当前位置:文档之家› 空间几何体基本概念

空间几何体基本概念

空间几何体基本概念
空间几何体基本概念

空间几何体

一、由实际物体抽象出来的空间图形叫空间几何体。

多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面。相邻两个面的公共边叫做多面体的棱。棱与棱的公共点叫做多面体的顶点。

把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。如:圆柱、圆锥、球形等。

这条定直线叫做旋转体的轴。

1. 棱柱

一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

棱柱中互相平行的两个面叫做棱柱的底面,简称底。

其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱。侧面与底面的公共顶点叫做棱柱的顶点。

底面是三角形、四边形、五边形等的棱柱分别叫做三棱柱、四棱柱、五棱柱等。用表示底面各顶点的字母表示棱柱。

2.棱锥

一般地,有一个面是多边形,其余各面都是有一个公共点的三角形,由这些面所围成的多面体叫做棱锥。这个多边形面叫做棱锥的底面或底。有公共顶点的各个三角形面叫做棱锥的侧面。各侧面的公共顶点叫做棱锥的顶点。相邻侧面的公共边叫做棱锥的侧棱。底面是三角形、四边形、五边形等的棱锥分别叫三棱柱、四棱柱、五棱柱等。三棱柱又叫四面体。棱锥用表示顶点和底面的字母来表示。如用S—ABCD表示四棱柱。

3. 棱台

用一个平行与棱锥底面的平面去截棱锥,底面与截面之间的部分表示的多面体叫做棱台。原棱锥的底面和截面分别叫做棱台的下底面和上底面。同样有侧面、侧棱、顶点,三棱台、四棱台、五棱台等,同棱柱一样也用字母表示。

4. 圆柱

以矩形一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱,旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面。平行与轴的边旋转而成的曲面叫做圆柱的侧面。不垂直于轴的边都叫做圆柱侧面的母线(指垂直于底面的边)。

圆柱和棱柱统称为柱体。

5. 圆锥

以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。有轴,底面、侧面、母线(指旋转的直角三角形的斜边)。圆锥用字母表示顶点字母和底面圆心字母。圆锥和棱锥统称为椎体。

6. 圆台

用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台,有轴、底面、侧面、母线。用字母表示(上底面和下底面的两个圆心字母表示)。

棱台与圆台统称为台体。

7. 球

以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球。半圆的圆心叫做球的球心。半圆的半径叫做球的半径,半圆的直径叫做球的直径。用球心字母O 表示球,一般为“球O”。

空间向量知识点归纳总结归纳

空间向量知识点归纳总结 知识要点。 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫 做共线向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。 当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ 存在实数λ,使a ρ =λb ρ。 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在 实数,x y 使p xa yb =+r r r 。 5.空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在 一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序 实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6.空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示。 (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

内积空间的基本概念汇总

第四章 Hilbert 空间 一 内积空间的基本概念 设H 是域K 上的线性空间,对任意H y ,x ∈,有一个中K 数 ),(y x 与之对应,使得对任意H z ,y ,x ∈;K ∈α满足 1) 0)y ,x (≥;)y ,x (=0,当且仅当 0x =; 2) )y ,x (=_ __________)x ,y (; 3) )y ,x ()y ,x (αα=; 4) )z ,y x (+=)z ,x (+)z ,y (; 称)(,是H 上的一个内积,H 上定义了内积称为内积空间。 定理1.1设H 是内积空间,则对任意H y x ∈,有: |)y ,x (|2 )y ,y )(x ,x (≤。 设H 是内积空间,对任意H x ∈,命 ),(||||x x x = 则||||?是H 上的一个范数。 例 设H 是区间],[b a 上所有复值连续函数全体构成的线性空间,对任意H y x ∈,,定义 dt t y t x y x b a ?=________ )()(),( 则与],[2b a L 类似,), (y x 是一个内积,由内积产生的范数为 2 12 ) |)(|(||||?=b a dt t x x 上一个内积介不是Hilbert 空间。

定理 1.2 设H 是内积空间,则内积),(y x 是y x ,的连续函数,即时x x n →,y y n →,),(),(y x y x n n →。 定理1.3 设H 是内积空间,对任意H y x ∈,,有以下关系式成立, 1) 平行四边形法则: 2 || ||y x ++2 || ||y x -=2)||||||(||2 2 y x +; 2) 极化恒等式: ),(y x =4 1 (2 || ||y x +- 2 || ||y x -+ 2 || ||iy x i +- )||||2 iy x i - 定理1.4 设X 是赋范空间,如果范数满足平行四边形法则,则可在X 中定义一个内积,使得由它产生的范数正是X 中原来的范数。 二 正交性,正交系 1 正交性 设H 是内积空间,H y x ∈,,如果0),(=y x ,称x 与y 正交,记为y x ⊥。 设M 是H 的任意子集,如果H x ∈与M 中每一元正交,称x 与M 正交,记为M x ⊥;如果N M ,是H 中两个子集, 对于任意 ,M x ∈,N y ∈y x ⊥,称M 与 N 正交,记 N M ⊥。设M 是H 的子集,所有H 中与M 正交的元的全体

高中数学立体几何题型

第六讲 立体几何新题型 【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版. ①理解空间向量的概念,掌握空间向量的加法、减法和数乘. ②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 【例题解析】 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 典型例题 例1如图,正三棱柱111ABC A B C 的所有棱长都为2,D 为1CC 中点.

DIN 6700-1-2001铁道车辆及部件的焊接—第1部分:基本概念、基本规定

德国标准2001年3月 所协会(DIN)的同意。该标准由柏林Beuth出版社公司独家出售。

DIN 6700-1:2001-05 1 应用范围 该标准适用于铁道车辆和车辆部件生产和维护时金属材料的焊接。它就焊接工作的一般概念和基本原则做了规定。 该标准不适用于以下的铁道车辆组件或部件: -压力罐。 这里适用的规定有:压力罐条例(DruckbehV)、压力罐技术规定(TRB)以及DIN EN 286标准系列。 -运输危险品用的容器。 这里适用的规定有:含国际铁路危险货物运输规程的规定(RID)在内的铁路危险货物条例(GGVE)和罐车技术规定(TRT)。 -非危险货物的装卸采用压力方式,运输这种非危险物品所使用的装载容器。 这里适用的规定有:压力罐条例(DruckbehV)、压力罐技术规定(TRB)以及AD标准。 -蒸汽锅炉。 这里适用的规定有:蒸汽锅炉条例(DampfkV)、压力罐技术规定(TRB)以及AD 标准。 2 标准的引用 该标准包括其它指明日期或不指明日期的出版物的规定。正文中凡是引用了参见标准的地方都列出了相关的出版物。指明了日期时,则该出版物在此之后的种种修改或者修正只有通过修订或者修正补充之后方才成为该标准的组成部分。未指明日期则是指相关出版物的最新版本。 DIN 6700-2,铁道车辆和车辆部件的焊接-第2部分:部件类型、焊接企业的资格、一致性评定。 DIN 6700-3,铁道车辆和车辆部件的焊接-第3部分:设计规定(值)。 DIN 6700-4,铁道车辆和车辆部件的焊接-第4部分:操作规范。 DIN 6700-5,铁道车辆和车辆部件的焊接-第5部分:质量保证。 DIN 6700-6,铁道车辆和车辆部件的焊接-第6部分:材料、焊接添加剂、焊接方法和焊接技术设计资料。 DIN 8528-1,可焊接性、金属材料、概念。 DIN 25003,铁道车辆系统技术;概述、命名、定义。 DIN EN 287-1,焊工试验、熔焊-第1部分:钢。 DIN EN 287-2,焊工的审核,熔焊-第2部分:铝和铝合金。 DIN EN 288-1,试验和金属材料焊接方法的认可-第1部分:适用于熔焊的一般规则。 DIN EN 719,焊接管理-任务和责任。 DIN EN 729-2,焊接技术的质量要求;金属材料的熔焊-第2部分:整个质量要求。 DIN EN 1418,焊接人员:金属材料的全机械自动焊接操作人员的审核。 DIN EN 10204,金属产品;试验证明书的种类。 DIN EN 25817,钢材的电弧焊连接-评价组的非规律性判据。 DIN EN 30042,铝以及其适合焊接连接部位的电弧焊连接-评价组的非规律判据。 DIN EN 45014,适用于供应方一致性声明的一般规定。 DIN EN ISO 4063,焊接,和使用的工序-工序明细和顺序编号(ISO 4063:1998);德文版EN ISO 4063:2000

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

立体几何基本概念题

立体几何练习题 一、选择题(本大题共10小题,在每小题给出的四个选项中,选择一个符合题目要求的选项) 1.列命题是真命题的是( ) A.空间不同三点确定一个平面 B.空间两两相交的三条直线确定一个平面 C.四边形确定一个平面 D.和同一直线都相交的三条平行线在同一平面内 2.已知AB∥PQ,BC∥QR,∠ABC=30°,则∠PQR等于( ) A.30° B.30°或150° C.150° D.以上结论都不对 3.如右图,α∩β=l,A∈β,B∈β,AB∩l=D,C∈α,则平面ABC和平面α的交线是( ) A.直线AC B.直线BC C.直线AB D.直线CD 4.如图,点P,Q,R,S分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ与RS是异面直线的图是( ) 5.对“a,b是异面直线”的叙述,正确的是( ) ①a∩b=?且a不平行于b ②a?平面α,b?平面β且α∩β=?③a?平面α,b?平面α④不存在平面α,使a?平面α且b?平面α成立 A.①② B.①③ C.①④ D.③④ 6.右图是一个无盖的正方体盒子展开后的平面图,A、B、C是展开图上的三点,则在正方体盒子中,∠ABC的值为…( ) A.180° B.90° C.60° D.45° 7.在空间四边形ABCD中,M,N分别是AB,CD的中点,设BC+AD=2a,则MN与a的大小关系是( ) A.MN>a B.MN=a C.MN

8.如图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 、F 分别是CC 1、AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于( ) A. 510 B.5 15 C.54 D.32 9.空间有四点A,B,C,D,每两点的连线长都是2,动点P 在线段AB 上,动点Q 在线段CD 上,则 P,Q 两点之间的最小距离为( ) A.1 B. 2 3 C.2 D.3 1. 给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题: ①若不共面与则点m l m A A l m ,,,?=??αα; ②若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ③若m l m l //,//,//,//则βαβα; ④若.//,//,//,,,βαββαα则点m l A m l m l =??? 其中为假命题的是 A .① B .② C .③ D .④ 2.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题: ①若γα⊥,γβ⊥,则βα||;②若α?m ,α?n ,β||m ,β||n ,则βα||; ③若βα||,α?l ,则β||l ;④若l =βα ,m =γβ ,n =αγ ,γ||l ,则 n m ||其中真命题的个数是 A .1 B .2 C .3 D .4 3.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个 命题: ①若βαβα//,,则⊥⊥m m ; ②若βααβγα//,,则⊥⊥; ③若βαβα//,//,,则n m n m ??;

空间几何体基本概念

空间几何体 一、由实际物体抽象出来的空间图形叫空间几何体。 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面。相邻两个面的公共边叫做多面体的棱。棱与棱的公共点叫做多面体的顶点。 把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。如:圆柱、圆锥、球形等。 这条定直线叫做旋转体的轴。 1. 棱柱 一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 棱柱中互相平行的两个面叫做棱柱的底面,简称底。 其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱。侧面与底面的公共顶点叫做棱柱的顶点。 底面是三角形、四边形、五边形等的棱柱分别叫做三棱柱、四棱柱、五棱柱等。用表示底面各顶点的字母表示棱柱。 2.棱锥 一般地,有一个面是多边形,其余各面都是有一个公共点的三角形,由这些面所围成的多面体叫做棱锥。这个多边形面叫做棱锥的底面或底。有公共顶点的各个三角形面叫做棱锥的侧面。各侧面的公共顶点叫做棱锥的顶点。相邻侧面的公共边叫做棱锥的侧棱。底面是三角形、四边形、五边形等的棱锥分别叫三棱柱、四棱柱、五棱柱等。三棱柱又叫四面体。棱锥用表示顶点和底面的字母来表示。如用S—ABCD表示四棱柱。 3. 棱台 用一个平行与棱锥底面的平面去截棱锥,底面与截面之间的部分表示的多面体叫做棱台。原棱锥的底面和截面分别叫做棱台的下底面和上底面。同样有侧面、侧棱、顶点,三棱台、四棱台、五棱台等,同棱柱一样也用字母表示。 4. 圆柱 以矩形一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱,旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面。平行与轴的边旋转而成的曲面叫做圆柱的侧面。不垂直于轴的边都叫做圆柱侧面的母线(指垂直于底面的边)。 圆柱和棱柱统称为柱体。 5. 圆锥 以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。有轴,底面、侧面、母线(指旋转的直角三角形的斜边)。圆锥用字母表示顶点字母和底面圆心字母。圆锥和棱锥统称为椎体。 6. 圆台 用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台,有轴、底面、侧面、母线。用字母表示(上底面和下底面的两个圆心字母表示)。 棱台与圆台统称为台体。 7. 球 以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球。半圆的圆心叫做球的球心。半圆的半径叫做球的半径,半圆的直径叫做球的直径。用球心字母O 表示球,一般为“球O”。

必修2立体几何复习(知识点+经典习题)

必修二立体几何知识点与复习题 一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平 行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 2、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 3、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 4、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 5、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 1、定义:成? 90角 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角,则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、二面角的平面角为? 90 2、在一个平面内垂直于交线的直线必垂直于另一个平面 3、相交平面同垂直于第三个平面,则交线垂直于第三个平面 九、各种角的范围 1、异面直线所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 2、直线与平面所成的角的取值范围是:? ≤ ≤ ?90 0θ[]? ?90 , 3、斜线与平面所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 4、二面角的大小用它的平面角来度量;取值范围是:? ≤ < ?180 0θ(]? ?180 , 十、三角形的心 1、内心:内切圆的圆心,角平分线的交点 2、外心:外接圆的圆心,垂直平分线的交点 3、重心:中线的交点 4、垂心:高的交点 考点一,几何体的概念与性质 【基础训练】 1.判定下面的说法是否正确: (1)有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱. (2)有两个面平行,其余各面为梯形的几何体叫棱台. 2.下列说法不正确的是() A.空间中,一组对边平行且相等的四边形一定是平行四边形。 B.同一平面的两条垂线一定共面。 C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内。 D.过一条直线有且只有一个平面与已知平面垂直。 【高考链接】 1.设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行; (3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

:空间距离的各种计算

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23 ,∴CF =FD =2 1,∠EFC =90°,EF = 2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. 例1题图 例2题图

最新向量空间的定义教案(50分钟)

向量空间的定义教案 (50分钟)

“向量空间的定义”教案(50分钟) I 教学目的 1、使学生初步掌握向量空间的概念。 2、使学生初步了解公理化方法的含义。 3、使学生初步尝试现代数学研究问题的特点。 II 教学重点 向量空间的概念。 Ⅲ 教学方式 既教知识,又教思想方法。 Ⅳ 教学过程 第六章 向量空间 §6.1 定义和例子 一、向量空间概念产生的背景 1)αββα+=+ 数 a+b, ab; 2))()(γβαγβα++=++ 几何向量 αβα a ,+; 3)αα=+0 多项式 f(x)+g(x),af(x); 4)0='+αα 函数 f(x)+g(x),af(x); 5)βαβαa a a +=+)( 矩阵 A+B ,aA; 6)αααb a b a +=+)( …… 7))()(ααb a ab = 8)αα=1 二、向量空间的定义 定义1 令F 是一个数域,F 中的元素用小写拉丁字母a,b,c,…来表示。令V 是一个非空集合,V 中元素用小写希腊字母 ,,,γβα来表示。把V 中的元素叫做向量,而把F 中的元素叫做数(标)量,如果下列条件被满足,就称V 是F 上的向量空间: 1 在V 中定义了一个加法,对于V 中任意两个向量βα,,有唯一确定的向量与它们对应,这个向量叫做βα与的和,并且记作βα+。

即若,,V V ∈∈βα则V ∈+→βαβα),(。 2 有一个数量与向量的乘法,对于F 中每一个数a 和v 中每一个向量α有v 中唯一确定的向量与它们对应,这个向量叫做a 与α的积,并且记作αa 。 即V a a V F a ∈→∈∈ααα),(,,。 3 向量的加法和数与向量的乘法满足下列算律: 1)αββα+=+; 2))(γβαγβα++=++; 3)在V 中存在一个零向量,记作0,它具有以下性质:对于V 中每一个向量 α,都有αα=+0; 4)对于V 中每一向量α,在V 中存在一个向量α',使得0=+'αα,这样的α'叫做α的负向量。 5)βαβαa a a +=+)(; 6)ba a b a +=+αα)(; 7))()(ααb a ab =; 8)αα=1。 注1:定义1称为公理化定义,以公理化定义为基础进行研究的方法称为公理化方法。 公理化方法???形式以理化方法 实质公理化方法 注2:数域F 称为基础域。 三、向量空间的例子 例1 解析几何里,V 2或V 3对于向量的加法和实数与向量的乘法来说作成实数域上的向量空间。 例2 M mn (F )对于矩阵的加法和数乘来说作成F 上的向量空间。 特别,},,2,1,|),,,{(21n i F a a a a F i n n =∈=关于矩阵加法和数乘构成的F 上的向量空间称为F 上的n 元列空间。

空间句法基础概念

连接值、控制值、深度值和局部集成度为局部变量——描述局部空间的结构特征; 整体集成度和全局深度是整体变量——描述整体空间的结构特征; 可理解度则是描述局部变量与整体变量之间相关度的变量 连接值(connectivity value) 系统中与某一个节点直接相连的节点个数为该节点的连接值。某个空间的连接值越高,则说明此空间与周围空间联系密切,对周围空间的影响力越强,空间渗透性越好。 控制值(control value) 假设系统中每个节点的权重都是1,那么a节点从相邻b节点分配到权重为 [1/(b的连接值)],即与a相连的节点的连接值倒数的和就是a节点的控制值; 反映空间与空间之间的相互控制关系。 连接值与控制值都是表示某一空间和与之直接相连空间的关系:连接值是该节点本身有多少其他节点与之相连接,而控制值是与节点相连的其他节点的连接值的倒数和; 所以连接值高的节点,其控制值不一定高。因为有的节点可能本身连接值较高,但与其连接的节点的连接值也很高,必然会导致其控制值较低。 深度值(depth value) 表述的是从一个空间到达另一个空间的便捷程度;句法中规定两个相邻节点之间的拓扑距离为一步; 任意两个节点之间的最短与拓扑距离,即空间转换的次数表示为两个节点之间的深度值; 深度值表达的是节点在拓扑意义上的可达性,而不是指实际距离,即节点在空间系统中的便捷程度。 平均深度值 系统中某个节点到其他所有节点的最少步数的平均值,即为该,公式为[MD=(∑深度*该深度上的节点个数)/(节点总数-1)]; 全局深度值 各节点的平均深度值之和,通常全局深度值越小表示该空间位于系统中较便捷的位置,数值越高代表空间越深邃。 局部深度值 通常局部深度值是指三步范围内的深度值,表示系统中的某个节点到达相邻的三步空间节点的便捷程度。与此相对的是平均深度值与全局深度值——整体深度值。

1立体几何的基本概念.

高中数学总复习 立体几何的基本概念 【知识要点】 【基本概念】 一.空间几何体的结构特征 【棱柱、棱锥、棱台和多面体】 : 1.棱柱是由满足下列三个条件的面围成的几何体: ①有两个面互相平行; ②其余各面都是四边形; ③每相邻两个四边形的公共边都互相平行; 棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等. 棱柱性质: ①棱柱的各个侧面都是平行四边形,所有的侧棱都相等; ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等 .. 多边形 . ③过棱柱不相邻的两条侧棱的截面都是平行四边形 . 2.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质: ①底面是多边形;

②侧面是以棱锥的顶点为公共点的三角形; ③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方. 3.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分. 由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥. 4.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体. 【圆柱、圆锥、圆台、球】 : 分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球 圆柱、圆锥和圆台的性质主要有: ①平行于底面的截面都是圆; ②过轴的截面(轴截面分别是全等的矩形、等腰三角形、等腰梯形; ③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥. 附表: 1. 几种常凸多面体间的关系

《机械安全_基本概念与设计通则_第1部分:基本术语和方法》GB

机械安全基本概念与设计通则第1部分:基本术语和方法 GB/T15706.1-2007 机械安全基本概念与设计通则第1部分:基本术语和方法 Safety of machinery-Basic concepts,general principles for design-Part1:Basic terminology, methodology 目次 前言 引言 1 范围 2 规范性引用文件 3 术语和定义 4 设计机械时需要考虑的危险 5 减小风险的策略 附录A(资料性附录) 机器的图解表示 用于GB/T 15706的专用术语和表述的英中文对照索引 参考文献 前言 GB/T 15706《机械安全基本概念与设计通则》由两部分组成: ——第1部分:基本术语和方法; ——第2部分:技术原则。 本部分为GB/T 15706的第l部分。 本部分等同采用国际标准ISO12100-1:2003《机械安全基本概念与设计通则第1部分:基本术语和方法》(英文版),并按照我国标准的编写规则GB/T 1.1-2000做了编辑性修改。 本部分与ISO12100-1:2003的不同为:将标准正文后面的英法德三种文字对照的索引改为英中两种文字对照的索引。 本部分代替GB/T 15706.1-1995《机械安全基本概念与设计通则第1部分:基本术语、方法学》。 本部分由全国机械安全标准化技术委员会(SAC/TC 208)提出并归口。 本部分负责起草单位:机械科学研究总院中机生产力促进中心。 本部分参加起草单位:长春试验机研究所、南京食品包装机械研究所、吉林安全科学技术研究院、中国食品和包装机械总公司、中联认证中心、广东金方圆安全技术检测有限公司。 本部分主要起草人:聂北刚、李勤、王学智、居荣华、肖建民、宁燕、王国扣、隰永才、张晓飞、富锐、程红兵、孟宪卫、赵茂程。 本部分所代替标准的历次版本发布情况为: ——GB/T 15706.1-1995。 引言 GB/T 15706的首要目的是为设计者提供总体框架和指南,使其能够设计出在预定使用范围内具备安全性的机器。同时亦为标准制定者提供标准制定的策略。 机械安全的概念是指在风险已经被充分减小的机器的寿命周期内,机器执行其预定功能的能力。 本部分是机械安全系列标准的基础标准。该系列标准的结构为: ——A类标准(基础安全标准),给出适用于所有机械的基本概念、设计原则和一般特征。 ——B类标准(通用安全标准),涉及机械的一种安全特征或使用范围较宽的一类安全防护装置:

空间向量知识点总结.doc

空间向量与立体几何知识点总结 一、基本概念 : 1、空间向量: 2、相反向量: 3 、相等向量: 4、共线向量: 5 、共面向量: 6、方向向量 : 7 、法向量 8、空间向量基本定理: 二、空间向量的坐标运算: 1.向量的直角坐标运算 r r 设 a =(a1,a2 , a3 ) , b = (b1 , b2 , b3 ) 则 (1) r r b1, a2 b2, a3 b3 ) ;(2) r r a +b=(a1 a -b=( a1 (3) r a2 , a3 ) (λ∈R);(4) r r λ a =( a1, a · b = a1b1 2.设 A( x1, y1, z1), B( x2, y2, z2),则b1 , a2 b2 , a3b3 ) ;a2b2a3b3; uuur uuur uuur AB OB OA = (x2x1 , y2y1 , z2z1 ) . r r 3、设a ( x1 , y1, z1 ) , b ( x2, y2 , z2 ) ,则 r r r r r r r r r r a P b a b(b 0) ; a b a b 0 x1 x2 y1 y2 z1z2 0 . 4. 夹角公式 r r r r a1b1 a2 b2 a3b3 . 设 a =(a1,a2, a3),b=(b1, b2, b3),则 cos a,b a12 a22 a32 b12 b22 b32 5.异面直线所成角 r r r r | a b | | x1x2 y1 y2 z1 z2 | cos | cos a,b . |= r r x12 y12 z12 x22 y22 z22 | a | | b | 6.平面外一点p 到平面的距离 n r 已知 AB 为平面的一条斜线, n 为平面的一个法 α

第一章、生活空间的基本概念及发展

第一章生活空间的基本概念及发展 生活空间和人们的生活联系紧密,是人们基本生活要素之一。随社会经济的发展,生活空间由最原始的天然岩洞演变到现在种类繁多的住宅样式。无论生活空间的形式将怎样的变化和发展,它的基本内涵是不变的:它是人类的住所。 第一节生活空间的基本概念 一、生活空间的定义: 1、定义:生活空间是一种以家庭为对象的居住活动为中心的建筑环境。 (1)、狭义地说,它是家庭生活方式的体现。 案例A:农村生活下的生活空间: a、生产方式:农业,养殖业 b、生活空间特点:农村用地状况决定其相对宽敞,自给自足的生产方式决定其周边环境可以相对封闭。 案例B:游牧生活下的生活空间: a、生产方式:畜牧业 b、生活空间特点:畜牧业生产决定其应具有活动性以便于追随牧草, 活动性决定其应结构简单,拆装方便,材料轻便。 案例C:城市生活下的生活空间: a、生产方式:工业或商业 b、生活空间特点:城市用地状况决定其相对密集,生产方式要求其交通发达并信息畅通。 (2)、广义地说,它是社会文明的表现。 案例A:封建社会时期的生活空间: a、封闭:独门独院,→封建意识形态的体现 b、等级分明:正房与厢房,→封建伦理道德思想的体现 案例B:生活空间的层级关系: 家庭(单个生活空间)→小区(生活空间的集合)→社区(小区的组团)→城市(社区的串联)

二、人们对生活空间的认识: 1、中国古代人们认为: “君子之营宫室,宗庙为先,廊库次之,居室为后”。 说明中国古代对生活空间以宗法为重心,以农耕为根本的社会居住法则,兼顾精神与物质要素。 2、西方古罗马帝国建筑家波里奥认为: “所有生活皆需具备实用、坚固、愉快三个要素。” 两千年前就已在实质上把握了功能、结构和精神价值。 3、现代建筑设计家赖特认为: “功能决定形式”,生活空间的实质存在于内部空间,它的外观形式也应由内部空间来决定。 生活空间的结构方法是表现美的基础。 生活空间建地的地形特色是生活本身特色的起点。 生活空间的实用目标与设计形式的统一,方能导致和谐。 4、勒?柯布西耶则认为: “居室是居住的机器,”生活空间设计需像机器设计一样精密正确。 生活空间设计不仅需考虑生活上的直接实际需要,且需从更广泛的角度去研究和解决人的各种需求,生活空间的美植根在人类的需要之中。 第二节生活空间的发展历程 室内设计是人类创造并美化自己生存环境的活动之一。确切地讲,应称之为室内环境设计。生活空间室内设计的发展大致可以分为早期、中期和当前三个阶段。 一、早期阶段(原始社会至奴隶社会中期) 早期阶段人类赖以遮风蔽雨的居住空间大都是天然山洞、坑穴或者是借自然林木搭起来的“窝棚”。这些天然形成的内部空间毕竟太不舒适,人们总是想把环境改造一番,以利于生存。人类早期作品与后来的某些矫揉造作的设计相比,其单纯、朴实的艺术形象反倒有一种魅力,并不时激发起我们创作的灵感。 该时期特点如下: 生产技术落后→解决技术能力有限→技术相对简陋↘↗穴居窑洞及山洞生产能力不足→物质财富有限→满足基本功能要求→形式→巢居干栏

空间向量的基本运算

第六节 空间向量 1. 空间向量的概念:在空间,我们把具有 和 的量叫做向量。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线 或 ,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ, 使a = 。 4. 共面向量 (1)定义:一般地,能平移到同一 内的向量叫做共面向量。 说明:空间任意的两向量都是 的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y ,使 。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使 。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个 的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作

高三立体几何专题复习解读

高考立体几何专题复习 一.考试要求: (1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。 (2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)。 (3)了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。 (4)了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。 (5)会用反证法证明简单的问题。 (6)了解多面体的概念,了解凸多面体的概念。 (7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。 (8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。 (9)了解正多面体的概念,了解多面体的欧拉公式。 (10)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。 二.复习目标: 1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力. 3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力. 4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力. 5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力. 三.教学过程: (Ⅰ)基础知识详析 重庆高考立体几何试题一般共有4道(选择、填空题1--2道, 解答题1道), 共计总分20分左右,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.

相关主题
文本预览
相关文档 最新文档