当前位置:文档之家› β-葡萄糖苷酶水解银杏黄酮糖苷的研究

β-葡萄糖苷酶水解银杏黄酮糖苷的研究

β-葡萄糖苷酶水解银杏黄酮糖苷的研究
β-葡萄糖苷酶水解银杏黄酮糖苷的研究

β-葡萄糖苷酶水解银杏黄酮糖苷的研究

伍毅1,王洪新1,2*

(1.食品科学与技术国家重点实验室,江南大学食品学院,江苏无锡214012;2.石河子大学食品学院,新疆石河子832003)

摘要采用β-葡萄糖苷酶水解银杏叶提取物(G BE),使糖苷型黄酮转化为苷元型黄酮。通过正交试验得出水解的最佳工艺参数,即温度40℃,酶浓度5×10-3m g/m l,pH值5.0下水解6h。由H P L C图谱可得该条件下水解的苷元得率9.08%,纯度68.24%。酶解产物中还部分保留了银杏内酯等活性成分,有利于保留银杏叶提取物的综合生物活性。

关键词银杏叶提取物;黄酮苷元;β-葡萄糖苷酶;水解

中图分类号Q946文献标识码 A 文章编号0517-6611(2008)01-00030-03

S tud y on H y dro ly z in g G in k go F la v on e G ly c o s id e w ithβ-g ly c o s ida se

W U Y i e t a l(S ta te K ey L abo ra to ry o f F o od S cien ce an d T e chn o lo gy,S ch oo l o f F o od S cien ce&T ech n o log y,S ou th e rn Y an g tze U n ive rsity,W u x i,J ian gsu 214012)

A b s tra c tβ-g lyco sidase w a s u sed to h yd ro ly ze th e ex tract fro mg in k go lea ves to tran s fo rmflavon e g lyco side in to flavon e a g lycon e.T h e op ti m umtech n o-

log ica l pa ram e te rs o f h yd ro lys is w e re obta i n ed th rou gh o rth o gon a l expe r i m en t,w h ich w e re en zym e con cen tra tion o f5×10-3m g/m l an d pH v a lu e o f5.0,

h ydro ly sis tem pe ra tu re o f40℃an d ti m e o f6h.It w as k n ow n from H P L C spectrog ramth a t th e ag ly con e y ie ld o f h ydro ly sis u nde r th is con d ition w a s

9.08%w ith pu r ity o f68.24%.In th e en zym o lys is p rodu cts,th e a ctive in g redien ts su ch a s g i n k go la cton e w e re a lso rese rved pa r tly,w h ich w as i nfa vo r

o f re se rv in g th e syn th e sized b io activ ity o f g in k go lea ves ex tract.

K e y w o rd s G in k go lea ve s ex tract;F la von e ag ly con e;β-g ly cos idase;H yd ro ly sis

银杏(G inkgo b iloba L.)属银杏科银杏属多年生落叶乔木,是冰川时期存活的孑遗植物之一,属我国特产植物,主产于河南、湖北等地,其种子、根、叶均可药用。银杏叶中含有丰富的黄酮类物质,,主要是由山奈酚、槲皮素以及异鼠李素等黄酮苷元与葡萄糖等单糖以O-糖苷键联接而成,具有广泛的药理作用,是极好的天然抗氧剂。现代研究表明,银杏黄酮被水解成苷元后清除人体氧自由基的生物活性要明显高于黄酮糖苷,黄酮苷元的效价是黄酮糖苷效价的7倍[1-2]。因此,改善黄酮的构型是提高银杏黄酮在人体内吸收率的重要途径。笔者采用生物酶法水解银杏黄酮,生成了具有更高生物活性的苷元型黄酮,而且具有环保、反应条件温和等优点。

1材料与方法

1.1材料银杏叶提取物(G BE),黄酮含量≥24%,由上海宝丰生物有限公司提供。β-葡萄糖苷酶由西格玛奥德里奇(上海)贸易有限公司提供。槲皮素标准品,纯度≥99.0%,由上海康九化工有限公司提供。

1.2 GBE的酶解工艺[3]称取5m gβ-葡萄糖苷酶,用柠檬酸-磷酸氢二钠缓冲溶液(pH值5.0)定容至100m l。然后,称取一定量的银杏叶提取物,适量甲醇溶解,加入缓冲溶液和酶,置于水浴锅中恒温水解,将水解液高速离心、过滤后,沉淀用无水甲醇溶解,再上旋转蒸发器以除去多余的溶剂,恒重后用10m l无水甲醇充分溶解得样液,0.45μm滤膜过滤后待测定。

1.3 总黄酮苷元的测定方法

1.3.1分析条件[4]。色谱柱:十八烷基硅烷键合硅胶柱(15 m m×6.0m m,5μm);柱温:30℃;流动相:甲醇∶水(0.5%磷酸)梯度洗脱;流速:1m l/m in;检测波长:368nm;进样量:10μl。1.3.2 计算方法。由文献可知,对照品溶液、换算因子的选用不同对测定结果的影响较小。同时,受对照品来源的限制,3种苷元的定量分析都可以用槲皮素标准物的标准工作

作者简介伍毅(1983-),女,四川通江人,硕士研究生,研究方向:食品功能性成分。*通讯作者。

收稿日期2007-08-21

曲线进行定量分析[5]。计算公式如下:

C(%)=[(A1+A2+A3)×K+B]×

V

W

×100%(1)

式中,A

1

为槲皮素峰面积(m A u);A

2

为异鼠李素峰面积

(m A u);A

3

为山奈酚峰面积(m A u);K为槲皮素标准曲线斜率(m g/m l);B为槲皮素标准曲线截距;V为样品溶液体积(m l);W为样品重量(m g)。

1.3.3 槲皮素标准曲线的制作[6]。准确称取对照品槲皮素0.02g,置于100m l容量瓶中,用甲醇定容至刻度,得槲皮素标准储备液(0.20m g/m l)。用移液管分别取槲皮素标准储备液

2.5、5、10、20、40m l,用无水甲醇定容至50m l容量瓶,得0.01、0.02、0.04、0.08、0.16m g/m l的标准溶液。分别取标准溶液和储备液进样10μl,测定峰面积。根据标准品的浓度和峰面积可得回归方程:

y=7×10-5x-0.0058(2)

r=0.99(n=5),线性范围为0.01~0.10m g/m l。

1.4 单因素试验影响酶解工艺效果的因素主要有时间、温度、酶浓度及pH值等[7]。该试验分别研究了不同因素对GB E酶解效率的影响。

1.5 最佳工艺参数的确定在单因素试验的基础上,为了进一步确定反应的最优条件以及影响因素的主次,采用正交试验设计方法进行优化[8]。表1为酶解试验正交试验因素水平表。

表1 酶解正交试验因素与水平

T a b le1 F a c to rs a n dle v e ls o f o rth o g on a l te s t fo r e n zym o ly s is 水平

L ev e l

A(温度)

T em pe ra tu re

B(时间)

T i m e∥h

C(pH值)

pHv a lu e

D(酶浓度)

E n zym e co n ce n tra t ion

m g/m l 130540.025

240650.005

350760.010

2结果与分析

2.1 酶解单因素试验结果

2.1.1 酶解时间的选择。图1是固定酶解温度40℃,pH值

安徽农业科学,J ou rn a l o f A n h u i A g r i.S c i.2008,36(1):30-32责任编辑刘月娟责任校对马君叶

5.0,酶液用量为1m l 即酶浓度为0.005m g/m l 时,水解3、4、5、6、7、8h 对酶解效率的影响。从图1可以看出,当水解时间达到6h 时,水解效率最高;当水解时间超过6h ,水解基本趋于平衡,苷元含量不再增加。所以,选择水解时间为6

h 。

图1 酶解时间对酶解效率的影响

F ig.1 E ffe c ts o f e n zym o ly s ist i m e o nth e e ffic ie n c y o f e n z ym a t ic h y -d ro ly s is

2.1.2 酶解温度的选择。图2是固定酶解时间6h ,pH 值5,酶液用量为1m l 时,温度对酶解效率的影响。如果温度低于酶的最适温度,则酶的活力大为降低;而如果温度高于酶的最适温度,则酶可能变性失活,降低甚至失去催化能力。从图2可以看出,随着酶解温度的升高,酶解效率逐渐增加,在40℃时达到最大值;之后,随着温度的升高,酶解效率明显下降。这可能是由于随着温度的升高,β-葡萄糖苷酶的活力下降所致。所以,选择酶解温度为

40℃。

图2 酶解温度对酶解效率的影响

F ig.2 E ffe c ts o f tem p e ra tu re o n e n zym o ly s is e ffic ie n c y

2.1.3 pH 值的选择。图3是固定酶解时间6h ,温度为40℃,酶液用量为1m l 时,pH 值对酶解效率的影响。从图3可以看出,苷元含量随着pH 值的增加而不断提高,并且在pH 值为5时达到最大值,此后苷元含量急剧下降,说明β-葡萄糖苷酶在pH 值5左右酶解活力最高。所以,选择水解液的pH 值为5。

2.1.4 酶浓度的选择。图4是固定酶解时间6h ,温度为40℃,pH 值5时,不同酶浓度对酶解效率的影响。从图4可以看出,苷元含量随着酶浓度的增大而增加,但是酶浓度达到5×10-3m g/m l 时,黄酮苷元基本不再增加。这可能是由于在该酶浓度下酶与底物的结合已趋饱和。所以,采用酶浓度为5×10-3m g/m l 。

2.2 酶解条件的优化 从表2可以看出,影响酶解效率因

素的主次顺序为B>C>A>D 。所以,优化后的酶解条件为A 2B 2C 2D 2,即当温度40℃,酶浓度5×10-3

m g/m l ,在pH 值5

的水解液中水解6h ,生成的苷元含量可达到18.35

%。

图3 pH

值对酶解效率的影响

F ig.3 E ffe c ts o f pH v a lu e on e n zym o ly s is e ffic ie n c y

图4 酶浓度对酶解效率的影响

F ig.4 E ffe c ts o f e n zym e c o n c e n tra t io n o n e n zym o ly s is e ffic ie n c y

表2 酶解正交试验结果

T a b le 2 R e s u lts o f o r th o g o n a l te s t fo r e n zym o ly s is

序号N o.水平L e ve l

A B C D 苷元含量

A g ly co n e con ten t ∥%

1

1 1 1 1 9.34

2122216.523133311.714212313.455223114.59623129.58731329.728321310.64933219.83k 1

12.5210.839.8511.25k 212.5413.9213.3011.94k 310.0610.3712.0011.93

R

2.48

3.55

3.45

0.69

2.3 酶解前后银杏叶提取物及其产物的H PLC 图谱分析 从图5、6可以看出,GB E 经β-葡萄糖苷酶水解后产生了一系列新物质。对比槲皮素标准品的H PLC 图谱(图7)以及参考文献中的数据[6],可以初步确定水解后生成了黄酮苷元,即槲皮素、山奈酚、异鼠李素(保留时间分别为16.265、17.929、18.217m in 的组分)。此外,从酶解后的H PLC 图谱可以看出,除了新生成的黄酮苷元外,银杏叶提取物中的其他活性物质,如银杏萜内酯、聚异丙烯醇、酚酸类等都部分保留了下来。这可能是由于条件较温和,酶作用专一。经计算,酶解

1

336卷1期 伍毅等 β-葡萄糖苷酶水解银杏黄酮糖苷的研究

产物中苷元纯度为68.24%,得率为9.08

%。

图5 水解前G BE 的H PLC

图谱

F ig.5 H PLC m a p p in g o f

G BE b e fo re h y d ro ly s is

图6 酶解后G BE 的H PLC 图谱

F ig.6 H PLC m ap p in g o f GB E a fte r e n zym o ly s is

3 结论

该试验采用β-葡萄糖苷酶水解银杏叶提取物,得到了具有更高生理活性的黄酮苷元。最佳工艺参数为温度40

℃,

图7 槲皮素标准品的H PLC 图谱

F ig.7 H PLC m a p p in g o f re fe re n c e s ta n d a rd o f qu e rc e t in

酶浓度5×10-

3

m g/m l ,pH 值5下水解6h 。在该条件下生成

的苷元纯度为68.24%,得率为9.08%。酶解后的产物中还保留了大量的其他功能性成分,对银杏叶的综合生物活性保留十分有利,而且酶水解条件温和,经济环保。参考文献

[1]陈丽红,林秋香.银杏叶及其提取物的研究进展[J].海峡医学,2005,17

(5):3-5.[2]E R L U N DI ,K O SO N E NT,A L F T H A NG,e t a l .P h a ram a cok in e tics o f qu e rce t in

fromqu e rce t in ag lycon e an d ru t in in h e a lth y vo lu n te e r s[J].E u r o J C lin ica l P h a rm a co log y,2000,56(8):545-553.

[3]吴超,苏红利,张晓鸣.银杏叶提取物制取黄酮苷元的酶解工艺研究

[J ].食品与机械,2005,21(6):28-35.

[4]杜安全,王先荣,周正华.银杏叶总黄酮苷的H P L C 法分析水解方法

[J ].安徽医药,2001,5(3):164-165.

[5]鞠兴荣,汪海峰.银杏叶提取物中黄酮类化合物的高效液相色谱测定

[J ].食品科学,2001,22(12):66-68.

[6]孙震,刘泽勇,田永竹.高效液相色谱法测定银杏叶总黄酮[J].河北林

业科技,2004,8(4):1-2.

[7]无锡轻工大学,天津轻工业学院.食品分析[M ].北京:中国轻工业出

版社,1994:79-80.

[8]吴有炜.实验设计与数据处理[M ].苏州:苏州大学出版社,2002:85-100.

(上接第19页)

Y 1=437.4317+59.8050A +32.7450F +33.50167G (1)式中,A =(大麦/麸皮-1.25)/0.25,F =(N aC l 含量-0.125)/0.025,G =(C aC l 2含量-0.125)/0.025。

回归方差分析结果表明,所得到的回归方程P 为0.020321,表明该回归模型在被研究的整个回归区域拟合的较好;决定系数R 2为0.9782,表明97.82%试验数据的变异性可用该模型来解释。

对于其他非显著的影响因子,在PB 设计的二水平范围之内,由于蛋白胨和吐温80对酶活呈正效应,因此取较高值为好,即蛋白胨30.0m g/m l 、吐温801.5m g/m l ;由于C aCO 3、麦芽糖和F eSO 4?7H 2O 对酶活呈负效应,则取低水平较好,即C aCO 35.0m g /m l 、麦芽糖5.0m g /m l 、F eSO 4?7H 2O 0.2m g/m l 。3 结论

该试验用宇佐美曲霉M 12-9-5摇瓶发酵产β-葡聚糖酶,通过比较找出对酶活可能影响较大的碳氮源(大麦粉、麸皮、麦芽糖和蛋白胨)、无机盐((NH 4)2SO 4和KH 2PO 4)和金属离子(F e 2+、C a 2+和N a +)。在此基础上,用PB 试验对部分培养基因子进行了评价,发现在PB 设计的二水平范围之内,大麦

粉和麸皮之比、蛋白胨、C aC l 2、N aC l 和吐温80对酶活呈正效应;而C aCO 3、麦芽糖和F eSO 4?7H 2O 对酶活呈负效应。并且筛选出了对酶活影响较大的因子,即大麦粉和麸皮之比、C aC l 2和N aC l 。参考文献

[1]AN T O N I P.B a c te r ia l 1,3-1,4-β-g lu can a se s :s tru c tu re ,fu n c tio n an d p ro te in

en g in e e r in g[J ].B io ch i m ica e t B io ph y s ica A cta ,2000,1543:361-382.[2]邹东恢,江洁.β-葡聚糖酶的开发与应用研究[J].农产品加工,2005,42

(8):7-9.

[3]孙玉英,王瑞明,刘庆军,等.β-葡聚糖酶高产菌株的分离筛选及其新

菌种初步鉴定[J ].酿酒科技,2004(2):25-27.[4]诸葛健,王正祥.工业微生物实验技术手册[M ].北京:中国轻工业出版

社,1994.

[5]连喜军,张平平,罗庆丰.西藏青稞β-葡聚糖提取研究[J].粮食与油

脂,2006(1):27-28.[6]L A ZA R ID O U A,B IL IA D E R IS C G.Acom pa ra t iv e stu dy o n s tru ctu r e -fu n c tio n

re la t io n s o f m ix ed -l in k a g e (1→3),(1→4)lin e a r β-D -g lu can s[J].F o od H y -d ro co llo id s ,2004,18:837-855.[7]刘永举,王清洁,王江青,等.D N S 法测定饲用β-葡聚糖酶活力[J ].中国

饲料,1999(18):26.

[8]孙建义,李卫芬,顾赛红,等.木霉G X C 产β-葡聚糖酶条件和酶学性质

[J ].微生物学学报,2001,41(4):457-460.

[9]邓卫东,席冬梅,毛华明.吐温80作为新型饲料添加剂对反刍动物瘤

胃生态和生产性能的影响[J ].饲料工业,2005,26(10):7-12.[10]顾赛红,孙建义,李卫芬,等.里氏木霉(T richo de r m a re esei )产β-葡聚糖

酶和木聚糖酶的条件研究[J ].浙江大学学报,2003,29(5):545-549.

23 安徽农业科学 2008年

银杏黄酮即银杏叶提取物

银杏黄酮即银杏叶提取物,它能够增加脑血管流量,改善脑血管循环功能,保护脑细胞,扩张冠状动脉,防止心绞痛及心肌梗塞,防止血栓形成,提高机体免疫能力。对冠心病、心绞痛、脑动脉硬化、老年性痴呆、高血压病人均十分有益。 银杏黄酮 银杏黄酮亦称银杏叶提取物Ginkgo biloba P.E. [本品来源]本品为银杏科植物银杏Ginkgo biloba L.的干燥叶提取物。 [植物分布]全国大部分地区有产,主产湖北、江苏、广西、四川、河南、山东、辽宁等地。. [产品性状]银杏叶提取物Ginkgo biloba P.E为浅黄棕色可流动性棕黄色粉末,略有银杏叶香味。 [产品含量]总黄酮甙含量:24-26%(HPLC法),总萜内酯含量8-10%(HPLC法)白果内酯≥2.5% 银杏内酯A≥1.4% 银杏内酯B≥1.2%,银杏内酯C≥0.9% ,银杏酸≤1-5ppm重金属含量≤20ppm AS≤1PPM 干燥失重≤3%,炽灼残渣≤1.5%,溶济残留≤1%。 [产品用途]适用于制药、保健品、日用品、化妆品等各个领域 [适用范围]增加脑血管流量,降低脑血管阻力,改善脑血管循环功能,保护脑细胞,免受缺血损害,扩张冠状动脉,防止心绞痛及心肌梗塞,抑制血小板聚集,防止血栓形成,清除有害的氧化自由基,提高免疫能力,具有防癌抗衰功能。对治疗冠心病、心绞痛、脑动脉硬化、老年性痴呆、高血压等病有神奇疗效。 1. 促进循环 银杏叶提取物Ginkgo biloba P.E.能同时促进大脑和身体肢体的循环。银杏叶提取物Ginkgo biloba P.E.的一个主要保健功能就是抑制一种称为血小板活化因子(PAF)的物质,PAF是一种从细胞中释放的介质,其会导致血小板聚集(堆积在一起)。高含量的PAF会导致神经细胞损伤,中枢神经系统血流量降低,发炎,和支气管收缩。与自由基非常相似,高PAF 水平也会导致衰老。银杏内酯和白果内酯可在缺血(体内组织缺少氧气)时期内保护中枢神经系统的神经细胞不受损伤。该功能可能能对苦于中风的患者有辅助治疗的作用。除了抑制血小板粘着外,银杏提取物调节血管张力和弹力。换句话说,其可令血管循环更加有效率。该提升循环效率作用对循环系统中的大血管(动脉)和较小血管(毛细血管)都有同样作用。 2. 抗氧化作用 银杏叶提取物Ginkgo biloba P.E.可能在大脑,眼球视网膜和心血管系统中可发挥抗氧化特性。其在大脑和中枢神经系统中的抗氧化作用可能有助于防止因年龄导致的大脑功能衰落。银杏叶提取物在大脑中的抗氧化功能特别使人感兴趣。大脑和中枢神经系统特别易受自由基攻击。自由基

β-葡萄糖苷酶

β-葡萄糖苷酶的研究 1837年,Liebig和Wohler首次在苦杏仁汁中发现了β-葡萄糖苷酶。β-葡萄糖苷酶(EC 3.2.1.21)的英文名是β-glucosidase,属于水解酶类,又称β-D-葡萄糖苷水解酶,别名龙胆二糖酶、纤维二糖酶和苦杏仁苷酶。它可催化水解结合于末端非还原性的β-D-糖苷键,同时释放出配基与葡萄糖体。 β-葡萄糖苷酶广泛存在于自然界中,它可以来源于植物、微生物,也可来源于动物。β-葡萄糖苷酶的植物来源有人参、大豆等;微生物来源的报道较多,如原核微生物来源的有脑膜脓毒性黄杆菌(Flavobacterium meningosepticum)、约氏黄杆菌(Flavobacterium johnsonae)等,真核生物来源的有清酒酵母(Candida peltata)、黄孢原毛平革菌(Phanerochaete chrysosporium)等;β-葡萄糖苷酶的动物来源有蜜蜂、猪肝和猪小肠等。鉴于β-葡萄糖苷酶的研究广泛,本文对其一些研究进展进行讨论。 1 β-葡萄糖苷酶的分类 β-葡萄糖苷酶按其底物特异性可以分为3类:第一类是能水解烃基-β-葡萄糖苷或芳香基-β-葡萄糖苷的酶,此类β-葡萄糖苷酶能水解的底物有纤维二糖、对硝基苯-β-D-葡萄糖苷等;第二类是只能水解烃基-β-葡萄糖苷的酶,这类β-葡萄糖苷酶能水解纤维二糖等;第三类是只能水解芳香基-β-葡萄糖苷的酶,这类酶能水解对硝基苯-β-D-葡萄糖苷等类似物。 2 β-葡萄糖苷酶的提取、纯化及酶活测定方法 2.1 β-葡萄糖苷酶的提取方法 不同来源的β-葡萄糖苷酶,其提取方法也有所不同。动植物体及大型真菌中的糖苷酶一般需要对酶源进行组织捣碎,然后用缓冲液浸提。常用的缓冲液有磷酸盐缓冲液、醋酸盐缓冲液、柠檬酸盐缓冲液等。pH值一般选用酶的稳定pH值;提取温度适于低温,一般为4 ℃。利用微生物发酵法生产β-葡萄糖苷酶是β-葡萄糖苷酶的另一来源,一般微生物发酵都采用液态发酵。对于胞外酶来讲,发酵液即为粗酶液;对于胞内酶,则需对微生物进行细胞破碎,使其释放出β-葡萄糖苷酶。 2.2 β-葡萄糖苷酶的纯化方法 粗提的β-葡萄糖苷酶可采用硫酸铵沉淀或用乙醇、丙酮等有机溶剂沉淀等方法初步分离。β-

高效液相色谱法测定银曲胶囊中银杏总黄酮醇苷的含量-精品

高效液相色谱法测定银曲胶囊中银杏总黄酮醇 苷的含量-精品 2020-12-12 【关键字】方法、条件、系统、良好、研究、关键、稳定、作用、关系、分析、凝聚、改善作者:顾燕刘萌张现涛邵文豪 【摘要】目的银曲胶囊中银杏总黄酮醇苷的含量测定。方法用高效液相色谱法(HPLC)和DAD紫外检测器测定银曲胶囊中总黄酮醇苷的含量。结果槲皮素浓度在9.60~76.80 μg /ml,山柰素在7.33~58.62 μg /ml,异鼠李素在1.76~14.08 μg /ml之间浓度与峰面积呈良好的线性关系。结论根据3批样品的检测结果,规定银曲胶囊中总黄酮醇苷的含量不低于6 mg/粒。 【关键词】银曲胶囊总黄酮醇苷高效液相色谱法 Abstract:ObjectiveTo determine the total flavonoid glycosides in Yinqu Capsule.MethodsHPLC was adopted with DAD detection for content determination of the total flavonoid glycosides. ResultsThe concentration of quercetin between 9.60 to 76.80 μg/ml,kaempferol between 7.33 to 58.62 μ g / ml, isorhamnetin between 1.76 to 14.08 μ g / ml had a good linear relationship. ConclusionAccording to the results of three blocks ,the content of total flavonoid glycosides is not less than 6 mg per tablets. Key words:Yinqu capsule; The total flavonoid glycosides ; HPLC

α-葡萄糖苷酶(α-Glucosidase)使用说明

α-葡萄糖苷酶(α-Glucosidase)使用说明 货号:G8820 规格:1g/5g 级别:BR 其他名称:α-D-葡萄糖苷酶;α-葡糖苷酶 CAS号:9001-42-7 提取来源:黑曲霉 产品简介: α-葡萄糖苷酶(α-Glucosidase,EC 3.2.1.20)又被称为α-葡萄糖苷水解酶或葡萄糖基转移酶(GTase),是一种α-D-葡萄糖苷酶。它可以从低聚糖类底物的非还原末端切开α-1,4-糖苷键释放出葡萄糖,或将游离的葡萄糖残基转移到另一糖类底物形成α-1,6-糖苷键,从而得到非发酵性的低聚糖。α-葡萄糖苷酶来源广泛,在人体糖原的降解和动植物、微生物的糖类代谢方面具有重要的生理功能。α-葡萄糖苷酶广泛应用于食品和发酵工业、化学工业以及医学应用等行业。 酶活定义: 每小时产生1μg葡萄糖所需的酶量定义为一个α-葡萄糖苷酶活力单位。 酶活检测方法:参见QB2525-2001。 产品特性: 酶活力:300000U/g 最适作用温度:50℃,合适的作用温度:50-55℃。 最适作用pH:5.0,合适的作用pH:4.8-5.4。

外观:淡白色粉末或淡黄色液体,分子量约为68.5KD,无臭无味,溶于水,不溶于乙醚和乙醇。 用途: 生化研究。能水解葡萄糖苷(Glucoside)成葡萄糖和其他组成物质,是一种具有生物催化剂功能的蛋白质。本产品的建议添加量为800U/g干物质,根据实际情况改变添加量。 抑制剂: 铜、钛、钴等金属离子对本品有一定的影响。铅、铝、锌等金属离子对本品有较强的抑制作用。 贮存: 建议密封储藏于干燥、低温的环境中(≤25℃),最好在冷藏条件下(4-8℃)储藏。25℃以下,液体可以储存3个月,保质期内酶活不会降低于产品标示的活力;4℃以下,可较长时间储存。

α-葡萄糖苷酶的研究综述

α-葡萄糖苷酶的研究综述 摘要:α-葡萄糖苷酶(EC3.2.1.20 ) 因在淀粉加工上具有重要作用,其研究多年来一直受到重视。α-葡萄糖苷酶广泛存在于动物、植物和微生物体内,它可从非还原末端水解低聚糖和多聚糖的α-1,4-葡萄糖苷键,也能作用于淀粉的α-1,6-糖苷键,在高葡萄糖苷受体环境中还可催化转糖苷反应。研究表明α-葡萄糖苷酶在不同领域的开发和应用都具有很好的经济和社会效益。 关键词:葡萄糖苷酶淀粉水解转糖苷反应研究进展 生物技术和酶工程的飞速发展为开发淀粉水解酶提供了技术支持。淀粉水解酶( 包括转化酶) 是一类以淀粉或不同的糖源为底物,根据水解专一性不同,可将淀粉或糖原降解成不同的单糖、低聚糖和水解多糖的水解酶类。同时,有些酶还具有转化功能,通过分子内的转糖苷作用,改变低聚糖的糖苷键链接方式。淀粉酶是生物体内广泛存在的一种水解酶,主要作用于淀粉,如植物体内的淀粉消化、植物根系中淀粉积累、动物体内摄入淀粉的分解、微生物利用碳源等。特别是具有特殊性质和新的应用领域的酶在工业上具有很重要的作用,它们可广泛应用于食品和发酵工业、化学工业以及医学应用等。α-葡萄糖苷酶作为淀粉水解酶家族中的重要一员,对它的研究一直受到人们的高度重视,多年来α-葡萄糖苷酶在不同领域的应用均产生了很好的经济和社会效益。 1、α-葡萄糖苷酶的简介 α-葡萄糖苷酶(EC.3.2.1.20,α-Glucosidases) 为淀粉水解酶类中的一种,主要在细胞外起作用。它从多糖的非还原末端水解底物的α-葡萄糖苷键,产生α-D-葡萄糖,通常把它们归类于水解酶第3类,主要水解二糖、低聚糖、芳香糖苷,能以蔗糖和多聚糖为底物。同时, 它还具有转糖苷作用,可将低聚糖中的,α-1,4-糖苷键转化成α-1,6-糖苷键或其他形式的链接,从而得到非发酵性的低聚异麦芽糖或糖酯、糖肽等。按一级结构可将α-葡萄糖苷酶归为水解酶13类的31家族。α-葡萄糖苷酶通常按底物专一性分为3个类型。Ⅰ型α-葡萄糖苷酶水解芳基葡萄糖苷如对--硝基苯酚α-D-葡萄糖吡喃苷(pNPG ) ,且水解速率比低聚麦芽糖快。Ⅱ型α-葡萄糖苷酶对麦芽糖具有高活性,而对芳基葡萄糖苷活性低。Ⅲ型α-葡萄糖苷酶与Ⅱ型类似,但它水解低聚糖和淀粉的速率基本一样。 2、α-葡萄糖苷酶来源及分布 α-葡萄糖苷酶在自然界分布广泛,种类繁多,性质各异,几乎存在于所有生物体内。目前已经进行研究的α-葡萄糖苷酶除少数来源于植物和动物外,绝大多数均来自于微生物中。细菌、霉菌及酵母菌等一些菌株能分泌此酶,其中产酶较多的是黑曲霉,市场上销售的α-葡萄糖苷酶产品大都为黑曲霉发酵生产所

银杏叶黄酮提取及含量测定

银杏叶黄酮提取及含量测定 一、实验目的 1、掌握银杏叶中黄酮的提取方法 2、了解银杏叶中黄酮的含量测定 二、实验原理 近几年来,随着对黄酮类化合物研究的日益深入与重视,黄酮类化合物提取技术的发展也得到了促进。目前提取黄酮类化合物的方法主要包括有机溶剂浸提法、超声波提取法、超临界流体萃取法、微波提取法和酶提取法等。 1.1有机溶剂浸提法 目前国内外使用最广泛的银杏叶中黄酮的提取方法就是有机溶剂提取法,一般可用乙酸乙酯、丙酮、乙醇、甲醇或某些极性较大的混合溶剂,如甲醇-水(1+1)溶液。由于甲醇的毒性、挥发性较大,因此一般采用乙醇作为提取剂。银杏叶干燥粉碎后用有机溶剂浸泡、提取、过滤,滤液中的溶剂经减压蒸馏除去后得银杏叶浸膏粗提物。徐桂花等[1]提取银杏叶中黄酮类化合物时,采用乙醇(70+30)溶液为提取剂,提取温度为70℃,料液质量浓度比为1g比40mL,提取时间为4h。由于乙醇提取工艺在安全性、溶剂成本、效率及杂质酚酸去除等方面都不能应对日益严酷的市场竞争,张林涛等[1]提出了以硼砂- 氢氧化钙碱水为溶剂提取银杏叶黄酮,其黄酮提取率与文献值相近,但提取工艺时间缩短为1h。 1.2超声波提取法 超声波提取法是利用搅拌作用、强烈的振动和空间效应、高的加速度等使药物有效成分进入溶剂,从而提高提取率,缩短提取时间,并能消除高温对提取成分影响的一种提取法。刘晶芝等[2]运用了超声波技术与水浸提取相结合的方法得出超声波提取的最佳工艺条件为:超声频率40kHz,超声处理时间55min,料液质量比1比100,提取温度35℃,静置3h,提取率为81.9%。郭国瑞等[3]以水为介质,超声波提取银杏叶中黄酮苷,与常规水浸提法比较,超声波提取效率大大提高,确定超声波提取的最佳工艺为:超声处理时间55min,料液质量比1比30,提取温度50℃,提取率为82.3%。 1.3超临界流体萃取法 超临界流体萃取法是一种以超临界流体代替常规有机溶剂对有效成分进行萃取和分离的新技术。可作为超临界流体的物质很多,其中二氧化碳临界温度(TC=31.3℃)接近室温,且具有无色、无毒、无味、不易燃、化学惰性、价廉、易制成高纯气体等优点而被广泛应用,特别在中药材及其制剂中更显示出其独特、简便、快速、具有较高的选择性、提取杂质少、可直接进样分析的优点。邓启焕等[4]探讨了超临界萃取银杏叶有效成分的影响因素,最佳条件为萃取压力20MPa、时间90min、粒度3.9mm、温度40℃,经测定银杏叶黄酮的质量分数为28%,高于国际公认标准。 1.4微波提取法 微波提取法是利用分子或离子在微波场中的导电效应直接对物质进行加热从而提取植物细胞内耐热物质的新工艺。曾里等[5]的研究表明以乙醇溶液作溶剂比以水作溶剂的效果好,最佳条件为以乙醇 (60+40)溶液为提取剂,解冻处理20min。张鹏等[6]对微波法提取银杏叶中黄酮类物质进行了研究,最佳提取条件为以乙醇(50+50)溶液

β-葡萄糖苷酶水解银杏黄酮糖苷的研究

β-葡萄糖苷酶水解银杏黄酮糖苷的研究 伍毅1,王洪新1,2* (1.食品科学与技术国家重点实验室,江南大学食品学院,江苏无锡214012;2.石河子大学食品学院,新疆石河子832003) 摘要采用β-葡萄糖苷酶水解银杏叶提取物(G BE),使糖苷型黄酮转化为苷元型黄酮。通过正交试验得出水解的最佳工艺参数,即温度40℃,酶浓度5×10-3m g/m l,pH值5.0下水解6h。由H P L C图谱可得该条件下水解的苷元得率9.08%,纯度68.24%。酶解产物中还部分保留了银杏内酯等活性成分,有利于保留银杏叶提取物的综合生物活性。 关键词银杏叶提取物;黄酮苷元;β-葡萄糖苷酶;水解 中图分类号Q946文献标识码 A 文章编号0517-6611(2008)01-00030-03 S tud y on H y dro ly z in g G in k go F la v on e G ly c o s id e w ithβ-g ly c o s ida se W U Y i e t a l(S ta te K ey L abo ra to ry o f F o od S cien ce an d T e chn o lo gy,S ch oo l o f F o od S cien ce&T ech n o log y,S ou th e rn Y an g tze U n ive rsity,W u x i,J ian gsu 214012) A b s tra c tβ-g lyco sidase w a s u sed to h yd ro ly ze th e ex tract fro mg in k go lea ves to tran s fo rmflavon e g lyco side in to flavon e a g lycon e.T h e op ti m umtech n o- log ica l pa ram e te rs o f h yd ro lys is w e re obta i n ed th rou gh o rth o gon a l expe r i m en t,w h ich w e re en zym e con cen tra tion o f5×10-3m g/m l an d pH v a lu e o f5.0, h ydro ly sis tem pe ra tu re o f40℃an d ti m e o f6h.It w as k n ow n from H P L C spectrog ramth a t th e ag ly con e y ie ld o f h ydro ly sis u nde r th is con d ition w a s 9.08%w ith pu r ity o f68.24%.In th e en zym o lys is p rodu cts,th e a ctive in g redien ts su ch a s g i n k go la cton e w e re a lso rese rved pa r tly,w h ich w as i nfa vo r o f re se rv in g th e syn th e sized b io activ ity o f g in k go lea ves ex tract. K e y w o rd s G in k go lea ve s ex tract;F la von e ag ly con e;β-g ly cos idase;H yd ro ly sis 银杏(G inkgo b iloba L.)属银杏科银杏属多年生落叶乔木,是冰川时期存活的孑遗植物之一,属我国特产植物,主产于河南、湖北等地,其种子、根、叶均可药用。银杏叶中含有丰富的黄酮类物质,,主要是由山奈酚、槲皮素以及异鼠李素等黄酮苷元与葡萄糖等单糖以O-糖苷键联接而成,具有广泛的药理作用,是极好的天然抗氧剂。现代研究表明,银杏黄酮被水解成苷元后清除人体氧自由基的生物活性要明显高于黄酮糖苷,黄酮苷元的效价是黄酮糖苷效价的7倍[1-2]。因此,改善黄酮的构型是提高银杏黄酮在人体内吸收率的重要途径。笔者采用生物酶法水解银杏黄酮,生成了具有更高生物活性的苷元型黄酮,而且具有环保、反应条件温和等优点。 1材料与方法 1.1材料银杏叶提取物(G BE),黄酮含量≥24%,由上海宝丰生物有限公司提供。β-葡萄糖苷酶由西格玛奥德里奇(上海)贸易有限公司提供。槲皮素标准品,纯度≥99.0%,由上海康九化工有限公司提供。 1.2 GBE的酶解工艺[3]称取5m gβ-葡萄糖苷酶,用柠檬酸-磷酸氢二钠缓冲溶液(pH值5.0)定容至100m l。然后,称取一定量的银杏叶提取物,适量甲醇溶解,加入缓冲溶液和酶,置于水浴锅中恒温水解,将水解液高速离心、过滤后,沉淀用无水甲醇溶解,再上旋转蒸发器以除去多余的溶剂,恒重后用10m l无水甲醇充分溶解得样液,0.45μm滤膜过滤后待测定。 1.3 总黄酮苷元的测定方法 1.3.1分析条件[4]。色谱柱:十八烷基硅烷键合硅胶柱(15 m m×6.0m m,5μm);柱温:30℃;流动相:甲醇∶水(0.5%磷酸)梯度洗脱;流速:1m l/m in;检测波长:368nm;进样量:10μl。1.3.2 计算方法。由文献可知,对照品溶液、换算因子的选用不同对测定结果的影响较小。同时,受对照品来源的限制,3种苷元的定量分析都可以用槲皮素标准物的标准工作 作者简介伍毅(1983-),女,四川通江人,硕士研究生,研究方向:食品功能性成分。*通讯作者。 收稿日期2007-08-21 曲线进行定量分析[5]。计算公式如下: C(%)=[(A1+A2+A3)×K+B]× V W ×100%(1) 式中,A 1 为槲皮素峰面积(m A u);A 2 为异鼠李素峰面积 (m A u);A 3 为山奈酚峰面积(m A u);K为槲皮素标准曲线斜率(m g/m l);B为槲皮素标准曲线截距;V为样品溶液体积(m l);W为样品重量(m g)。 1.3.3 槲皮素标准曲线的制作[6]。准确称取对照品槲皮素0.02g,置于100m l容量瓶中,用甲醇定容至刻度,得槲皮素标准储备液(0.20m g/m l)。用移液管分别取槲皮素标准储备液 2.5、5、10、20、40m l,用无水甲醇定容至50m l容量瓶,得0.01、0.02、0.04、0.08、0.16m g/m l的标准溶液。分别取标准溶液和储备液进样10μl,测定峰面积。根据标准品的浓度和峰面积可得回归方程: y=7×10-5x-0.0058(2) r=0.99(n=5),线性范围为0.01~0.10m g/m l。 1.4 单因素试验影响酶解工艺效果的因素主要有时间、温度、酶浓度及pH值等[7]。该试验分别研究了不同因素对GB E酶解效率的影响。 1.5 最佳工艺参数的确定在单因素试验的基础上,为了进一步确定反应的最优条件以及影响因素的主次,采用正交试验设计方法进行优化[8]。表1为酶解试验正交试验因素水平表。 表1 酶解正交试验因素与水平 T a b le1 F a c to rs a n dle v e ls o f o rth o g on a l te s t fo r e n zym o ly s is 水平 L ev e l A(温度) T em pe ra tu re ℃ B(时间) T i m e∥h C(pH值) pHv a lu e D(酶浓度) E n zym e co n ce n tra t ion m g/m l 130540.025 240650.005 350760.010 2结果与分析 2.1 酶解单因素试验结果 2.1.1 酶解时间的选择。图1是固定酶解温度40℃,pH值 安徽农业科学,J ou rn a l o f A n h u i A g r i.S c i.2008,36(1):30-32责任编辑刘月娟责任校对马君叶

银杏黄酮制备实验

实验四、银杏黄酮的提取与检测 一、实验目的: 1、了解黄酮类物质的分离提取和检测方法。 2、了解大孔吸附树脂的特性和在生化分离中的应用。 二、实验原理: 1、提取原理 溶剂加到原料中进行提取的过程中,由于扩散、渗透作用,逐渐通过细胞壁透入细胞中,溶剂进入细胞后溶解可溶性物质,造成了细胞内外浓度差,于是细胞内的浓溶液不断向外扩散,溶剂又不断进入植物细胞中,可溶性成分不断被提取出来,如此多次反复,直到细胞内外浓度相等,达到动态平衡为止。 2、大孔吸附树脂纯化原理: 大孔吸附树脂是一种具有多孔立体结构人工合成的聚合物吸附剂,是在离子交换剂和其它吸附剂应用基础上发展起来的一类新型树脂,为用于固体萃取而设计。是依靠它和被吸附的分子(吸附质)之间的范德华引力,通过它巨大的比表面进行物理吸附而工作的。 大孔吸附树脂吸附能力高,易解吸,内部微孔即多又大,表面积也大,具有较多的活性中心,使离子、分子扩散速率增大,交换速度加快,在使用上可以缩短生产周期,提高效率,而且大孔吸附树脂可以进行再生重复使用,因此使生产成本大为降低,适于工业化生产。 3、银杏黄酮含量的分光光度法测定原理 黄酮类化合物的测定使用较广泛的是络合—分光光度法,该法的基本原理是,黄酮类化合物分子结构中,凡在C 3或C 5位上有羟基,都会与铝盐形成有颜色的配位化合物,见图:O O O Al 2+O O O Al 2黄酮和铝盐的络合物芦丁因此,银杏叶中的黄酮类化合物包括单黄酮、双黄酮和黄酮苷都能与铝盐形成络合物,比色测定结果 是总黄酮含量。硝酸铝络合分光光度法测定总黄酮的原理为:在中性或弱碱性及亚硝酸钠存在条件下,黄酮类化合物与铝盐生成螯和物,加入氢氧化钠溶液后显红橙色,在500波长处有吸收峰且符合定量分析的比尔定律,一般与芦丁标准系列比较定量. 如果细说,硝酸铝显色法是先用亚硝酸钠还原黄酮,再加硝酸铝络合,最后加氢氧化钠溶液使黄酮类化合物开环,生成2’羟基查耳酮而显色. 它的显色原理发生在黄酮醇类成分邻位无取代的邻二酚羟基部位,不具有邻位无取代邻二酚羟基的黄酮醇类成分加入上述试剂时是不显色的. 三、仪器: 电子天平(0.1mg )、紫外分光光度计、恒温水浴摇床、电热恒温水浴锅、索氏提取器、电热恒温干燥箱、微波炉、超声波破碎仪、超声波清洗机、旋转蒸发器、循环水式真空泵、布式漏斗、真空抽率瓶、真空泵。 四、材料与试剂: 银杏叶、甲醇、95%乙醇、丙酮、乙醚、石油醚(30~60℃)、硝酸铝、亚硝酸钠、氢氧化钠、芦丁、大孔吸附树脂。 五、操作步骤: 5.1、脱脂 +

α-葡萄糖苷酶抑制活性的测定方法

2.2实验方法 2.2.1α-葡萄糖苷酶抑制活性的测定方法 2.2.1.1 反应溶液的制备 (1)配制底物PNPG溶液:精确称取0.3766gPNPG,加适量0.1mol/L磷酸缓冲液(pH为6.8)溶解,再用容量瓶准确定容到50mL,配制成25mmol/L的母液。将母液分别稀释成0.1、0.5、1.0、2.0、3.0、4.0、5.0mmol/L7个不同梯度的标准品溶液,备用。 (2)配制α-葡萄糖苷酶的酶溶液:将冻干酶粉(酶活力为14u/mg)用0.01mol/L 磷酸缓冲液(pH为6.8)溶解,配制成2u/mL的母液。再将酶液分别稀释,配制成0.1、0.2、0.3、0.4、0.5、1.0u/mL的酶溶液,备用。 (3)配制DNJ标准溶液(抑制剂):精确称取0.0010g DNJ 标准品,用容量瓶准确定容到10mL,配制成1000μg/mL DNJ标准母液。将母液分别稀释成、1、5、10、20、40、60μg/mL六个不同梯度的标准品溶液,备用。 (6)0.2mol/L的Na2CO3:称取2.16g Na2CO3于烧杯中,加入适量蒸馏水溶解,并定容到100mL,4℃下保存,备用。 2.2.1.2 PNP标准曲线的绘制 精确称取0.0278g对硝基酚(PNP),加0.01mol/L磷酸缓冲液(pH为6.8)溶解,再用容量瓶定容至10mL,即得20mmol/L母液。用蒸馏水将其母液稀释成浓度分别为1、5、10、20、40、40、80和100μmol/L的标准溶液。取100μl上述标准液,各加入150μL 0.2mol/L 的Na2CO3,混匀1 min ,再于405 nm处测定其吸光度,得标准曲线方程: y=128.13x+0.3579 (R2 =0.9998),其中y 为浓度,x为吸光值。

微生物产β-葡萄糖苷酶研究进展

Advances in Microbiology 微生物前沿, 2018, 7(2), 79-86 Published Online June 2018 in Hans. https://www.doczj.com/doc/195450397.html,/journal/amb https://https://www.doczj.com/doc/195450397.html,/10.12677/amb.2018.72010 Progress of β-Glucosidase from Microorganisms Zhishuai Chang*, Hui Lan, Yali Bao, Zhanying Liu# Inner Mongolia University of Technology, Hohhot Inner Mongolia Received: Jun. 7th, 2018; accepted: Jun. 21st, 2018; published: Jun. 28th, 2018 Abstract β-glucosidase can effectively decrease the inhibitory effect of cellobiose on cellulase activity, which is a bottleneck on the complete hydrolysis of cellulose. Because of its low activity and high cost, the β-glucosidase, which is highly resistant to acid and alkali, is more suitable for industrial production and application by means of genetic engineering technology and expressing in hetero-logous hosts. In this paper, there is a detailed summary about β-glucosidase in the classification and cloning about different sources of β-glucosidase gene, enzyme activity determination and so on, which provides theoretical support for enzyme researches. Keywords β-Glucosidase, Gene Cloning, Enzyme Activity Determination 微生物产β-葡萄糖苷酶研究进展 常治帅*,兰辉,包亚莉,刘占英# 内蒙古工业大学,内蒙古呼和浩特 收稿日期:2018年6月7日;录用日期:2018年6月21日;发布日期:2018年6月28日 摘要 β-葡萄糖苷酶能有效解除纤维二糖对纤维素酶活性的抑制,是限制纤维素彻底水解的重要因素。由于β-葡萄糖苷酶酶活相对较低、成本高等因素,通过基因工程手段对其定向改造,异源表达获得高酶活、耐*第一作者。 #通讯作者。

银杏叶中黄酮的提取及其抑菌性检测

目录 第一章绪论 4 1.1银杏叶功效成分简述 4 1.2 银杏叶主要成分研究情况 4 1.3黄酮类化合物4 (1)组成及结构4 (5)银杏黄酮类化合物的理化性质5 第二章理论分析 6 2.1银杏叶采集分析 6 2.2 提取分析 6 第三章实验仪器及其材料7 第四章实验方法及其过程7 4.1银杏叶采集、干燥7 4.2银杏叶中黄酮等物质的提取7 4.3细菌培养8 4.4制作菌悬液9 4.5提取物的抑菌性检测实验9 第五章实验结果分析10 第六章结论14 银杏叶中黄酮的提取及其抑菌性检测 摘要 银杏是我国的特有植物,又称公孙树。银杏叶为最古老的中生代孑遗植物银杏的干燥叶。银杏有裸子植物活化石之称。据《本草纲目》记载,银杏果具有敛肺平喘、止遗尿、白带的作用。在医药上有很高的利用价值。银杏所含黄酮类成分主要为银杏双黄酮、异银杏双黄酮,去甲基银杏双黄酮,其他还有二萜内酯、银杏内酯A、B、C等,其中黄酮类和二萜内酯类物质具有捕获游离基和抑制血小板活化因子、扩张脑血管、促进血液循环、抗氧化等功能,从而广泛用于治疗冠心病、心绞痛、治疗老年痴呆症和增强记忆功能、防治皮肤病、脱发等多种疾病,随着深入的研究银杏的开发和利用,银杏所特有的医药、经济价值逐步受到重视。银杏叶的提取方法有有机溶剂萃取法、水提取法、碱性稀醇或碱性水提取法、超临界萃取法、超声波提取法、酶法等。本文采用有机溶剂提取黄酮类化合物,结果表明实验证明提取银杏叶黄酮等物质用乙醚3小时提取70℃下2次回流最佳。菌体浓度试验表明当实验用菌体浓度在OD值为0.557,稀释到10-5和10-6比较适合,涂布能够成为单菌落,便于以后进行试验。提取抑菌性试验证明加入0.5ml时对大肠杆菌就有明显抑制作用,其抑菌效果随着提取物浓度的增加而增强,当提取物加入2.0ml时具有完全抑菌效果。 关键词:银杏叶,总黄酮,乙醇,抑菌性检测 第一章绪论 1.1银杏叶功效成分简述 银杏树是目前发现的当今世界上最奇特、对人类贡献最大的植物,特别是银杏叶具有五大成分五大功效,银杏叶将是世界上最有发展前景的中药材,能够治疗世界上很多的疑难杂症:(1)黄酮苷类:对心脑血管疾病,高血脂,高血压,清除氧自由基具有显著的疗效,是目前世界上治疗该类疾病最显著的药物。 (2)银杏内酯A、B、C、M类:是血小板活化因子(PAF)拮抗剂,是银杏叶中最重要的活

银杏叶中黄酮提取方法

银杏叶黄酮的提取 一、溶剂提取法:国内外使用最广泛的方法,步骤多、周期长、产率低、产品中有机溶剂易残留。溶剂系统主要有乙醇,水溶液、丙酮-水溶液、NaOH-水溶液、NaOH-乙醇等。精提物常在粗提物制备基础上精制,常用液-液提取法、沉淀法和吸附.洗脱法。 以60%丙酮为起始溶剂粗提取,再脱脂、去银杏酚酸等15道工艺制成提取物。NaOH-水溶液提取效果最好,NaOH-乙醇溶液次之,正丁醇萃取水溶液中银杏黄酮苷,获得最佳萃取条件为萃取5 min温度60℃4次,萃取物中黄酮苷含量为57%。V水:V正丙醇=1:25最佳。银杏叶精提物树脂吸附纯化法以石油醚回流提取,再以80%乙醇回流提取,减压浓缩,新型澄清剂沉降,树脂分级吸附,pH值为3—4酸水和酸性25%乙醇洗涤,75%乙醇洗脱,喷雾干燥 将银杏叶洗净,于60℃烘干至恒重,粉碎,过50目筛。称取粉末25 g,置于索氏提取器中恒重,粉碎,过50目筛。称取粉末25 g,置于索氏提取器中加入60%乙醇至250.0 ml,80℃下回流提取3.0 h,蒸馏回收乙醇,并用活性炭脱色,得银杏叶黄酮提取物。乙醇浓度为50%一70%时,提取率随浓度增加提高,当浓度70%时提取率达最大。随水浴温度升高总黄酮提取率快速增加。当温度80℃时提取率达最大。提取时间为三小时为佳。 二、超临界流体萃取法(SFE法):利用临界或超临界状态的流体及被萃取的物质在不同蒸汽压力下所具有的不同化学亲和力和溶解能力进行分离纯化的操作。最佳萃取实验工艺条件为萃取压力15 MPa、乙醇浓度90%、萃取温度55℃,此时,黄酮类化合物萃取得率较理想. 三、高速逆流色谱技术提取法:是一种不用任何固定载体的液一液分配色谱技术W=70%的乙醇连续循环喷淋逆流6级萃取,m乙醇:m银杏叶=5:1,总萃取时间240min,萃取温度50~55度,萃取率99%以上。 四、微波提取法:微波提取法能对萃取体系中的不同组分进行选择性加热,受溶剂亲和力的限制较小,可供选择的溶剂较多及热效率较高,升温快速均匀,大大缩短了提取时间,提高了萃取效率。以水为介质的条件下,对银杏叶进行微波处理。 工艺流程银杏叶一干燥一粉碎一加入适量氢氧化钙溶液一微波预处理一加入适量碱水一调节pH和硼砂含量→恒温水浴浸提—过滤一定容 通过对提取温度、提取时间、液料比、微波功率、微波时间、解析剂比6个因素进行正交实验,优选得到最佳的萃取工艺条件为:提取温度80℃,提取时间60min,液料比.50:1,微波功率700W,微波时问180s,解析剂比7:l。 五、超声提取法:超声技术应用于天然活性产物的提取,具有速度快、提取率高、节省溶剂、节约能耗、不破坏有效成分的特点。最佳操作条件为超声波频率40kHz处理时间10min、静置时间12 h。以水为介质,在较低温度下 六、酶提取法: 加入淀粉部分水解产物及对葡糖基有转移作用的葡糖苷酶或转糖苷酶,使油溶性或难溶于水或不溶于水的有效成分转移到水溶性苷糖中,既提高了有效成分的提取率,又促进难溶于水或不溶于水的有效成分在体内的吸收. 在常规的醇一水浸提之前用纤维素酶对原料进行酶预处理(酶解时间为2h) 七、分子烙印技术:在极性溶剂中,以丙烯酞胺作功能单体,以强极性化合物槲皮素为模板,

葡萄糖苷酶抑制剂筛选方法

葡萄糖苷酶抑制剂筛选方法 α-葡萄糖苷酶抑制剂是一类以延缓肠道碳水化合物吸收而达到治疗糖尿病的口服降糖药物。其作用机制为:竞争性抑制位于小肠的各种α-葡萄糖苷酶,使淀粉类分解为葡萄糖的速度减慢,从而减缓肠道内葡萄糖的吸收,降低餐后高血糖。 α-葡萄糖苷酶抑制活性筛选的原理是:对-硝基苯酚-α-D-葡萄糖苷(pNPG)作反应底物;该底物是无色的。经α-葡萄糖苷酶水解后可以释放出对-硝基苯酚(pNP),pNP在碱性条件下是黄色的,因此可以通过测定410nm处的吸光度反应出pNP的浓度(吸光度与pNP浓度成正比关系)。吸光度越小,说明pNP的浓度越小,即酶被抑制的程度越大。 设不加样品时,测得的吸光度为c0, 加样品后测的吸光度为c1. 那么酶的抑制率可通过1-c1/c0计算出来。 一实验试剂: α-Glucosidase(α-葡萄糖苷酶)、4Nitrphtnylα-D-glucopyranoside(4-硝基苯-α-D-吡喃葡萄糖苷)(PNPG)、Acarbose(阿卡波糖) 均购自Sigma公司,无水Na2CO3、Na2HPO4、KH2PO4等, 均为分析纯。水为超纯水。苦瓜提取物。 二实验器材: Bio Tek酶标仪、电子天平、Eppendorf的移液器、pH计、酶标板、恒温水浴器 三实验方法: (一) 试剂配制 (1)pH值6.8的0.1 mol/L磷酸缓冲液 分别配制0.1 mol/L Na2HPO4和KH2PO4(13.6 g配成1L),用这两种溶液混匀互调pH 值至6.8即得0.1 mol/L磷酸缓冲液 (2)用pH值6.8的0.1 mol/L磷酸缓冲液配制0.26 U/mlα-Glucosidase (3)底物(PNPG)用pH值6.8的0.1 mol/L磷酸缓冲液配制成浓度为5 mmol/L (1.505mg/ml) (4)反应终止液:0.2 mol/L Na2CO3。 (5)阳性药的配制:精密称取阿波卡糖样品,以磷酸缓冲液为溶剂溶解,配成10 mg/ml 的浓度。 (二) 实验方法 1. 各浓度药液按每孔50 μL加入酶标板,每浓度设三复孔。另设一药物对照孔、空白反应孔及空白对照孔。然后向药物反应孔和空白反应孔加入50 μL 0.26 U/mL的 -葡萄糖苷酶,其他组加50 μL 磷酸缓冲液,经此步骤后,各孔的组成为: 药物反应孔:50 μL药液+ 50 μL酶 药物对照孔:50 μL药液+ 50 μL磷酸缓冲液 空白反应孔:50 μL磷酸缓冲液+ 50 μL酶 空白对照孔:50 μL磷酸缓冲液+ 50 μL磷酸缓冲液 上述反应体系在微型振荡器上震荡30秒,置于恒温37 o C水浴中孵育10min。

β-葡萄糖苷酶研究进展

β-葡萄糖苷酶研究进展 1.1问题的提出及意义 随着能源危机、食物短缺、环境污染等问题正日益严重地困扰着整个世界,寻找开发新能源、节省粮食、减少环境污染显得越来越重要。纤维素类物质是自然界中存在的最廉价、最丰富的一类可再生资源。全世界每年的植物体生成量高达100-500亿吨干物质,其中一半以上为纤维素和半纤维素[1]。纤维素在一定条件下可以被水解成单糖,单糖可再通过微生物发酵生产各种有用的产品,如饲料、燃料、化工原料、食品、药品等,并且可取代目前的淀粉原料发酵生产的各种产品,以及由化工燃料合成生产的部分有机产品[2,3]。开发高效转化木质纤维素类可再生资源的微生物技术,利用工农业废弃物等发酵生产人类急需的燃料、饲料及化工产品,即化工原料的“绿色化”,具有极其重要的意义和光明的发展前景。 纤维素酶是一类能够降解纤维素生成葡萄糖的酶的总称,它是一类复杂的复合物,称之为纤维素酶系,根据其中各酶功能的差异,可将其分为三大类:(1)内切β- 1,4- 葡聚糖酶(endo- β- 1, 4- glucanase,EC3.2.1.4,也称Cx 酶),作用于纤维素分子内部的非结晶区或羧甲基纤维素,随机水解β - 1 ,4 - 糖苷键,将长链纤维分子截断,产生大量小分子纤维素;(2)外切β- 1,4- 葡聚糖酶(exo- β- 1, 4- glucanase,EC3.2.1.91,也称C1 酶),作用于纤维素线状分子末端,水解β - 1 , 4 - 糖苷键,每次从纤维素链的非还原端切下一个纤维二糖分子,可以水解微晶纤维素;(3)β-葡萄糖苷酶(cellobiohydrolase,EC2.1.21,简称CBH),水解纤维二糖和短链的纤维寡糖生成葡萄糖[4]。3种酶协同作用,完成对纤维素的降解。 1837年,Liebig 和Wohler 首次在苦杏仁中发现β-葡萄糖苷酶[5]。后来研究发现,β-葡萄糖苷酶存在于植物[6]、昆虫[7]、酵母、曲霉及细菌体内。它参与生物体的糖代谢,对维持生物体正常生理功能起着重要作用。β-葡萄糖苷酶是纤维素酶系的重要成员,在纤维素水解时,纤维二糖的积累会抑制内切葡聚糖酶、外切葡聚糖酶的活性,而纤维素酶组分中该酶含量最少、活力普遍较低,因此成为纤维素酶解的瓶颈[8]。增加β-葡萄糖苷酶活性,会有效提高纤维素酶解效率。目前,国内外多家研究机构正致力于β-葡萄糖苷酶的分子生物学研究,以期望更好改善纤维素酶的催化效率,利用纤维素资源。 1.2国内外研究现状

糖苷酶实验指导

α-糖苷酶抑制剂抑制活性测定 实验原理: 食物中的淀粉(多糖)经口腔唾液、胰淀粉酶消化成含少数葡萄糖分子的低聚糖(或称寡糖)以及双糖与三糖,进入小肠经α- 葡萄糖苷酶作用下分解为单个葡萄糖,为小肠吸收。在生理状态下,小肠上,中、下三段均存在α- 葡萄糖苷酶,在服用α- 葡萄糖苷酶抑制剂后上段可被抑制, 而糖的吸收仅在中、下段,故吸收面积减少,吸收时间后延,从而对降低餐后高血糖有益, 在长期使用后亦可降低空腹血糖, 估计与提高胰岛素敏感性有关。 对硝基苯-α-D-葡萄糖苷(pNPG)经α-葡萄糖苷酶水解可产生对硝基苯酚,其在405nm呈特异性吸收,因此可以通过检测对硝基苯酚的生成量检测α-葡萄糖苷酶的活性。 仪器与试剂 缓冲液:0.1M的磷酸钠缓冲液(pH6.8)--每100ml中1mol/l磷酸氢二钠4.6 ml,1mol/l磷酸二氢钠5.4 ml。 酵母α-葡萄糖苷酶:将100U/ml酶原液用0.1M的磷酸钠缓冲液(pH6.8)稀释为1U/ml的酶溶液,冷冻备用。 底物pNPG配制:2mM的pNPG溶解于0.1M的磷酸钠缓冲液中。 阿卡波糖抑制剂配制:200μg/ml溶于0.1M的磷酸钠缓冲液中。 实验内容 1.分组:空白对照组、阴性对照组、阳性对照组、阳性对照组空白、待测样品 大、中、小剂量组、待测样品组空白 空白对照: 170μl缓冲液+30μl 2mM的pNPG 阴性对照组:10μl酶溶液+160μl缓冲液+30μl 2mM的pNPG 阳性对照:10μl酶溶液+60μl缓冲液+100μl阿卡波糖抑制剂+30μl 2mM 的pNPG 阳性对照空白:10μl酶溶液+90μl缓冲液+100μl阿卡波糖抑制剂 待测样品组:10μl酶溶液+60μl缓冲液+100μl待测样品+30μl 2mM的pNPG 待测样品空白:10μl酶溶液+90μl缓冲液+100μl待测样品 2.实验步骤

a-糖苷酶抑制剂

种类 天然α-葡萄糖苷酶抑制剂(glucosidase inhibitor)主要源于动物、植物、微生物,目前已上市并在临床上应用的α-葡萄糖苷酶抑制剂类降糖药主要有:拜唐苹(阿卡波糖),每片50毫克(德国拜耳);卡博平(阿卡波糖),每片50毫克(中美华东);倍欣(伏格列波糖),每片0.2毫克(天津武田);奥恬苹(米格列醇,miglitol),每片50毫克(四川维奥)。其中拜唐苹及卡博平为医保药物,倍欣与奥恬苹尚未进入医保目录。 拜唐苹:(阿卡波糖),Acarbose 特点:由白色放线菌属菌株发酵而成,为德国拜耳公司出品,仅有微量原形或分解产物为人体吸收,绝大部分经肠道排出。 规格:50毫克/片 剂量:150~300毫克/日 副作用:消化道反应:肠鸣,腹胀,恶心,呕吐,食欲减退,偶有腹泻,一般两周后可缓解,必要是可减量。 倍欣:(伏格列波糖),V oglibose 特点:由日本武田药品有限公司生产,通过抑制α- 葡萄糖苷酶,延缓双糖(淀粉在淀粉酶作用下水解为双糖)在α- 葡萄糖苷酶作用下分解为单糖,延缓葡萄糖与果糖的吸收速度,从而降低餐后血糖。 规格:0.2毫克/片 剂量:0.6毫克/日 副作用:同拜糖平。 编辑本段 作用机制 食物中的淀粉(多糖)经口腔唾液、胰淀粉酶消化成含少数葡萄糖分子的低聚糖(或称寡糖)以及双糖与三糖,进入小肠经α- 葡萄糖苷酶作用下分解为单个葡萄糖,为小肠吸收。在生理的状态下,小肠上,中、下三段均存在α- 葡萄糖苷酶,在服用α- 葡萄糖苷酶抑制剂后上段可被抑制, 而糖的吸收仅在中、下段,故吸收面积减少,吸收时间后延,从而对降低餐后高血糖有益, 在长期使用后亦可降低空腹血糖, 估计与提高胰岛素敏感性有关。 编辑本段 作用特点 (1)抑制小肠上皮细胞表面的α-糖苷酶。药物与酶的结合时间大约是4~6小时,此后酶的活性可恢复。 (2)延缓碳水化合物的吸收,而不抑制蛋白质和脂肪的吸收。 α-葡萄糖苷酶抑制剂 (3)一般不引起营养吸收障碍。 (4)几乎没有对肝肾的副作用和蓄积作用。 (5)主要降低餐后血糖。 编辑本段 临床药效 (1)可显著降低糖耐量受损者发生2型糖尿病的危险。餐后血糖升高是糖耐量受损(IGT)

相关主题
文本预览
相关文档 最新文档