外尖角、窄缝、深孔等)的工件加工不易稳定,其他如电极或工件松动、烧弧痕迹未清除、工件或电极带磁性等均会引起加工不稳定。

另外,随着加工深度的增加,加工变得不稳定。工作液中混入易燃微粒也会使加工难以进行。

习题

1.什么是极性效应?在电火花加工中如何充分利用极性效应?

2.什么是覆盖效应?请举例说明覆盖效应的用途。

3.在实际加工中如何处理加工速度、电极损耗、表面粗糙度之间的矛盾关系?

电火花加工技术概述

《先进制造技术》课程学习报告 题目:电火花加工技术概述 专业:机械类 姓名:喻娇艳 年级:2013级 班级:机械类 1306 班 学号:201303164193 武汉科技大学机械自动化学院 2016年 6月 10日

电火花加工技术概述 喻娇艳 (武汉科技大学机械自动化学院, 湖北 ,武汉) (13 级机械类专业,学号 201303164193 ) 摘要:电火花加工( Electrospark Machining )在日本和欧美又称为放电加工( Electrical Discharge Machining, 简称EDM) ,是一种直接利用电能和热能进行加工的新工艺,本文从电火花加工的 研究现状、基本原理、发展前景等三方面加以论述关键词:电火花加工的研究现状基本原理 . 发展前景 Summarize of Electrospark Machining Technique YU Jiao-yan (College of Machinery and Automation, WuHan University of Science and Technology, HuBei WuHan 430074) Abstract : Electrospark Machining Technique is also called Electrical Discharge Machining(EDM) in Japan and Occident,it ’s a new technology of machining using electrical and heat energy directly.This article discusses it in addition in three aspects including it ’s research status,fundamental principle,future prospects,etc. Keywords: Research status;Fundamental principle; Future prospects 1、前言 从前苏联科学院拉扎连柯夫妇在1943 年研制出世界上第一台实用化电火花加工装置以 来,电火花加工已有 70 多年的历史 ,发展速度是惊人的 ,目前已广泛应用于机械、宇航、航空、电子、电机、仪器仪表、汽车、轻工等行业,它不仅是一种有效的机械加工手段,而且已经成为在某些场合不可替代的加工方法.例如 ,在解决难、硬材料及复杂零件的加工问题时,应用电火花加工技术十分有效 . 据统计 ,目前电火花加工机床的市场占有率已占世界机床市场的6%以上 .而且随着科学技术的不断发展 ,现代制造技术极其相关技术为电火花技术的发展提供了良好机遇.柔性制造、人工智能技术、网络技术、敏捷制造、虚拟制造和绿色制造等现代制造技术正逐渐渗透到电 火花加工技术中来 ,给电火花加工技术的发展带来了新的生机.近年来 ,国内外很多研究机构对电火花加工技术进行了大量的研究,并且在许多方面取得了显著进展[1-5]. 2、电火花加工技术的研究现状 经过60 多年的发展,电火花加工技术已日趋完善.2011年第十二届中国国际展览会 上 ,40余家国内外特种设备生产商携机参展.在高速铣削技术日趋成熟且飞速发展的今天,包

电火花加工工艺

电火花加工工艺 1. 常用工件金属材料 1.1 钢的名称、牌号及用途 普通碳素结构钢:用于一般机器零件,常用的牌号有 A1~A7,代号 A 后的数字愈大,钢的抗拉强度愈高而塑性愈低。 优质碳素结构钢:用于较高要求的机械零件。常用牌号有钢 10~钢 70。钢 15(15 号钢)的平均含碳量为 0.15%,钢 40 为 0.40%,含碳量愈高,强度、硬度也愈高,但愈脆。 合金结构钢:广泛用于各种重要机械的重要零件。常用的有 20Cr、40Cr(作齿轮、轴、杆)、18CrMnTi、38CrMoAlA(重要齿轮、渗氮零件)及 65Mn(弹簧钢)。前边的数字 20 表示平均含碳量为 0.20%,38 表示 0.38%。末尾的 A 表示高级优质钢。中间的合金元素化学符号含义为:Mn 锰、Si硅、Cr 铬、W 钨、Mo 钼、Ti 钛、AL 铝、Co 钴、Ni 镍、Nb 铌、B 硼、V 钒。 碳素工具钢:因含碳量高,硬而耐磨,常用作工具、模具等。碳素工具钢牌号前加 T 字,以此和结构钢有所区别。牌号后的 A 表示高级优质钢。常用的有 T7、T7A、T8、T8A (13) T13A等。 合金工具钢:牌号意义与合金结构钢相同,只是前面含碳量的数字是以 0.10%为单位(含碳量较高)。例如 9CrSi 中平均含碳量为 0.90%。常用作模具的有 CrWMn、Cr12MoV(作冷冲模用)、5CrMnMo(作热压模用)。 1.2 铸铁的名称、牌号及用途 灰口铸铁:牌号中以灰、铁二字的汉语拼音第一字母为首,后面第一组数字为最低抗拉强度,第二组数字为最低抗弯强度。常用的有 HT10-26,HT15-33,HT20-40,HT30-54,HT40-68 等,用以铸造盖、轮、架、箱体等。 球墨铸铁:比灰口铸铁强度高而脆性小,常用的牌号有 QT45-0,QT50-1.5,QT60-2 等。第一组数字为最低抗拉强度,最后的数字为最低延伸率%。 可锻铸铁:强度和韧性更高,有 KT30-6,KT35-10 等,牌号意义同上。 1.3 有色金属及其合金 铜及铜合金:纯铜又称紫铜,有良好的导电性和导热性、耐腐蚀性和塑性。电火花加工中广泛作为电极材料,加工稳定而电极损耗小。牌号有 T1~T4(数字愈小愈纯)。铜合金主要有黄铜(含锌),常用牌号有 H59、H62、H80 等。黄铜电极加工时特别稳定,但电极损耗很大。 铝及铝合金:纯铝的牌号有 L1~L6(数字愈小愈纯)。铝合金主要为硬铝,牌号有 LY11~LY13,用作板材、型材、线材等。 1.4 粉末冶金材料 最常用的是硬质合金,具有极高的硬度和耐磨性,广泛用作工具及模具。由于其成分不同而分为钨钴类和钨钛类两大类硬质合金。

电火花穿孔机工作原理【解析】

电火花穿孔机工作原理【解析】 内容来源网络,由深圳机械展收集整理! 更多相关电火花机展览内容,就在深圳机械展! 电火花穿孔机是什么? 电火花穿孔机主要用于加工不锈钢、淬火钢、硬质合金、铜、铝等导电材料工件上的深小孔。 电火花穿孔机也称电火花打孔机、电火花小孔机、电火花细孔放电机,其工作原理是利用连续上下垂直运动动的细金属铜管(称为电极丝)作电极,对工件进行脉冲火花放电蚀除金属成型。与电火花线切割机床、成型机不同的是,它电脉冲的电极是空心铜棒,介质从铜棒孔中间的细孔穿过,起冷却和排屑作用。电极与金属间放电产生高温腐蚀金属达到穿孔的目的,用于加工超硬钢材、硬质合金、铜、铝及任何可导电性物质的细孔。最小可加工0.015mm 的小孔,也可加工带有锥度的小孔,被广泛使用在精密模具加工中,一般被当作电火花线切割机床的配套设备,用于电火花线切割加工的穿丝孔、化纤喷丝头、喷丝板的喷丝孔、滤板、筛板的群孔、发动机叶片、缸体的散热孔、液压、气动阀体的油路、气路孔等。 穿孔机根据应用的介质不同大致分为两种,一种是液体穿孔机,由于液体加工时要通过铜棒小孔,可能堵塞铜棒小孔,所以最小可加工0.15mm的细孔!深度也只能加工20mm。是普遍应用的,另外一种是气体穿孔机,经过铜棒小孔的介质采用的是气体,所以不易被堵塞,可加工更精密的小孔! 电火花穿孔机工作原理 电火花穿孔机的其工作原理是利用连续上下垂直运动动的细金属铜管(称为电极丝)作电极,对工件进行脉冲火花放电蚀除金属成型。 与电火花线切割机床、成型机不同的是,它电脉冲的电极是空心铜棒,介质从铜棒孔中间的细孔穿过,起冷却和排屑作用。电极与金属间放电产生高温腐蚀金属达到穿孔的目的,用于加工超硬钢材、硬质合金、铜、铝及任何可导电性物质的细孔。最小可加工0.015mm的小孔,也可加工带有锥度的小孔,被广泛使用在精密模具加工中,一般被当作电火花线切割机床的配套设备,用于电火花线切割加工的穿丝孔、化纤喷丝头、喷丝板的喷丝孔、滤板、筛板的群孔、发动机叶片、缸体的散热孔、电火花穿孔机液压、气动阀体的油路、气路孔等。 内容来源网络,由深圳机械展收集整理! 更多相关内容,就在深圳机械展!

电火花加工原理

电火花加工技术 学院:机械与汽车工 程学院 专业:材控10-2班 姓名:徐鹏

学号:201001021047 电火花加工技术 电火花是一种加工工艺,主要是利用具有特定几何形状的放电电极(EDM 电极)在金属(导电)部件上烧灼出电极的几何形状。电火花加工工艺常用于冲裁模和铸模的生产。 利用火花放电时产生的腐蚀现象对材料进行尺寸加工的方法,叫电火花加工。电火花加工是在较低的电压范围内,在液体介质中的火花放电。电火花 加工主要由机械厂完成。电火花是一种自激放电,其特点如下:火花放电 的两个电极间在放电前具较高的电压,当两电极接近时,其间介质被击穿后, 随即发生火花放电。伴随击穿过程,两电极间的电阻急剧变小,两极之间的电 压也随之急剧变低。火花通道必须在维持暂短的时间(通常为10-7-10-3s)后 及时熄灭,才可保持火花放电的“冷极”特性(即通道能量转换的热能来不及 传至电极纵深),使通道能量作用于极小范围。通道能量的作用,可使电极局 部被腐蚀。 工具电极和工件之间并不直接接触,而是有一个火花放电间隙0.1— 0.01mm,间隙中充满工作液。 加工过程中没有宏观切削力火花放电时,局部、瞬时爆炸力的平均值很小,不足以引起工件的变形和位移。可以“以柔克刚”由于电火花加工直接利用电 能和热能来去除金属材料,与工件材料的强度和硬度等关系不大,因此町以用 软的工具电极加工硬的工件,实现“以柔克刚”。可以加工任何难加工的金属 材料和导电材料 由于加工中材料的去除是靠放电时的电、热作用实现的,材料的可加工性主要取决于材料的导电性及热学特性,如熔点、沸点、比热容、导热系数、 电阻率等,而几乎与其力学性能(硬度、强度等)无关。这样可以突破传统切削 加工对刀具的限制,可以实现用软的工具加工硬、韧的工件甚至可以加工聚晶 金刚行、立方氮化硼一类的超硬材料。目前电极材料多采用紫铜或石墨,因此 工具电极较容易加工。可以加工形状复杂的表面 由于可以简单地将工具电极的形状复制到工件上,因此特别适用于复杂表面形状工件的加工,如复杂型腔模具加工等。特别是数控技术的采用,使得用 简单的电极加工复杂形状零件成为现实。 可以加工特殊要求的零件 可以加工薄壁、弹性、低刚度、微细小孔、异形小孔、深小孔等有特殊 要求的零件。由于加工中工具电极和工件不直接接触,没有机械加工的切削力,因此适宜加工低刚度工件及微细加工。

第三章 电火花加工工艺规律3

第三章 电火花加工工艺规律 3.1 电火花加工的常用术语 电火花加工中常用的主要名词术语和符号如下: 1.工具电极 电火花加工用的工具是电火花放电时的电极之一,故称为工具电极,有时简称电极。由于电极的材料常常是铜,因此又称为铜公(如图3-1所示)。 图3-1 电火花加工示意图2.放电间隙 放电间隙是放电时工具电极和工件间的距离,它的大小一般在0.01~0.5 mm 之间,粗加工时间隙较大,精加工时则较小。 3.脉冲宽度ti(μs) 脉冲宽度简称脉宽(也常用ON 、TON 等符号表示),是加到电极和工件上放电间隙两端的电压脉冲的持续时间(如图3-2所示)。为了防止电弧烧伤,电火花加工只能用断断续续的脉冲电压波。一般来说,粗加工时可用较大的脉宽,精加工时只能用较小的脉宽。 图3-2 脉 冲参数与脉冲电压、电流波形4.脉冲间隔to(μs)) 脉冲间隔简称脉间或间隔(也常用OFF 、TOFF 表示),它是两个电压脉冲之间的间隔时间(如图3-2所示)。间隔时间过短,放电间隙来不及消电离和恢复绝缘,容易产生电弧放电,烧伤电极和工件;脉间选得过长,将降低加工生产率。加工面积、加工深度较大时,脉间也应稍大。 5.放电时间(电流脉宽)te(μ s) 21—工具电极;2—工件; 3—脉冲电源;4—伺服进给系统

放电时间是工作液介质击穿后放电间隙中流过放电电流的时间,即电流脉宽,它比电压脉宽稍小,二者相差一个击穿延时td 。ti 和te 对电火花加工的生产率、表面粗糙度和电极损耗有很大影响,但实际起作用的是电流脉宽te 。 6.击穿延时t d (μs) 从间隙两端加上脉冲电压后,一般均要经过一小段延续时间t d ,工作液介质才能被击穿放电,这一小段时间t d 称为击穿延时(见图3-2)。击穿延时t d 与平均放电间隙的大小有关,工具欠进给时,平均放电间隙变大,平均击穿延时t d 就大;反之,工具过进给时,放电间隙变小,t d 也就小。 7.脉冲周期t P (μs) 一个电压脉冲开始到下一个电压脉冲开始之间的时间称为脉冲周期,显然t P =t i +t o (见图3-2)。 8.脉冲频率f P (Hz) 脉冲频率是指单位时间内电源发出的脉冲个数。显然,它与脉冲周期t P 互为倒数,即 9.有效脉冲频率f e (HZ) 有效脉冲频率是单位时间内在放电间隙上发生有效放电的次数,又称工作脉冲频率。 10.脉冲利用率λ 脉冲利用率λ是有效脉冲频率f e 与脉冲频率f p 之比,又称频率比,即亦即单位时间内 有效火花脉冲个数与该单位时间内的总脉冲个数之比。 11.脉宽系数τ 脉宽系数是脉冲宽度t i 与脉冲周期t p 之比,其计算公式为 12.占空比ψ 占空比是脉冲宽度t i 与脉冲间隔t o 之比,ψ=t i /t o 。粗加工时占空比一般较大,精加工时占空比应较小, 否则放电间隙来不及消电离恢复绝缘,容易引起电弧放电。 13.开路电压或峰值电压(V) 开路电压是间隙开路和间隙击穿之前td 时间内电极间的最高电压(见图3-2)。一般晶体管方波脉冲电源的峰值电压=60~80 V ,高低压复合脉冲电源的高压峰值电压为175~300 V 。峰值电压高时,放电间隙大,生产率高,但成形复制精度较差。 14.火花维持电压 火花维持电压是每次火花击穿后,在放电间隙上火花放电时的维持电压,一般在25 V 左右,但它实际是一个高频振荡的电压(见图3-2)。 15.加工电压或间隙平均电压U(V) 加工电压或间隙平均电压是指加工时电压表上指示的放电间隙两端的平均电压,它是多个开路电压、火花放电维持电压、短路和脉冲间隔等电压的平均值。 16.加工电流I(A) 加工电流是加工时电流表上指示的流过放电间隙的平均电流。精加工时小,粗加工时大,间隙偏开路时小,间隙合理或偏短路时则大。 17.短路电流Is(A) p p 1t f = p e f f =λo i i p i t t t t t +==τ

电火花加工的费用.doc

电火花加工 一、加工费用:电火花加工的费用计算方法与其它机加工方法是相似的,一般是按小时来计算加工费的。时间可以按从调平工件开始到完成加工为止来计算,也可以按自动加工的时间累加时间来计算。每小时的加工费用,可以按照[(电极设计费+电极加工费+机器折旧费+人工费+电费+期望的利润值)*(1+税率)]来计算。当然,加工后工件的表面粗糙度和精度是每小时加工费用的重要参考指标,工件在加工后表面粗糙度越小、精度越高,则每小时加工费越高。 电火花加工需要丰富的经验,用合适的加工方式、到位的粗加工和半精加工、以及用高效的精加工条件一次性地完成图纸的要求,是获取低成本电火花加工的决定因素。 机床的精度、电极的精度以及电极的损耗程度是电火花加工精度的决定因素。

二、电火花加工 目录 发明与发展 工作原理 分类 使用说明 电火花加工特点 电火花加工的特点如下: 简介 发明与发展 工作原理 分类 使用说明 电火花加工特点 电火花加工的特点如下: 简介 电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电蚀作用蚀除导电材料的特种加工方法,又称放电加工或电蚀加工,英文简称EDM。 发明与发展 由苏联学者发明 1943年,苏联学者拉扎连科夫妇研究发明电火花加工,之后随着脉冲电源和控制系统的改进,而迅速发展起来。最初使用的脉冲电源是简单的电阻-电容回路。

50年代初 改进为电阻-电感-电容等回路。同时,还采用脉冲发电机之类的所谓长脉冲电源,使蚀除效率提高,工具电极相对损耗降低。 随后又出现了大功率电子管、闸流管等高频脉冲电源,使在同样表面粗糙度条件下的生产率得以提高。 60年代中期 出现了晶体管和可控硅脉冲电源,提高了能源利用效率和降低了工具电极损耗,并扩大了粗精加工的可调范围。 70年代 出现了高低压复合脉冲、多回路脉冲、等幅脉冲和可调波形脉冲等电源,在加工表面粗糙度、加工精度和降低工具电极损耗等方面又有了新的进展。在控制系统方面,从最初简单地保持放电间隙,控制工具电极的进退,逐步发展到利用微型计算机,对电参数和非电参数等各种因素进行适时控制。 电火花加工 工作原理 进行电火花加工时,工具电极和工件分别接脉冲电源的两极,并浸入工作液中,或将工作液充入放电间隙。通过间隙自动控制系统控制工具电极向工件进给,当两电极间的间隙达到一定距离时,两电极上施加的脉冲电压将工作液击穿,产生火花放电。 电火花加工 在放电的微细通道中瞬时集中大量的热能,温度可高达一万摄氏度以上,压力也有急剧变化,从而使这一点工作表面局部微量的金属材料立刻熔化、

电火花加工实训指导书

电火花加工实训手册 主编:XXX XXX学院

目录 第一部分线切割加工 (2) 第1章实训规划 (2) 1.1实训达到目标 (2) 1.2实训规范要求 (2) 1.3实训作业流程 (3) 第2章快速掌握设备操作 (4) 2.1控制柜组成 (4) 2.2操作步骤 (6) 第3章NC程序编写 (7) 3.1分析图形 (7) 3.23B指令格式及定义 (7) 第4章装夹与找正技巧 (10) 4.1工件的装夹 (10) 4.2工件的定位 (11) 第5章加工操作 (12) 第6章练习题目 (13) 第二部分电火花加工 (16) 第7章实训规划 (16) 7.1实训达到目标 (16) 7.2实训规范要求 (16) 7.3实训作业流程 (16) 第8章快速掌握设备操作 (17) 8.1电火花机床的操作面板介绍 (17) 8.2电极头功能介绍 (18) 8.3工作液槽功能介绍 (18) 8.4 加工操作步骤 (18) 第9章NC程序编写 (19) 9.1电火花加工参数 (19) 9.2加工工艺参数选择 (24) 第10章练习题目 (27) 附件1 电加工实训报告一:快走丝线切割加工;

第一部分线切割加工 第 1 章实训规划 1.1 实训达到目标: 1.学会操作CTW320快走丝电火花线切割机床; 2.熟练编写NC程序; 3.熟悉装夹与找正技巧; 4.能独立完成规定零件的加工。 1.2 实训规范要求: 1.实训第一周: (1)每台设备为一组6人,每次2组,时间为2小时; (2)学会操作CTW320快走丝电火花线切割机床; (3)熟练编写NC程序; 2.实训第二周: (1)每台设备为一组6人,每次2组,时间为4小时; (2)熟悉装夹与找正技巧; (3)穿丝、紧丝; (4)装夹工件、放电找正; (5)能独立完成规定零件的加工。 1.3 实训作业流程 第一步:认真研究给定的零件图纸,制定待加工部分的工艺方案。 第二步:进行坐标值计算,图形绘制,编写3B格式程序。 第三步:输入程序并检查。 第四步:穿丝、紧丝。 第五步:装夹工件,放电找正。 第六步:按机床操作规程进行正确操作,开始加工。 第七步:加工完毕,关闭机床。 第八步:松丝,取出零件。

电火花成形型腔加工工艺规程

电火花成形型腔加工工艺规程 一般模具的完整加工工艺内容包括切削加工、热处理、电加工、线切割、冷挤、钳制、钳装、校模等。 而需要电火花加工的型腔类模具(如注塑模、锻压模等),其工艺规程可以归纳如表5-10所示。 表5-10 电火花成形型腔加工工艺规程 序 号 工序内容说明 1 工艺分析对零件图进行分析,了解零件的结构特征、几何形 状、材材质特点和加工精度 2 选择加工 方法根据加工对象的形状、尺寸、精度及表面粗糙度等要求选择加工方法,如单电极平动法、多电极更换法、分解电极法等 3 选择加工 设备根据加工对象和加工方法选择加工设备,如设备的大小、、定位、精度、自动化程度、电源形式和功率,是否配有平动头或侧向加工装置等 4 选择电极 材料根据加工对象选择电极材料。加工精度要求不高,大、中型多采用石墨材料电极,中、小型腔窄槽、花纹及图案等多采用紫铜1采用电极微信公众号:hcsteel 5 设计电极按图样要求,并根据型腔的形状、选择的加工方法、

选择的电规准等,设计电极横截面和纵截面尺寸及公差 6 电极加工 制根据电极的材料、电极的制作精度、尺寸大小、加工批量、生产周期等选择电极制造方法,如机械切削加工、压力振动加工、电铸加工、液压成形等 7 工件准备对工件进行电火花加工前的金属切削加工、钻孔、 攻螺纹、磨平面、退磁、去锈等 8 工件热处 理对需要淬火处理的型腔,根据精度要求安排热处理工序。如型腔精度要求不高,或淬火变形影响较小,可将热处理安排在电火花加工之后进行 9 装夹与定 位根据工件的尺寸和外形,选择或制造工件的定位基准,准备电极装夹夹具,对电极进行装夹,校正调整电极的角度和轴心线。然后,对工件进行定位和夹紧 10 1选用电 规准依据加工零件的尺寸精度、形位精度及表面粗糙度要求,选用合理的电加工参数 11 开机加工选择加工极性,调整机床,保持适当的液面高度, 调节电规准,保持适当的电流,调节进给速度、充 油压力等。随时检查工作稳定情况,正确操作 12 加工结束进行清理并检查零件是否符合加工要求

电火花加工工艺

电火花加工工艺 模具制造行业中,电火花加工是一种很很普通和极重要的加工方法之一:其加工原理是电极(阳极)进入钢件(阴极)成型的一个过程.为了提高具制作效率和加工质量,火花加工工艺越需要规范化,合理化. 一.放电加工的工艺流程. 1).仔细审图,确定加工方向,加工尺寸. 2).去除工件,铜公毛刺,清洁磁台,以便找数的准确性,确保加工出来之产品误差减小到最小.. 3).装夹并校正工件,铜公,并找出加工坐标. 4).根据加工工位的实际情况,合理地选用各参数,以便达到最好的加工效果和最快的加工效率.[下载自管理资源吧] 5)根据加工工位的排渣的难易度选择冲油方,式切忌过猛和逆向冲油,否则会导致积碳的产生而损坏工件和过猛冲油引起放电不均而使工件深度不一. 6).放前可模拟试放一次,可确认现加工中的坐标是否与图纸要求的数据相符,尽早地发现由于错误加工带来不必要的损失.当确定准确无误,方可开始放电加工. 7).开始放电之后,还应检查各参数设定是否合理,可根据加工情况修改不合理之参数,以达到最好的加工效果. 8).开始放电之后,要保证勤巡加工,确保加工中出现的不良状况能得到实时解决. 9).当工件加工完之后,仔细检查加工形状,加工尺寸是否与要求相符,确保加工出来之工件质量无误. 二.放电参数的主要攻能及它的设定选择: 1).电流:(又叫低压电流)它主要决定加工速度和表面精细度,设定值愈大,加工速度愈快,表面粗细度就愈精;反之,则速度慢,表面精细度愈细.当加工时,可根据放电的余量和铜公的数量(一般可粗,中,精三种,特殊则只为一个粗或一个精公),以及加工的实际情况来设定所需之电流.在允许范围内,书量用到偏大范围,这样可保证加工效率. 2).放电幅:由于机床的不同,它分为分段式和直接输入式两种.总之,它所表示的设定值愈小,表示放电频率高,加工物表面精细度愈细,电极消耗愈大;反之放电频率低,加工物表面粗细度愈粗,电极消耗愈小.可根据实际情况配合电流的大小使用,设定电幅时,选择放电时间长短,与电流配合可决定工件表面粗细度.电极消耗,加工速度,在同一电流放电时,放电时间愈短,表面精度愈佳.但电极消耗较大,放电时间长,表面精度愈粗.但电极消耗较大,低消耗加工时,放电时间

特种加工考试题(附有答案)

一、填空题(15分,每空1分) 1、特种加工主要采用机械能以外的其他能量去除工件上多余的材料,以达到 图样上全部技术要求。(1分) 2、电火花加工原理是基于工具和工件(正、负电极)之间脉冲性火花放电时 的电腐蚀现象,来蚀除多余的金属,以达到对零件的尺寸、形状和表面质量等预定的加工要求。(2分) 3、电火花加工系统主要由工件和工具、脉冲电源、自动进给和调节装置 几部分组成。(3分) 4、在电火花加工中,提高电蚀量和加工效率的电参数途径有:提高脉冲频率、 增加单个脉冲能量、减少脉冲间隔。(3分) 5、电火花加工的表面质量主要是指被加工零件的表面粗糙度、表面变质层、 表面力学性能。(3分) 6、电火花加工的自动进给调节系统主要由以下几部分组成:测量环节、比较 环节、放大驱动环节、执行环节、调节对象。(3分) 7、电火花成型加工的自动进给调节系统,主要包含伺服进给控制系统和参 数控制系统。(2分) 8、电火花加工是利用电火花放电腐蚀金属的原理,用工具电极对工件进行复制 加工的工艺方法,其应用范围分为两大类:穿孔加工、型腔加工。(2分)9、线切割加工是利用移动的、作为负极的、线状电极丝和工件之间的脉冲放 电所产生的电腐蚀作用,对工件加工的一种工艺方法。(2分) 10、快走丝线切割机床的工作液广泛采用的是乳化液,其注入方式为喷入式。(2分) 11、线切割机床走丝机构的作用:是使电极丝以一定的速度运动,并保持一定 的张力。(2分) 12、线切割控制系统作用主要是:1)自动控制电极丝相对于工件的运动轨迹; 2)自动控制伺服的进给速度。(2分) 13、快速成形技术(RP)最早产生于二十世纪70年代末到80年代初,目前RP 技术的主流是: SLA立体光造型、LOM薄材叠层制造、SLS激光烧结、FDM 熔融成型四种技术。(4分) 14、快速成型的数据接口主要有:快速成型技术标准数据格式即STL格式和快 速成型设备的通用数据接口即CLI 格式。(2分) 二、判断题(15分,每题1分) 1、目前线切割加工时应用较普遍的工作液是煤油。(错) 2、在型号为DK7740的数控电火花线切割机床中,D表示电加工机床。(对) 3、线切割机床通常分为两大类,一类是快走丝,另一类是慢走丝。(对) 4、3B代码编程法是最先进的电火花线切割编程方法。(错) 5、离子束加工必须在真空条件下进行。(对) 6、电火花加工中的吸附效应都发生在阴极上。(错) 7、线切割加工一般采用负极性加工。(错)

电火花切割原理

电火花线切割加工概述 电火花线切割机(Wire cut Electrical Discharge Machining简称WEDM),属电加工范畴,是由前苏联拉扎林科夫妇研究开关触点受火花放电腐蚀损坏的现象和原因时,发现电火花的瞬时高温可以使局部的金属熔化、氧化而被腐蚀掉,从而开创和发明了电火花加工方法。线切割机也于1960年发明于前苏联,我国是第一个用于工业生产的国家 1、电火花线切割加工原理 在电火花线切割加工中,利于移动的细金属导线(铜丝或钼丝)作一个电极,工件作另一个电极,并按照预定的轨迹运动,通过不断的火花放电对工件进行放电蚀除,以切割出成型的各种二维、三维表面。及也就是自由正离子和电子在场中积累,很快形成一个被电离的导电通道。在这个阶段,两板间形成电流。导致粒子间发生无数次碰撞,形成一个等离子区,并很快升高到8000到12000度的高温,在两导体表面瞬间熔化一些材料,同时,由于电极和电介液的汽化,形成一个气泡,并且它的压力规则上升直到非常高。然后电流中断,温度突然降低,引起气泡内向爆炸,产生的动力把溶化的物质抛出弹坑,然后被腐蚀的材料在电介液中重新凝结成小的球体,并被电介液排走。然后通过NC控制的监测和管控,伺服机构执行,使这种放电现象均匀一致,从而达到加工物被加工,使之成为合乎要求之尺寸大小及形状精度的产品。 图1电火花线切割加工示意图 1-贮丝筒2-电极丝3-丝架4-导轮5-脉冲电源6-工作台7-工作液箱 2、电火花线切割加工的特点 电火花线切割加工的过程的工艺和机理与电火花穿孔成型加工既有共同性,又有特殊性。 ★电火花线切割加工与电火花穿孔成型加工的共同点 两者在加工原理、工作机理、工艺、适应材料等方面相同,具体表现为:(1)线切割加工的电压、电流波形与电火花加工的基本相似。单个脉冲也有多种形式的放电形态,如开路、短路、正常火花放电等。 (2)线切割加工的加工机理、生产率、表面粗糙度等工艺规律,材料的可加工性等也都与电火花加工的基本相似,可以加工硬质合金等一切导电材料。 ★电火花线切割加工与电火花穿孔成型加工的不同点 两者在加工极性、工作液、放电状态、接触方式、电极形式、电极丝的加工特点、工具损耗等方面有不同处,具体表现为:

电火花加工机床安全防护技术要求

电火花加工机床安全防护技术要求 1范围 本标准规定了电火花加工机床的安全防护技术要求。 本标准适用于电火花成形机、电火花线切割机、电火花磨床、电火花穿孔机及其他电火花加工机床 ( 以下简称机床 ) 。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时, 所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本 的可能性。 GB / T 261 — 1983石油产品闪点测定法( 闭口杯法 ) GB 2894— 1996安全标志 GB 4824—— 1996工业科学和医疗 (lSM) 射频设备电磁骚扰特性的测量方法和限值GB/ T 5226 . 1— 1996工业机械电气设备第一部分:通用技术条件 GB l2265. 1— 1997机械安全防止上肢触及危险区的安全距离 GB T 14896. 1— 1994特种加工机床术语基本术语 GB/ T 14896. 2— 1994特种加工机床术语放电加工机床 GB/ T 15706. 1— 1995机械安全基本概念与设计通则第 1 部分:基本术语、方法学 GB/ T 15706. 2— 1995机械安全基本概念与设计通则第 2 部分:技术原则与规范 GB 16755—1997机械安全安全标准起草与表述规则 GB/ T 16769— 1997金属切削机床噪声声压级的测量 ZB J50 005— 1988金属切削机床粉尘浓度的测定 3定义

本标准除采用GB/ T 14896 . 1— 14896. 2 中的定义外,还采用下列定义。 3. 1危险hazard 可能损伤或危害健康的起源。 注:“危险”一词一般与其他词联合使用限定其起源和预料其对身体损伤或危害健康的 性质,如电击危险、挤压危险、剪切危险、中毒危险等( 由机械产生的各种危险见第 4 章) 。3. 2风险risk 在危险状态下,可能损伤或危害健康的概率和程度的综合。 3. 3危险区danger zone 使人面临损伤或危害健康风险的机械内部和( 或 ) 周围的某一区域。 ( 危险运动注:产生本定义中所设想的风险中的危险既可在机床预定使用期间经常存在 件的运动,焊接时的电弧等), 也可能意外地出现( 意外起动等 ) 。 3. 4加工区machining area。 工具电极与工件放电加工所经过的区域。 3. 5工作区working ares 可能出现工作过程的区域。这个区域包含机床运动部件运动所需的位置、装卸工件所需 的位置以及安装、使用、调整、维护、清理和修理机床所需的位置。 3. 6安全防护safeguarding 采用称为安全防护装置( 防护装置、安全装置 ) 的特定技术手段,防止人们遭到不能由设 计适当避免或充分限制的各种危险的安全措施。 3. 7操作者operator 对机床进行安装、使用、调整、维护、清理、修理或运输的人员。 3. 8防护装置guard 通过物体障碍方式专门用于提供防护的装置。根据其结构,防护装置可以是壳、罩、屏、门、封闭式防护装置等。 注1:防护装置的作用可以是——单独作用, 只有当它关闭时才是有效的; ——与有或无防护锁的联锁装置联合作用,在这种情况下,防护装置无论在任何位置都 能保证防护作用。

电火花加工

课程名称:院系: 专业: 班级: 学号: 姓名:

电火花加工 1.概述 电火花加工是一种自激放电,故又称放电加工(EDM),于20世纪40年代开始研究并逐步应用于生产,是目前机械制造业中应用最广泛的特种加工方法之一,在难切削材料、复杂型面零件等的加工中得到了广泛应用。 2.原理 火花放电的两个电极间在放电前具较高的电压,当两电极接近时,其间介质被击穿后,随即发生火花放电。伴随击穿过程,两电极间的电阻急剧变小,两极之间的电压也随之急剧变低。火花通道必须在维持暂短的时间(通常为后及时熄灭,才可保持火花放电的“冷极”特性(即通道能量转换的热能来不及传至电极纵深),使通道能量作用于极小范围。通道能量的作用,可使电极局部被腐蚀。利用火花放电时产生的腐蚀现象对材料进行尺寸加工的方法,叫电火花加工。电火花加工是在较低的电压范围内,在液体介质中的火花放电。 3.特点 1.脉冲放电的能量密度高,便于加工用普通的机械加工方法难于加工或无法加工的特殊材料和复杂形状的工件。不受材料硬度影响,不受热处理状况影响。 2.脉冲放电持续时间极短,放电时产生的热量传导扩散范围小,材料受热影响范围小。 3.加工时,工具电极与工件材料不接触,两者之间宏观作用力极小。工具电极材料不需比工件材料硬,因此,工具电极制造容易。 4.可以改革工件结构,简化加工工艺,提高工件使用寿命,降低工人劳动强度。基于.上述特点,电火花加工的主要用途有以下几项: 1)制造冲模、塑料模、锻模和压铸模。 2)加工小孔、畸形孔以及在硬质合金上加工螺纹螺孔。 3)在金属板材上切割出零件。4)加工窄缝。 5)磨削平面和圆面。

电火花线切割加工工艺

第五章数控电火花线切割加工工艺与编程 第一节数控电火花线切割加工概述 序号:37 主要内容: 一、数控线切割加工机床简介 电火花线切割机床组成:机床本体、控制系统、脉冲电源、运丝机构、工作液循环机构和辅助装置(自动编程系统)。 线切割机床可分为高速走丝机床和低速走丝机床。 二、数控线切割加工原理及特点 1.数控电火花线切割加工原理 它是通过电极和工件之间脉冲放电时的电腐作用,对工件进行加工的一种工艺方法。 数控电火花线切割加工的基本原理:利用移动的细金属导线(铜丝或钼丝)作为工具线电极(负电极),被切割的工件为工件电极(作为正电极),在加工中,线电极和工件之间加上脉冲电压,并且工作液包住线电极,使两者之间不断产生火花放电,工件在数控系统控制下(工作台)相对电极丝按预定的轨迹运动,从而使电极丝沿着所要求的切割路线进行电腐蚀,完成工件的加工。 2.数控线切割加工的特点 (1)可以加工难切削导电材料的加工。例如淬火钢、硬质合金等; (2)可以加工微细异形孔、窄缝和复杂零件,可有效地节省贵重材料; (3)工件几乎不受切削力,适宜加工低刚度工件及细小零件; (4)有利于加工精度的提高,便于实现加工过程中的自动化。 (5)依靠数控系统的间隙补偿的偏移功能,使电火花成形机的粗、精电极一次编程加工完成,冲模加工的凹凸模间隙可以任意调节。 三、数控线切割加工的应用 1.形状复杂、带穿孔的、带锥度的电极; 2.注塑模、挤压模、拉伸模、冲模; 3.成形刀具、样板、轮廓量规的加工; 4.试制品、特殊形状、特殊材料、贵重材料的加工。 小结 电火花线切割机床组成、电极丝(负电极)、工件(正电极)。

火花机作业流程图

火花机作业流程 1、目的: 规放电作业,实现工作流程化,提高加工效率和品质,确保模具按时保质地完成。2、围: 适用所有的模具放电加工。 3、职责: 负责模具零件的EDM加工。 4、定义: 无 5、容: 5.1 组长根据生产情况,参与制订生产计划: 5.1.1 根据模具加工工艺评审会议明确本组加工任务; 5.1.2 根据实际情况,与加工生管共同制定生产计划,明确加工时段及完成日期; 5.1.3 需特别注意事项必须加以标注,并通过看板公告,会议等形式下达工作指令。 5.2 组长接收上一工站提供的工件和图纸: 5.2.1 接受由CNC提供的铜公零件图,填写《铜公加工控制表》: A:检查图纸与铜公形状是否相符,如不符,则由CNC人员加以检查确认并签名; B:检查图纸标示的基准角与铜公是否相符,如不符,退回CNC处理,并记录; C:检查铜公是否需线割,线割部位是否有突起线割痕;如需线割,送线割处理,如有突起刀痕,在知会线割组长后送省模处理,并加以记录; D:检查图纸,查看火花位是否合理。根据《铜公火花位标准》,查看铜公检测报告是否与实际情况相符,如不合理,应由组长与CNC组长沟通,并记录。 5.2.2 接收放电位置总装图:

A:检查图纸基准线与工件中心线是否重合,如不重合需二次偏数,需加以标注;B:检查工件基角与图纸所示基角是否相符,如不符退回CNC; C:检查Z轴碰数基准位置; D:检查注意事项是否清晰,如不清晰,退回CNC。 E:检查图纸有无手工更改,如有更改,检查更改人有无签名确认,如更改而无人签名,退回CNC。 5.2.3 组长接收由品管分发的合格铜公: A:检查铜公编号,外形是否与图纸相符,如不符,可不接收; B:检查铜公有无变形,损伤,披锋,镙丝孔铜屑是否清理干净; C:检查需加工位置有无省模,省模是否合格。不合格的铜公,可拒收; D:检查铜公尺寸及火花位是否与图纸相符,并与品管检验单加以核对。如误差在0.05MM以需特别加以标注.以便在加工时作火花位调整; E:检查铜公基角是否与图纸相符,碰数位置是否清晰,如基台起级或不成平面时,退回上一工站。 5.2.4 组长按收上一工站分发的工件: A:检查工件基准角与放电位置总图标示是否相符,如不符退回上一工站,如未加工零件基准角,特殊情况下可按图纸加工基准角.严禁无标示就上机加工; B:检查工件是否直角,平面是否平整,如直角平整度超过0.015,可退回上一工站;C:检查工件外观是否完好无损,如有损伤,退回上一工站; D:检查其它工序加工的尺寸是否准确,所留余量是否合理,如余量超出以下围,可拒收。

电火花加工工艺介绍

电火花加工工艺介绍 电火花加工是使工具和工件之间不断产生脉冲性的火花放电,靠放电时局部、瞬时产生的高温把工件材料蚀除下来,电火花加工也有自己的分类和原理。 电火花成型加工基本原理 脉冲电源的一极接工具电极,另一极接工件电极,两极均浸入具有一定绝缘度的液体介质(常用煤油或矿物油或去离子水)中。工具电极由自动进给调节装置控制,以保证工具与工件在正常加工时维持一很小的放电间隙(0。01~0。05mm)。当脉冲电压加到两极之间,便将当时条件下极间最近点的液体介质击穿,形成放电通道。由于通道的截面积很小,放电时间极短,致使能量高度集中(10~107W/mm),放电区域产生的瞬时高温足以使材料熔化甚至蒸发,以致形成一个小凹坑。第一次脉冲放电结束之后,经过很短的间隔时间,第二个脉冲又在另一极间最近点击穿放电。如此周而复始高频率地循环下去,工具电极不断地向工件进给,它的形状最终就复制在工件上,形成所需要的加工表面。与此同时,总能量的一小部分也释放到工具电极上,从而造成工具损耗。 电火花加工的分类 电火花加工在电加工行业中应用最为广泛的一种加工方法,约占该行业的90%。按工具电极和工件相对运动的方式不同,大致可分为电火花成型加工、线切割加工、电火花磨削加工、电火花同步共轭回转加工、电火花高速小孔加工、电火花表面强化与刻字加工等六大类。其中线切割加工占了电火花加工的60%,电火花成型加工占了30%。随着电加工工艺的蓬勃发展,线切割加工就成了先进工艺制作的标志。 线切割放电加工基本原理 线切割放电加工以铜线作为工具电极,在铜线与铜、钢或超硬合金等被加工物材料之间施加60~300V 的脉冲电压,并保持5~50um间隙,间隙中充满煤油、纯水等绝缘介质,使电极与被加工物之间发生火花放电,并彼此被消耗、腐蚀。在工件表面上电蚀出无数的小坑,通过NC控制的监测和管控,伺服机构执行,使这种放电现象均匀一致,从而达到加工物被加工,使之成为合乎要求之尺寸大小及形状精度的产品。

电火花加工的基本原理

电火花加工的基本原理 车辆工程6班、20124415、赵幸摘要:电火花加工又称放电加工(Electrical Discharge Machining,简称EDM),是一种直接利用电能和热能进行加工的新工艺。 关键词:电火花、电腐蚀、工艺技术 电火花加工的原理是基于工具和工件(正、负电极)之间脉冲性火花放电时的电腐蚀现象来蚀除多余的金属,以达到对零件的尺寸、形状及表面质量预定的加工要求。电腐蚀现象早在20世纪初就被人们发现,但是长期以来,电腐蚀一直被认为是一种有害的现象,人们不断地研究电腐蚀现象的原因并设法减轻和避免电腐蚀的发生。1940年,前苏联科学电工研究所拉扎连柯夫妇的研究结果表明,电火花腐蚀的主要原因是:电火花放电时火花通道中瞬间产生大量的热,达到很高的温度,足以使任何金属材料局部熔化、气化而被蚀除掉,形成放电凹坑。这样,人们在研究抗腐蚀办法的同时,开始研究利用电腐蚀现象对金属材料进行尺寸加工,终于在1943年拉扎连柯夫妇研制出利用电容器反复充放电原理的世界上第一台实用化的电火花加工装置。 实践经验表明,要把有害的火花放电转化为有用的加工技术,必须创造条件: 1.使工件的电极和工件被加工表面之间经常保持一定的放电间隙,这一间隙随加工条件而定,通常约为几微米至几百微米。如果间隙过大,极间电压不能击穿极间介质,因而不会产生火花放电;如果间隙过小,很容易形成短路接触,同样也不能产生火花放电。因此,在电火花加工过程中必须具有工具电极的自动进给和调节装置。 2.使火花放电为瞬间的脉冲性放电,并在放电延续一段时间后,停歇一段时间(放电延续的时间一般为10-7-10-3s)。这样才能使放电所产生的热量来不及传导扩散到其余部分,把每一次的放电点分别局限在很小的范围内;否则,像持续弧放电那样,使放电点表面大量发热、熔化、烧伤,只能用于焊接或切割,而无法用作尺寸加工,故电火花加工必须采用脉冲电源。 3.使火花放电在有一定绝缘性能的液体介质中进行,例如煤油、皂化液或去离子水等。液体介质又称工作液,必须具有较高的绝缘强度(103-107Ω?cm),以有利于产生脉冲性的火花放电。同时,液体介质还能把电火花加工过程中产生的金属小屑、碳黑等电蚀产物从放电间隙中的悬浮排出去,并且对工具电极和工件表面有较好的冷却作用。

电火花加工机床安全技术操作规程模板

工作行为规范系列 电火花加工机床安全技术 操作规程 (标准、完整、实用、可修改)

FS-QG-33813 编 号: 电火花加工机床安全技术操作规程 Safety tech ni cal operati on regulati ons for EDM mach ine tools 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 1、作业人员必须持证上岗; 2、必须熟练掌握本岗位所使用设备的《安全操作规程》, 认真作好点检表上所要求的内容; 3、工作时不准聊天、离岗或干与生产无关的事,在班前、 班上 不准喝酒。 4、上岗前必须穿戴好本岗位要求的劳动防护用品; 5、电火花机床应有排气设备,机床不能安在大型冲床或 振动的地方,电源电压稳定; 6、在工作前要仔细的检查机床运转部分是否正常,并加 润滑油,主轴头运转位置加仪表油; 7、机床工作时不准用手或导电物触及二极(工作物和电

极),以免触电,人要站在绝缘垫和木踏板上操作; &按加工要求,适当选择下电容、电阻和工作电压; 9、电火花机床通电工作时,工作液一定要高于工件30 毫米(电脉冲机床在工作时,工作液应高于零件150?200毫 米以上); 10、工作室不准吸烟,并应有足够数量的二氧化碳泡沫 灭火器。操作人员应掌握灭火知识; 11、盐酸、硝酸丙酮、甲苯等有害物品,必须专人负责, 专柜加锁管理,使用中要戴好防毒口罩和手套(有通风排毒 设施的应开动风在罩内工作)使用后之废液、废渣不得乱放,应集中存放处理; 12、作业结束后,清理好工作场地,关闭电源,清洁设 备,按规定恢复机床各部位置,填写好交班记录。 请输入您公司的名字 Foon shi on Desig n Co., Ltd

相关主题
文本预览
相关文档 最新文档