当前位置:文档之家› 功能关系、能量守恒定律

功能关系、能量守恒定律

功能关系、能量守恒定律
功能关系、能量守恒定律

学案正标题

一、考纲要求

1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系.

2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题.

二、知识梳理

1.功和能

(1)做功的过程就是能量转化的过程,能量的转化必须通过做功来实现.

(2)功是能量转化的量度,即做了多少功,就有多少能量发生了转化.

3.能量守恒定律

(1)内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.

(2)表达式:ΔE减=ΔE增.

三、要点精析

1.几种常见的功能关系及其表达式

2.静摩擦力做功的特点

(1)静摩擦力可以做正功,也可以做负功,还可以不做功.

(2)相互作用的一对静摩擦力做功的代数和总等于零.

(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.

3.滑动摩擦力做功的特点

(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.

(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;

②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.

(3)摩擦生热的计算:Q=F f·x相对.其中x相对为相互摩擦的两个物体间的相对位移.

4.解决能量守恒问题的方法

(1)两个或两个以上的物体与弹簧组成的系统相互作用的过程,具有以下特点:

①能量变化上,如果只有重力和系统内弹簧弹力做功,系统机械能守恒.

②如果系统每个物体除弹簧弹力外所受合外力为零,则当弹簧伸长或压缩到最大程度时两物体速度相同.

③当弹簧为自然状态时系统内某一端的物体具有最大速度.

(2)不涉及弹簧时,弄清各种力做功的情况,并分析有多少种形式的能量在转化.

5.列能量守恒定律方程的两条基本思路

(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;

(2)某个物体的能量减少,一定存在其他物体的能量增加且减少量和增加量一定相等.

6.运用能量守恒定律解题的基本思路

7.传送带模型

[模型概述]

传送带是应用较广泛的一种传动装置,把物体放到运动着的传送带上,物体将在静摩擦力或滑动摩擦力的作用下被传送带输送到另一端,该装置即为传送带模型.

[模型条件]

(1)传送带匀速或加速运动.

(2)物体以初速度v0滑上传送带或轻轻放于传送带上,物体与传送带间有摩擦力.

(3)物体与传送带之间有相对滑动.

[模型特点]

(1)若物体轻轻放在匀速运动的传送带上,物体一定要和传送带之间产生相对滑动,物体一定受到沿传送带前进方向的摩擦力.

(2)若物体静止在传送带上,与传送带一起由静止开始加速,如果动摩擦因数较大,则物体随传送带一起加速;如果动摩擦因数较小,则物体将跟不上传送带的运动,相对传送带向后滑动.

(3)若物体与水平传送带一起匀速运动,则物体与传送带之间没有摩擦力;若传送带是倾斜的,则物体受到沿传送带向上的静摩擦力作用.

[模型分析]

(1)功能关系分析:W F=ΔE k+ΔE p+Q.

(2)对W F和Q的理解:

①传送带的功:W F=F·x传;

②产生的内能Q=F f·s相对.

(3)传送带模型问题的分析流程

四、典型例题

1.如图所示,粗细均匀、两端开口的U形管内装有同种液体,开始时两边液面高度差为h,管中液柱总长度为4h,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度

为` ( )

A.B.

C.D.

【答案】A

【解析】当两液面高度相等时,减少的重力势能转化为整个液柱的动能,设液柱总质量为m,根据功能关系有mg·h=mv2,解得:v=.

2.如图所示,木块A放在木块B的左端,用恒力F将A拉至B的右端,第一次将B固定在地面上,F做功为W1,生热为Q1;第二次让B可以在光滑地面上自由滑动,仍将A拉到B的

右端,这次F做功为W2,生热为Q2.则应有( )

A.W1<W2,Q1=Q2

B.W1=W2,Q1=Q2

C.W1<W2,Q1<Q2

D.W1=W2,Q1<Q2

【答案】A

【解析】拉力F做的功由公式W=Flcosα求得,其中l是物体对地的位移,所以W1<W2,滑动摩擦力做功过程中产生的内能等于系统克服摩擦力做的功,即ΔE=Q=F f l相对,其中l相表示物体之间的相对位移,在这里是B的长度,所以Q1=Q2.

3.如图所示,长木板A放在光滑的水平地面上,物体B以水平速度冲上A后,由于摩擦力作用,最后停止在木板A上,则从B冲到木板A上到相对木板A静止的过程中,下述说法中正确的是( )

A.物体B动能的减少量等于系统损失的机械能

B.物体B克服摩擦力做的功等于系统内能的增加量

C.物体B损失的机械能等于木板A获得的动能与系统损失的机械能之和

D.摩擦力对物体B做的功和对木板A做的功的总和等于系统内能的增加量

【答案】CD

【解析】物体B以水平速度冲上木板A后,由于摩擦力作用,B减速运动,木板A加速运动,根据能量守恒定律,物体B动能的减少量等于木板A增加的动能和产生的热量之和,选项A 错误;根据动能定理,物体B克服摩擦力做的功等于物体B损失的动能,选项B错误;由能量守恒定律可知,物体B损失的机械能等于木板A获得的动能与系统损失的机械能之和,选项C正确;摩擦力对物体B做的功等于物体B动能的减少量,摩擦力对木板A做的功等于木板A动能的增加量,由能量守恒定律,摩擦力对物体B做的功和对木板A做的功的总和等于系统内能的增加量,选项D正确.

4.构建和谐型、节约型社会深得民心,遍布于生活的方方面面.自动充电式电动自行车就是很好的一例,电动自行车的前轮装有发电机,发电机与蓄电池连接.当骑车者用力蹬车或电动自行车自动滑行时,自行车就可以通过发电机向蓄电池充电,将其他形式的能转化成电能储存起来.现有某人骑车以600 J的初动能在粗糙的水平路面上滑行,第一次关闭自动充电装置,让车自由滑行,其动能随位移变化关系如图中的图线①所示;第二次启动自动充电装置,其动能随位移变化关系如图线②所示,则第二次向蓄电池所充的电能

是 ( )

A.600 J B.360 J

C.300 J D.240 J

【答案】D

【解析】设自行车的总质量为m,第一次关闭自动充电装置,由动能定理有-μmgL1=0-E k,第二次启动自动充电装置,由功能关系有E k=μmgL2+E电,代入数据解得E电=240 J,D 正确.

5.(2015·河北石家庄质检)一质量为0.6 kg的物体以20 m/s的初速度竖直上抛,当物体上升到某一位置时,其动能减少了18 J,机械能减少了3 J.整个运动过程中物体所受阻力大小不

变,重力加速度g=10 m/s2,则下列说法正确的是(已知物体的初动能E k0=mv2=120

J) ( )

A.物体向上运动时加速度大小为12 m/s2

B.物体向下运动时加速度大小为9 m/s2

C.物体返回抛出点时的动能为40 J

D.物体返回抛出点时的动能为114 J

【答案】A

【解析】根据机械能的减少等于除了重力以外其他力做功,所以阻力做功W f=-3 J,在物体上升到某一位置的过程中根据动能定理有,-mgh+W f=ΔE k,解得h=2.5 m,又W f=-

fh解得f=N,上升过程中有mg+f=ma,解得a=12 m/s2,下落过程中有mg-f=ma′,解得a′=8 m/s2,A项正确,B项错.初动能E k0=mv2=120 J,当上升到某一位置动能变化量为ΔE k=-18 J,ΔE k=E k1-E k0,解得:E k1=102 J,再上升到最高点时机械能减少量为ΔE,则=,解得ΔE=17J,所以在上升、下落全过程中机械能的减少量为40 J,这

个过程中利用动能定理有-40=E k-E k0,得返回抛出点时的动能E k=80 J,所以C、D两项均错.

6.如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m的小球自A的正上方P点由静止开始自由下落,小球沿轨道到达最高点B时恰好对轨道没有压力.已知AP=2R,重力加速度为g,则小球从P到B的运动过程中

( )

A.重力做功2mgR

B.机械能减少mgR

C.合外力做功mgR

D.克服摩擦力做功mgR

【答案】D

【解析】小球由P到B的过程中重力做功W G=mg(2R-R)=mgR,A错误.小球经过B点时恰好对轨道没有压力,由牛顿第二定律可知mg=m,即小球在B点的速度v=;小球由P到B的过程,由动能定理可知合外力做功W合=ΔE k=mv2=mgR,C错误.又因为W合=W G+W f,小球由P到B的过程中摩擦力做的功W f=W合-W G=-mgR,由功

能关系知,物体的机械能减少了mgR,B错误,D正确.

7.(多选)如图所示,质量为M、长度为L的小车静止在光滑的水平面上.质量为m的小物块(可视为质点)放在小车的最左端.现用一水平恒力F作用在小物块上,使物块从静止开始做匀加速直线运动.物块和小车之间的摩擦力为F f.物块滑到小车的最右端时,小车运动的距

离为l.在这个过程中,以下结论正确的是( )

A.物块到达小车最右端时具有的动能为(F-F f)(L+l)

B.物块到达小车最右端时,小车具有的动能为F f l

C.物块克服摩擦力所做的功为F f(L+l)

D.物块和小车增加的机械能为Fl

【答案】ABC

【解析】根据动能定理,物块到达最右端时具有的动能为E k1=ΔE k1=F(L+l)-F f(L+l)=(F-F f)(L+l),A正确;物块到达最右端时,小车具有的动能可根据动能定理列式:E k2=ΔE k2=F f l,B正确;由功的公式,物块克服摩擦力所做的功为WF f=F f(L+l),C正确.物块增加的机械能E km=(F-F f)(L+l),小车增加的机械能E kM=F f l,物块和小车增加的机械能为E km+E kM=F(L +l)-F f L,D错误.

8.(2015·开封模拟)(多选)如图甲所示,一倾角为37°的传送带以恒定速度运行,现将一质量m =1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8.则下列说法正确的

是( )

A.物体与传送带间的动摩擦因数为0.875

B.0~8 s内物体位移的大小为18 m

C.0~8 s内物体机械能的增量为90 J

D.0~8 s内物体与传送带由于摩擦产生的热量为126 J

【答案】ACD

【解析】由v-t图象可知,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,且做加速度方向沿传送带向上、大小为1 m/s2的匀减速直线运动,对其受力分析,可得f-mgsin θ=ma,N-mgcos θ=0,f=μN,联立可得μ=0.875,选项A正确;根据v

-t图象与时间轴围成的“面积”大小等于物体的位移,可得0~8 s内物体的位移x=×4×(2+6)m-×2×2 m=14 m,选项B错误;0~8 s内物体的机械能的增加量等于物体重力势能的增加量和动能增加量的和,ΔE=mgxsin 37°+m×42-m×22=90(J),选项C正确;0~8

s内物体与传送带由于摩擦产生的热量等于摩擦力乘以二者间的相对位移大小,Q=μmgs相cos 37°=126 J,选项D正确.

9.如图是被誉为“豪小子”的华裔球员林书豪在NBA赛场上投二分球时的照片.现假设林书豪准备投二分球前先屈腿下蹲再竖直向上跃起,已知林书豪的质量为m,双脚离开地面时的速

度为v,从开始下蹲到跃起过程中重心上升的高度为h,则下列说法正确的是( )

A.从地面跃起过程中,地面对他所做的功为0

B.从地面跃起过程中,地面对他所做的功为mv2+mgh

C.从下蹲到离开地面上升过程中,他的机械能守恒

D.离开地面后,他在上升过程中处于超重状态,在下落过程中处于失重状态

【答案】A

【解析】林书豪从地面跃起的过程中,地面对脚的支持力作用点位移为零,支持力不做功,A正确,B错误;林书豪从下蹲到离开地面上升过程中,消耗自身能量,其机械能增大,C 错误;离开地面后,林书豪上升和下降过程中,加速度均竖直向下,处于失重状态,D错误.10.(多选)下列关于功和机械能的说法,正确的是( )

A.在有阻力作用的情况下,物体重力势能的减少不等于重力对物体所做的功

B.合力对物体所做的功等于物体动能的改变量

C.物体的重力势能是物体与地球之间的相互作用能,其大小与势能零点的选取有关

D.运动物体动能的减少量一定等于其重力势能的增加量

【答案】BC

【解析】物体重力势能的减少始终等于重力对物体所做的功,A项错误;运动物体动能的减少量等于合外力对物体做的功,D项错误.

11.消防员身系弹性绳自高空p点自由下落,图中a点是弹性绳的原长位置,b点是人静止悬

吊着的位置,c点是人所到达的最低点,空气阻力不计,则人( )

A.从p至c过程中人的动能不断增大

B.从p至b过程中人的动能不断增大

C.从p至c过程中重力所做的功大于人克服弹性绳弹力所做的功

D.从a至c过程中人的重力势能减少量等于弹性绳的弹性势能增加量

【答案】B

【解析】由受力分析和运动过程分析,知人在b点时速度最大,所以从p至c,动能先增大后减小,A项错,B项正确;从p至c由于动能、重力势能、弹性势能的相互转化,根据能量守恒可知,p至c过程中重力做功与人克服弹性绳弹力做功大小相等,C项错;从a至c 时,人在a处的动能和重力势能全部转化为弹性绳的弹性势能,所以人的重力势能减少量小于弹性绳的弹性势能增加量,D项错.

12.(2015·吉林省吉林市质检)(多选)如图所示,长为L的粗糙长木板水平放置,在木板的A端放置一个质量为m的小物块.现缓慢地抬高A端,使木板以左端为轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,此时停止转动木板,小物块滑到底端的速度为v,重

力加速度为g.下列判断正确的是( )

A.整个过程物块受的支持力垂直于木板,所以不做功

B.物块所受支持力做功为mgLsinα

C.发生滑动前静摩擦力逐渐增大

D.整个过程木板对物块做的功等于物块机械能的增量

【答案】BCD

【解析】由题意得,物块滑动前支持力属于沿运动轨迹切线方向的变力,由微元法可知在这个过程中支持力做正功,而且根据动能定理,在缓慢抬高A端的过程中,W-mgLsin α=0,可知W=mgLsin α,所以A项错,B项正确.由平衡条件得在滑动前静摩擦力f静=mgsin θ,当θ↑,f静↑,所以C项正确.在整个过程中物块的重力势能不变,动能增加,所以机械能变大,根据除了重力以外其他力做功等于机械能的变化量可知D项正确.

13.(2015·云南第一次检测)起跳摸高是学生经常进行的一项体育活动.一质量为m的同学弯曲两腿向下蹲,然后用力蹬地起跳,从该同学用力蹬地到刚离开地面的起跳过程中,他的重心上升了h,离地时他的速度大小为v.下列说法正确的是( )

A.该同学机械能增加了mgh

B.起跳过程中该同学机械能增量为mgh+mv2

C.地面的支持力对该同学做功为mgh+mv2

D.该同学所受的合外力对其做功为mv2+mgh

【答案】B

【解析】学生重心升高h,重力势能增大了mgh,又知离地时获得动能为mv2,则机械能增加了mgh+mv2,A错,B对;人与地面作用过程中,支持力对人做功为零,C错;学生受合外力做功等于动能增量,则W合=mv2,D错.

14.(2015·大庆质量检测)如图所示,半径为R的金属环竖直放置,环上套有一质量为m的小球,小球开始时静止于最低点.现使小球以初速度v0=沿环上滑,小球运动到环的最高点时与环恰无作用力,则小球从最低点运动到最高点的过程

中( )

A.小球的机械能守恒

B.小球在最低点时对金属环的压力是6mg

C.小球在最高点时,重力的功率是mg

D.小球的机械能不守恒,且克服摩擦力做的功是0.5mgR

【答案】D

【解析】小球运动到环的最高点时与环恰无作用力,设此时的速度为v,由向心力公式可得mg=;小球从最低点到最高点的过程中,由动能定理可得-W f-2mgR=mv2-,联立可得W f=-mv2-2mgR=mgR,可见此过程中小球的机械能不守恒,克服

摩擦力做的功为mgR,选项D正确,选项A错误;小球在最高点时,速度v方向和重力

的方向垂直,二者间的夹角为90°,功率P=0,选项C错误;小球在最低点,由向心力公式可得

F-mg=,F=mg+=7mg,选项B错误.

15.光滑水平面上静止一质量为M的木块,一颗质量为m的子弹以水平速度v1射入木块,并以速度v2穿出,对这个过程,下列说法正确的是( )

A.子弹克服阻力做的功等于m

B.子弹对木块做的功等于子弹克服阻力做的功

C.子弹对木块做的功等于木块获得的动能与子弹跟木块摩擦生热产生的内能之和

D.子弹损失的动能等于木块的动能和子弹与木块摩擦转化的内能之和

【答案】AD

【解析】对子弹全过程由动能定理,有,故A正确;子弹与木块相互作用过程如下图:

不仿设子弹与木块相互作用力大小为f,则子弹对木块做功W1=fs,木块对子弹做功W2=fx,由于x>s,故W2>W1,故B错误由动能定理,木块获得动能E k=W1,即子弹对木块做的功等于木块获得的动能,故C错误;对子弹和木块组成的系统,全过程总能量守恒,即系统内减少的能量等增加的能量,子弹减少的动能=木块增加的动能+系统产生的内能,故D正确.

故选AD。

16.如图所示,倾斜传送带沿逆时针方向匀速转动,在传送带的A端无初速度放置一物块.选择B端所在的水平面为参考平面,物块从A端运动到B端的过程中,其机械能E与位移x 的关系图象可能正确的是( )

【答案】BD

【解析】选择B端所在的水平面为参考平面,可知初始状态下物块的机械能不为0,A错误.由于物块初速度为0,在物块速度达到与传送带速度相等之前,物块相对传送带向上运动,受到向下的摩擦力,除重力外只有此摩擦力对物块做正功,其机械能增大.若传送带不是足够长时,物块速度与传送带达到共速前已到B端,则对应于图象B,否则达到共速后物块所受摩擦力方向突变为向上,摩擦力开始对物块做负功,物块的机械能开始减少,故C错误,D 正确.

17.将三个木板1、2、3固定在墙角,木板与墙壁和地面构成了三个不同的三角形,如图所示,其中1与2底边相同,2和3高度相同.现将一个可视为质点的物块分别从三个木板的顶端由静止释放,并沿木板下滑到底端,物块与木板之间的动摩擦因数μ均相同.在这三个

过程中,下列说法正确的是( )

A.沿着1下滑到底端时,物块的速度最大

B.物块沿着3下滑到底端的过程中,产生的热量是最多的

C.物块沿着1和2下滑到底端的过程中,产生的热量是一样多的

D.沿着2和3下滑到底端时,物块的速度相同

【答案】ABC

【解析】设斜面和水平方向夹角为θ,斜面长度为L,则物体下滑过程中克服摩擦力做功为:W=mgμLcosθ.Lcosθ即为底边长度,由图可知1和2底边相等且小于3的,故摩擦生热关系为:Q1=Q2<Q3,故B、C正确;设物体滑到底端时的速度为v,根据动能定理得:

,根据图中斜面高度和底边长度可知滑到底边时速度大小关系

为:v1>v2>v3,故A正确D错误

故选ABC.

18.如图所示,A、B、C三个一样的滑块从粗糙斜面上的同一高度同时开始运动,A由静止释放,B的初速度方向沿斜面向下,大小为v0,C的初速度方向沿斜面水平向左,大小也为v0.下列说法中正确的是( )

A.A和C将同时滑到斜面底端

B.滑到斜面底端时,B的机械能减少最多

C.滑到斜面底端时,B的动能最大

D.C的重力势能减少最多

【答案】C

【解析】滑块A和C通过的路程不同,在沿斜面方向的加速度大小也不相同,故A错;滑块A和B滑到底端时经过的位移相等,克服摩擦力做功相等,而滑块C的路程较大,机械能减少得较多,故B错,C对;三个滑块滑到底端时重力势能减少量相同,故D错.

19.如图所示,竖立在水平面上的轻弹簧,下端固定,将一个金属球放在弹簧顶端(球与弹簧不连接),用力向下压球,使弹簧被压缩,并用细线把小球和地面拴牢(图甲).烧断细线后,发现球被弹起且脱离弹簧后还能继续向上运动(图乙).那么该球从细线被烧断到刚脱离弹簧

的运动过程中,下列说法正确的是( )

A.弹簧的弹性势能先减小后增大

B.球刚脱离弹簧时动能最大

C.球在最低点所受的弹力等于重力

D.在某一阶段内,小球的动能减小而小球的机械能增加

【答案】D

【解析】从细线被烧断到球刚脱离弹簧的运动过程中,弹簧的弹性势能转化为小球的机械能,弹性势能逐渐减小,选项A错误;当弹簧弹力与小球重力相等时,小球的动能最大,此后弹簧继续对球做正功,但球的动能减小,而球的机械能却增大,所以选项B错误,D正确;小球能继续上升,说明在细线烧断瞬间小球在最低点时受到的弹力大于球的重力,选项C 错误.

20.游乐场中有一种叫“空中飞椅”的设施,其基本装置是将绳子上端固定在转盘的边缘上,绳子下端连接座椅,人坐在座椅上随转盘旋转而在空中飞旋,若将人和座椅看成质点,简化

为如图所示的模型,其中P为处于水平面内的转盘,可绕竖直转轴OO′转动,已知绳长为l,质点的质量为m,转盘静止时悬绳与转轴间的距离为d.让转盘由静止逐渐加速转动,经过一段时间后质点与转盘一起做匀速圆周运动,此时绳与竖直方向的夹角为θ,不计空气阻力及绳重,绳子不可伸长,则质点从静止到做匀速圆周运动的过程中,绳子对质点做的功为

( )

A.mg(d+lsin θ)tan θ+mgl(1-cos θ)

B.mgdtan θ+mgl(1-cos θ)

C.mg(d+lsin θ)tan θ

D.mgdtan θ

【答案】A

【解析】由于质点做匀速圆周运动,有mgtan θ=m,所以质点做匀速圆周运动

时的动能为E k=mv2=mg(d+lsin θ)tan θ,设静止时质点的重力势能为零,则此时质点

的重力势能W G=mgl(1-cos θ),由能量守恒知质点从静止到做匀速圆周运动的过程中,绳子对质点做的功全部转化成质点的机械能,所以选项A正确.

21.如图所示,质量为m的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v匀速运动,物体与传送带间的动摩擦因数为μ,物体在滑下传送带之前能保持与传送带相对静止,对于物体从静止释放到与传送带相对静止这一过程,下列说法中正确的是

( )

A.电动机多做的功为mv2

B.物体在传送带上的划痕长

C.传送带克服摩擦力做的功为mv2

D.电动机增加的功率为μmgv

【答案】D

【解析】物体与传送带相对静止之前,物体做匀加速运动,由运动学公式知x物=t,传送带做匀速运动,由运动学公式知x传=vt,对物体根据动能定理μmgx物=mv2,摩擦产生的热量Q=μmgx相对=μmg(x传-x物),四式联立得摩擦产生的热量Q=mv2,根据能量守恒定律,电动机多做的功一部分转化为物体的动能,一部分转化为热量,故电动机多做的功等于mv2,A项错误;物体匀加速运动的时间t==,物体在传送带上的划痕长等于x传-x物=,B项错误;传送带克服摩擦力做的功为μmgx传=mv2,C项错误;电动机增加的功率也就是电动机克服摩擦力做功的功率为μmgv,D项正确.

22.如图所示,光滑坡道顶端距水平面高度为h,质量为m的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端恰位于坡道的底端O点,此时弹簧处于自然长度.已知在OM 段,物块A与水平面间的动摩擦因数为μ,其余各处的摩擦不计,重力加速度为g.

(1)求物块滑到O点时的速度大小;

(2)求弹簧最大压缩量为d时的弹性势能(设弹簧处于原长时弹性势能为零);

(3)当弹簧的最大压缩量为d时,若物块A能够被弹回到坡道上,则它能够上升的最大高度是多少.

【答案】(1)(2)mgh-μmgd (3)h-2μd

【解析】(1)由机械能守恒定律得mgh=mv2,解得v=.

(2)在水平滑道上物块A克服摩擦力所做的功为W=μmgd

由能量守恒定律得mv2=E p+μmgd

以上各式联立得E p=mgh-μmgd.

(3)物块A被弹回的过程中,克服摩擦力所做的功仍为W=μmgd

由能量守恒定律得E p=μmgd+mgh′

所以物块A能够上升的最大高度为h′=h-2μd.

23.如图所示,绷紧的传送带与水平面的夹角θ=30°,传送带在电动机的带动下,始终保持v0=2m/s的速率运行,现把一质量为m=10 kg的工件(可看做质点)轻轻放在传送带的底端,经过时间t=1.9 s,工件被传送到h=1.5 m的高处,取g=10 m/s2求:

(1)工件与传送带间的动摩擦因数;

(2)电动机由于传送工件多消耗的电能.

【答案】(1)(2)230J

【解析】(1)由题图可知,传送带长x==3m.

假设工件在运动到最大高度之前已经开始做匀速运动.

工件速度达到v 0前,设工件运动的时间为t1,则匀加速运动的位移x1=t1=t1

匀速运动的位移为x-x1=v0(t-t1)

解得加速运动的时间t1=0.8s,所以假设成立.

加速度a==2.5m/s2

由牛顿第二定律有:μmgcosθ-mgsinθ=ma,解得μ=.

(2)从能量守恒的观点来看,显然电动机多消耗的电能用于增加工件的动能和势能以及克服传送带与工件之间发生相对位移时摩擦力做功产生的热量.

在时间t1内,传送带运动的位移x传=v0t1=1.6m

在t1时间内,工件运动的位移x1=t1=0.8m

在时间t1内,工件相对传送带的位移x相对=x传-x1=0.8m

在时间t1内,摩擦生热Q=μmgcosθ·x相对=60J

工件获得的动能E k==20J

工件增加的势能E p=mgh=150J

电动机多消耗的电能W=Q+E k+E p=230J.

24.如图所示,一物体质量m=2 kg,在倾角θ=37°的斜面上的A点以初速度v0=3 m/s下滑,A点距弹簧上端B的距离AB=4 m.当物体到达B点后将弹簧压缩到C点,最大压缩量BC =0.2 m,然后物体又被弹簧弹上去,弹到的最高位置为D点,D点距A点的距离AD=3 m.挡板及弹簧质量不计,g取10 m/s2,sin 37°=0.6,求:

(1)物体与斜面间的动摩擦因数μ.

(2)弹簧的最大弹性势能E pm.

【答案】(1)0.52 (2)24.5 J

【解析】(1)物体从开始位置A点到最后D点的过程中,弹性势能没有发生变化,动能和重力势能减少,机械能的减少量为

ΔE=ΔE k+ΔE p=+mgl AD sin 37°①

物体克服摩擦力产生的热量为Q=F f x ②

其中x为物体的路程,即x=5.4 m ③

F f=μmgcos 37°④

由能量守恒定律可得ΔE=Q ⑤

由①②③④⑤式解得μ=0.52.

(2)由A到C的过程中,动能减少

ΔE k′=⑥

重力势能减少ΔE p′=mgl AC sin 37°⑦

摩擦生热Q=F f l AC=μmgcos 37°l AC ⑧

由能量守恒定律得弹簧的最大弹性势能为

ΔE pm=ΔE k′+ΔE p′-Q ⑨

联立⑥⑦⑧⑨解得ΔE pm=24.5 J.

25.有一个边长为L=1.6 m的正方形桌子,桌面离地高度为h=1.25 m.一个质量为m的小物块可从桌面正中心O点以初速度v0=3 m/s沿着与OA成37°的方向在桌面上运动直至落地.设物块与桌面间的动摩擦因数为μ=0.25,取g=10 m/s2,cos 37°=0.8,则:

(1)物块落地的速度大小是多少?

(2)物块落地点到桌面中心O点的水平距离是多少?

【答案】(1)m/s (2)2 m

【解析】(1)设小物块落地时的速度为v,由能量守恒可得:

+mgh=mv2+μmg

代入数据得:v=m/s.

(2)设小物块运动到桌边时的速度为v′,则由能量守恒可得:

=mv′2+μmg

代入数据得v′=2 m/s

小物块做平抛运动的时间为t==0.5 s

小物块落地点到桌面中心O点的水平距离为

x=v′t+=2 m

26.如图所示,质量为m=1 kg的滑块,在水平力作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端B与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v0=3 m/s,长为L=1.4 m.今将水平力撤去,当滑块滑到传送带右端C时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10 m/s2.

(1)求水平作用力F的大小;

(2)求滑块下滑的高度;

(3)若滑块滑上传送带时速度大于3 m/s,求滑块在传送带上滑行的整个过程中产生的热量.【答案】(1)N (2)0.1 m或0.8 m (3)0.5 J

【解析】(1)滑块受到水平推力F、重力mg和支持力F N而处于平衡状态,由平衡条件可知,水平推力

功能关系能量守恒定律专题

功能关系能量守恒定律专题 一、功能关系 1.内容 (1)功是的量度,即做了多少功就有发生了转化. (2)做功的过程一定伴随着 ,而且必通过做功来实现. 2.功与对应能量的变化关系 说明 每一种形式的能量的变化均对应一定力的功. 二、能量守恒定律 1.内容:能量既不会消灭,也 .它只会从一种形式为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量 . 2.表达式:ΔE减= . 说明ΔE增为末状态的能量减去初状态的能量,而ΔE减为初状态的能量减去末状态的能量. 热点聚焦 热点一几种常见的功能关系 1.合外力所做的功等于物体动能的增量,表达式:W合=E k2-E k1 , 即动能定理. 2.重力做正功,重力势能减少;重力做负功,重力势能增加.由于“增量”是终态量减去始态量,所以重力的功等于重力势能增量的负值,表达式: WG=-ΔEp=Ep1-Ep2. 3.弹簧的弹力做的功等于弹性势能增量 的负值,表达式:W F=-ΔEp=Ep1-Ep2.弹力做多少正功,弹性势能减少多少;弹力做多少负功,弹性势能增加多少. 4.除系统内的重力和弹簧的弹力外,其他力做的总功等于系统机械能的增量,表达式: W其他=ΔE. (1)除重力或弹簧的弹力以外的其他力做多少正功,物体的机械能就增加多少. (2)除重力或弹簧的弹力以外的其他力做多少负功,物体的机械能就减少多少. (3)除重力或弹簧的弹力以外的其他力不做功, 物体的机械能守恒.

特别提示 1.在应用功能关系解决具体问题的过程中,若只涉及动能的变化用“1”,如果只涉及重力势能的变化用“2”,如果只涉及机械能变化用“4”,只涉及弹性势能的变化用“3”. 2.在应用功能关系时,应首先弄清研究对象,明确力对“谁”做功,就要对应“谁”的位移,从而引起“谁”的能量变化.在应用能量的转化和守恒时,一定要明确存在哪些能量形式,哪种是增加的,哪种是减少的,然后再列式求解. 热点二对能量守恒定律的理解和应用1.对定律的理解 (1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等. (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等. 这也是我们列能量守恒定律方程式的两条基本思路. 2.应用定律解题的步骤 (1)分清有多少形式的能[如动能、势能(包括重力势能、弹性势能、电势能)、内能等]在变化. (2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE减和增加的能量ΔE增的表达式. (3)列出能量守恒关系式:ΔE减=ΔE增. 特别提示 1.应用能量守恒定律解决有关问题,关键是准确分析有多少种形式的能量在变化,求出减少的总能量ΔE减和增加的总能量ΔE增,然后再依据能量守恒定律列式求解. 2.高考考查该类问题,常综合平抛运动、圆周运动以及电磁学知识考查判断、推理及综合分析能力. 热点三摩擦力做功的特点

(九年级物理教案)能量守恒定律

能量守恒定律 九年级物理教案 “”教学目标 a. 知道能的转化在自然界中是非常普遍的,并能举一些能的转化的例子 b. 知道的内容,并能用它来说明一些简单的问题 C. 建立朴素的唯物主义观,对学生进行思想教育 教学建议 教材分析 分析:本节内容是对本章及以前所学物理知识从能量的观点进行了一次综合、深化和再认识.教材首先分析自然界中各种能量之间的转化,揭示它们之间的本质联系:能量,并分析一系列熟知的能量转化的事例,指出能量的转化与守恒.最后阐述了能的转化与守恒定律的普遍性和重要性. 教法建议 建议一:是一个实验规律,列举能量转化的实例,是学生理解和掌握能量守恒的基础,因此在教学过程中要充分利用学生已知知识,对这些实例中的能的转化进行具体分析.

建议二:在教学过程中,应重点强调定律的两个方面:转化与守恒.另外还要强调该定律的普遍性和重要性,可列举19世纪的自然科学史对学生进行教育. “”教学设计示例 课 题 教学重点 能量转化与守恒 教学难点 对能量转化与守恒的理解 教学方法 讲授 知识内容 教师活动 学生活动

●一、能量的多样性 对应于不同的运动形式,能的形式也是多种多样的 ●二、能的转化 不同形式的能之间可以相互转化;做功的过程是能的转化的过程 ●三、 能量既不可会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移过程中,能量的总量保持不变. ●四、的普遍性和重要性 ●五、作业 课本P27练习3 列举不同形式的运动 列举不同的过程 有意识引导学生体会能的总量保持不变 总结规律 讲述19世纪三大自然规律

高一物理能量守恒定律测试题

2.3 能量守恒定律第一课时 【素能综合检测】 1.(5分)在利用重物做自由落体运动探索动能与重力势能的转化和守恒的实验中,下列说法中正确的是() A.选重锤时稍重一些的比轻的好 B.选重锤时体积大一些的比小的好 C.实验时要用秒表计时,以便计算速度 D.打点计时器选用电磁打点计时器比电火花计时器要好 【解析】选A.选用的重锤宜重一些,可以使重力远远大于阻力,阻力可忽略不计,从而减小实验误差,故A正确;重锤的体积越大,下落时受空气阻力越大,实验误差就越大,故B 错误;不需用秒表计时,打点计时器就是计时仪器,比秒表计时更为精准,故C错误;电磁打点计时器的振针与纸带间有摩擦,电火花计时器对纸带的阻力较小,故应选电火花计时器,D错误. 3.(5分)如图1是用自由落体法验证机械能守恒定律时得到的一条纸带.有关尺寸在图中已注明.我们选中n点来验证机械能守恒定律.下面举一些计算n点速度的方法,其中正确的是()

4.(4分)在“验证机械能守恒定律”的实验中 (1)将下列主要的实验步骤,按照实验的合理顺序把步骤前的序号填在题后横线上: A.用手提着纸带使重物静止在靠近打点计时器处; B.将纸带固定在重物上,让纸带穿过打点计时器的限位孔; C.取下纸带,在纸带上任选几点,测出它们与第一个点的距离,并算出重物在打下这几个点时的瞬时速度; D.接通电源,松开纸带,让重物自由下落; E.查出当地的重力加速度g的值,算出打下各计数点时的动能和相应的减少的重力势能,比较它们是否相等; F.把测量和计算得到的数据填入自己设计的表格里. 答:_____________. (2)动能值和相应重力势能的减少值相比,实际上哪个值应偏小些? 答:____________. 【解析】(1)实验的合理顺序应该是:BADCFE (2)由于重物和纸带都受阻力作用,即都要克服阻力做功,所以有机械能损失,即重物的动能值要小于相应重力势能的减少值. 答案:(1)BADCFE(2)动能值

能量守恒定律应用

【本讲教育信息】 一、教学内容: 能量守恒定律及应用 二、考点点拨 能的转化和守恒定律是自然界最普遍遵守的守恒定律,它在物理学中的重要地位是无可替代的,而用能的转化和守恒定律的观点解决相关问题是高中阶段最重要的内容之一,是历年高考必考和重点考查的内容。 三、跨越障碍 (一)功与能 功是能量转化的量度,即做了多少功就有多少能量转化,而且能的转化必通过做功来实现。 功能关系有: 1. 重力做的功等于重力势能的减少量,即P G E W ?-= 2. 合外力做的功等于物体动能的增加量,即K E W ?=∑ 3. 重力、弹簧弹力之外的力对物体所做的功等于物体机械能的增加量,即E W ?=其它 4. 系统内一对动摩擦力做的功等于系统损失的机械能,等于系统所增加的内能,即相对动内s f Q E E ?==?=? (二)能的转化和守恒定律 1. 内容:能量既不能凭空产生,也不会凭空消失。它只能从一个物体转移到另一个物体或从一种形式转化为另一种形式,而能的总量不变。 2. 定律可以从以下两方面来理解: (1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量相等。 (2)某个物体的能量减少,一定存在另一物体的能量增加,且减少量和增加量相等。 这也是我们应用能量守恒定律列方程式的两条基本思路。 (三)用能量守恒定律解题的步骤 1. 分清有多少种形式的能(如动能、势能、内能、电能等)在变化。 2. 分别列出减少的能量减E ?和增加的能量增E ?的表达式。 3. 列恒等式减E ?=增E ? 例1:如图所示,质量为m 的小铁块A 以水平速度0v 冲上质量为M 、长为l 、置于光滑水平面C 上的木板B 。正好不从木板上掉下。已知A 、B 间的动摩擦因数为μ,此时长木板对地位移为s 。求这一过程中:

功能关系能量守恒定律

一.几种常见的功能关系及其表达式 二、两种摩擦力做功特点的比较 [深度思考] 一对相互作用的静摩擦力做功能改变系统的机械能吗?

答案 不能,因做功代数和为零. 三、能量守恒定律 1.内容 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式 ΔE 减=ΔE 增. 3.基本思路 (1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等; (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等. 1.上端固定的一根细线下面悬挂一摆球,摆球在空气中摆动,摆动的幅度越来越小,对此现象下列说法是否正确. (1)摆球机械能守恒.( ) (2)总能量守恒,摆球的机械能正在减少,减少的机械能转化为内能.( ) (3)能量正在消失.( ) (4)只有动能和重力势能的相互转化.( ) 2.如图所示,在竖直平面内有一半径为R 的圆弧形轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 至B 的运动过程中( ) A .重力做功2mgR B .机械能减少mgR C .合外力做功mgR D .克服摩擦力做功1 2 mgR 3.如图所示,质量相等的物体A 、B 通过一轻质弹簧相连,开始时B 放在地面上,A 、B 均处于静止状态.现通过细绳将A 向上缓慢拉起,第一阶段拉力做功为W 1时,弹簧变为原长;第二阶段拉力再做功W 2时,B 刚要离开地面.弹簧一直在弹性限度内,则( ) A .两个阶段拉力做的功相等

(完整word版)高中物理能量守恒定律【高中物理能量守恒定律公式

高中物理能量守恒定律【高中物理能量守恒定律公式 在高中物理学习过程中,能量守恒属于一项极为重要的知识点,熟练掌握这一内容对于提高学生的物理知识分析能力有很大帮助,下面是小编给大家带来的高中物理能量守恒定律公式,希望对你有帮助。高中物理能量守恒定律公式 1.阿伏加德罗常数NA=×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s {V:单分子油膜的体积,S:油膜表面积2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律W+Q=ΔU{,W:外界对物体做的正功,Q:物体吸收的热量,ΔU:增加的内能,涉及到第一类永动机不可造出} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化; 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化{涉及到第二类永动机不可造出} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-摄氏度} 注: 布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; 温度是分子平均动能的标志; 分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; 分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; 气体膨胀,外界对气体做负功W0;吸收热量,Q>0 物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; r0为分子处于平衡状态时,分子间的距离; 其它相关内容:能的转化和定恒定律/能源的开发与利用、环保/物体的内能、分子的动能、分子势能。高中物理能量守恒知识点 功是一个过程量,与力在空间的作用过程相关。恒力功的计算公式与物体运动过程无关;重力功、弹力功与路径无关。功是一个标量,但有正负之分。 功率P:功率是表征力做功快慢的物理量、是标量:P=W/t 。若做功快慢程度不同,上式为平均功率。注意恒力的功率不一定恒定,如初速为零的匀加速运动,第一秒、第二秒、第三秒……内合力的平均功率之比为1:3:5……。已知功率可以求力在一段时间内所做的功W=Pt,这时可能是变力再做功。上式常常用于分析解决机车牵引功率问题,常设有以下两种约束条件:1)发动机功率一定:牵引力与速度成反比,只要速度改变,牵引力F=P/v 将改变,这时的运动一定是变加速运动。2)机车以恒力启动:牵引力F恒定,由P=Fv可知,若车做匀加速运动,则功率P将增加,这种过程直到P达到机车的额定功率为止。 能:自然界有多种运动形式,与不同运动形式相应的存在不同形式的能量:机械运动--机械能;热运动--内能;电磁运动--电磁能;化学运动--化学能;生物运动--生物能;原子及原子核运动--原子能、核能……。动能:物体由于有机械运动速度而具有的能量Ek=mv2/2 能,包括动能和势能,都是标量。都是状态量,如动能由速度决定,重力势能由高度决定,弹性势能由形变状态决定。都具有相对性,物体速度相对于不同的参照物有不同的结果,相应的动能相对于不同的参照物有不同的动能。势能相对于不同的零势能参考面有不同的结果,势能有可能取负值,它意味着此时物体的势能比零势能低。

第十二章 电能 能量守恒定律精选试卷测试卷(解析版)

第十二章电能能量守恒定律精选试卷测试卷(解析版) 一、第十二章电能能量守恒定律实验题易错题培优(难) 1.在练习使用多用电表的实验中, (1)某同学使用多用电表的欧姆档粗略测量一定值电阻的阻值R x,先把选择开关旋到“×10”挡位,测量时指针偏转如图所示.以下是接下来的测量过程: a.将两表笔短接,调节欧姆档调零旋钮,使指针对准刻度盘上欧姆档的零刻度,然后断开两表笔 b.旋转选择开关至交流电压最大量程处(或“OFF”档),并拔出两表笔 c.将选择开关旋到“×1”挡 d.将选择开关旋到“×100”挡 e.将选择开关旋到“×1k ”挡 f.将两表笔分别连接到被测电阻的两端,读出阻值R x,断开两表笔 以上实验步骤中的正确顺序是________(填写步骤前的字母). (2)重新测量后,指针位于如图所示位置,被测电阻的测量值为____Ω. (3)如图所示为欧姆表表头,已知电流计的量程为I g=100μA,电池电动势为E=1.5V,则该欧姆表的内阻是____kΩ,表盘上30μA刻度线对应的电阻值是____kΩ. (4)为了较精确地测量另一定值电阻的阻值R y,采用如图所示的电路.电源电压U恒定,电阻箱接入电路的阻值可调且能直接读出.

①用多用电表测电路中的电流,则与a点相连的是多用电表的____(选填“红”或“黑”)表笔. ②闭合电键,多次改变电阻箱阻值R,记录相应的R和多用电表读数I,得到R-1 I 的关系 如图所示.不计此时多用电表的内阻.则R y=___Ω,电源电压U=___V. (5)一半导体电阻的伏安特性曲线如图所示.用多用电表的欧姆挡测量其电阻时,用“×100”挡和用“×1k”挡,测量结果数值不同.用____(选填“×100”或“×1k”)挡测得的电阻值较大,这是因为____________. 【答案】dafb 2200 15k?35kΩ红 200 8 ×1k 欧姆表中挡位越高,内阻越大;由于表内电池的电动势不变,所以选用的挡位越高,测量电流越小;该半导体的电阻随电流的增大而减小,所以选用的档位越高,测得的电阻值越大 【解析】 【分析】 【详解】 (1)[1]先把选择开关旋到“×10”挡位,测量时指针偏转如图所示.指针指在示数较大处,为使指针指在刻度盘中央附近,应换用“×100 ”挡(几百×10=几十×100),再欧姆调零,测量,

能量守恒定律及应用讲课讲稿

能量守恒定律及应用 【本讲教育信息】 一、教学内容: 能量守恒定律及应用 二、考点点拨 能的转化和守恒定律是自然界最普遍遵守的守恒定律,它在物理学中的重要地位是无可替代的,而用能的转化和守恒定律的观点解决相关问题是高中阶段最重要的内容之一,是历年高考必考和重点考查的内容。 三、跨越障碍 (一)功与能 功是能量转化的量度,即做了多少功就有多少能量转化,而且能的转化必通过做功来实现。 功能关系有: 1. 重力做的功等于重力势能的减少量,即P G E W ?-= 2. 合外力做的功等于物体动能的增加量,即K E W ?=∑ 3. 重力、弹簧弹力之外的力对物体所做的功等于物体机械能的增加量,即E W ?=其它 4. 系统内一对动摩擦力做的功等于系统损失的机械能,等于系统所增加的内能,即相对动内s f Q E E ?==?=? (二)能的转化和守恒定律 1. 内容:能量既不能凭空产生,也不会凭空消失。它只能从一个物体转移到另一个物体或从一种形式转化为另一种形式,而能的总量不变。 2. 定律可以从以下两方面来理解: (1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量相等。 (2)某个物体的能量减少,一定存在另一物体的能量增加,且减少量和增加量相等。 这也是我们应用能量守恒定律列方程式的两条基本思路。 (三)用能量守恒定律解题的步骤 1. 分清有多少种形式的能(如动能、势能、内能、电能等)在变化。 2. 分别列出减少的能量减E ?和增加的能量增E ?的表达式。 3. 列恒等式减E ?=增E ? 例1:如图所示,质量为m 的小铁块A 以水平速度0v 冲上质量为M 、长为l 、置于光滑水平面C 上的木板B 。正好不从木板上掉下。已知A 、B 间的动摩擦因数为μ,此时长木板对地位移为s 。求这一过程中:

机械能守恒定律公式汇总

机械能守恒定律单元公式汇总 做功: W=FS ·COS θ θ为力与位移的夹角 重力做功: G W =mg Δh Δh 为物体初末位置的高度差 重力势能:p E =mgh h 为物体的重心相对于零势面的高度 重力做功和重力势能变化的关系: G W =-Δp E 即重力做功与重力势能的变化量相反 弹性势能: p E =21k 2L L 为弹簧的形变量 弹力做功与弹性势能的关系: F W =-Δp E 即弹力做功与弹性势能的变化量相反 动能定理: 合W =Δk E =21m 22V -2 1m 21V 即合外力做功等于动能的变化量 合外力做功两种求解方式:1)先求合外力合F ,再求合F ·S ·COS θ 2)先求各个分力做功再求和,+++321W W W ....... 机械能守恒定律:条件:只有重力弹力做功 公式:末初E E =即初总机械能等于末机械能 变形公式:Δk E =-ΔP E 即动能的变化量与势能的变化量相反 如果是A 与B 的系统机械能守恒: 1)2211P K P K E E E E +=+即初的总机械能等于末的总机械能 2)Δk E =-ΔP E 即 Δ1k E +Δ2k E =-(Δ1P E +Δ2P E )即总的动能的变化量与总的势能的变化量相反 3)ΔA E =-ΔB E 即 Δ1k E +Δ1P E =-(Δ2k E +Δ2P E )即A 的总机械能变化量与B 的总机械能的变化量相反 能量守恒定律:末初E E =即初总能量等于末的总能量 机械能变化的情况:1)W=Δ机E 即除重力、系统内弹力外其他力做功的多少为机 械能变化量(即其他力给原有系统能量或消耗原有系统能量) 2)摩擦力做功对机械能影响: Q X F =相对f 即摩擦力乘以相对位移等于产生的热量(内能)即机械能的损失

高中物理必修第3册第十二章 电能 能量守恒定律测试卷测试题(Word版 含解析)

高中物理必修第3册第十二章 电能 能量守恒定律测试卷测试题(Word 版 含 解析) 一、第十二章 电能 能量守恒定律实验题易错题培优(难) 1.用图甲中所示的电路测定一种特殊的电池的电动势和内阻,它的电动势E 约为8V ,内阻r 约为30Ω,已知该电池允许输出的最大电流为40mA .为防止调节滑动变阻器时造成短路,电路中用了一个定值电阻充当保护电阻,除待测电池外,可供使用的实验器材还有: A .电流表A(量程0.05A ,内阻约为0.2Ω) B .电压表V(量程6V ,内阻20kΩ) C .定值电阻R 1(阻值100Ω,额定功率1W) D .定值电阻R 2(阻值200Ω,额定功率1W) E.滑动变阻器R 3(阻值范围0~10Ω,额定电流2A) F.滑动变阻器R 4(阻值范围0~750Ω,额定电流1A) G.导线和单刀单掷开关若干个 (1)为了电路安全及便于操作,定值电阻应该选___________;滑动变阻器应该选___________.(均填写器材名称代号) (2)接入符合要求的实验器材后,闭合开关S ,调整滑动变阻器的阻值,读取电压表和电流表的示数.取得多组数据,作出了如图乙所示的图线.根据图象得出该电池的电动势E 为___________V ,内阻r 为___________Ω.(结果均保留2位有效数字) 【答案】R 2 R 4 7.8 29 【解析】 【分析】 (1)应用欧姆定律求出电路最小电阻,然后选择保护电阻;根据电源内阻与保护电阻的阻值,选择滑动变阻器. (2)电源的U -I 图象与纵轴交点的坐标值是电源的电动势,图象斜率的绝对值是电源内阻. 【详解】 (1)[1]为保护电源安全,电路最小电阻 8 Ω200Ω0.040 R = =最小, 保护电阻阻值至少为

高中物理分子动理论、能量守恒定律公式总结

高中物理分子动理论、能量守恒定律公式总结 1、阿伏加德罗常数A N =6.02×1023/mol ;分子直径数量级10-10 米 2、油膜法测分子直径S V d = {V :单分子油膜的体积(m 3),S :油膜表面积(m 2)} 3、分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4、分子间的引力和斥力(1)0r r <,斥引f f <,分子力F 表现为斥力;(2) 0r r >,斥引f f >, 分子力F 表现为引力;(3) 0r r =,斥引f f =; (4) 010r r >,0≈=斥引f f ,0≈分子力F ,0≈分子势能E 5、热力学第一定律U Q W ?=+{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q :物体吸收的热量(J),U ?:增加的内能(J),涉及到第一类永动机不可造出 6、热力学第二定 律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出} 7、热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)} 注: (1)、布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; (2)、温度是分子平均动能的标志; (3)、分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; (4)、分子力做正功,分子势能减小,在0r 处斥引f f =且分子势能最小; (5)、气体膨胀,外界对气体做负功W<0;温度升高,内能增大0>?U ;吸收热量,0>Q (6)、物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; (7)、0r 为分子处于平衡状态时,分子间的距离; (8)、其它相关内容:能的转化和定恒定律/能源的开发与利用、环保/物体的内能、分子的动能、分子势能。

第十二章 电能 能量守恒定律精选试卷专题练习(word版

第十二章电能能量守恒定律精选试卷专题练习(word版 一、第十二章电能能量守恒定律实验题易错题培优(难) 1.在练习使用多用电表的实验中, (1)某同学使用多用电表的欧姆档粗略测量一定值电阻的阻值R x,先把选择开关旋到“×10”挡位,测量时指针偏转如图所示.以下是接下来的测量过程: a.将两表笔短接,调节欧姆档调零旋钮,使指针对准刻度盘上欧姆档的零刻度,然后断开两表笔 b.旋转选择开关至交流电压最大量程处(或“OFF”档),并拔出两表笔 c.将选择开关旋到“×1”挡 d.将选择开关旋到“×100”挡 e.将选择开关旋到“×1k ”挡 f.将两表笔分别连接到被测电阻的两端,读出阻值R x,断开两表笔 以上实验步骤中的正确顺序是________(填写步骤前的字母). (2)重新测量后,指针位于如图所示位置,被测电阻的测量值为____Ω. (3)如图所示为欧姆表表头,已知电流计的量程为I g=100μA,电池电动势为E=1.5V,则该欧姆表的内阻是____kΩ,表盘上30μA刻度线对应的电阻值是____kΩ. (4)为了较精确地测量另一定值电阻的阻值R y,采用如图所示的电路.电源电压U恒定,电阻箱接入电路的阻值可调且能直接读出.

①用多用电表测电路中的电流,则与a点相连的是多用电表的____(选填“红”或“黑”)表笔. ②闭合电键,多次改变电阻箱阻值R,记录相应的R和多用电表读数I,得到R-1 I 的关系 如图所示.不计此时多用电表的内阻.则R y=___Ω,电源电压U=___V. (5)一半导体电阻的伏安特性曲线如图所示.用多用电表的欧姆挡测量其电阻时,用“×100”挡和用“×1k”挡,测量结果数值不同.用____(选填“×100”或“×1k”)挡测得的电阻值较大,这是因为____________. 【答案】dafb 2200 15k?35kΩ红 200 8 ×1k 欧姆表中挡位越高,内阻越大;由于表内电池的电动势不变,所以选用的挡位越高,测量电流越小;该半导体的电阻随电流的增大而减小,所以选用的档位越高,测得的电阻值越大 【解析】 【分析】 【详解】 (1)[1]先把选择开关旋到“×10”挡位,测量时指针偏转如图所示.指针指在示数较大处,为使指针指在刻度盘中央附近,应换用“×100”挡(几百×10=几十×100),再欧姆调零,测量,

11能量守恒定律的理解和应用

能量守恒定律 考点规律分析 (1)能量守恒定律的理解 某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等;某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。 (2)能量守恒定律的适用范围 能量守恒定律是贯穿物理学的基本规律,是各种自然现象中普遍适用的一条规律。 (3)能量守恒定律的表达式 ①从不同状态看,E 初=E 末 。 ②从能的转化角度看,ΔE 增=ΔE 减 。 ③从能的转移角度看,ΔE A增=ΔE B减。 典型例题 例(多选)从光滑斜面上滚下的物体,最后停止在粗糙的水平面上,说明() A.在斜面上滚动时,只有动能和势能的相互转化 B.在斜面上滚动时,有部分势能转化为内能 C.在水平面上滚动时,总能量正在消失 D.在水平面上滚动时,机械能转化为内能,总能量守恒 [规范解答]在斜面上滚动时,只有重力做功,只发生动能和势能的相互转化,A正确,B错误;在水平面上滚动时,有摩擦力做功,机械能转化为内能,总能量是守恒的,C错误,D正确。 [完美答案]AD 利用能量守恒定律解题的基本思路 (1)明确研究对象及研究过程。 (2)分清有哪几种形式的能(如机械能、内能等)在变化。 (3)分别列出减少的能量ΔE减和增加的能量ΔE增的表达式。 (4)列等式ΔE减=ΔE增求解。 利用能量守恒定律解题的关键是正确分析有多少种能量变化,分析时避免出现遗漏。 举一反三 1.自由摆动的秋千摆动幅度越来越小,下列说法中正确的是()

A .机械能守恒 B .能量正在消失 C .只有动能和重力势能的相互转化 D .减少的机械能转化为内能,但总能量守恒 答案 D 解析 秋千在摆动过程中受阻力作用,克服阻力做功,机械能减小,内能增加,但总能量不变。故选D 。 2.如图所示,一个粗细均匀的U 形管内装有同种液体,液体质量为m 。在管口右端用盖板A 密闭,两边液面高度差为h ,U 形管内液体的总长度为4h ,拿去盖板,液体开始运动,一段时间后管内液体停止运动,则该过程中产生的内能为 ( ) A.116mgh B.18mgh C.14mgh D.12 mgh [规范解答] 去掉右侧盖板之后,液体向左侧流动,最终两侧液面相平,液体的重力势能减少,减少的重力势能转化为内能。如图所示,最终状态可等效为 右侧12h 的液柱移到左侧管中,即增加的内能等于该液柱减少的重力势能,则Q =12h 4h mg ·12h =116mgh ,故A 正确。 [完美答案] A

能量的守恒与转化

能量的转化和守恒教学设计 一、课标要求: 1.通过实例了解能量及其存在的不同形式 2.能简单描述各种各样的能量和我们生活的关系 3. 通过实例认识能量可以从一个物体转移到另一个物体,不同形式的能量可以互相转化。 二、教学重点 1. 各种形式的能的转化 2. 能量守恒定律 教学难点 1.区别能量转移和能量转化 2.能量守恒定律的具体应用 三、学情分析本节内容是在学生认识生活中常见的电能、机械能、光能、内能、化学能等常规能源的基础上,对生活中常见能量转化与转移进行粗略的分析与总结,学生很容易把转化的方向弄反;容易把能量守恒理解为局部的 四、教学过程 (一)能量的转化 (1)自然界存在着多种形式的能量。 (2)在一定条件下,各种形式的能量可以相互转化和转移 演示1:划火柴 演示2:用铁锤敲打铁丝 方法点拨:在判断能量是如何转化时,可先找出是哪一种形式的能量减少了,哪一种形式的能量增加了,增加的那一种形式的能量就是由减少的那一种形式的能量转化而来的。 在自然界中能量的转化也是普遍存在的。例子分析: 1. 小朋友滑滑梯; 2. 在气体膨胀做功的现象中; 3. 在水力发电中; 4. 在火力发电厂; 5. 电流通过电热器时; 6. 电流通过电动机。有关能量转化的事例同学们一定能举出许多,请同学分析课件中的图片的能量转化… (二)能量的转移 演示3:把铁丝放在酒精灯上加热;运动的甲钢球撞击静止的乙钢球,甲球的机械能转移到乙球。在这种转移的过程中能量形式没有变。 (三)能量守恒定律 演示3:滚摆实验 问:滚摆越滚越低的过程中,机械能发生了什么变化?减少的机械能到哪里去了呢? 大量事实证明,在普遍存在的能量的转化和转移过程中,消耗多少某种形式的能量,就得到多少其他形式的能量。 科学工作者经过长期的实践探索,直到19世纪,才确立了这个自然界最普遍的定律——能量守恒定律:… 讲解:尽管有的时候,物体某种形式的能量,可能转移到几个物体或转化成

能量守恒定律

量守恒定律的定义 这就叫做质量守恒定律(law of conservation of mass) 原子的种类没有改变,数目没有增减,原子的质量也没有改变。 质量守恒定律简解 种变化或过程,其总质量保持不变。18 后,这一定律始得公认。20 简称质能守恒定律)。 验证 20世纪初,德国和英国化学家分别做了精确度极高的实验,以求能得到更精确的实验结果,反应前后的质量变化小于一千万分之一,这个误差是在实验误差允许范围之内的,因此质量守恒定律是建立在严谨的科学实验基础之上的。质量守恒定律就是参加化学反应的各 物质的质量总和,等于反应后生成的各物质的质量总和。例如, 质量守恒定律即, 中,参加反应的各物质的总和等于反应后生成的各物质总和。微观解释:在化学反应前后,原子的种类,数目,质量均不变。六个不变:宏观:1.反应前后物质总质 量不变 3.物质的总质量不变微观:4.原子的种类不变;5.原子的数

目不变;6.原子的质量不变。两个一定改变:宏观:物质种类改变。微观:物质的粒子构成方式一定改变。两个可能改变:宏观:元素的化合价可能改变微观:分子总数可能改变。 质量守恒定律发现简史 1756年俄国化学家罗蒙诺索夫把锡放在密闭的容器里煅烧,锡发生变化,生成白色的氧化锡,但容器和容器里的物质的总质量,在煅烧前后并没有发生变化。经过反复的实验,都得到同样的结果,于是他认为在化学变化中物质的质量是守恒的。但这一发现当时没有引起科学家的注意,直到1777年法国的拉瓦锡做了同样的实验,也得到同样的结论,这一定律才获得公认。但要确切证明或否定这一结论,都需要极精确的实验结果,而拉瓦锡时代的工具和技术(小于%的质量变化就觉察不出来)不能满足严格的要求。因为这是一个最基本的问题,所以不断有人改进实验技术以求解决。1908年德国化学家朗道耳特(Landolt)及1912年英国化学家 罗蒙诺索夫 曼莱(Manley)做了精确度极高的实验,所用的容器和反应物质量为1 000 g左右,反应前后质量之差小于 1 g,质量的变化小于一千万分之一。这个差别在实验误差范围之内,因此科学家一致承认了这一定律。 发展

第十二章 电能 能量守恒定律精选试卷检测题(Word版 含答案)

第十二章 电能 能量守恒定律精选试卷检测题(Word 版 含答案) 一、第十二章 电能 能量守恒定律实验题易错题培优(难) 1.一同学设计了如图甲所示电路来测节干电池的电动势和内阻.该同学选好器材后,进行操作(其中0R 是保护电阻). (1)该同学测量时记录了6组数据,并根据这些数据面出了U-I 图线如图丙所示,根据图线求出干电池 的电动势E=_________V(结果保留三位有效数字),内阻r=___________Ω. (2)若保护电阻0R 的阻值未知,该干电池的电动势E 、内电阻r 已经测出,在图乙的电路中只需改动一条线就可测量出0R 的阻值.该条线是_________,需改接为________(请用接线柱处的字母去表达).改接好后,调节滑动变阻器,读出电压表的示数为U 、电流表示数为I ,电源的电动势用E 表示,内电阻用r 表示,则0R =__________. 【答案】1.48V 0.50Ω(0.48~0.52Ω) dj je 或者jf 0E U R r I -=- 【解析】 【分析】 【详解】 (1)由图丙所示,电源U-I 图像可知,图像与纵轴交点坐标值为1.48,则电源电动势E=1.48V ,电源内阻 1.48 1.20 0.500.480.520.56 U r I ?-= ==ΩΩ?(~) , (2)将导线jd 改接为je ,此时电源与定值电阻组成等效电源,在闭合电路中,电源电动势:E=U+I (R 0+r ),定值电阻0E U R r I -= - 2.利用如图所示的电路既可以测量电压表和电流表的内阻,又可以测量电源电动势和内阻,所用到的实验器材有:

功能关系能量守恒定律

第4课时功能关系能量守恒定律 学习目标: 1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系. 2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题. 【课前知识梳理】 一、几种常见的功能关系 功能量的变化 合外力做正功动能增加 重力做正功重力势能减少 弹簧弹力做正功弹性势能减少 电场力做正功电势能减少 其他力(除重力、弹力外)做正功机械能增加 二、能量守恒定律 1.容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式:ΔE减=ΔE增. 【预习自测】 1、用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是 A.力F做的功和阻力做的功之和等于物体动能的增量 B.重力所做的功等于物体重力势能的增量 C.力F做的功和阻力做的功之和等于物体机械能的增量 D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量 2、如图1所示,美国空军X-37B无人航天飞机于2010年4月首飞,在X-37B由较低轨道飞到较高轨道的过程中 A.X-37B中燃料的化学能转化为X-37B的机械能 B.X-37B的机械能要减少 C.自然界中的总能量要变大 D.如果X-37B在较高轨道绕地球做圆周运动,则在此轨道上其机械能不变 3、如图2所示,ABCD是一个盆式容器,盆侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、

C在水平线上,其距离d=0.5 m.盆边缘的高度为h=0.3 m.在A处放一个质量为m的小物块并让其由静止下滑.已知盆侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.1.小物块在盆来回滑动,最后停下来,则停下的位置到B的距离为 A.0.5 m B.0.25 m C.0.1 m D.0 【课堂合作探究】 考点一功能关系的应用 【例1】如右上图所示,在升降机固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的固定木板B上,另一端与质量为m的物块A相连,弹簧与斜面平行.整个系统由静止开始加速上升高度h的过程中 A.物块A的重力势能增加量一定等于mgh B.物块A的动能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 C.物块A的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 D.物块A和弹簧组成的系统的机械能增加量等于斜面对物块的支持力和B对弹簧的拉力做功的代数和 【突破训练1】物块由静止从粗糙斜面上的某点加速下滑到另一点,此过程中重力对物块做的功等于A.物块动能的增加量 B.物块重力势能的减少量 C.物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和 D.物块动能的增加量与物块克服摩擦力做的功之和 考点二摩擦力做功的特点及应用 1.静摩擦力做功的特点 (1)静摩擦力可以做正功,也可以做负功,还可以不做功. (2)相互作用的一对静摩擦力做功的代数和总等于零. (3)静摩擦力做功时,只有机械能的相互转移,不会转化为能. 2.滑动摩擦力做功的特点 (1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.

能量守恒定律

一. 教学内容: 第九节实验:验证机械能守恒定律 第十节能量守恒定律与能源 二. 知识要点: 1. 会用打点计时器打下的纸带计算物体运动的速度。掌握验证机械能守恒定律的实验原理。通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法。培养学生的观察和实践能力,培养学生实事求是的科学态度。 2. 理解能量守恒定律,知道能源和能量耗散。通过对生活中能量转化的实例分析,理解能量守恒定律的确切含义。 三. 重难点解析: 1. 实验:验证机械能守恒定律 实验目的:验证机械能守恒定律。 实验原理: 通过实验,分别求做自由落体运动物体的重力势能的减少量和相应过程动能的增加量。若二者相等,说明机械能守恒,从而验证机械能守恒定律:△EP=△EK 实验器材 打点计时器及电源、纸带、复写纸、重物、刻度尺、带有铁夹的铁架台、导线。 实验步骤: (1)如图所示装置,将纸带固定在重物上,让纸带穿过打点计时器。

(2)用手握着纸带,让重物静止地靠近打点计时器的地方,然后接通电源,松开纸带,让重物自由落下,纸带上打下一系列小点。 (3)从打出的几条纸带中挑选第一、二点间的距离接近2mm且点迹清晰的纸带进行测量,记下第一个点的位置O,并在纸带上从任意点开始依次选取几个计数点1、2、3、4…,并量出各点到O点的距离h1、h2、h3…,计算相应的重力势能减少量,mgh。如图所示。 (4)依步骤(3)所测的各计数点到O点的距离hl、h2、h3…,根据公式vn= 计算物体在打下点l、2…时的即时速度v1、v2…。计算相应的动能 (5)比较实验结论: 在重力作用下,物体的重力势能和动能可以互相转化,但总的机械能守恒。 选取纸带的原则: (1)点迹清晰。 (2)所打点呈一条直线。 (3)第1、2点间距接近2mm。 本实验应注意的几个问题: (1)安装打点计时器时,必须使两个纸带限位孔在同一竖直线上,以减小摩擦阻力; (2)实验时必须保持提起的纸带竖直,手不动。待接通电源,让打点计时器工作稳定后再松开纸带,以保证第一点是一个清晰的点; (3)打点计时器必须接50Hz的4V?D6V的交流电; (4)选用纸带时应尽量挑选第一、二点间距接近2mm的点迹清晰且各点呈一条直线的纸带;

最新能量守恒定律练习题40道

一、选择题 1、关于能量的转化与守恒,下列说法正确的 是() A.任何制造永动机的设想,无论它看上去多么巧妙,都是一种徒劳 B.空调机既能致热,又能致冷,说明热传递不存在方向性 C.由于自然界的能量是守恒的,所以说能源危机不过是杞人忧天 D.一个单摆在来回摆动许多次后总会停下来,说明这个过程的能量不守恒 2、下列过程中,哪个是电能转化为机械能 A.太阳能电池充电B.电灯照明C.电风扇工 作D.风力发电 3、温度恒定的水池中,有一气泡缓缓上升,在此过程中,气泡的体积会逐渐增大,若不考虑气泡内气体分子间的相互作用力,则下列说法中不正确的是 A.气泡内的气体对外做功 B.气泡内的气体内能不变

C.气泡内的气体与外界没有热交换 D.气泡内气体分子的平均动能保持不变 4、一个系统内能减少,下列方式中哪个是不可能的 A.系统不对外界做功,只有热传递 B.系统对外界做正功,不发生热传递 C.外界对系统做正功,系统向外界放热 D.外界对系统作正功,并且系统吸热 5、下列说法正确的是 A.气体压强越大,气体分子的平均动能就越大 B.在绝热过程中,外界对气体做功,气体的内能减少 C.温度升高,物体内每个分子的热运动速率都增大 D.自然界中涉及热现象的宏观过程都具有方向性 6、一定量的气体吸收热量,体积膨胀并对外做功,则此过程的末态与初态相比, A.气体内能一定增加B.气体内能一定减小

C.气体内能一定不变D.气体内能是增是减不能确定 7、有关气体压强,下列说法正确的是 A.气体分子的平均速率增大,则气体的压强一定增大 B.气体的分子密度增大,则气体的压强一定增大 C.气体分子的平均动能增大,则气体的压强一定增大 D.气体分子的平均动能增大,气体的压强有可能减小 8、如图所示,两个相通的容器P、Q间装有阀门K,P中充满气 体,Q中为真空整个系统与外界没有热交换.打开阀门K后,P中的气体进入Q中,最终达到平衡,则 A.气体体积膨胀,内能增加 B.气体分子势能减少,内能增加 C.气体分子势能增加,压强可能不变 D.Q中气体不可能自发地全部退回到P中 9、关于物体内能的变化,以下说法中正确的 是() A.物体机械能减少时,其内能也一定减少

功能关系能量守恒定律

第 4 课时功能关系能量守恒定律 学习目标: 1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系. 2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题.【课前知识梳理】 一、几种常见的功能关系 功能量的变化 合外力做正功动能增加 重力做正功重力势能减少 弹簧弹力做正功弹性势能减少 电场力做正功电势能减少 其他力(除重力、弹力外)做正功机械能增加 二、能量守恒定律 1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式:ΔE减=ΔE增. 【预习自测】 1、用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是 A.力F做的功和阻力做的功之和等于物体动能的增量B.重力所做的功等于物体重力势能的增量C.力F做的功和阻力做的功之和等于物体机械能的增量D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量2、如图 1 所示,美国空军X-37B无人航天飞机于2010 年 4 月首飞,在X-37B 由较低轨道飞到较高轨道的过程中 A.X-37B 中燃料的化学能转化为X-37B 的机械能 B.X-37B 的机械能要减少C.自然界中的总能量要变大 D.如果X-37B 在较高轨道绕地球做圆周运动,则在此轨道上其机械能 不变 3、如图2 所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,

B 、 C 在水平线上,其距离 d =0.5 m .盆边缘的高度为 h =0.3 m .在 A 处放一个质量为 m 的小物块并 让其由静止下滑.已知盆内侧壁是光滑的,而盆底 BC 面与小物块间的动摩擦因数为 μ=0.1.小物块在 盆内来回滑动,最后停下来,则停下的位置到 B 的距离为 课堂合作探究】 考点一 功能关系的应用 【例 1】 如右上图所示,在升降机内固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的 固定木板B 上,另一端与质量为m 的物块A 相连,弹簧与斜面平行.整个系统由静止开始加速上升 高度 h 的过程中 A .物块A 的重力势能增加量一定等于 mgh B .物块A 的动能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 C .物块A 的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 D .物块 A 和弹簧组成的系统的机械能增加量等于斜面对物块的支持力和 B 对弹簧的拉力做功的代数 和 【突破训练 1】物块由静止从粗糙斜面上的某点加速下滑到另一点,此过程中重力对物块做的功等于 A .物块动能的增加量 B .物块重力势能的减少量 C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和 D .物块动能的增加量与物块克服摩擦力做的功之和 考点二 摩擦力做功的特点及应用 A .0.5 m B .0.25 m C . 0.1 m

相关主题
文本预览
相关文档 最新文档