当前位置:文档之家› 平行四边形知识点及练习题含答案

平行四边形知识点及练习题含答案

平行四边形知识点及练习题含答案
平行四边形知识点及练习题含答案

平行四边形知识点及练习题含答案

一、解答题

1.如图,在Rt ABC ?中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F

(1)求证:四边形ADCF 是菱形

(2)若4,5AC AB ==,求菱形ADCF 的面积

2.在四边形ABCD 中,AD ∥BC ,AB=8cm ,AD=16cm ,BC=22cm ,∠ABC=90°.点P 从点A 出发,以1cm/s 的速度向点D 运动,点Q 从点C 同时出发,以3cm/s 的速度向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.

(1)当t= 时,四边形ABQP 成为矩形?

(2)当t= 时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形?

(3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.

3.综合与探究

(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.CE 和CF 之间有怎样的关系.请说明理由.

(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果45GCE ∠=?,请你利用(1)的结论证明:GE BE CD =+.

(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3在直角梯形ABCD 中,//()AD BC BC AD >,90B ∠=?,12AB BC ==,E 是AB 上一点,且45DCE ∠=?,4BE =,求DE 的长.

4.正方形ABCD 中,对角线AC 与BD 交于点O ,点P 是正方形ABCD 对角线BD 上的一个动点(点P 不与点B ,O ,D 重合),连接CP 并延长,分别过点D ,B 向射线作垂线,垂足分别为点M ,N .

(1)补全图形,并求证:DM =CN ;

(2)连接OM ,ON ,判断OMN 的形状并证明.

5.如图,在平面直角坐标系中,已知?OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动.

(1)求点B 的坐标;

(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;

(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.

6.已知如图1,四边形ABCD 是正方形,45EAF ?∠= .

()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;

()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-

()3如图3,如果四边形ABCD 不是正方形,但满足

,90,45,AB AD BAD BCD EAF ??=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.

7.共顶点的正方形ABCD 与正方形AEFG 中,AB =13,AE 2.

(1)如图1,求证:DG =BE ;

(2)如图2,连结BF ,以BF 、BC 为一组邻边作平行四边形BCHF .

①连结BH ,BG ,求BH BG

的值; ②当四边形BCHF 为菱形时,直接写出BH 的长.

8.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;

拓展:在图①中,若G 在AD ,且45GCE ∠?=,则GE BE GD +=成立吗?为什么? 运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠?==,16AB BC ==,E 是AB 上一点,且45DCE ∠?=,4BE =,求DE 的长.

9.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90?得到点B ,连接AB .

(1)求出直线BC 的解析式;

(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值.

(3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由.

10.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.

(1)求BQ 的长(用含t 的代数式表示);

(2)当四边形ABQP 是平行四边形时,求t 的值;

(3)当

325

t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.

【参考答案】***试卷处理标记,请不要删除

一、解答题

1.(1)见解析(2)10

【分析】

(1)先证明AFE DBE ???,得到AF DB =,AF CD =,再证明四边形ADCF 是平行四边形,再根据“直角三角形斜边上的中线等于斜边的一半”得到12

AD DC BC ==,即可证明四边形ADCF 是菱形。

(2)连接DF ,证明四边形ABDF 是平行四边形,得到5DF AB ==,利用菱形的求面积公式即可求解。

【详解】

(1)证明: ∵//BC AF ,∴AFE DBE ∠=∠,

∵E 是AD 的中点,AD 是BC 边上的中线,∴,AE DE BD CD ==,

在AFE ?和DBE ?中, AFE DBE FEA BED AE DE ∠=∠??∠=∠??=?

∴()AFE DBE AAS ???,∴AF DB =.

∵DB DC =,∴AF CD =.

∵//BC AF ,∴四边形ADCF 是平行四边形,

∵090BAC ∠=,D 是BC 的中点,E 是AD 的中点,

∴12

AD DC BC ==

,∴四边形ADCF 是菱形; (2)如图,连接DF ,

∵//,AF BD AF BD =,

∴四边形ABDF 是平行四边形,∴5DF AB ==,

∵四边形ADCF 是菱形,∴11451022

ADCF S AC DF =

=??=菱形. 【点睛】

本题主要考查全等三角形的应用,菱形的判定定理以及菱形的性质,熟练掌握菱形的的判定定理和性质是解此题的关键。 2.(1)

112;(2)112

或4;(3)四边形PBQD 不能成为菱形 【分析】 (1)由∠B=90°,AP ∥BQ ,由矩形的判定可知当AP=BQ 时,四边形ABQP 成为矩形; (2)由(1)可求得点P 、Q 与点A 、B 为顶点的四边形为平行四边形;然后由当PD=CQ 时,CDPQ 是平行四边形,求得t 的值;

(3)由PD ∥BQ ,当PD=BQ=BP 时,四边形PBQD 能成为菱形,先由PD=BQ 求出运动时间t 的值,再代入求BP ,发现BP≠PD ,判断此时四边形PBQD 不能成为菱形;设Q 点的速度改变为vcm/s 时,四边形PBQD 在时刻t 为菱形,根据PD=BQ=BP 列出关于v 、t 的方程组,解方程组即可求出点Q 的速度.

【详解】

(1)如图1,∵∠B=90°,AP ∥BQ ,

∴当AP=BQ 时,四边形ABQP 成为矩形,

此时有t=22﹣3t ,解得t=112. ∴当t=112

时,四边形ABQP 成为矩形; 故答案为

112; (2)如图1,当t=

112

时,四边形ABQP 成为矩形, 如图2,当PD=CQ 时,四边形CDPQ 是平行四边形,

则16﹣t=3t ,

解得:t=4, ∴当t=112

或4时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四

故答案为112或4

(3)四边形PBQD 不能成为菱形.理由如下:

∵PD ∥BQ ,

∴当PD=BQ=BP 时,四边形PBQD 能成为菱形.

由PD=BQ ,得16﹣t=22﹣3t ,

解得:t=3,

当t=3时,PD=BQ=13,BP=22AB AP + =228t +=2283+=73≠13,

∴四边形PBQD 不能成为菱形;

如果Q 点的速度改变为vcm/s 时,能够使四边形PBQD 在时刻ts 为菱形,

由题意,得221622168t vt

t t

-=-???-=+??,解得62t v =??=?. 故点Q 的速度为2cm/s 时,能够使四边形PBQD 在某一时刻为菱形.

【点睛】

此题属于四边形的综合题.考查了矩形的判定、菱形的判定以及勾股定理等知识.注意掌握分类讨论思想与方程思想的应用是解此题的关键.

3.(1)CE=CF 且CE ⊥CF ,理由见解析;(2)见解析;(3)10

【分析】

(1)根据正方形的性质,可证明△CBE ≌△CDF (SAS ),从而得出CE=CF ,

∠BCE=∠DCF ,再利用余角的性质得到CE ⊥CF ;

(2)延长AD 至M ,使DM=BE ,连接CM ,由△BEC ≌△DFC ,可得∠BCE=∠DCF ,即可求∠GCF=∠GCE=45°,且GC=GC ,EC=CF 可证△ECG ≌△GCF (SAS ),则结论可求. (3)过点C 作CF ⊥AD 于F ,可证四边形ABCF 是正方形,根据(2)的结论可得DE=DF+BE=4+DF ,根据勾股定理列方程可求DF 的长,即可得出DE .

解:(1)CE=CF且CE⊥CF,

证明:如图1,

∵四边形ABCD是正方形,

∴BC=CD,∠B=∠CDF=90°,

又∵BE=DF,

∴△CBE≌△CDF(SAS),

∴CE=CF,∠BCE=∠DCF,

∵∠BCD=∠BCE+∠ECD=90°,

∴∠ECD+∠DCF=90°,即CE⊥CF;

(2)延长AD至M,使DM=BE,连接CM,∵∠GCE=45°,

∴∠BCE+∠GCD=45°,

∵△BEC≌△DFC,

∴∠BCE=∠DCF,

∴∠DCF+∠GCD=45°,即∠GCF=45°,

∴∠GCE=∠GCF,且GC=GC,CE=CF,

∴△GCE≌△GCF(SAS),

∴GE=GF,

∴GE=GD+DF=BE+GD;

(3)如图:过点C作CF⊥AD于F,

∵AD∥BC,∠B=90°,

∴∠A=90°,

∵∠A=∠B=90°,FC⊥AD,

∴四边形ABCF是矩形,且AB=BC=12,

∴四边形ABCF是正方形,

∴AF=12,

由(2)可得DE=DF+BE ,

∴DE=4+DF ,

在△ADE 中,AE 2+DA 2=DE 2.

∴(12-4)2+(12-DF )2=(4+DF )2.

∴DF=6,

∴DE=4+6=10.

【点睛】

本题是四边形综合题,考查了正方形的性质,勾股定理,全等三角形的判定与性质,四边形的面积,熟练掌握正方形的性质是解题的关键.

4.(1)见解析;(2)MON 为等腰直角三角形,见解析

【分析】

(1)如图1,由正方形的性质得CB =CD ,∠BCD =90°,再证明∠BCN =∠CDM ,然后根据“AAS”证明△CDM ≌△CBN ,从而得到DM =CN ;

(2)如图2,利用正方形的性质得OD =OC ,∠ODC =∠OCB =45°,∠DOC =90°,再利用∠BCN =∠CDM 得到∠OCN =∠ODM ,则根据“SAS”可判断△OCN ≌△ODM ,从而得到ON =OM ,∠CON =∠DOM ,所以∠MON =∠DOC =90°,于是可判断△MON 为等腰直角三角形.

【详解】

(1)证明:如图1,

∵四边形ABCD 为正方形,

∴CB =CD ,∠BCD =90°,

∵DM ⊥CP ,BN ⊥CP ,

∴∠DMC =90°,∠BNC =90°,

∵∠CDM+∠DCM =90°,∠BCN+∠DCM =90°,

∴∠BCN =∠CDM ,

在△CDM 和△CBN 中

DMC CNB CD CB

CDM BCN ∠=∠??=??∠=∠?

, ∴△CDM ≌△CBN ,

∴DM =CN ;

(2)解:△OMN 为等腰直角三角形.

理由如下:

如图2,∵四边形ABCD 为正方形,

∴OD =OC ,∠ODC =∠OCB =45°,∠DOC =90°,

∵∠BCN =∠CDM ,

∴∠BCN ﹣45°=∠CDM ﹣45°,即∠OCN =∠ODM ,

在△OCN 和△ODM 中

CN DM OCN ODM OC OD =??∠=∠??=?

, ∴△OCN ≌△ODM ,

∴ON =OM ,∠CON =∠DOM ,

∴∠MON =∠DOC =90°, ∴MON 为等腰直角三角形.

【点睛】

本题考查正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质;两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.也考查全等三角形的判定与性质.

5.(1)B (12,4);(2)52

t s =

;(3)58,4,3,4,2,4,,42 【分析】

(1)由四边形OABC 是平行四边形,得到OA BC =,//OA BC ,于是得到 10OA =,2OE AF ,可求出点B 的坐标; (2)根据四边形PCDA 是平行四边形,得到PC AD =,即1025t -=,解方程即可得到结论;

(3)如图2,可分三种情况:①当5PD OD 时,②当5PO OD 时,③当 PD OP =时分别讨论计算即可.

【详解】

解:如图1,过C 作CE OA ⊥于E ,过B 作BF OA ⊥于 F ,

四边形OABC 是平行四边形,

OA BC ,//OA BC , A ,C 的坐标分别为(10,0), (2,4), 10OA ∴=,2OE AF , 10BC ∴=,

(12,4)B ;

(2)设点P 运动t 秒时,四边形PCDA 是平行四边形,

由题意得:102PC t =-,

点D 是OA 的中点, 152OD BC AD OA ,

四边形PCDA 是平行四边形,

PC AD ,即1025t -=,

52

t ∴=, ∴当52

t =秒时,四边形PCDA 是平行四边形; (3)如图2,①当5PD

OD 时,过1P 作1PE OA 于 E ,

则14PE ,

3DE ∴=,

1(8,4)P ,

又D ,C 的坐标分别为()5,0,(2,4),

∴225245CD ,

即有,当点P 与点C 重合时,5PD OD ,

2,4P ; ②当5PO OD 时,过2P 作2P G OA 于 G , 则24P G ,

3OG ∴=,

2(3,4)P ;

③当PD OP =时,过3P 作3P F OA 于 F , 则34P F ,52

OF =, 35(2

P ,4); 综上所述:当ODP ?是等腰三角形时,点P 的坐标为(8,4), 5(2

,4),(3,4),(2,4). 【点睛】

本题是四边形综合题,考查了平行四边形的性质,等腰三角形的性质,勾股定理,熟练掌握平行四边形的性质和等腰三角形的性质是解题的关键.

6.(1)5EF =;(2)见解析;(3)5BE =

【分析】 (1)先用SAS 证ABG ≌ADF ,可得AG=AF ,∠BAG=∠DAF ,又可证∠EAG=∠EAF ,故可用SAS 证GAE ≌FAE ,EF=GE ,即EF 长度可求;

(2)在DF 上取一点G ,使得DG=BE , 连接AG ,先用SAS 证ABE ≌ADG ,可得AE=AG ,∠BAE=∠DAG ,又可证∠EAF=∠GAF ,故可用SAS 证AEF ≌AGF ,可得EF=GF ,且DG=BE ,故EF=DF-DG=DF-BE ;

(3)在线段DF 上取BE=DG ,连接AG ,求证∠ABE=∠ADC ,即可用SAS 证

ABE ≌ADG ,可得AE=AG ,∠BAE=∠DAG ,又可证∠EAF=∠GAF ,故可用SAS 证AEF ≌AGF ,可得EF=GF ,设BE=x ,则CE= 7+x ,EF=18-x ,根据勾股定理:

222CE CF =EF +,即可求得BE 的长度.

【详解】

解:(1)证明:如图1所示,在正方形ABCD 中,AB=AD ,∠BAD=90°,

在ABG 和ADF 中,

AB=AD ABG=ADF BG=DF ??∠∠??? ∴ABG ≌ADF (SAS ),

∴AG=AF ,∠BAG=∠DAF ,

又∵∠DAF+∠FAB=∠FAB+∠BAG=90°,且∠EAF=45°,

∴∠EAG=∠FAG-∠EAF=45°=∠EAF ,

在GAE 和FAE 中,

AG=AF GAE=FAE AE=AE ??∠∠???

∴GAE ≌FAE (SAS ),

∴EF=GE=GB+BE=2+3=5;

(2)如下图所示,在DF 上取一点G ,使得DG=BE , 连接AG ,

∵四边形ABCD 是正方形,故AB=AD ,∠ABE=∠ADG=90°, 在ABE 和ADG 中,

AB=AD ABE=ADG=90BE=DG ??∠∠????

∴ABE ≌ADG (SAS ),

∴AE=AG ,∠BAE=∠DAG ,

∵∠BAG+∠DAG=90°,故∠BAG+∠BAE=90°,

∵∠EAF=45°,故∠GAF=45°,∠EAF=∠GAF=45°, 在AEF 和AGF 中,

AE=AG EAF=GAF=45AF=AF ??∠∠????

∴AEF ≌AGF (SAS ),

∴EF=GF ,且DG=BE ,

∴EF=DF-DG=DF-BE ;

(3)BE=5,

如下图所示,在线段DF 上取BE=DG ,连接AG ,

∵∠BAD=∠BCD=90°,故∠ABC+∠ADC=180°,且∠ABC+∠ABE=180°,

∴∠ABE=∠ADC , 在ABE 和ADG 中,

AB=AD ABE=ADG BE=DG ??∠∠???

∴ABE ≌ADG (SAS ),

∴AE=AG ,∠BAE=∠DAG ,

∵∠BAG+∠DAG=90°,故∠BAG+∠BAE=90°,

∵∠EAF=45°,故∠GAF=45°,∠EAF=∠GAF=45°, 在AEF 和AGF 中,

AE=AG EAF=GAF=45AF=AF ??∠∠????

∴AEF ≌AGF (SAS ),

∴EF=GF ,

设BE=x ,则CE=BC+BE =7+x ,EF=GF=DC+CF-DG= DC+CF-BE=18-x ,

在直角三角形ECF 中,根据勾股定理:222CE CF =EF +,

即:222(7+x)5=(18-x)+,解得x=5,

∴BE=x=5.

【点睛】

本题主要考察了全等三角形的证明及性质、勾股定理,解题的关键在于添加辅助线,找出全等三角形,并用对应边/对应角相等的定理,解决该题.

7.(1)证明见解析;(2)①

2BH BG

=②BH 的长为2或2. 【分析】

(1)证()DAG BAE SAS △≌△,即可得出结论;

(2)①连接GH ,延长HF 交AB 于N ,设AB 与EF 的交点为M ,证

()GAB GFH SAS △≌△,得GH GB =,GHF GBA ∠=∠,证GHB ?为等腰直角三角形,即

得结论;

②分两种情况,证出点B 、E 、G 在一条直线上,求出

210AF EG AE ===,则5OA OG OE ===,由勾股定理求出12OB =,求出BG ,即可得出答案.

【详解】

(1)∵四边形ABCD 和四边形AEFG 是正方形,

∴AD =AB =CB ,AG =AE ,∠DAB =∠GCE =90°,

∴∠DAB ﹣∠GAF =∠GCE ﹣∠GAF ,

即∠DAG =∠BAE ,

在△DAG 和△BAE 中,

AD AE DAG BAE AG AE =??∠=∠??=?

∴△DAG ≌△BAE (SAS),

∴DG =BE ;

(2)①连接GH ,延长HF 交AB 于N ,设AB 与EF 的交点为M ,如图2所示:

∵四边形BCHF 是平行四边形,

∴HF //BC ,HF =BC =AB .

∵BC ⊥AB ,

∴HF ⊥AB ,

∴∠HFG =∠FMB ,

又AG //EF ,

∴∠GAB =∠FMB ,

∴∠HFG =∠GAB ,

在△GAB 和△GFH 中,

AG FG GAB HFG AB FH =??∠=∠??=?

∴△GAB ≌△GFH (SAS),

∴GH =GB ,∠GHF =∠GBA ,

∴∠HGB =∠HNB =90°,

∴△GHB 为等腰直角三角形,

∴BH 2=BG , ∴2BH BG

=; ②分两种情况:

a 、如图3所示:

连接AF 、EG 交于点O ,连接BE .

∵四边形BCHF 为菱形,

∴CB =FB .

∵AB =CB ,

∴AB =FB =13,

∴点B 在AF 的垂直平分线上.

∵四边形AEFG 是正方形,

∴AF =EG ,OA =OF =OG =OE ,AF ⊥EG ,AE =FE =AG =FG ,

∴点G 、点E 都在AF 的垂直平分线上,

∴点B 、E 、G 在一条直线上,

∴BG ⊥AF .

∵AE 2,

∴AF =EG 2==10,

∴OA =OG =OE =5,

∴OB 2222135AB OA -=-=12, ∴BG =OB +OG =12+5=17, 由①得:BH 2=

2; b 、如图4所示:

连接AF 、EG 交于点O ,连接BE ,

同上得:点B 、E 、G 在一条直线上,OB =12,BG =OG +OB ﹣OG =12﹣5=7,

由①得:BH 2=

2; 综上所述:BH 的长为2或2. 【点睛】

本题是四边形综合题目,考查了正方形的性质、菱形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、线段垂直平分线的判定等知识;本题综合性强,熟练掌握正方形的性质和菱形的性质,证明三角形全等是解题的关键.

8.(1)见解析;(2)GE=BE+GD 成立,理由见解析;(3)

685

【分析】

(1)利用已知条件,可证出△BCE ≌△DCF (SAS ),即可得到CE=CF ;

(2)借助(1)的结论得出∠BCE =∠DCF ,再通过角的计算得出∠GCF =∠GCE ,由SAS 可得△ECG ≌△FCG ,则EG=GF ,从而得出GE=DF+GD=BE+GD ;

(3)过C 作CG ⊥AD ,交AD 延长线于G ,先证四边形ABCG 是正方形(有一组邻边相等的矩形是正方形),再设DE =x ,利用(1)、(2)的结论,在Rt △AED 中利用勾股定理构造方程即可求出DE .

【详解】

(1)证明:如图①,在正方形ABCD 中,BC=CD ,∠B =∠ADC =90°,

∴∠CDF=90°,即∠B =∠CDF =90°,

在△BCE 和△DCF 中, BC DC B CDF BE DF =??∠=∠??=?

∴△BCE ≌△DCF (SAS ),

∴CE=CF ;

(2)解:如图①,GE=BE+GD 成立,理由如下:

由(1)得△BCE ≌△DCF ,

∴∠BCE=∠DCF ,

∴∠ECD +∠ECB=∠ECD +∠FCD ,

即∠ECF =∠BCD =90°,

又∵∠GCE =45°,

∴∠GCF =∠ECF ?∠ECG =45°,则∠GCF=∠GCE ,

在△GEC 和△GFC 中,

CE CF GCE GCF GC GC =??∠=∠??=?

∴△GEC ≌△GFC (SAS ),

∴EG=GF ,

∴GE=DF+GD=BE+GD ;

(3)解:如图②,过C 作CG ⊥AD 于G ,

∴∠CGA=90°,

在四边形ABCD 中,AD ∥BC ,∠A =∠B =90°,

∴四边形ABCG 为矩形,

又∵AB=BC ,

∴四边形ABCG 为正方形,

∴AG =BC=AB =16,

∵∠DCE =45°,由(1)和(2)的结论可得:ED=BE+DG ,

设DE=x ,

∵4BE =,

∴AE =12,DG=x ?4,

∴AD =AG ?DG =20?x

在Rt △AED 中,

由勾股定理得:DE 2=AD 2+AE 2,

即x 2=(20?x )2+122 解得:685=

x , 即685

=DE . 【点睛】

本题是一道几何综合题,内容主要涉及全等三角形的判定与性质和勾股定理的应用,重点

考查学生的数学学习能力,是一道好题.

9.(1)

1

2

3

y x

=

-+;(2)t=

2

3

s时,四边形ABMN是平行四边形;(3)存在,点Q 坐标为:

618

,

55

??

?

??

或(3,1)

-或(3,1)

-或

155

,

88

??

-

?

??

.

【分析】

(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,

AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.

(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.

【详解】

(1)如图1中,作BH⊥x轴于H.

∵A(1,0)、C(0,2),

∴OA=1,OC=2,

∵∠COA=∠CAB=∠AHB=90°,

∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,

∴∠ACO=∠BAH,

∵AC=AB,

∴△COA≌△AHB(AAS),

∴BH=OA=1,AH=OC=2,

∴OH=3,

∴B(3,1),

设直线BC的解析式为y=kx+b,则有

2

31

b

k b

=

?

?

+=

?

解得:

1

3

2

k

b

?

=-

?

?

?=

?

1

2

3

y x

=-+;

(2)如图2中,

∵四边形ABMN是平行四边形,∴AN∥BM,

∴直线AN的解析式为:

11

33

y x

=-+,

1

0,

3

N

?? ???

10

3 BM AN

==,

∵B(3,1),C(0,2),∴BC=10,

210 CM BC BM

=-=,

2102

10

3

t=÷=,

∴t=2

3

s时,四边形ABMN是平行四边形;

(3)如图3中,

如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,连接OQ交BC于E,

∵OE⊥BC,

∴直线OE的解析式为y=3x,

平行四边形典型例题精编版

平行四边形典型例题 1 如图,□ABCD的对角线AC、BD 相交于点O,则图中全等三角形有() A .2 对 B .3对 C .4 对 D .5对 17如图,□ABCD中,∠ B、∠ C的平分线交于点O ,BO 和CD 的延长线交于求证:BO=OE. 例3】如图,在ABCD中,AE⊥ BC于E ,AF⊥DC 于F ,∠ ADC=60°,BE=2,CF=1, 求△ DEC 的面积. 解】在中,,、 在Rt △ABE 中,, 在△ 中,

例 4】已知:如图, D 是等腰△ ABC 的底边 BC 上一点, DE//AC , DF//AB 求证: DE+DF=A .B , ,从而可以利用平行四边形的定义和性质,等腰 三角 形的判定和性质来证. 解】∵ , ∴四边形 是平行四边形. ∴. ∵ ,∴ . ∵ ,∴ 说明:证明一条线段等于另外两条线段的和常采用的方法是: 分为两段,证明这两段分别等于另两条线段. 于 ,求证: 分析】 分析】由于 把三条线段中较长的线段 例 5】如图, 已知: 中, 相交于 点, 于 ,

解】因为四边形是平行四边形,所以,又因为、交于点, 所以. 又因为, 所以 从而例6】已知:如图,AB//DC ,AC、BD交于O,且 AC=BD。 求证:OD=OC. 证明:过B 作交DC延长线于E,则 于是△≌△ ∵ ,, E

∵, ∴∴ 说明:本题条件中有“夹在两条平行线之间的相等且相交的线 段 时用不上,为此通过作平行线,由“夹在两条平行线间的平行线B BE ,得到等腰△ BDE ,使问题得解. 例 7】如图, □ABCD 的对角线 AC 的垂直平分线与边 AD 、BC 分别交于 E 、F , 例 8】如图所示, □ABCD 中,各内角的平分线分别相交于点 E 、 F 、 G 、 H , 证明:四边形 EFGH 是矩形。 例 9】如图所示,已知矩形 ABCD 的对角线 AC 、BD 交于点 O ,过顶点 C ,作 BD 的垂线与∠ BAD 的平分线相交于点 E ,交 BD 于 G ,证明: AC=CE 。 求证:四边形 AFCE 是菱形. 解:略。 置交错而 A 由 AC 平移到 E

平行四边形综合性质及经典例题

一对一个性化辅导教案

平行四边形的性质与判定 平行四边形及其性质(一) 一、 教学目标: 1. 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质. 2. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 3. 培养学生发现问题、解决问题的能力及逻辑推理能力. 二、 重点、难点 1. 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 2. 难点:运用平行四边形的性质进行有关的论证和计算. 三、 课堂引入 1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象 平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗 你能总结出平行四边形的定义吗 (1)定义:两组对边分别平行的四边形是平行四边形. (2)表示:平行四边形用符号“ ”来表示. 如图,在四边形ABCD 中,AB∥DC,AD∥BC,那么四边形ABCD 是平行四边形.平行四边形ABCD 记作“ ABCD”,读作“平行四边形ABCD”. ①∵AB ?50?360?360?180行 四边形的面积计算 六、随堂练习 1.在平行四边形中,周长等于48, ① 已知一边长12,求各边的长 ② 已知AB=2BC ,求各边的长 ③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长 2.如图,ABCD 中,AE⊥BD,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .

3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm . 七、课后练习 1.判断对错 (1)在ABCD 中,AC 交BD 于O ,则AO=OB=OC=OD . ( ) (2)平行四边形两条对角线的交点到一组对边的距离相等. ( ) (3)平行四边形的两组对边分别平行且相等. ( ) (4)平行四边形是轴对称图形. ( ) 2.在 ABCD 中,AC =6、BD =4,则AB 的范围是_ ____ __. 3.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 . 4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB =15cm ,AD =12cm ,AC ⊥BC ,求小路BC ,CD ,OC 的长,并算出绿地的面积. (一) 平行四边形的判定 一、教学目标: 1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题. 3.培养用类比、逆向联想及运动的思维方法来研究问题. 二、重点、难点 重点:平行四边形的判定方法及应用. 难点:平行四边形的判定定理与性质定理的灵活应用. 四、课堂引入 1.欣赏图片、提出问题. 展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形你是怎样判断的 2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗

平行四边形 经典例题

平行四边形 一、 基础知识平行四边形 二、1、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三遍的一半。 2、由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。 三、例题 例1、如图1,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F. 求证:∠BAE =∠DCF. 例2、如图2,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F. 求证:BE = CF. 例3、已知:如图3,在梯形ABCD 中,AD ∥BC ,AB = DC ,点E 、F 分别在AB 、CD 上,且BE = 2EA , CF = 2FD. 求证:∠BEC =∠CFB. (图1) B O A B C D E F (图2)

例4、如图6,E 、F 分别是 ABCD 的AD 、BC 边上的点,且AE = CF. (1 △ ABE ≌△CDF ; (2)若 、N 分别是BE 、DF 的中点,连结MF 、EN ,试判断四边形MFNE 是怎样的四 边形,并证明你的结论. 例5、如图7 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F.,求证:四边形AFCE 是菱形. 例6、如图8,四边形ABCD 是平行四边形,O 是它的中心,E 、F 是对角线AC 上的点. (1)如果 ,则△DEC ≌△BFA (请你填上一个能使结论成立的一个条件); (2)证明你的结论. 例7、如图9,已知在梯形ABCD 中,AD ∥BC ,AB = DC ,对角线AC 和BD 相交于点O ,E 是BC 边上一个动点(点E 不与B 、C 两点重合),EF ∥BD 交AC 于点F ,EG ∥AC 交BD 于点C. (1)求证:四边形EFOG 的周长等于2OB ; (2)请你将上述题目的条件“梯形ABCD 中,AD ∥BC ,AB = DC”改为另一种四边形,其他条件不变,使得结论,“四边形EFOG 的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明. 例8、有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图13(1)、(2)上),并给予合理的解释. A D B C E F (图6) M N 备用图(1) 备用图(2) B C B

(完整word版)平行四边形知识点及典型例题

一、知识点讲解: 1.平行四边形的性质: 四边形ABCD 是平行四边形?????? ????. 54321)邻角互补()对角线互相平分;()两组对角分别相等; ()两组对边分别相等;()两组对边分别平行;( 2.平行四边形的判定: . 3. 矩形的性质: 因为四边形ABCD 是矩形??? ? ??.3; 2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( (4)是轴对称图形,它有两条对称轴. 4矩形的判定: (1)有一个角是直角的平行四边形; (2)有三个角是直角的四边形; (3)对角线相等的平行四边形; (4)对角线相等且互相平分的四边形. ?四边形ABCD 是矩形. 两对角线相交成60°时得等边三角形。 5. 菱形的性质: 因为ABCD 是菱形??? ? ??.321角)对角线垂直且平分对()四个边都相等; (有通性;)具有平行四边形的所( 6. 菱形的判定: ?? ? ?? +边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321?四边形ABCD 是菱形. 菱形中有一个角等于60°时,较短对角线等于边长; 菱形中,若较短对角线等于边长,则有等边三角形; 菱形中,两对角线把菱形分成4个全等的直角三角形,每个直角三角形的斜边是菱形的边,两直角边分别是两对角线的一半。 菱形的面积等于两对角线长积的一半。 A B D O C A B D O C A D B C A D B C O C D B A O C D B A O

C D A B A B C D O 7.正方形的性质: 四边形ABCD是正方形? ? ? ? ? ? . 3 2 1 分对角 )对角线相等垂直且平 ( 角都是直角; )四个边都相等,四个 ( 有通性; )具有平行四边形的所 ( 8. 正方形的判定: ? ? ? ? ? ? ? ? ? + + + + + + 对角线互相垂直 矩形 ) ( 一组邻边等 矩形 ) ( 对角线相等 )菱形 ( 一个直角 )菱形 ( 一个直角 一组邻边等 )平行四边形 ( 5 4 3 2 1 ?四边形ABCD是正方形. 9. 1.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三 遍的一半。 2.由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于 斜边的一半。 二、例题 例1:如图1,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F. 求证: ∠BAE =∠DCF. 例2如图2,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD 于F. 求证:BE = CF. 例3.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的 中点.求证:四边形DFGE是平行四边形. 例4如图7, ABCD的对角线AC的垂直平分线与边AD,BC分 别相交于点E,F. 求证:四边形AFCE是菱形. (图1) E F O A B C D E F (图2) 图7 A B C D E F O

(完整版)平行四边形经典练习题

挑战自我: 1、 (2010年眉山市).如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ ABC 的度数为( ) A .90° B .60° C .45° D .30° 2、(2010福建龙岩中考)下列图形中,单独选用一种图形不能进行平面镶嵌的图形是( ) A. 正三角形 B. 正方形 C. 正五边形 D. 正六边形 3.(2010年北京顺义)若一个正多边形的一个内角是120°,则这个正多边形的边数是( ) A .9 B .8 C .6 D .4 4、(2010年福建福州中考)如图4,在□ABCD 中,对角线AC 、BD 相交于点O ,若AC=14,BD=8,AB=10,则△OAB 的周长为 。 5、(2010年宁德市)如图,在□ABCD 中,AE =EB ,AF =2,则FC 等于_____. 6题 6、 (2010年滨州)如图,平行四边形ABCD 中, ∠ABC=60°,E 、F 分别在CD 、BC 的延长线上,AE ∥BD,EF ⊥BC,DF=2,则EF 的长为 7、 (2010年福建晋江)如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形是平行四边形,并予以证明.(写出一种即可)关系:①∥,②,③,④. 已知:在四边形中, , ;求证:四边形是平行四边形. 8、(2010年宁波市)如图1,有一张菱形纸片ABCD ,8=AC ,6=BD 。 (1)请沿着AC 剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四 边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD 剪开, F E D C B A ABCD AD BC CD AB =C A ∠=∠?=∠+∠180C B ABCD ABCD D A B C A B C D 第5题图 F A E B C D

必用平行四边形知识点及典型例题

平行四边形知识点及典型例题 一、知识点讲解:. 定义:两组对边分别平行的四边形是平行四边形. 1.平行四边形的性质: 四边形ABCD 是平行四边形?????? ????. 54321)邻角互补()对角线互相平分;()两组对角分别相等; ()两组对边分别相等;()两组对边分别平行;( 2.平行四边形的判定: . 3. 矩形的性质: 因为四边形ABCD 是矩形??? ? ??.3; 2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( (4)是轴对称图形,它有两条对称轴. 4矩形的判定: (1)有一个角是直角的平行四边形; (2)有三个角是直角的四边形; (3)对角线相等的平行四边形; (4)对角线相等且互相平分的四边形. ?四边形ABCD 是矩形. 两对角线相交成60°时得等边三角形。 5. 菱形的性质: 因为ABCD 是菱形??? ? ??.321角)对角线垂直且平分对()四个边都相等; (有通性;)具有平行四边形的所( 6. 菱形的判定: ?? ? ?? +边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321?四边形ABCD 是菱形. 菱形中有一个角等于60°时,较短对角线等于边长; 菱形中,若较短对角线等于边长,则有等边三角形; 菱形中,两对角线把菱形分成4个全等的直角三角形,每个直角三角形的斜边是菱形的边,两直角边分别是两对角线的一半。 菱形的面积等于两对角线长积的一半。 A B D O C A B D O C A D B C A D B C O C D B A O C D B A O

C D A B A B C D O 7.正方形的性质: 四边形ABCD 是正方形??? ? ??.321分对角)对角线相等垂直且平(角都是直角; )四个边都相等,四个(有通性;)具有平行四边形的所( 8. 正方形的判定: ???? ? ? ? ?? ++++++对角线互相垂直矩形)(一组邻边等 矩形)(对角线相等)菱形(一个直角)菱形(一个直角一组邻边等)平行四边形(54321?四边形ABCD 是正方形. 9. 三角形中位线 (1)定义:连接三角形两边中点的线段叫做三角形的中位线.每个三角形都有三条中位线. (2)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 10. 直角三角形特殊性质 (1)斜边上的中线等于斜边的一半。 (2)300所对的直角边等于斜边的一半。 (3)射影定理,勾股定理,面积不变定理 特殊的、平行四边形知识点 学生记住

平行四边形典型例题

平行四边形典型例题 【例1】如图,□ABCD的对角线AC、BD相交于点O,则图中全等三角形有() A.2对 B.3对 C.4对 D.5对 【分析】由平行四边形的对边平行、对角线互相平分,可得全等三角形有:△ABD和△CDE, △ADC和△CBA ,△AOD 和△BOC 、△AOB 和△COD . 【答案】C 【例2】如图,□ABCD中,∠B、∠C的平分线交于点O ,BO 和CD 的延长线交于E ,求证:BO=OE . 【分析】证线段相等,可证线段所在三角形全等.可证△COE ≌△COB .已知OC 为公共边,∠OCE=∠OCB,又易证∠E=∠EBC.问题得证. 【证明】在□ABCD中,∵AB//CD, ∴, 又∵(角平分线定义). ∴, 又∵, ∴△≌△ ∴. 说明:证线段相等通常有两种方法:(1)在同一三角形中证三角形等腰;(2)不在同一三角形则证两三角形全等.本题也可根据等腰三角形“三线合一”性质证明结论.

【例3】如图,在ABCD中,AE⊥BC于E ,AF⊥DC 于F ,∠ADC=60°,BE=2,CF=1,求△DEC 的面积. 【解】在中,,、. 在Rt △ABE 中,,. ∴,. ∴. 在△中,. ∴. 故. 【例4】已知:如图,D 是等腰△ABC 的底边BC 上一点,DE//AC ,DF//AB .求证:DE+DF=AB. 【分析】由于,,从而可以利用平行四边形的定义和性质,等腰三角形的判定和性质来证. 【解】∵, ∴四边形是平行四边形. ∴. ∵,∴.

∵,∴. ∴. ∴. 说明:证明一条线段等于另外两条线段的和常采用的方法是:把三条线段中较长的线段分为两段,证明这两段分别等于另两条线段. 【例5】如图,已知:中,、相交于点,于, 于,求证:. 【分析】 【解】因为四边形是平行四边形, 所以,. 又因为、交于点, 所以. 又因为,, 所以.

(完整)初中数学平行四边形经典例题讲解(3套)

平行四边形经典例题(附带详细答案) 1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥, 求证:AF CE =. 【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =, ACB CAD ∴∠=∠. 又BE DF ∥, BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF = 2.如图,四边形ABCD 中,AB ∥CD ,∠B=∠D ,, 求四边形ABCD 的周长. 【答案】 解法一: ∵ ∴ 又∵ ∴ ∴∥即得是平行四边形 ∴ ∴四边形的周长 解法二: 3 ,6==AB BC AB CD ∥?=∠+∠180C B B D ∠=∠?=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=A D C B D C A B E F

连接 ∵ ∴ 又∵ ∴≌ ∴ ∴四边形的周长 解法三: 连接 ∵ ∴ 又∵ ∴ ∴∥即是平行四边形 ∴ ∴四边形的周长 3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍, 求∠A ,∠B ,∠C 的大小. 【关键词】多边形的内角和 【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠. 根据四边形内角和定理得,360602)20(=++++x x x . 解得,70=x . AC AB CD ∥DCA BAC ∠=∠B D AC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=?+?=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=A D C B A D C B

平行四边形知识点总结及对应例题.

平行四边形、矩形、菱形、正方形知识点总结 定义:两组对边分别平行的四边形是平行四边形 平行四边形的性质: (1):平行四边形对边相等(即:AB=CD,AD=BC); (2):平行四边形对边平行(即:AB//CD,AD//BC); (3):平行四边形对角相等(即:∠A=∠C,∠B=∠D); (4):平行四边形对角线互相平分(即:O A=OC,OB=OD); 判定方法:1. 两组对边分别平行的四边形是平行四边形(定义判定法); 2. 一组对边平行且相等的四边形是平行四边形; 3. 两组对边分别相等的四边形是平行四边形; 4. 对角线互相平分的四边形是平行四边形; 5.两组对角分别相等的四边形是平行四边形; 考点1 特殊的平行四边形的性质与判定 1.矩形的定义、性质与判定 (1)矩形的定义:有一个角是直角的平行四边形是矩形。 (2)矩形的性质:矩形的对角线_________;矩形的四个角都是________角。矩形具有________的一切性质。矩形是轴对称图形,对称轴有_____________条,矩形也是中心对称图形,对称中心为_____________的交点。矩形被对角线分成了____________个等腰三角形。 (3)矩形的判定 有一个是直角的平行四边形是矩形;有三个角是_____________的四边形是矩形;对角线_____的平行四边形是矩形。 温馨提示:矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为60度时,则构成一个等边三角形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再请一个角为直角或对角线相等。很多同学容易忽视这个问题。 2.菱形的定义、性质与判定 (1)菱形的定义:有一组邻边相等的平行四边形是菱形。 (2)菱形的性质 菱形的_______都相等;菱形的对角线互相_______,并且每一条对角线______一组对角;菱形也具有平行四边形的一切性质。菱形即是轴对称图形,对称轴有____条。 (3)菱形的面积

平行四边形知识点与经典例题

第十八章平行四边形 18.1.1 平行四边形的性质 第一课时平行四边形的边、角特征 知识点梳理 1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。 2、平行四边形的对边相等,对角相等,邻角互补。 3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。知识点训练 1.(3分)如图,两对边平行的纸条,随意交叉叠放在一起,转动其中一,重合的部分构成一个四边形,这个四边形是________. 2.(3分)如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( ) A.6个B.7个C.8个D.9个 3.(3分)在□ABCD中,AB=6 cm,BC=8 cm,则□ABCD的周长为cm. 4.(3分)用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,则较长的边的长度为cm. 5.(4分)在□ABCD中,若∠A∶∠B=1∶5,则∠D=;若∠A+∠C=140°,则∠D=. 6.(4分)(2014·)如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是. 7.(4分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为( ) A.53°B.37°C.47°D.123°

8.(8分)(2013·)如图所示,已知在平行四边形ABCD中,BE=DF. 求证:AE=CF. 9.(4分)如图,点E,F分别是□ABCD中AD,AB边上的任意一点,若△EBC的面积为10 cm2,则△DCF的面积为。 10.(4分)如图,梯形ABCD中,AD∥BC,记△ABO的面积为S1,△COD的面积为S2,则S1,S2的大小关系是( ) A.S1>S2 B.S1=S2 C.S1<S2 D.无法比较 11.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可能是( ) A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.2∶1∶2∶1 12.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM,下列说确的是( ) A.①②都对B.①②都错C.①对②错D.①错② 13.如图,在□ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF =60°,则□ABCD的周长为__.

初三数学-平行四边形专题练习题(含答案)

初三数学 平行四边形专题练习 1 ?如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等, 那么这个正方 形的边长为 _______ c m. 2 2.如图1,正方形ABCD 的边长为4cm 则图中阴影部分的面积为 cm . 3若四边形ABCD 是平行四边形,请补充条件 _______________________ (写一个即可),使四边形ABCD 是菱形. 4.在平行四边形ABCD 中,已知对角线AC 和BD 相交于点0, △ ABO 的周长 为17,AB = 6,那么对角线AC + BD = ____________________ 7?以正方形 ABCD 的边BC 为边做等边△ BCE ,贝U / AED 的度数 为 . 5.已知菱形ABCD 的边长为6,Z A = 60°如果点P 是菱形内一点,且 PB = PD = 2、那么AP 的长为 _____________________ . 6 .在平面直角坐标系中,点 A 、B 、C 的坐标分别是A ( — 2, 5), B ( — 3,— 1),C (1,— 1),在第一象限内找一点D ,使四边形 ABCD 是平行四边形,那么点 D 的坐标是 二、选择题(每题3分,共30分) 7. 如图2在平行四边形ABCD 中,/ B=110°,延长AD 至F ,延长CD 至E , 8. 菱形具有而矩形不具有的性质是 ( ) A .对角相等 B .四边相等 C .对角线互相平分 D .四角相等 9. 如图3所示,平行四边形ABCD 中,对角线AC 、 的中点.若OE=3 cm ,则AB 的长为 ( ) A . 3 cm B . 6 cm C . 9 cm D . 12 cm 10 .已知:如图4,在矩形ABCD 中, E 、 F 、 G 、 H 分别为边 AB 、BC 、CD 、DA 的中点.若 AB = 2, AD = 4, 则图中阴影部分的面积为 ( BD 交于点O ,点E 是BC 图1 连结 EF ,贝U/ E +Z F =( ) .70 A H 图4

(完整版)平行四边形基础练习题

1、如图1,在平行四边形ABCD 中,下列各式不一定正确的是 ( ). (A)?=∠+∠18021 (B)?=∠+∠18032 (C)?=∠+∠18043 (D)?=∠+∠18042 图1 图2 2、如图2,在□ABCD 中,EF//AB ,GH//AD ,EF 与GH 交于点O ,则该图中的平行四边形 的个数共有 ( ). (A)7 个 (B)8个 (C)9个 (D)11个 3、如图3 ,在□ABCD 中, ∠B=110°,延长AD 至F,延长CD 至E,连接EF,则∠E+∠F 的值为 ( ). (A)110° (B)30° (C)50° (D)70° 图3 图4 4. □ABCD 中,如果∠B=100°,那么∠A 、∠D 的值分别是 ( ) (A )∠A=80°,∠D=100° (B )∠A=100°,∠D=80° (C )∠B=80°,∠D=80° (D )∠A=100°,∠D=100° 5. 若□ABCD 的周长为28,△ABC 的周长为17cm ,则AC 的长为 ( ) (A )11cm (B ) 5.5cm (C )4cm (D )3cm 6. 在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是 ( ) (A )1:2:3:4 (B ) 3:4:4:3 (C ) 3:3:4:4 (D ) 3:4:3:4 二、填空题 1.在平行四边形ABCD 中,若∠A-∠B=70°,则∠A=_______,∠B=_______, ∠C=_______,∠D=_________. 2.在□ABCD 中,AC ⊥BD ,相交于O ,AC=6,BD=8,则AB=________,BC= _________. 3.如图4,已知□ABCD 中,AB=4,BC=6,BC 边上的高AE=2,则DC 边上的高AF 的长 是________. 图5 图6 4.如图5,□ABCD 中,DB=DC,∠C=70°,AE ⊥BD 于E,则∠DAC=_____度. 5.如图6,E 、F 是□ABCD 对角线BD 上的两点,请你添加一个适当的条件: ,使四边 形AECF 是平行四边形. 三、解答题

平行四边形知识点及练习题含答案

平行四边形知识点及练习题含答案 一、解答题 1.如图,在Rt ABC ?中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F (1)求证:四边形ADCF 是菱形 (2)若4,5AC AB ==,求菱形ADCF 的面积 2.在四边形ABCD 中,AD ∥BC ,AB=8cm ,AD=16cm ,BC=22cm ,∠ABC=90°.点P 从点A 出发,以1cm/s 的速度向点D 运动,点Q 从点C 同时出发,以3cm/s 的速度向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒. (1)当t= 时,四边形ABQP 成为矩形? (2)当t= 时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形? (3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度. 3.综合与探究 (1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.CE 和CF 之间有怎样的关系.请说明理由. (2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果45GCE ∠=?,请你利用(1)的结论证明:GE BE CD =+. (3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3在直角梯形ABCD 中,//()AD BC BC AD >,90B ∠=?,12AB BC ==,E 是AB 上一点,且45DCE ∠=?,4BE =,求DE 的长.

平行四边形经典题型(培优提高)

中心对称与平行四边形的判定 知识归纳 1.中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与 原图形重合,那么就说这个图形是中心对称图形,这个点就是它的对称中心. 分析:一个图形;围绕一点旋转1800;重合. 2.思考:中心对称与中心对称图形有什么区别和联系? 1)区别: 中心对称是指两个全等图形之间的位置关系,成中心对称的两个图形中,其中一个图形上所有点关于对称中心的对称点都在另一个图形上,反之,另一个图形上所有点关于对称中心的对称点都在这;而中心对称图形是指一个图形本身成中心对称,中心对称图形上所有点关于对称中心的对称点都在这个图形本身上. 2)联系: 如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形;一个中心对称图形也可以看成是关于中心对称的两个图形. 3.中心对称图性质 1)中心对称图形的对称点所连线段都经过对称中心,而且被对称中心所平分. 2)中心对称图形的两个部分是全等的. 注:常见的中心对称图形有:矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形,某些规则图形等. 正偶边形是中心对称图形 正奇边形不是中心对称图形如:正三角形不是中心对称图形、等腰梯形不是中心对称图形 4.平行四边形的性质: ①平行四边形两组对边相等。 ②平行四边形两组对角相等。 ③平行四边形对角线互分平分。 5.平行四边形判定: 定理1、一组对边平行且相等的四边形是平行四边形 定理2、两组对边分别相等的四边形是平行四边形。 定理3、对角线互相平分的四边形是平行四边形。 定理4、两组对角分别相等的四边形是平行四边形。 6.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。 7.逆定理1:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是 三角形的中位线。 逆定理2:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

《平行四边形》知识点归纳和题型归类

平行四边形知识点归纳和题型归类【知识网络】 【要点梳理】 要点一、平行四边形 1.定义:的四边形叫做平行四边形. 2.性质:(1); (2); (3); (4)中心对称图形. 3.面积: 4.判定:边:(1)的四边形是平行四边形; (2)的四边形是平行四边形; (3)的四边形是平行四边形. 角:(4)的四边形是平行四边形; 对角线:的四边形是平行四边形. 要点诠释:平行线的性质: (1)平行线间的距离都; (2)等底等高的平行四边形面积 . 要点二、矩形 1.定义:的平行四边形叫做矩形. 2.性质:(1)边:; (2)角:; (3)对角线:; (4)是中心对称图形,也是轴对称图形. 3.面积: 4.判定:(1) 的平行四边形是矩形. (2)的平行四边形是矩形. (3)的四边形是矩形. 要点诠释:由矩形得直角三角形的性质: (1)直角三角形斜边上的中线等于斜边的; (2)直角三角形中,30度角所对应的直角边等于斜边的. 高 底 平行四边形 ? = S 宽 =长 矩形 ? S

要点三、菱形 1. 定义: 的平行四边形叫做菱形. 2.性质:(1)边: ; (2)角: ; (3)对角线: ; (4)是中心对称图形,也是轴对称图形. 3.面积: 4.判定:(1) 的平行四边形是菱形; (2) 的平行四边形是菱形; (3) 的四边形是菱形. 要点四、正方形 1. 定义:四条边都 ,四个角都是 的 形叫做正方形. 2.性质:((1)边: ; (2)角: ; (3)对角线: ; (4)是中心对称图形,也是轴对称图形. (5) 两条对角线把正方形分成四个全等的等腰直角三角形; 3.面积:=S 正方形边长×边长= 1 2 ×对角线×对角线 4.判定:(1) 的菱形是正方形; (2) 的矩形是正方形; (3) 的菱形是正方形; (4) 的矩形是正方形; (5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形. 中点四边形(拓展) 原四边形 一般四边形 矩形 菱形 正方形 图示 顺次连接 各边中点 所得的四 边形 平行四边形 菱形 矩形 正方形 2 对角线 对角线高= =底菱形??S M G F E D C B A C D E F M G B A B E A C G M F D A F G M B D E C

平行四边形经典题型(培优提高)

1.平行四边形的性质: ①平行四边形两组对边相等。 ②平行四边形两组对角相等。 ③平行四边形对角线互分平分。 2.平行四边形判定: 定理1、一组对边平行且相等的四边形是平行四边形 定理2、两组对边分别相等的四边形是平行四边形。 定理3、对角线互相平分的四边形是平行四边形。 定理4、两组对角分别相等的四边形是平行四边形。 3.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。 4.逆定理1:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是 三角形的中位线。 逆定理2:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

第四节:中心对称图形 课堂练习 1.下列图形中,既是中心对称图形,又是轴对称图形的是() A.正三角形B.平行四边形C.等腰直角三角形D.正六边形 2.下列图形中,不是中心对称图形的是() 3.下列图形中,既是轴对称图形又是中心对称图形的是(). 4.下三图是由三个相同的小正方形拼成的图形,请你再添加一个同样大小的小正方形, 使所得的新图形分别为下列A,B,C题要求的图形,请画出示意图. (1)是中心对称图形,但不是轴对称图形; (2)是轴对称图形,但不是中心对称图形; (3)既是中心对称图形,又是轴对称图形. 第五节:平行四边形的判定 例题讲解 例1:判断下列说法的正误,如果错误请画出反例图 ①一组对边平行,另一组对边相等的四边形是平行四边形。( ) ②一组对边相等,另一组对边平行的四边形是平行四边形. ( ) ③一组对边平行,一组对角相等的四边形是平行四边形.( ) ④一组对边平行且相等的四边形是平行四边形.( ) ⑤两组邻角互补的四边形是平行四边形。( )

平行四边形知识点分类归纳练习题汇编

初二下数学第18章平行四边形期中复习卷 班级: 姓名: 座号: 平行四边形的性质 1、平行四边形定义: 的四边形是平行四边形. 表示方法:用 “□” 表示平行四边形,例如:平行四边形ABCD 记作 □ ABCD ,读作“平行四边形ABCD ”. 2、平行四边形的性质: (1)角:平行四边形的对角_________; (2)边:平行四边形两组对边 ; (3)对角线:平行四边形的对角线_________; (4)面积:①S ==?底高ah ;②平行四边形的对角线将平行四边形分成4个面积相等的三角形. 练习题: 1 . 已知一个平行四边形两邻边的长分别为6和8,那么它的周长为_____. 2.如图,□ABCD 中,BC=BD ,∠C=70°,则∠ADB 的度数是______,∠A 的度数是_____. 3. 如图,平行四边形ABCD 的对角线交于点O,且AB=5,△OCD 的周长为23,则平行四边形A BCD 的两条对角线的和是_____. 平行四边形的判定 平行四边形的判定方法:(5种方法) 边: (1) 定义:两组对边 的四边形是平行四边形 (2) 两组对边 的四边形是平行四边形 (3)一组对边 的四边形是平行四边形角: 角: (4) 两组对角 的四边形是平行四边形。 对角线: (5) 对角线 的四边形是平行四边形。 练习: 1. 点A 、B 、C 、D 在同一平面内,从①AB//CD ;②AB =CD ;③BC//AD ;④BC =AD 四个条件中任意选两个,不能使四边形ABCD 是平行四边形的选法有( ) A .①② B .②③ C . ①③ D . ③④ 2、如图,在平面直角坐标系中,点A 、B 、C 的坐标分别是A (-2,5),B (-3,-1),C (1,-1),在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么点D 的坐标是

初三数学-平行四边形经典例题讲解(3套)

初三数学 经典例题(附带详细答案) 1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥, 求证:AF CE =. 【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =, ACB CAD ∴∠=∠. 又BE DF ∥, BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF = 2.如图,四边形ABCD 中,AB ∥CD ,∠B=∠D ,, 求四边形ABCD 的周长. 【答案】 解法一: ∵ ∴ 又∵ ∴ ∴∥即得是平行四边形 ∴ ∴四边形的周长 解法二: 3 ,6==AB BC AB CD ∥?=∠+∠180C B B D ∠=∠?=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=A D C B D C A B E F

连接 ∵ ∴ 又∵ ∴≌ ∴ ∴四边形的周长 解法三: 连接 ∵ ∴ 又∵ ∴ ∴∥即是平行四边形 ∴ ∴四边形的周长 3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍, 求∠A ,∠B ,∠C 的大小. 【关键词】多边形的内角和 【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠. 根据四边形内角和定理得,360602)20(=++++x x x . 解得,70=x . AC AB CD ∥DCA BAC ∠=∠B D AC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=?+?=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=A D C B A D C B

平行四边形典型例题

平行四边形典型例题 1.已知如图12-1-19,所示□ABCD的对角线AC、BD相交于点O,OE上AD于E,OF⊥BC于F. 求证:四边形AECF是平行四边形 错证:在△AOE和△COF中 ∵OE⊥AD,OF⊥BC ∴∠AEO=∠CFO=90° ∵四边形ABCD为平行四边形 ∴OA=OC,AD∥BC ∴∠EAC=∠ACF ) ∴△AOE≌△COF(AAS)∴OF=OE ∴四边形AECF是平行四边形 错误分析:上面证明由OF=OE,OA=OC不能说明EF与AC互相平分,因为原题设中没有说明E、O、F三点共线,因此先证E、O、F三点共线. 正确证明:在△AOE和△COF中 ∵OE⊥AD OF⊥BC ∴∠AEO=∠CFO=90° ∵四边形ABCD为平行四边形 ∴OA=OC,AD∥BC ∴∠EAC=∠ACF ∴△AOE≌△COF(AAS)∴OF=OE 又∵AD∥BC,OE⊥AD,OF⊥BC ∴E、O、F三点共线 ( ∴四边形AECF是平行四边形

2.如图12-1-22所示,现有一块等腰直角三角形的铁板,通过切割焊接成一个含有45°角的平行四边形,请你设计一种最简单的方案,并证明你的方案确实得到的是一个符合条件的平行四边形. 分析:运用三角形全等,平行四边形的识别方法来解答,在证明时不要忽略证明F,E,D共线. 解:取AC、BC的中点E、D连结ED,则沿ED切割下来,如图使点E不变,点C与点A重合,再焊接上去最简单. 证明:在Rt△ABC中∵AC=BC ∴∠B=45° 又∵E、D分别为AC、BC的中点 ∴EC=DC ∴∠CED=∠CDE=45° ∴∠AEF=∠CED=45°∴∠AEF+∠AED=∠CED+∠AED=180° ∴F、E、D在一条直线上∵∠EAF=∠C=90°∴AF∥CD — 又∵AF=CD=DB ∴四边形AFDB是平行四边形,且∠B=45° 3.如图12-1-23,在□ABCD的对角线上取两点E、F,且BF=DE,请至少用两种不同的方法证明四边形AECF 是平行四边形,并指出哪种方法最简便. 分析:可证两组对边分别相等,也可证对角线互相平分. 证明方法(一) 在△ABF和△CDE中,AB=CD,BF=DE,∠ABF=∠CDE. ∴△ABF≌△CDE ∴AF=CE 同理可证AE=CF,故四边形AECF是平行四边形 方法(二) 连AC交BD于O %

(完整版)平行四边形专项练习题

平行四边形专项练习题 一.选择题(共12小题) 1.在下列条件中,能够判定一个四边形是平行四边形的是() A.一组对边平行,另一组对边相等 B.一组对边相等,一组对角相等 C.一组对边平行,一条对角线平分另一条对角线 D.一组对边相等,一条对角线平分另一条对角线 2.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>b B.a=b C.a<b D.b=a+180° 3.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为() A.4S1B.4S2C.4S2+S3D.3S1+4S3 4.在?ABCD中,AB=3,BC=4,当?ABCD的面积最大时,下列结论正确的有() ①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD. A.①②③B.①②④C.②③④D.①③④ 5.如图,在?ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于() A.2 B.3 C.4 D.6 6.如图,在?ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()

A.8 B.10 C.12 D.14 7.如图,在?ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为() A.B.4C.2D. 8.如图,在?ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是() A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH 9.如图,将?ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为() A.66°B.104°C.114° D.124° 10.如图,?ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是() A.10 B.14 C.20 D.22 11.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件: ①AD∥BC;②AD=BC;③OA=OC;④OB=OD

相关主题
文本预览
相关文档 最新文档