当前位置:文档之家› 克鲁斯卡尔算法实验报告

克鲁斯卡尔算法实验报告

克鲁斯卡尔算法实验报告
克鲁斯卡尔算法实验报告

实验报告

实验原理:

Kruskal 算法是一种按照图中边的权值递增的顺序构造最小生成树的方法。其基本思想是:设无向连通网为G=(V,E),令G 的最小生成树为T,其初态为T=(V,{}),即开始时,最小生成树T 由图G 中的n 个顶点构成,顶点之间没有一条边,这样T 中各顶点各自构成一个连通分量。然后,按照边的权值由小到大的顺序,考察G 的边集E 中的各条边。若被考察的边的两个顶点属于T 的两个不同的连通分量,则将此边作为最小生成树的边加入到T 中,同时把两个连通分量连接为一个连通分量;若被考察边的两个顶点属于同一个连通分量,则舍去此边,以免造成回路,如此下去,当T 中的连通分量个数为1 时,此连通分量便为G 的一棵最小生成树。

如教材153页的图4.21(a)所示,按照Kruskal 方法构造最小生成树的过程如图 4.21 所示。在构造过程中,按照网中边的权值由小到大的顺序,不断选取当前未被选取的边集中权值最小的边。依据生成树的概念,n 个结点的生成树,有n-1 条边,故反复上述过程,直到选取了n-1 条边为止,就构成了一棵最小生成树。

实验目的:

本实验通过实现最小生成树的算法,使学生理解图的数据结构存储表示,并能理解最小生成树Kruskal 算法。通过练习,加强对算法的理解,提高编程能力。

实验内容:

(1)假定每对顶点表示图的一条边,每条边对应一个权值;

(2)输入每条边的顶点和权值;

(3)输入每条边后,计算出最小生成树;

(4)打印最小生成树边的顶点及权值。

实验器材(设备、元器件):

PC机一台,装有C语言集成开发环境。

数据结构与程序:

#include

#include

#include

using namespace std;

#define X 105

typedef struct Edge

{

int w;

int x, y;

} Edge; //储存边的struct,并储存边两端的结点

class GraphNode

{

public:

int data;

int father;

int child;

} GraphNode[X]; //储存点信息的并查集类(点的值,父结点,子结点)Edge edge[X*X];

bool comp(const Edge, const Edge);

void update(int);

int main()

{

int node_num;

int sum_weight = 0;

FILE *in = fopen("C:\\Users\\瑞奇\\Desktop\\编程实验\\数据结构实验\\FileTemp\\in.txt", "r");

cout << "Reading data from file..." << endl << endl;

//cout << "Please input the total amount of nodes in this Graph: ";

//cin >> node_num;

fscanf(in, "%d", &node_num);

//cout << "Please input the data of each node: " << endl;

for(int i = 1;i <= node_num;i++)

{

//cin >> GraphNode[i].data;

fscanf(in, "%d", &GraphNode[i].data);

GraphNode[i].father = GraphNode[i].child = i;

} //初始化点集

//cout << "Please input the relation between nodes in this format and end with (0 0 0):" << endl << "(first_node second_node egde_weight)" << endl;

int x, y, w, tmp_cnt = 1;

//while(cin >> x >> y >> w && w)

while(fscanf(in, "%d%d%d", &x, &y, &w) != EOF && w)

edge[tmp_cnt].w = w, edge[tmp_cnt].x = x, edge[tmp_cnt++].y = y;

fclose(in);

sort(edge+1, edge+tmp_cnt, comp); //对边权进行排序

cout << "The MinSpanTree contains following edges: " << endl << endl;

for(int i = 1;i <= tmp_cnt;i++) //循环找最小边

if(GraphNode[edge[i].x].father != GraphNode[edge[i].y].father)

{

int n = edge[i].x;

int m = n;

if(GraphNode[m].father != m) //使用并查集对边是否可用进行判断

{

m = GraphNode[m].father;

GraphNode[m].father = GraphNode[edge[i].y].father;

}

GraphNode[edge[i].x].father = GraphNode[edge[i].y].father;

GraphNode[edge[i].y].child = GraphNode[edge[i].x].child;

while(GraphNode[n].child != n)

n = GraphNode[n].child;

update(n); //在合并点集后对并查集进行更新

sum_weight += edge[i].w; //计算总权

cout << "\t" << "The edge between " << GraphNode[edge[i].x].data << " & " << GraphNode[edge[i].y].data << " with the weight " << edge[i].w << endl;

}

cout << endl << "And the total weight of the MinSpanTree add up to: " << sum_weight << endl;

return 0;

}

bool comp(const Edge a, const Edge b)

{

return a.w < b.w;

}

void update(int n)

{

if(GraphNode[n].father == n)

return;

GraphNode[GraphNode[n].father].child = GraphNode[n].child;

//更新孩子结点update(GraphNode[n].father); //递归更新

GraphNode[n].father = GraphNode[GraphNode[n].father].father;

//更新父结点

}

程序运行结果:

运行程序,程序读取文件,获取文件中关于图的信息:结点数,结点值,结点间边权。

然后使用Kruskal算法对录入信息进行处理:

1.对边权排序

2.取最小权边,若边的端结点不在同一集合众,则使边的端结点加入集合并删除该边;若边的端结点本来就在同一集合中,直接删除该边

3.循环执行步骤2,直到集合中包含所有结点和结点数-1条边

输入为:

6

1 2 3 4 5 6

1 2 6

1 3 1

1 4 5

2 3 5

2 5 3

3 4 5

3 5 6

3 6 4

4 6 2

5 6 6

程序运行结果如下图:

实验结论:

Kruskal算法其实是一种贪心算法,每次选取符合条件的边,加入边集(此程序中直接输出)。直到所有结点和最少边全部包含在同一集合中,算法结束。

总结及心得体会:

在使用并查集的时候,注意在合并集合后要更新并查集的父结点和子结点。

其实Kruskal算法的复杂度为O(E^2),其复杂度和边条数有关,和结点数无关,所以适用于稀疏图。

蒙特卡罗算法的简单应用

一、蒙特卡洛算法 1、含义的理解 以概率和统计理论方法为基础的一种计算方法。也称统计模拟方法,是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法,它是将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。 2、算法实例 在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi 。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。只要能求出扇形面积S1在正方形面积S 中占的比例K=S1/S 就立即能得到S1,从而得到Pi 的值。怎样求出扇形面积在正方形面积中占的比例K 呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m 与所投点的总数n 的比m/n 作为k 的近似值。P 落在扇形内的充要条件是 221x y +≤ 。 已知:K= 1s s ,K ≈m n ,s=1,s1=4P i ,求Pi 。 由1 s m s n ≈,知s1≈*m s n =m n , 而s1=4P i ,则Pi=*4m n 程序: /* 利用蒙特卡洛算法近似求圆周率Pi*/ /*程序使用:VC++6.0 */ #include #include #include #define COUNT 800 /*循环取样次数,每次取样范围依次变大*/ void main() { double x,y; int num=0; int i; for(i=0;i

x=rand()*1.0/RAND_MAX;/*RAND_MAX=32767,包含在中*/ y=rand()*1.0/RAND_MAX; i f((x*x+y*y)<=1) num++; /*统计落在四分之一圆之内的点数*/ } printf("Pi值等于:%f\n",num*4.0/COUNT); printf("RAND_MAX=%d\n",RAND_MAX); 3、应用的范围 蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运 计算、量子热力学计算、空气动力学计算)等领域应用广泛。 4、参考书籍 [1]蒙特卡罗方法及其在粒子输运问题中的应用[2]蒙特卡罗方法引论

数据结构课后作业答案

1. 画出下图所示的无向图的邻接表。列出深度优先和广度优先搜索 遍历该图所的顶点序列和边的序列。 邻接表: 深度优先搜索:顶点序列:1 -2 -3- 4- 5 -6 边的序列:(1,2) (2,3) (3,4) (4,5) (5,6) 广度优先搜索:顶点序列:1 -2 -3 -6 -5-4 边的序列:(1,2) (1,3) (1,6) (1,5) (5,4) 2 已知以二维数组表示的图的邻接矩阵如下图所示。试分别画出自顶点1出发进 行遍历所得的深度优先生成树和广度优先生成树。 1 2 3 4 5 6 7 8 9 10 1 0 0 0 0 0 0 1 0 1 0 2 0 0 1 0 0 0 1 0 0 0 3 0 0 0 1 0 0 0 1 0 0 4 0 0 0 0 1 0 0 0 1 0 5 0 0 0 0 0 1 0 0 0 1 6 1 1 0 0 0 0 0 0 0 0 7 0 0 1 0 0 0 0 0 0 1 1 5 2 4 6 3

8 1 0 0 1 0 0 0 0 1 0 9 0 0 0 0 1 0 1 0 0 1 10 1 0 0 0 0 1 0 0 0 0 解:邻接矩阵所表示的图如下: 自顶点1出发进行遍历所得的深度优先生成树: 自顶点1出发进行遍历所得的广度优先生成树:

3 请对下图的无向带权图 (1)写出它的邻接矩阵,并按普里母算法求其最小生成树。 (2)写出它的邻接表,并按克鲁斯卡尔算法求其最小生成树。 解:(1) 邻接矩阵: ∞ 4 3 ∞ ∞ ∞ ∞ ∞ 4 ∞ 5 5 9 ∞ ∞ ∞ 3 5 ∞ 5 ∞ ∞ ∞ 5 ∞ 5 5 ∞ 7 6 5 4 ∞ 9 ∞ 7 ∞ 3 ∞ ∞ ∞ ∞ ∞ 6 3 ∞ 2 ∞ ∞ ∞ ∞ 5 ∞ 2 ∞ 6 ∞ ∞ 5 4 ∞ ∞ 6 ∞ 普里母算法求得的最小生成树: 7 5 9 6 4 5 6 3 5 5 3 4 e d 2 5 c b h f g a

克鲁斯卡尔算法求最小生成树

目录 1.需求分析 (2) 1.1 设计题目 (2) 1.2 设计任务及要求 (2) 1.3课程设计思想 (2) 1.4 程序运行流程 (2) 1.5软硬件运行环境及开发工具 (2) 2.概要设计 (2) 2.1流程图 (2) 2.2抽象数据类型MFSet的定义 (3) 2.3主程序 (4) 2.4抽象数据类型图的定义 (4) 2.5抽象数据类型树的定义 (5) 3.详细设计 (7) 3.1程序 (7) 4.调试与操作说明 (10) 4.1测试结果 (10) 4.2调试分析 (11) 5.课程设计总结与体会 (11) 5.1总结 (11) 5.2体会 (11) 6. 致谢 (12) 7. 参考文献 (12)

1.需求分析 1.1 设计题目:最小生成树 1.2 设计任务及要求:任意创建一个图,利用克鲁斯卡尔算法,求出该图的最小生成树。 1.3 课程设计思想:Kruskal算法采用了最短边策略(设G=(V,E)是一个无向连通网,令T=(U,TE)是G的最小生成树。最短边策略从TE={}开始,每一次贪心选择都是在边集E中选择最短边(u,v),如果边(u,v)加入集合TE中不产生回路,则将边(u,v)加入边集TE中,并将它在集合E中删去。),它使生成树以一种任意的方式生长,先让森林中的树木随意生长,每生长一次就将两棵树合并,最后合并成一棵树。 1.4程序运行流程: 1)提示输入顶点数目; 2)接受输入,按照项目要求产生边权值的随机矩阵;然后求解最小生成树; 3)输出最小生成树并且退出; 1.5 软硬件运行环境及开发工具:VC 2.概要设计 2.1流程图

图1流程图 2.2抽象数据类型MFSet的定义: ADT MFSet { 数据对象:若设S是MFSet型的集合,则它由n(n>0)个子集Si(i = 1,2...,n)构成,每个子集的成员代表在这个子集中的城市。 数据关系:S1 U S2 U S3 U... U Sn = S, Si包含于S(i = 1,2,...n) Init (n): 初始化集合,构造n个集合,每个集合都是单成员,根是其本身。rank 数组初始化0 Find(x):查找x所在集合的代表元素。即查找根,确定x所在的集合,并路径压缩。 Merge(x, y):检查x与y是否在同一个集合,如果在同一个集合则返回假,否则按秩合并这两个集合并返回真。 }

北航卡尔曼滤波课程-捷联惯导静基座初始对准实验

卡尔曼滤波实验报告 捷联惯导静基座初始对准实验 一、实验目的 ①掌握捷联惯导的构成和基本工作原理; ②掌握捷联惯导静基座对准的基本工作原理; ③了解捷联惯导静基座对准时的每个系统状态的可观测性; ④了解双位置对准时系统状态的可观测性的变化。 二、实验原理 选取状态变量为:[]T E N E N U x y x y z X V V δδεεε=ψψψ??,其

中导航坐标系选为东北天坐标系,E V δ为东向速度误差,N V δ为北向速度误差,E ψ为东向姿态误差角,N ψ为北向姿态误差角,U ψ为天向姿态误差角,x ?为东向加速度偏置,y ?为北向加速度偏置,x ε为东向陀螺漂移,y ε为北向陀螺漂移,z ε为天向陀螺漂移。则系统的状态模型为: X AX W =+ (1) 其中, 1112212211 12 1321222331323302sin 000002sin 000000000sin cos 0000sin 000000cos 0000000000000000000000000000000000000000000000000000 0L g C C L g C C L L C C C L C C C L C C C A Ω-? ? ??-Ω????Ω-Ω? ?-Ω????Ω=? ?????? ?????????? ? [00000]E N E N U T V V W W W W W W δδψψψ=,E D V W W δψ 为零均值高斯 白噪声,分别为加速度计误差和陀螺漂移的噪声成分,Ω为地球自转角速度,ij C 为姿态矩 阵n b C 中的元素,L 为当地纬度。 量测量选取两个水平速度误差:[ ]T E N Z V V δδ=,则量测方程为: 10000000000100000000E E N N V X V δηδη???? ??=+???????????? (2) 即Z HX η=+ 其中,H 为量测矩阵,[]T E N ηηη=为量测方程的随机噪声状态矢量,为零均值高 斯白噪声。 要利用基本卡尔曼滤波方程进行状态估计,需要将状态方程和量测方程进行离散化。 系统转移矩阵为: 2323/1111102!3!! n n k k k k k k n T T T I TA A A A n ∞ -----=Φ=++++=∑ (3)

浅析蒙特卡洛方法原理及应用

浅析蒙特卡洛方法原理及应用 于希明 (英才学院1236103班测控技术与仪器专业6120110304) 摘要:本文概述了蒙特卡洛方法产生的历史及基本原理,介绍了蒙特卡洛方法的最初应用——蒲丰投针问题求圆周率,并介绍了蒙特卡洛方法在数学及生活中的一些简单应用,最后总结了蒙特卡洛方法的特点。 关键词:蒙特卡洛方法蒲丰投针生活应用 蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。它是以概率统计理论为基础, 依据大数定律( 样本均值代替总体均值) , 利用电子计算机数字模拟技术, 解决一些很难直接用数学运算求解或用其他方法不能解决的复杂问题的一种近似计算法。蒙特卡洛方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 一、蒙特卡洛方法的产生及原理 蒙特卡洛方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡洛方法就已经存在。1777年,法国数学家蒲丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。这被认为是蒙特卡洛方法的起源。 其基本原理如下:由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。蒙特卡洛法正是基于此思路进行分析的。 设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。首先根据各随机变量的相应分布,产生N组随机数x1,x2,…,xk值,计算功能函数值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标。 二、蒲丰投针问题 作为蒙特卡洛方法的最初应用, 是解决蒲丰投针问题。1777 年, 法国数学家蒲丰提出利用投针实验求解圆周率的问题。设平面上等距离( 如为2a) 画有一些平行线, 将一根长度为2l( l< a) 的针任意投掷到平面上, 针与任一平行线相交的频率为p 。针的位置可以用针的中心坐标x 和针与平行线的夹角θ来决定。任意方向投针, 便意味着x与θ可以任意取一值, 只是0≤x ≤a, 0≤θ≤π。那么, 投针与任意平行线相交的条件为x ≤ l sinθ。相交频率p 便可用下式求

(二)作业

说明: 上机作业3道,10分 平时作业13道,10分 上机时间:第4、6、7周周六6:00-9:00 综合楼机房412 交上机作业时间:第5、7、8周周五截止。 上机作业格式:主题输入学号+姓名+第X次上机作业 平时作业:必须提交手写板 10月7日提交1-10题 10月31日提交11-13题 所有作业请按时交纳,不收补交作业。 1.设计一个非递归算法,从一棵二叉树中查找出所有结点的最大值并返回。 2.设树采用定长结点的多重链表表示,设计算法实现树的按层次遍历。 3.阅读下列算法,若有错,改正之。 BiTree InSucc(BiTree q) { // 已知q是指向中序线索二叉树上某个结点的指针, // 本函数返回指向*q的后继的指针。 r = q->rchild; if (r -> rtag==0 ) while (!r -> rtag ) r = r->rchild return r; } 4.写出二叉树的先序遍历和后序遍历的非递归算法。 5.设计一个非递归算法,计算树的叶子结点数。(要求说明树的存储方式) 6.已知带权无向图如图所示: (1). 根据普里姆(Prim)算法,设计算法,求它的从顶点a出发的最小生成树; (2). 根据克鲁斯卡尔(Kruskal)算法,求该图的最小生成树,给出添加边次序。 7.已知带权有向图如图所示: (1). 画出该图的邻接矩阵存储结构; (2). 求从顶点a到其余各顶点之间的最短路经及最短路经长度,并给出计算过程。

8.列出图中全部可能的拓扑有序序列,并指出应用7.5.1节中算法Topological Sort算法求得的是哪一个序列? 9.对下图所示AOE网络,计算各活动弧的e(ai)和l(ai)函数值,各事件(顶点)的ve(vi)和vl(vi)函数值,列出各条关键路径。 10.试利用Floyd算法求图中所示有向图中各顶点之间的最短路径。(求解过程)

Kruskal算法求最小生成树

荆楚理工学院 课程设计成果 学院:_______计算机工程学院__________ 班级: 14计算机科学与技术一班 学生姓名: 志杰学号: 2014407020137 设计地点(单位)_____B5101_________ ____________ 设计题目:克鲁斯卡尔算法求最小生成树__________________________________ 完成日期:2015年1月6日 指导教师评语: ______________ _________________________ ___________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________ __________ _ 成绩(五级记分制):_____ _ __________ 教师签名:__________ _______________

注:介于A和C之间为B级,低于C为D级和E级。按各项指标打分后,总分在90~100为优,80~89为良,70~79为中,60~69为及格,60分以下为不及格。

目录 1 需求分析 (1) 1.1系统目标 (1) 1.2主体功能 (1) 1.3开发环境 (1) 2 概要设计 (1) 2.1功能模块划分 (1) 2.2 系统流程图 (2) 3 详细设计 (3) 3.1 数据结构 (3) 3.2 模块设计 (3) 4测试 (3) 4.1 测试数据 (3) 4.2测试分析 (4) 5总结与体会 (6) 5.1总结: (6) 5.2体会: (6) 参考文献 (7) 附录全部代码 (8)

蒙特卡罗 算法

1、蒙特卡罗定位 足球机器人中自定位方法是由Fox提出的蒙特卡罗定位。这是一种概率方法,把足球机器人当前位置看成许多粒子的密度模型。每个粒子可以看成机器人在此位置定位的假设。在多数应用中,蒙特卡罗定位用在带有距离传感器的机器人设备上,如激光扫描声纳传感器。只有一些方法,视觉用于自定位。在足球机器人自定位有些不同,因为机器人占的面积相对比较小,但是机器人所在位置的面积必须相当准确的确定,以便允许同组不同机器人交流有关场地物体信息和遵守比赛规则。这种定位方法分为如下步骤,首先所有粒子按照一起那机器人的活动的运动模型移动。概率pi取决于在感知模型的基础上所有粒子在当前传感器上的读数。基于这些概率,就提出了所谓的重采样,将更多粒子移向很高概率的采样位置。概率平均分布的确定用来表示当前机器人的位置的最优估计。最后返回开始。 2、蒙塔卡罗 基本思想 当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。 工作过程 蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量

普里姆和克鲁斯卡尔算法

前言 从学习《数据结构》这门课程开始,我已发现了学习算法的乐趣,在学习这门课的过程中也学到了许多计算机应用基础知识,对计算机的机体也有了一个初步的了解,又在课余时间阅读了大量有关算法设计与分析的图书,在此基础上,利用贪心算法,编写了一个用prim 和kruskal算法求解最小生成树,也以此检验自己一学期所学成果,加深对算法设计与分析这门课程的理解,由于所学知识有限,难免有些繁琐和不完善之处,下面向大家介绍此程序的设计原理,方法,内容及设计的结果。 本程序是在windows 环境下利用Microsoft Visual C++ 6.0所编写的,主要利用贪心算法的思想,以及数组,for语句的循环,if语句的嵌套,运用以上所学知识编写出的prim和kruskal算法求解最小生成树,在输入其边的起始位置,种植位置以及权值后,便可分别输出此网的prim和kruskal算法最小生成树的边的起始位置,终止位置以及权值。 正文 2.1 设计方法和内容 一.软件环境:Microsoft Visual C++ 6.0 二.详细设计思想: 所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。 贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。 贪心算法的基本思路如下: 1.建立数学模型来描述问题。 2.把求解的问题分成若干个子问题。 3.对每一子问题求解,得到子问题的局部最优解。 4.把子问题的解局部最优解合成原来解问题的一个解。 1.Prim(普里姆)算法思想 无向网的最小生成树问题 此算法的思想是基于点的贪心,力求从源点到下一个点的距离最短,以此来构建临接矩阵,所以此算法的核心思想是求得源点到下一个点的最短距离,下面具体解释如何求此最短距离: 在图中任取一个顶点k作为开始点,令集合U={k},集合w=V-U,其中v为图中所

蒙特卡罗方法学习总结

图1-1 蒙特卡罗方法学习总结 核工程与核技术2014级3班张振华20144530317 一、蒙特卡罗方法概述 1.1蒙特卡罗方法的基本思想 1.1.1基本思想 蒙特卡罗方的基本思想就是,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。 1.1.2计算机模拟打靶游戏 为了能更为深刻地理解蒙特卡罗方法的基本思想,我们学习了蒲丰氏问题和打靶游戏两大经典例子。下面主要对打靶游戏进行剖析、计算机模拟(MATLAB 程序)。 设某射击运动员的弹着点分布如表1-1 所示, 首先用一维数轴刻画出已知该运动员的弹 着点的分布如图1-1所示。研究打靶游戏,我 们不用考察子弹的运动轨迹,只需研究每次“扣动扳机”后的子弹弹着点。每一环数对应唯一确定的概率,且注意到概率分布函数有单调不减和归一化的性质。首先我们产生一个在(0,1)上均匀分布的随机数(模拟扣动扳机),然后将该随机数代表的点投到P 轴上(模拟子弹射向靶上的一个确定点),得到对应的环数(即子弹的弹着点),模拟打靶完成。反复进行N 次试验,统计出试验结果的样本均值。样本均值应当等于数学期望值,但允许存在一定的偏差,即理论计算值应该约等于模拟试验结果。 clear all;clc; N=100000;s=0; for n=1:N %step 4.重复N 次打靶游戏试验

x=rand(); %step 1.产生在(0,1)上均匀分布的随机数if(x<=0.1) %step 2.若随机数落在(0.0,0.1)上,则代表弹着点在7环g=7; s=s+g; %step 3.统计总环数elseif(x<=0.2) %step 2.若随机数落在(0.1,0.2)上,则代表弹着点在8环g=8;s=s+g; elseif(x<=0.5) %step 2.若随机数落在(0.2,0.5)上,则代表弹着点在9环g=9;s=s+g; else %step 2.若随机数落在(0.5,1.0)上,则代表弹着点在10环 g=10;s=s+g; end end gn_th=7*0.1+8*0.1+9*0.3+10*0.5; %step 5.计算、输出理论值fprintf('理论值:%f\n',gn_th); gn=s/N; %step 6.计算、输出试验结果 fprintf('试验结果:%f\n',gn);1.2蒙特卡罗方法的收敛性与误差 1.2.1收敛性 由大数定律可知,应用蒙特卡罗方法求近似解,当随机变量Z 的简单子样数N 趋向于无穷大(N 充分大)时,其均值依概率收敛于它的数学期望。 1.2.2误差 由中心极限定理可知,近似值与真值的误差为N Z E Z N αλ<-)(?。式中的αλ的值可以根据给出的置信水平,查阅标准正态分布表来确定。 1.2.3收敛性与误差的关系 在一般情况下,求具有有限r 阶原点矩()∞

自适应滤波实验报告

LMS 自适应滤波实验报告 姓名: 学号: 日期:2015.12.2 实验内容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的范畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。 一个单输入的横向自适应滤波器的原理框图如图所示:

实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令:()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。 LMS 算法的梯度估计值用一条样本曲线进行计算,公式如下:

题目蒙特卡洛算法的设计和实现

题目:蒙特卡洛算法的设计和实现 班别:12accp2班 组员姓名:蔡添来杨善挺 时间:2013.6.28

应用数学二期末考核 项目设计说明书 项目名称:蒙特卡洛算法的设计和实现 人员情况 (注:写上组员的姓名、学号) 蔡添来-010******* 杨善挺-010******* 人员分工情况 (注:写上每个组员完成那个部分的详细情况) N-S图和代码蔡添来负责编写,杨善挺参与讨论,杨善挺负责写摘要问题分析、问题总结以及饼状图的代码编写及处理等等,主要结果及其分析讨论部分由蔡添来写,该部分一些问题杨善挺参与讨论。 蒙特卡洛算法的设计和实现 摘要 (注:请写上你对本项目题目的基本认识和介绍,解决该问题用的的方法和算法的基本思想和原理,以及本问题的主要结论及对结论的简单总结和分析) 本文根据蒙特卡洛算法以实验为基础阐述其算法的设计思路和实现过程,可以通过反复多次的实验,利用数学的的N-S算法,以及MATLAB编程等,并联系实际生活情况,分析蒙特卡洛算法给现实世界带来的各种好处,并提出合理的的建议。 针对本项目问题,首先从抽奖的本质出发,分析该问题到底能让哪方获益,估算抽奖者得到各种结果的概率,以及设奖者受益情况。首先从硬币的分值来分析,列出抽取10枚硬币的总和,再计算每种情况出现的概率,再给予一定的奖罚,这样才能即吸引抽奖者,又可以让设奖者盈利,让抽奖者的损失尽可能少。既可以达到娱乐的效果,又可以得到大家都认可。 最后总结蒙特卡洛算法在数学方面的运用以及对现代社会的经济等方面的推动作用,并给出一些建议。

关键词:模拟概率大量统计 蒙特?卡罗的背景介绍和发展 (注:请介绍你对本项目的背景和发展历史等相关内容) 蒙特?卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。 蒙特卡洛算法对于本身就具有随机性质的问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 蒙特卡罗方法的验证需要次数较多的实验和多次的验证。实验越接近理想状态,所得到的实验结果才越精确。所谓理想的实验次数,就是实验次数尽可能的多和用同样的验证方法验证多次,并取他们的平均值,以便减少误差。而且蒙特卡罗方法每次得到的结果具有随机性,因此,现实生活中该算法又可以为人们的生活娱乐带来乐趣,又可以为商家带来赚钱对的好机会。 当实验对象是某种随机事件出现的概率时,或者是某个随机变量的期望值时,可以进行反复“实验”,以这种事件出现的频率估计这一随机事件的概率,并计算全部概率的均值,或者得到这个随机变量的某些数字特征,并将其作为问题的解。以便减少实验误差。 对于本项目的实验对象,利用蒙特卡罗方法以同样的方法反复实验,方便快捷可以得到我们想要的结果,,这是典型的蒙特卡罗方法的运用,而近代也有不少科学家解决同样的问题。例如:1777年,法国数学家布丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。而这被认为是蒙特卡罗方法的起源。 利用蒙特.卡罗方法对该抽签将活动模拟问题分析和数学模型 (注:请介绍你对本项目的解决方法的思路和方法,要求:必须具有对问题解决方法的数学模型(数学模型:数学表达式或算法)的介绍和为什么使用该模型?若问题能求出理论解,在此地方必须给出理论解) 利用N-S图分析思路,再利用MATLAB程序代码运行得到具体结果,结合高中数学的组合运算,因涉及概率等等问题,以及局限于我们的知识,我们只有利用高中的组合运算和大学一年级的N-S图来分析问题,并且利用这几个经典的数学方法,我们可以轻松的解决这个抽奖问题。

克鲁斯卡尔算法实验报告

实验报告 实验原理: Kruskal 算法是一种按照图中边的权值递增的顺序构造最小生成树的方法。其基本思想是:设无向连通网为G=(V,E),令G 的最小生成树为T,其初态为T=(V,{}),即开始时,最小生成树T 由图G 中的n 个顶点构成,顶点之间没有一条边,这样T 中各顶点各自构成一个连通分量。然后,按照边的权值由小到大的顺序,考察G 的边集E 中的各条边。若被考察的边的两个顶点属于T 的两个不同的连通分量,则将此边作为最小生成树的边加入到T 中,同时把两个连通分量连接为一个连通分量;若被考察边的两个顶点属于同一个连通分量,则舍去此边,以免造成回路,如此下去,当T 中的连通分量个数为1 时,此连通分量便为G 的一棵最小生成树。 如教材153页的图4.21(a)所示,按照Kruskal 方法构造最小生成树的过程如图 4.21 所示。在构造过程中,按照网中边的权值由小到大的顺序,不断选取当前未被选取的边集中权值最小的边。依据生成树的概念,n 个结点的生成树,有n-1 条边,故反复上述过程,直到选取了n-1 条边为止,就构成了一棵最小生成树。 实验目的: 本实验通过实现最小生成树的算法,使学生理解图的数据结构存储表示,并能理解最小生成树Kruskal 算法。通过练习,加强对算法的理解,提高编程能力。 实验内容: (1)假定每对顶点表示图的一条边,每条边对应一个权值; (2)输入每条边的顶点和权值; (3)输入每条边后,计算出最小生成树; (4)打印最小生成树边的顶点及权值。 实验器材(设备、元器件): PC机一台,装有C语言集成开发环境。 数据结构与程序: #include #include #include using namespace std;

自适应滤波实验报告

LMS 自适应滤波实验报告 : 学号: 日期:2015.12.2 实验容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。

一个单输入的横向自适应滤波器的原理框图如图所示: 实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令: ()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。

1蒙特卡罗算法举例

MC方法计算阴影部分面积 计算阴影部分面积。 一个古人要求一个图形的面积,他把图形画在一块方形布上,然后找来一袋豆子,然后将所有豆子洒在布上,落在图形内豆子的重量比上那块布上所有豆子的重量再乘以布的面积就是他所要求的图形的面积。 两种编程思路来计算这个面积: 方法一:将整个坐标轴看成一个边长为12的正方形,然后均匀的这个正方形分成N(N的大小取决于划分的步长)个点,然后找出N个点中有多少个点是属于阴影部分中,假设这个值为k,则阴影部分的面积为:k/N*12^2 方法二:将整个坐标轴看成一个边长为12的正方形,然后在(-6,6)中随机出N(N越大越好,至少超过1000)个点,然后找出这N个点中有多少个点在阴

影区域内,假设这个值为k,则阴影部分的面积为:k/N*12^2。然后重复这个过程100次,求出100次面积计算结果的均值,这个均值为阴影部分面积。 对比分析:以上两个方法都是利用蒙特卡罗方法计算阴影部分面积,只是在处理的细节有一点区别。前者是把豆子均匀分布在布上;后者则是随机把豆子仍在布上。就计算结果的精度而言,前者取决点的分割是否够密,即N是否够大;后者不仅仅通过N来控制精度,因为随机的因素会造成单次计算结果偏高和偏小,所以进行反复多次计算最后以均值来衡量阴影部分面积。 附上MATLAB程序: 方法一: clear x=-6:0.01:6; y=x; s=size(x); zs=s(1,2)^2; k=0; for i=1:s(1,2) for j=1:s(1,2) a1=(x(i)^2)/9+(y(j)^2)/36; a2=(x(i)^2)/36+y(j)^2; a3=(x(i)-2)^2+(y(j)+1)^2;

Kruskal算法说明及图解

1.无向网图及边集数组存储示意图 vertex[6]= 2.Kruskal 方法构造最小生成树的过程 (a)一个图 (b)最小生成树过程1 V0 V1 V2 V3 V4 V5 下标 0 1 2 3 4 5 6 7 8 from 1 2 0 2 3 4 0 3 0 to 4 3 5 5 5 5 1 4 2 weight 12 17 19 25 25 26 34 38 46 V1 V0 V4 V5 V2 V3 V1 V0 V5 V2 V3 V4

(c)最小生成树过程2 (d)最小生成树过程3 (e)最小生成树过程4 3.伪代码 1)初始化辅助数组parent[vertexNum];num=0; 2) 依次考查每一条边for(i=0; i

蒙特卡罗方法的解题过程可以归结为三个主要步骤

蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 蒙特卡洛法模拟蒲丰(Buffon)投针实验-使用Matlab 2010年03月31日星期三8:47 蒲丰投针实验是一个著名的概率实验,其原理请参见此页: https://www.doczj.com/doc/1918833753.html,/reese/buffon/buffon.html 现在我们利用Matlab来做模拟,顺便说一下,这种随机模拟方法便是传说中的“蒙特-

卡尔曼滤波简介和实例讲解.

卡尔曼,美国数学家和电气工程师。1930年5月 19日生于匈牙利首都布达佩斯。1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。1958~1964年在巴尔的摩高级研究院研究控制和数学问题。1964~1971年到斯坦福大学任教授。1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。1960年卡尔曼还提出能控性的概念。能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。卡尔曼著有《数学系统概论》(1968)等书。 什么是卡尔曼滤波 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼

滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。 释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。 卡尔曼滤波的应用 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.

相关主题
文本预览
相关文档 最新文档