当前位置:文档之家› 物理实验报告_光学多道与氢氘光谱

物理实验报告_光学多道与氢氘光谱

物理实验报告_光学多道与氢氘光谱
物理实验报告_光学多道与氢氘光谱

光学多道与氢氘同位素光谱

摘 要:本实验利用光学多道分析仪研究氢氘光谱。首先使用已知波长的氦光谱进行定标测量了氢光谱,并在此基础上测量氢氘同位素光谱,修正获得了氢氘光谱的波长值;利用这些测得值计算出了氢氘的里德伯常量分别为H R =109717.82cm -1,=109747.00 cm -1。得到了

氢氘光谱的各光谱项及巴耳末系跃迁能级图;通过计算得出了电子与质子质量之比为

=1881.40,与理论值1836.15的相对误差为2.46%。

关键词:光学多道分析仪,氢、氘同位素光谱,CCD ,光电倍增管

1. 引言

光谱是不同强度的电磁辐射按照波长的有序排列。光谱学是研究各种物质的光谱特征,并根据这些特征研究物质结构、物质成分和物质与电磁辐射的相互作用,以及光谱产生和测量方法的科学。光谱学在物理学各分支学科中都占有重要地位,而且在生物学、考古学等诸多方面有着广泛的应用。在光谱学史上,氢光谱的实验和理论研究都占有特别重要的地位。1885年,巴耳末(J.J.Balmer )发现了可见光区氢光谱线波长的规律。1892年,尤雷(H.C.Urey )等发现氢(H)的同位素氘(D)的光谱,氢氘原子对应的谱线波长存在“同位素位移”。

本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点, 并学习光学多道仪的使用方法及基本的光谱学技术。

2. 实验原理

2.1物理原理

在原子体系中,原子的能量状态是量子化的。用1E 和2E 表示不同能级的能量,ε表示跃迁发出光子的能量,h 表示波尔兹曼常量,ν表示光子的频率,对于原子从低能级到高能级的跃迁我们有:

21h E E εν==-,其中21

E E h

ν-=

(1)

由于原子能级的分立,频率ν也为分立值,在分光仪上表现为一条条分立的“线性光谱”,这些频率由巴耳末公式确定:

H 原子:

22

1

2

1

11H H

R n n λ??

=- ???

……………………………………………………(2) 其中1n 和2n 为轨道量子数,H R 为氢原子的里德伯常数。当1n =2,2n =3,4,5……时,公式(2)对应氢原子巴耳末系。

同理,D 原子:221

2111D D R n n λ??

=- ??? (3)

图1 实验装置图

图2 光栅多色仪光路图

其中1n =2,2n =3,4,5……时对应氘原子巴耳末系,D R 为氘原子的里德伯常数。 氢原子和氘原子巴耳末系对应的波长差为:

1

2211112H D

H D R R n λλλ-?????=-=-- ? ?

????,n =3,4,5......, (4)

其中p H p e

m R R m m ∞=+,22p D p e

m R R m m ∞

=+,R ∞=109737.31cm -1 (5)

由公式(5)可得:

11

22p e

H

p e D

m m R m m

R ??+=

? ?+?? ……………………………………(6) 因此:

111

2e

H

D

p e D

m R R m m R -

=

+ (7)

有: 1

22

1122

2e

e D D p e p e

m m R m m n m m λλ-??

???=-=

???++????

(8)

由于p m >>e m ,所以:

2e D

p

m m λ

λ?≈

(9)

测出对应谱线波长及波长差便可通过公式(9)计算出出电子和质子的质量比。

2.2仪器原理

光学多道分析仪(Optical Multi-channel Analyzer 简称OMA ),主要由光学多色仪,电荷耦合器件(CCD)或光导摄像管和数据处理系统三大部分组成,是一种采用多通道法检测和显示微弱光信号的光电子仪器。本实验所用光学多道分析仪由光栅多色仪,CCD 接受单元,电子信号处理单元,A/D 采集单元和计算机组成。实验装置如图1所示。

2.2.1 光栅多色仪

光路图如图2所示,通过入射狭缝S 1的光经平面镜M 1反射后,被凹面准光镜M 2反射为平行光投射到光栅G 上。由于光栅的衍射作用,不同波长的光被反射到不同的方向上再经凹面物镜M 3反射,成像在CCD 感光平面所在的焦面S 2上,或由可旋入的平面镜M 4反射到观察窗S 3上。

2.2.2 CCD 光电探测器

CCD (电荷耦合器件)可以将光学图像转换为电学“图像”,即电荷量与该处照度大致

图3 CCD 工作原理图

成正比的电荷包空间分布,因此,它可以“同时”探测到空间分布的光信号。我们实验所用的是具有2048个像元的线阵列CCD 器件,感光像元将信号光子转变为信号电荷,并实现电荷的存储、转移和读出,其工作原理如图3。

当二极管受光照时,被吸收的光子产生电子-空穴对,其中电子被吸收到电荷反型区,形成电荷的存储。将按一定规则变化的电压脉冲加到CCD 各相元电极上,电极下的点荷包就能按一定方向移动,发生电荷的转移。转移到CCD 输出端的信号电荷在输出电路实现电荷-电压(U/A )线性变换,完成电荷的读出。 2.2.3光电倍增管

光电倍增管是一种具有高灵敏度与超快响应时间的光探测元件,一般光电倍增管在其响应范围最佳的近红外光区到紫外光区,可以将只有数百个光子的光讯号转换为有用的脉冲电流,进而利用此脉冲电流来做讯号的分析。

光电倍增管是依据光电子发射、二次电子发射和电子光学的原理制成的.光阴极在光子作用下发射电子,这些电子被外电场(或磁场)加速,聚焦于第一次极.这些冲击次极的电子能使次极释放更多的电子,它们再被聚焦在第二次极.这样,一般经十次以上倍增,放大倍数可

达到 108~1010

。最后,在高电位的阳极收集到放大了的光电流;输出电流和入射光子数成

正比,而整个过程时间约10-8

秒。

3.实验内容

3.1实验步骤

1、 准备

根据公式(2)(3)(5)估算氢和氘光谱巴耳末线系中=3,4,5,6,7几条谱线的波长,并做好开机的准备。

2、 用CCD 光学多道系统测量氢光谱

选择光谱仪处于CCD 的工作模式,并进入“WDG-8A-CCD ”软件,等待初始化。 在软件中依次单击“运行”、“实时采集”,使计算机进入光谱采集状态。

将多组灯中的氢灯置于狭缝前,以氢谱巴耳末线系的波长分布作为参考,调节CCD 的中心波长位于某一条谱线附近(参考第1步准备中的估算结果)。

调节氢灯光源的位置,确认能够观察到氢谱线,然后换上标准氦灯。反复调节CCD 中心波长的位置,使得在同一个摄谱范围内即可观察到待测氢谱线,也可以观察到至少三条氦谱线。在这一前提下,只测量24,5n 的两条谱线的波长。

波长定标:利用软件对标准氦谱线定标。

测谱:不改变摄谱范围的前提下,重新放上氢灯,通过以定的标测出氢谱线的波长值。 再将中心波长定在另一条氢谱线附近,重复上述测量。 3、 用光电倍增管测量氢氘光谱

在CCD的工作方式下放上氢氘灯,调节各参数如光缝宽度,使谱线的强度尽量强并且氢谱线和氘谱线能明显分离,然后退出CCD工作状态。

将工作方式改为光电倍增管,点击“WDG-8A光电倍增管”操作系统,等待系统初始化。

调节光电倍增管的负高压至800V。

选择工作范围在某条氢谱线附近,通过软件扫描观察谱线强度是否合适,氢氘谱线是否分离。如果不能符合要求则需要重新调节参数。

参数调节完毕后,使仪器的扫描范围为400nm至660nm。扫描,获得氢氘光谱。

将第2步中测量的氢谱线波长对现在的数据进行修正,测出氢氘光谱线的相应波长。3.2数据记录

1、通过公式(2)(3)对氢和氘光谱线波长进行估算,见表1:

首先由公式(5)分别计算出氢、氘原子的里德伯常数

R=109677.58cm-1,=109707.44

H

cm-1。

表1氢、氘光谱线波长估算

(nm)

2、用CCD光学多道系统测量氢光谱

3、光电倍增管测量数据

应用光电倍增管单程扫描可获得氢氘光谱,扩展后可获得某一特定波段的光谱图如下所示:

图4.1 氢氘光谱(400nm~660nm)图4.2 氢氘光谱分裂(487nm附近)

先根据表2对表3 的测量数据进行修正,如表4所示:

表 4光谱测量值修正量λ?

(nm ) =H λ定标-(nm )

根据表4中的修正量λ?,对表3做整体处理如表5:

5 修正后氢、氘光谱对应波长

以上的测量的是空气中的谱线波长,下面通过计算得出在真空中相应的波长值: 若真空中波长为,空气中的波长为,空气的折射率为,则=n (10)

空气的折射率由下式决定:

1111g n p be n at

p at

--=

?-

++ (11)

g n 是标准大气压(0t C ?

=0p p =0e =)下群速度折射率,

2

4

3

5

1g n A B C λ

λ

=++

+

(12)

其中72876.0410A -=?,7216.28810B m μ-=?,740.13610C m μ-=?

在这里,因为实验是在室温、室压的情况下完成的,所以需要计算n ,但是在室温、室压的情况下我们可以得出g n n ≈,求出g n 可以做近似计算。

表6 H 、D 光谱有关数据计算

(m -1)

图5此图给出了n 从2一直取值到100的情况下,

2

H R n

的变化图

表中波数=1/,(单位为

);)12

1/(

R 2

2

H/D n

-

=ν,n =3、4、5、6;计算的相对

误差时参考由公式(5)分别计算H R =109677.58cm -1,=109707.44 cm -1

=109717.82 cm -1,可得H 的巴耳末系对应光谱项:

表 7 n ----2

H R n

根据表7的结果可以作图5如下:

可以做出氢氘原子的能级跃迁图如下:

表 8.1 图6.1注释

=655.781nm

=486.265nm =434.092nm

=410.206nm

表8.2 图6.2注释

=655.601nm

=486.135nm =433.982nm

=410.096nm

最后计算质子与电子的质量之比:

表9 质子与电子质量之比

理论上的

p e

m m 约为1836.15,可见测量值的相对误差为2.46%。

图 1.1氢原子的能级跃迁图 最低的2n =,往上的能级线n 逐渐增大,每次增加1。其中1,2,3,4表示的内容见表8.1。

图 6.2氘原子的能级跃迁图 最低的2n =,往上的能级线n 逐渐增大,每次增加1。其中1,2,3,4表示的内容见表8.2。

4.实验结论

结论:通过此次实验验证了量子说,得出了氢原子和氘原子的光谱波长,利用这些测得值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,并在此基础上得出了质子和电子的质量之比。通过实验与理论结果的比较,说明了理论的正确性。

建议:1、实验中需要对实验室的温度,气压和水蒸气压等相关参数测量后才能计算精确的空气折射率,进而能计算真空下的波长。所以建议在实验室里配备相关仪器。

2、基于光学多道分析仪的内部结构,本实验操作的关键在于外光路的调节,保证狭缝得到均匀的照明对于光谱定量分析非常重要。但实验时使用的H-D灯方向稍有偏差且不可调节,给实验操作带来很大不便,建议该灯换为方向、仰角易于调节控制型的。

5.参考文献

[1]熊俊.近代物理实验.北京.北京师范大学出版社.2007年8月:20-34

[2]氢氘光谱与光学多道实验说明.北师大物理系近代物理实验室

原子吸收光谱实验报告

一、基本原理 1.原子吸收光谱的产生 众所周知,任何元素的原子都是由原子核和绕核运动的电子组成,原子核外电子按其能量的高低分层分布而形成不同的能级。因此,一个原子核可以具有多种能级状态。能量最低的能级状态称为基态能级(E 0=0),其余能级称为激发态能级,而能最低的激发态则称为第一激发态。正常情况下,原子处于基态,核外电子在各自能量最低的轨道上运动。如果将一定外界能量如光能提供给该基态原子,当外界光能量E 恰好等于该基态原子中基态和某一较高能级之间的能级差△E 时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态,而产生原子吸收光谱。电子跃迁到较高能级以后处于激发态,但激发态电子是不稳定的,大约经过10-8秒以后,激发态电子将返回基态或其它较低能级,并将电子跃迁时所吸收的能量以光的形式释放出去,这个过程称原子发射光谱。可见原子吸收光谱过程吸收辐射能量,而原子发射光谱过程则释放辐射能量。核外电子从基态跃迁至第一激发态所吸收的谱线称为共振吸收线,简称共振线。电子从第一激发态返回基态时所发射的谱线称为第一共振发射线。由于基态与第一激发态之间的能级差最小,电子跃迁几率最大,故共振吸收线最易产生。对多数元素来讲,它是所有吸收线中最灵敏的,在原子吸收光谱分析中通常以共振线为吸收线。 2.原子吸收光谱分析原理 2.1谱线变宽及其原因 原子吸收光谱分析的波长区域在近紫外区。其分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中被待测元素的基态原子吸收后,测定发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合吸收定律: ()0k l I I e νν-= (1.1) 0log 0.434I K l A I ν ν=-=- (1.2) 其中:K v 为一定频率的光吸收系数,K v 不是常数,而是与谱线频率或波长有关,I v 为透射光强度,I 0为发射光强度。

光谱分析实验报告

. 1 实验报告 课程名称: 材料科学基础实验 指导老师: 乔旭升 成绩: 实验名称: 光谱分析 实验类型: 同组学生: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的 通过本实验了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR )和荧光光谱仪的基本原理、主要用途和实际操作过程。掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固 体发光材料荧光光谱的测试方法。学习分析影响测试结果的主要因素。 二、实验原理 电磁波可与多种物质相互作用。如果这种作用导致能量从电磁波转移至物质,就称为吸收。当光波与某一受体作用时,光子和接受体之间就存在碰撞。光子的能量可被传递给接受体而被吸收,由此产生吸收光谱。通常紫外和可见光的能量接近于某两个电子能级地能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁,又称为电子光谱。 当一束平行单色光照射到非散射的均匀介质时,光的一部分将被介质所反射,一部分被介质吸收,一部分透过介质。如果入射光强度为I0.反射光强度为Ir ,吸收光强度为Ia ,透过光强度为It ,则有I0=Ir+Ia+It 投射光强度与入射光强度之比称为透光率 T=It/I0 当一束具有连续波长的红外光照射某化合物时,其分子要吸收一部分光能转变为分子的震专业: 材料0902 姓名: 王应恺 学号: 3090100481 日期: 11.29 地点: 曹楼230 装 订 线

动能量或转动能量。此时若将其透过的光用单色器进行色散,就可得到一带暗条的谱带。以红外光的波长或波数为横坐标,以吸收率或者透过率百分数为纵坐标,把该谱带记录下来,就可得到该化合物的红外吸收光谱图。不同的化合物均有标准特征谱,将实验所得的光谱与标准谱对照,就可进行分子结构的基础研究和化合组成的分析。可由吸收峰的位置和形状来推知被测物的结构,按照特征峰的强度来测定混合物中各组分的含量。 当分子吸收来自光辐射的能量后,其本身就由处于稳定的基态跃迁至不稳定的激发态:M+hν→。激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁波(荧光或磷光)的方式回到基态:→M+荧光(或磷光)。任何能产生荧光(或磷光) 的物质都具有两个特征光谱:激发光谱和发射光谱。 激发光谱:荧光(或磷光)为光致发光,因此必须选择合适的激发光波长,这可通过激发光谱曲线来确定。选择荧光(或磷光)的最大发射波长为测量波长(监控波长),改变激发光的波长,测量荧光强度变化。以激发光波长为横坐标,荧光强度为纵坐标作图,即可获得激发光谱。激发光谱形状与吸收光谱形状极为相似,经校正后的激发光谱与吸收光谱不仅形状相同,而且波长位置一致。这是因为物质吸收能量的过程就是激发过程。 发射光谱:将激发波长固定在最大激发波长处,然后扫描发射波长,测定不同波长处的荧光(或磷光)强度,即可得到荧光(或磷光)发射光谱。 三、仪器简介 1.紫外/可见光分光光度计 PE公司的Lambda20双光束紫外/可见光分光光度计,测量光谱围190-1100nm;杂散光0.01%T;波长精度0.1nm;最高扫描速度2880nm/min。该仪器的整个操作过程可完全由计算机控制,随机提供的UV-Winlab窗口式操作软件,使样品测试、结果处理、图形变换

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告 班级:环科10-1 姓名:王强学号:27 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器 ~ mL及5 ~ 50 uL

2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长: nm 灯电流:3 mA 狭缝宽度: nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、 mL、 mL、 mL浓度为100 ng/mL的镉标准溶液,再各添加 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测定用。 取水样500 mL于烧杯中,加入5 mL浓硝酸溶液,加热浓缩后转移至50 mL 容量瓶,以Milli-Q去离子水稀释至刻度,摇匀,此待测水样供原子吸收测定用。3.吸光度的测定 设置好测定条件参数,待仪器稳定后,升温空烧石墨管,用微量分液器由稀到浓向石墨管中依次注入40 uL标准溶液及待测水样,测得各份溶液的吸光度。 五、数据记录:

氢原子光谱_实验报告

氢原子光谱 摘 要:本实验用光栅光谱仪对氢原子光谱进行测量,测得了氢原子光谱巴尔末线系的波长,求出了里德伯常数。最后对本实验进行了讨论。 关键词:氢原子光谱,里德伯常数,巴尔末线系,光栅光谱仪 1. 引言 光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法。1885年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学和量子力学的发展起过重要作用。1932年尤里根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素氘的存在。通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原子理论可靠性的标准和测量其他基本物理常数的依据。 2. 氢原子光谱 氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa 左右),可得到线状氢原子光谱。瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式 (1) 式中λH 为氢原子谱线在真空中的波长。 λ0=364.57nm是一经验常数。 n取3,4,5等整数。 若用波数表示,则上式变为 (2) 式中RH 称为氢的里德伯常数。 根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得 (3) 式中M为原子核质量,m为电子质量,e 为电子电荷,c 为光速,h 为普朗克常数,ε0为真空 42 2 0-=n n H λλ??? ??-==22 1211~n R v H H H λ)/1()4(23202 42M m ch z me R z += πεπ

光谱分析 实验报告

实验报告 课程名称: 材料科学基础实验 指导老师: 乔旭升 成绩: 实验名称: 光谱分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的 通过本实验了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR )和荧光光谱仪的基本原理、主要用途和实际操作过程。掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。学习分析影响测试结果的主要因素。 二、实验原理 电磁波可与多种物质相互作用。如果这种作用导致能量从电磁波转移至物质,就称为吸收。当光波与某一受体作用时,光子和接受体之间就存在碰撞。光子的能量可被传递给接受体而被吸收,由此产生吸收光谱。通常紫外和可见光的能量接近于某两个电子能级地能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁,又称为电子光谱。 当一束平行单色光照射到非散射的均匀介质时,光的一部分将被介质所反射,一部分被介质吸收,一部分透过介质。如果入射光强度为I0.反射光强度为Ir ,吸收光强度为Ia ,透过光强度为It ,则有I0=Ir+Ia+It 投射光强度与入射光强度之比称为透光率 T=It/I0 当一束具有连续波长的红外光照射某化合物时,其分子要吸收一部分光能转变为分子的震动能量或转动能量。此时若将其透过的光用单色器进行色散,就可得到一带暗条的谱带。以红外光的波长或波数为横坐标,以吸收率或者透过率百分数为纵坐标,把该谱带记录下来,就可得到该化合物的红外吸收光谱图。不同的化合物均有标准特征谱,将实验所得的光谱与标准谱对照,就可进行分子结构的基础研究和化合组成的分析。可由吸收峰的位置和形状来推知被测物的结构,按照特征峰的强度来测定混合物中各组分的含量。 当分子吸收来自光辐射的能量后,其本身就由处于稳定的基态跃迁至不稳定的激发态: M+h ν→。激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁波(荧光或磷光)的方式回到基态: →M+荧光(或磷光)。任何能产生荧光(或磷光)的物质都具有两个特征光谱:激发光谱和发射光谱。 激发光谱:荧光(或磷光)为光致发光,因此必须选择合适的激发光波长,这可通过激发

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告班级:环科10-1 姓名:王强学号:2010012127 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅 5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干

燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器0.5 ~ 2.5 mL及5 ~ 50 uL 2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长:228.8 nm 灯电流:3 mA 狭缝宽度:0.2 nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、0.125 mL、0.250 mL、0.500 mL浓度为100 ng/mL的镉标准溶液,再各添加2.5 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测

实验1紫外-可见吸收光谱实验报告

实验一:紫外-可见吸收光谱 一、实验目的 1.熟悉和掌握紫外-可见吸收光谱的使用方法 2.用紫外-可见吸收光谱测定某一位置样品浓度 3.定性判断和分析溶液中所含物质种类 二、实验原理 紫外吸收光谱的波长范围在200~400,可见光吸收光谱的波长在400~800,两者都属于电子能谱,两者都可以用朗伯比尔(Lamber-Beer’s Law)定律来描述 A=ε bc 其中A为吸光度;ε为光被吸收的比例系数;c为吸光物质的浓度,单位mol/L; b为吸收层厚度,单位cm 有机化合物的紫外-可 见吸收光谱,是其分子中外 层价电子跃迁的结果,其中 包括有形成单键的σ电子、 有形成双键的π电子、有未 成键的孤对n电子。外层 电子吸收紫外或者可见辐 射后,就从基态向激发态(反键轨道)跃迁。主要有四种跃迁,所需能量ΔE 大小顺序为σ→σ*>n→σ*>π→π>n→π*

三、实验步骤 1、开机 打开紫外-可见分光光度计开关→开电脑→软件→联接→M(光谱方法)进行调节实验需要的参数:波长范围700-365nm 扫描速度高速;采样间隔:0.5nm 2、甲基紫的测定 (1)校准基线 将空白样品(水)放到比色槽中,点击“基线”键,进行基线校准 (2)标准曲线的测定 分别将5ug/ml、10ug/ml 、15ug/ml 、20ug/ml甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始”键,进行扫描,保存 (3)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始” 键,进行扫描,保存 3、甲基红的测定 (1)校准基线

将空白样品(乙醇)放到比色槽中,点击“基线”键,进行基线校准 (2)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始” 键,进行扫描,保存 四、实验结果 1.未知浓度的测定 分别测定了5μg/ml,10μg/ml,15μg/ml,20μg/ml和未知浓度的甲基紫溶液的紫外吸收光谱,紫外吸收谱图如下: 甲基紫在580nm是达到最大吸收见下表: 浓度/μg*ml-1吸光度 50.665 10 1.274 15 2.048 20 2.659

南京大学-氢原子光谱实验报告

氢原子光谱 一.实验目的 1.熟悉光栅光谱仪的性能和用法 2.用光栅光谱仪测量氢原子光谱巴尔末系数的波长,求里德伯常数 二.实验原理 氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa 左右),可得到线状氢原子光谱。瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式 2 024 H n n λλ=- (1) 式中H λ为氢原子谱线在真空中的波长。0364.57nm λ=是一经验常数。n 取3,4,5等整数。 若用波数表示,则上式变为 221 112H H R n νλ?? = =- ??? (2) 式中H R 称为氢的里德伯常数。 根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得 () () 242 2 3 0241/Z me Z R ch m M ππε= + (3) 式中M 为原子核质量,m 为电子质量,e 为电子电荷,c 为光速,h 为普朗克常数,0ε为真空介电常数,Z 为原子序数。 当M →∞时,由上式可得出相当于原子核不动时的里德伯常数(普适的里德伯常数)

() 242 2 3 024me Z R ch ππε∞= (4) 所以 () 1/Z R R m M ∞ = + (5) 对于氢,有 () 1/H H R R m M ∞ =+ (6) 这里H M 是氢原子核的质量。 由此可知,通过实验测得氢的巴尔末线系的前几条谱线j 的波长,借助(6)式可求得氢的里德伯常数。 里德伯常数R ∞是重要的基本物理常数之一,对它的精密测量在科学上有重要意义,目前它的推荐值为()=10973731.56854983/R m ∞ 表1为氢的巴尔末线系的前四条波长表 表1 氢的巴尔末线系波长 值得注意的是,计算H R 和R ∞时,应该用氢谱线在真空中的波长,而实验是在空气中进行的,所以应将空气中的波长转换成真空中的波长。即1λλλ?真空空气=+,氢巴尔末线系前6条谱线的修正值如表2所示。 表2 真空—空气波长修正值

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

分子荧光光谱法实验报告范文

分子荧光光谱法实验报告范文 一、实验目的 1.掌握荧光光度计的基本原理及使用。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.掌握分子荧光光度计分析物质的特征荧光光谱:激发光谱、发射光谱的测定方法。 4.了解影响荧光产生的几个主要因素。 5.学会运用分子荧光光谱法对物质进行定性和定量分析。 二、实验原理 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。 具有不饱和基团的基态分子经光照射后,价电子跃迁产生荧光,是当电子从第一激发单重态S1的最低振动能级回到基态S0各振动能级所产生的光辐射。 (1)激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,

使材料发出某一波长光的效率。荧光为光致发光,合适的激发光波长需根据激发光谱确定——激发光谱是在固定荧光波长下,测量荧光体的荧光强度随激发波长变化的光谱。获得方法:先把第二单色器的波长固定,使测定的λem不变,改变第一单色器波长,让不同波长的光照在荧光物质上,测定它的荧光强度,以I为纵坐标,λex为横坐标所得图谱即荧光物质的激发光谱,从曲线上找出λex,,实际上选波长较长的高波长峰。 (2)发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长(或频率),纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。发射光谱的获得方法:先把第一单色器的波长固定,使激发的λex不变,改变第二单色器波长,让不同波长的光扫描,测定它的发光强度,以I为纵坐标,λem为横坐标得图谱即荧光物质的发射光谱;从曲线上找出最大的λem。 (3)荧光强度与荧光物质浓度的关系 用强度为I0的入射光,照射到液池内的荧光物质时,产生荧光,荧光强度If用仪器测得,在荧光浓度很稀(A0.05)时,荧光物质发射的荧光强度If与浓度有下面的关系:If=KC。 三、实验试剂和仪器

激光拉曼光谱实验报告

激光拉曼光谱实验报告 摘要:本实验研究了用半导体激光器泵浦的3Nd + :4YVO 晶体并倍频后得到的532nm 激 光作为激发光源照射液体样品的4CCL 分子而得到的拉曼光谱,谱线很好地吻合了理论分析的4CCL 分子4种振动模式,且频率的实验值与标准值比误差低于2%。又利用偏振片及半波片获得与入射光偏振方向垂直及平行的出射光,确定了各振动的退偏度,分别为、、、,和标准值0和比较偏大。 关键词:拉曼散射、分子振动、退偏 一, 引言 1928年,印度物理学家拉曼()和克利希南()实验发现,当光穿过液体苯时被分子散射的光发生频率变化,这种现象称为拉曼散射。几乎与此同时,苏联物理学家兰斯别而格()和曼杰尔斯达姆()也在晶体石英样品中发现了类似现象。在散射光谱中,频率与入射光频率0υ相同的成分称为瑞利散射,频率对称分布在0υ两侧的谱线或谱带01υυ±即为拉曼光谱,其中频率较小的成分01υυ-又称为斯托克斯线,频率较大的成分01υυ+又称为反斯托克斯线。这种新的散射谱线与散射体中分子的震动和转动,或晶格的振动等有关。 拉曼效应是单色光与分子或晶体物质作用时产生的一种非弹性散射现象。拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 20世纪60年代激光的问世促进了拉曼光谱学的发展。由于激光极高的单色亮度,它很快被用到拉曼光谱中作为激发光源。而且基于新激光技术在拉曼光谱学中的使用,发展了共振拉曼、受激拉曼散射和番斯托克斯拉曼散射等新的实验技术和手段。 拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。它提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。拉曼光谱的分析方向有定性分析、结构分析和定量分析。

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

分子荧光光谱实验报告doc

分子荧光光谱实验报告 篇一:分子荧光光谱实验报告 分子荧光光谱实验报告 一、实验目的: 1.掌握荧光光度法的基本原理及激发光谱、发射光谱的测定方法;学会运用分子荧光光谱法对物质进行定性分析。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.了解影响荧光产生的几个主要因素。二、实验内容:测定荧光黄/水体系的激发光谱和发射光谱; 首先根据已知的激发波长(如果未知,则用紫外分光光度计进行测量,以最大吸收波长为激发波长)测定发射光谱,得到最大发射波长;然后根据最大发射波长测定激发光谱,得到最大激发波长;然后在根据最大激发波长测定测定发射光谱; 根据所得数据,用origin软件做出光谱图。三、实验原理: 某些物质吸收光子后,外层电子从基态跃迁至激发态,然后经辐射跃迁的方式返回基态,发射出一定波长的光辐射,此即光致发光。光致发光现象分荧光、磷光两种,分别对应单重激发态、三重激发态的辐射跃迁过程。本实验为荧光光谱的测定。

激发光谱:在发射波长一定的条件下,被测物吸收的荧光强度随激发波长的变化图。 发射光谱:在激发波长一定的条件下,被测物发射的荧光强度随发射波长的变化图。 各种物质均有其特征的最大激发波长和最大发射波长,因此,根据最大激发波长和最大发射波长,可以对某种物质进行定性的测定。 四、荧光光谱仪的基本机构 五、实验结果与讨论: XX00 S1 / R1 (CPS / MicroAmps) 150000 100000 50000 0Wavelength (nm) 400000 S1 / R1 (CPS / MicroAmps) 300000 XX00 100000 Wavelength (nm)

物理实验报告_光学多道与氢氘光谱

光学多道与氢氘同位素光谱 摘 要:本实验利用光学多道分析仪研究氢氘光谱。首先使用已知波长的氦光谱进行定标测量了氢光谱,并在此基础上测量氢氘同位素光谱,修正获得了氢氘光谱的波长值;利用这些测得值计算出了氢氘的里德伯常量分别为H R =109717.82cm -1,=109747.00 cm -1。得到了 氢氘光谱的各光谱项及巴耳末系跃迁能级图;通过计算得出了电子与质子质量之比为 =1881.40,与理论值1836.15的相对误差为2.46%。 关键词:光学多道分析仪,氢、氘同位素光谱,CCD ,光电倍增管 1. 引言 光谱是不同强度的电磁辐射按照波长的有序排列。光谱学是研究各种物质的光谱特征,并根据这些特征研究物质结构、物质成分和物质与电磁辐射的相互作用,以及光谱产生和测量方法的科学。光谱学在物理学各分支学科中都占有重要地位,而且在生物学、考古学等诸多方面有着广泛的应用。在光谱学史上,氢光谱的实验和理论研究都占有特别重要的地位。1885年,巴耳末(J.J.Balmer )发现了可见光区氢光谱线波长的规律。1892年,尤雷(H.C.Urey )等发现氢(H)的同位素氘(D)的光谱,氢氘原子对应的谱线波长存在“同位素位移”。 本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点, 并学习光学多道仪的使用方法及基本的光谱学技术。 2. 实验原理 2.1物理原理 在原子体系中,原子的能量状态是量子化的。用1E 和2E 表示不同能级的能量,ε表示跃迁发出光子的能量,h 表示波尔兹曼常量,ν表示光子的频率,对于原子从低能级到高能级的跃迁我们有: 21h E E εν==-,其中21 E E h ν-= (1) 由于原子能级的分立,频率ν也为分立值,在分光仪上表现为一条条分立的“线性光谱”,这些频率由巴耳末公式确定: H 原子: 22 1 2 1 11H H R n n λ?? =- ??? ……………………………………………………(2) 其中1n 和2n 为轨道量子数,H R 为氢原子的里德伯常数。当1n =2,2n =3,4,5……时,公式(2)对应氢原子巴耳末系。 同理,D 原子:221 2111D D R n n λ?? =- ??? (3)

实验31 原子发射光谱观测分析(实验报告)

实验31(A )原子发射光谱观测分析 【实验目的】 1. 学会使用光学多通道分析器的方法 2. 通过对钠原子光谱的研究了解碱金属原子光谱的一般规律 3. 加深对碱金属原子中外层电子与原子核相互作用以及自旋与轨道运动相互作用的了解 【实验仪器】 光学多通道分析器、光学平台、汞灯、钠灯、计算机 【原理概述】 钠属碱金属原子类,碱金属原子和氢原子一样,都只有一个价电子。但在碱金属原子中除了一个价电子外,还有内封闭壳层的电子,这些内封壳层电子与原子核构成原子实。价电子是在原子核和内部电子共同组成的力场中运动。原子实作用于价电子的电场与点电荷的电场有显著的不同。特别是当价电子轨道贯穿原子实时(称贯穿轨道),这种差别就更为突出。因此,碱金属原子光谱线公式为: ()()2 22*12*2 11~l l n R n R n n R μμν--'-'=???? ??-=' 其中ν ~为光谱线的波数;R 为里德堡常数。 n '与n 分别为始态和终态的主量子数 *2n 与*1n 分别为始态和终态的有效量子数 l '与l 分别为该量子数决定之能级的轨道量子数 l ''μ与l μ分别为始态和终态的量子缺(也称量子改正数,量子亏损) 根据就的波尔理论,在电子轨道愈接近原子中心的地方,μ的数值愈大。当轨道是贯穿轨道实,μ得数值还要大些。因为这时作用在电子上的原子核的有效电荷Z eff 有很大程度的改变。在非常靠近原子核的地方,全部核电荷作用在电子上。而距离很远的,原子核被周围电子屏蔽,以致有效核电荷1→eff Z 。因此s 项的μ值最大,而对p 项来说就小一些,对于d 来说还更小,由此类推。因而量子缺μ的大小直接反映原子实作用于价电子的电场与点电荷近似偏离的大小 对于钠原子光谱分如下四个线系 主线系:s np 3~→=ν 锐线系:p ns 3~→=ν 漫线系:p nd 3~→=ν 基线系:d nf 3~→=ν

光谱测定实验报告

地物光谱测定实验 实验报告

学院:地质工程与测绘学院 专业:遥感科学与技术 班级:2017******班 姓名:王不二 学号:2017****** 序号:15 2019年11月 一、实习时间 2019年11月5日下午 二、实习设备 AvaField-1型地物光谱仪、USB数据线、标准探头、探头控制线、野外用白板、笔记本电脑 三、实习目的 1.练习地物光谱仪的使用。 2.通过对地表典型地物类型光谱特性的测量,进一步加深对遥感理论基础 的理解。

四、实习内容及光谱分析 1.地物光谱仪的使用 1)安装并打开电脑上的AvaField-EDU软件,用USB数据线连接光谱 仪,然后再将数据线连接电脑。旋开光谱仪探头处的螺丝。 2)将光谱仪探头对准参考白板,使用鼠标点击“单帧”按钮,开始采集一 次光谱。 3)然后使用鼠标点击“参考”按钮,将当前光谱作为参考值。 4)使用光闸挡住探头,再次使用鼠标点击“单帧”按钮。 5)然后使用鼠标点击“背景”按钮,将当前光谱作为背景值。 6)打开光闸,将探头对准标准白板,再次使用鼠标点击“单帧”按钮,这 时软件会自动切换到反射比(亮度比)模式。 7)将探头对准被测物,使用鼠标点击“单帧”按钮,采集反射光谱。 8)使用鼠标点击“保存”按钮,保存数据。 2.实习数据采集、处理及光谱分析 本次实习共采集3种典型地物,其分别为:草地、瓷砖地面、水泥地面。 每种地物分别采集3次数据,并求均值得平均光谱曲线。 1)草地

光谱分析:根据草地的反射光谱特性曲线可以看出,在可见光波段550nm (绿光)附近有反射率为0.18的一个波峰,草地对500nm之前的电磁波段反射率较小,在近红外波段690nm~740nm之间有一个反射率增长的陡坡并在760nm~920nm间有一个反射率为0.96的峰值。在680nm(红光)附近为其光谱曲线的一个谷值。 2)瓷砖地面 光谱分析:由瓷砖地面的反射光谱特性曲线可知,瓷砖地面的电磁波谱反射率在电磁波长为690nm(红光)之前一直随着电磁波长的增大而增大,并在690nm时达到峰值0.86,而后其反射率随波长的增大而逐渐减小,并在波长为750nm~930nm之间其反射率一直保持在0.68附近小幅波动。在波长大于

等离子发射光谱实验报告

等离子发射光谱实验报告 一实验目的 1、理解仪器原理和应用 2、了解仪器构成 3、了解整个分析过程 二实验仪器及其构成 本实验所用仪器为:美国Varian ICP-710ES电感耦合等离子发射光谱仪。 等离子体是一种由自由电子、离子、中性原子与分子所组成的在总体上呈中性能导电的气体。当高频发生器接通电源后,高频电流I通过感应线圈产生交变磁场(绿色)。开始时,管内为Ar气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩”式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生高温。又将气体加热、电离,在管口形成稳定的等离子体焰炬。 ICP 特点: a)温度高,惰性气氛,原子化条件好,有利于难熔化合物的分解和元素激发,有很高的灵敏度和稳定性; b)“趋肤效应”,涡电流在外表面处密度大,使表面温度高,轴心温度低,中心通道进样对等离子的稳定性影响小。能有效消除自吸现象,线性范围宽(4~5个数量级) c)I CP中电子密度大,碱金属电离造成的影响小 d)Ar气体产生的背景干扰小 e)无电极放电,无电极污染 f)ICP焰炬外型像火焰,但不是化学燃烧火焰,气体放电 缺点:对非金属测定的灵敏度低,仪器昂贵,操作费用高 仪器组成为: 1、样品导入系统 a)蠕动泵。进入雾化器的液体流,由蠕动泵控制。泵的主要作用是为雾化器提供恒定样品流,并将雾化室中多余废液排出。除通常进样和排废液通道外,三通道蠕动泵为用户提供一个额外通道,用该通道可在分析过程中导入内标等。b)雾化器。雾化器将液态样品转化成细雾状喷入雾化室,较大雾滴被滤出,细雾状样品到达等离子炬。 c)雾化室由雾化器、蠕动泵和载气所产生的雾状样品进到雾化室。雾化室的功能相当于一个样品过滤器,较小的细雾通过雾化室到达炬管,较大的样品滴被滤除流到废液容器中。 d)炬管。外层管(等离子气)通Ar气作为冷却气,沿切线方向引入,并螺旋上升,其作用:第一,将等离子体吹离外层石英管的内壁,可保护石英管不被烧毁;第二,是利用离心作用,在炬管中心产生低气压通道,以利于进样;第三,这部分Ar气流同时也参与放电过程。中间层管(辅助气)中层管通入辅助气体Ar 气,用于点燃等离子体。注射管(样品)内层石英管内径为1-2mm左右,以Ar为载气,把经过雾化器的试样溶液以气溶胶形式引入等离子体中。

氢氘光谱实验报告

氢氘光谱实验报告 实验报告索引:实验原理 实验内容 数据处理 思考题 实验原理 1、根据玻尔的原子能级理论以及适当的近似可以得到类氢原子的里德伯常数为: ) 1(Z e Z m m R R += ∞ 所以氢和氘的混合气体的谱线相近,较难区分。 2、由公式 )1()1()1(D H H D H H H D H D H R R -=-=- =-=?λσσλλλλλλλ 可以通过实验测得氢和氘的巴耳末线系的前几条谱线的谱长及其波长差,可求得氢与氘的里德伯常数R H 、R D 。 3、由公式 D e H e H D m m m m R R /1/1++= 得到: ??? ? ??--???? ??= 11H D e H H D H D R R m m R R m m 将实验测得的 H D R R 代入上式,可求得氘与氢原子核的质量比H D m m /。 返回首页 实验内容 说明:实验的条件参数详见原始数据,其中 表1是测Hg 光谱所得的数据 表2是测HD 光谱所得的数据

返回首页 数据处理 根据氢和类氢原子的巴耳末线系对应光谱线波数 )121( )1()4(22 2320242n m m c h Z e m Z e e -+ = πεπσ 可知Z m ∝σ ,故而双线之中波长较短的是D 的谱线,较长的是H 谱线。又由公式 ?? ? ??-=22121n R H H σ 及 ??? ??-=2212 1n R D D σ 可得: n=3时,H λ=655.67nm ,H R = ) 3121(122-H λ=7 100981.1? D λ=655.47nm ,D R = ) 3121(122-D λ=7 100984.1? n=4时,H λ=485.97nm ,H R =) 4121(122-H λ=7 100975.1? D λ=485.83nm ,D R =) 4 121(122-D λ=7 100978.1?

实验1紫外-可见吸收光谱实验报告

实验一:紫外-可见吸收光谱 实验目的 1. 熟悉和掌握紫外-可见吸收光谱的使用方法 2. 用紫外-可见吸收光谱测定某一位置样品浓度 3. 定性判断和分析溶液中所含物质种类实验原理 紫外吸收光谱的波长范围在200~400,可见光吸收光谱的波长在 400~800,两者都属于电子能谱,两者都可以用朗伯比尔(Lamber-Beer'Law) 定律来描述 A=£ bc 其中A为吸光度;£为光被吸收的比例系数;c为吸光物质的浓度,单位mol/L; b为吸收层厚度,单位cm 有机化合物的紫外-可见吸收光谱,是其分子中外层价电子跃迁的结果,其中包括有形成单键的 c电子、有形成双键的n电子、有 未成键的孤对n电子。外层电子吸 收紫外或者可见辐射后,就从基态 向激发态 (反键轨道)跃迁。主要有 四种跃迁,所需能量圧大小顺序 为nf >n^n* 吸收带特征典型基团 cfc *主要发生在远紫外区C-C、C-H (在紫外光区观测不到) n fc *跃迁一般发生在150~250nm,因此在紫 外区不易观察到 -OH、-NH 2、-X、-S nfn *跃迁吸收带波长较长,孤立跃迁一般发 生在200nm左右 芳香环 n fn *跃迁一般发生在近紫外区(200~400nm ) C=O、C=s、一N=O、一N=N ―、C=N ; 三、实验步骤 1、开机 打开紫外-可见分光光度计开关f开电脑f软件f联接f M (光谱方法)进行调节实验需要的参数:波长范围700-365nm 扫描速度高速;采样间隔:0.5 nm 2、甲基紫的测定 (1)校准基线 将空白样品(水)放到比色槽中,点击“基线”键,进行基线校准 (2)标准曲线的测定 分别将5ug/ml、10ug/ml、15ug/ml、20ug/ml甲基紫溶液移入比色皿(大 约23处),放到比色槽中,点击“开始”键,进行扫描,保存

(完整word版)实验1、紫外可见光谱实验报告

一、实验目的 1、学会使用UV-2550型紫外-可见光分光光度计。 2、掌握紫外—可见分光光度计的定量分析方法。 3、学会利用紫外可见光谱技术进行有机化合物特征和定量分析 的方法。 二、实验原理 基于物质对200-800nm光谱区辐射的吸收特性建立起来的分析测定方法称为紫外—可见吸收光谱法或紫外—可见分光光度法。紫外—可见吸收光谱是由分子外层电子能级跃迁产生,同时伴随着分子的振动能级和转动能级的跃迁,因此吸收光谱具有带宽。紫外—可见吸收光谱的定量分析采用朗伯-比尔定律,被测物质的紫外吸收的峰强与其浓度成正比,即: 其中A是吸光度,I、I0分别为透过样品后光的强度和测试光的强度,ε为摩尔吸光系数,b为样品厚度,c为浓度。 紫外吸收光谱是由于分子中的电子跃迁产生的。按分子轨道理论,在有机化合物分子中这种吸收光谱取决于分子中成键电子的种类、电子分布情况,根据其性质不同可分为3种电子:(1)形成单键的σ电子;(2)形成不饱和键的π电子;(3)氧、氮、硫、卤素等杂原子上的未成键的n电子。 图1. 基团中的σ,π,n成键电子 当它们吸收一定能量ΔE后,将跃迁到较高的能级,占据反键轨道。分子内部结构与这种特定的跃迁是有着密切关系的,使得分子轨道分为成键σ轨道、反键σ*轨道、成键π轨道、反键π* 轨道和n轨道,其能量由低到高的顺序为:σ<π

图2.分子轨道中的能量跃迁示意图 仪器原理是光源发出光谱,经单色器分光,然后单色光通过样品池,达到检测器,把光信号转变成电信号,再经过信号放大、模/数转换,数据传输给计算机,由计算机软件处理。 三、仪器与溶液准备 1、UV-2550型紫外—可见分光光度计 2、1cm石英比色皿一套 3、UVprobe电脑软件 4、配置好的10μg/mL、15μg/mL、20μg/mL以及未知浓度的甲基 紫溶液,甲基红溶液 5、仪器的基本构成: 紫外可见分光光度计的基本结构如下:

相关主题
文本预览
相关文档 最新文档