当前位置:文档之家› 数值分析 期末复习(整理版)

数值分析 期末复习(整理版)

数值分析 期末复习(整理版)
数值分析 期末复习(整理版)

Chapter 1 误差

误差限计算、有效数字分析

Chapter 2 插值法

差值条件(唯一性)

1、拉格朗日差值

a)插值基函数

b)差值余项

2、牛顿插值

构造差商表

3、埃尔米特插值

构造三次埃尔米特插值多项式如下

4、分段低次插值

5、三次样条插值(概念)

Chapter 3 函数逼近与曲线拟合(送分)1、最小二乘法写出法方程

2、范式计算(向量、矩阵)

Chapter 4 数值积分与数值微分

1、梯形公式、辛普森公式

2、代数精度判断

3、龙贝格求积公式

4、高斯求积公式

5、高斯-勒让德求积公式

6、数值微分了解即可

Chapter 5解线性方程组的直接方法

1、消元法

2、LU分解法

Chapter 6解线性方程组的迭代法

1、雅克比迭代法、高斯-塞德尔迭代法公式(会写)

2、 给迭代公式,判断收敛性,谱半径。

Chapter 7非线性方程求根

1、 二分法 (先判断有根区间)

2、 迭代的收敛性

3、 牛顿迭代法 (代公式)

Chapter 9常微分方程初值问题数值解法

1、 公式计算:四种,欧拉公式、改进的欧拉公式、隐式、梯形公式

2、判断局部截断误差(泰勒公式)

3、单步法的收敛性和稳定性分析

4、

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

数值分析总复习提纲教材

数值分析总复习提纲 数值分析课程学习的内容看上去比较庞杂,不同的教程也给出了不同的概括,但总的来说无非是误差分析与算法分析、基本计算与基本算法、数值计算与数值分析三个基本内容。在实际的分析计算中,所采用的方法也无非是递推与迭代、泰勒展开、待定系数法、基函数法等几个基本方法。 一、误差分析与算法分析 误差分析与算法设计包括这样几个方面: (一)误差计算 1、截断误差的计算 截断误差根据泰勒余项进行计算。 基本的问题是 (1)1 ()(01)(1)! n n f x x n θεθ++<<<+,已知ε求n 。 例1.1:计算e 的近似值,使其误差不超过10-6。 解:令f(x)=e x ,而f (k)(x)=e x ,f (k)(0)=e 0=1。由麦克劳林公式,可知 211(01)2!!(1)! n x x n x x e e x x n n θθ+=+++++<<+ 当x=1时,1 111(01)2! !(1)! e e n n θθ=+++ ++ <<+ 故3 (1)(1)!(1)! n e R n n θ=<++。 当n =9时,R n (1)<10-6,符合要求。此时, e≈2.718 285。 2、绝对误差、相对误差及误差限计算 绝对误差、相对误差和误差限的计算直接利用公式即可。 基本的计算公式是: ①e(x)=x *-x =△x =dx ② *()()()ln r e x e x dx e x d x x x x ==== ③(())()()()e f x f x dx f x e x ''== ④(())(ln ())r e f x d f x = ⑤121212121122121122((,))(,)(,)(,)()(,)()x x x x e f x x f x x dx f x x dx f x x e x f x x e x ''''=+=+ ⑥121212((,)) ((,))(,) f x x f x x f x x εδ=

数值分析大作业-三、四、五、六、七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用 程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:'); flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0; end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +??=-= ?-???解:Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1; while nerrorlim n=n+1; else break ; end x0=x; end disp(['迭代次数: n=',num2str(n)]) disp(['所求非零根: 正根x1=',num2str(x),' 负根x2=',num2str(-x)]) (2)子函数 非线性函数f function y=f(x) y=log((513+0.6651*x)/(513-0.6651*x))-x/(1400*0.0918); end

数值分析试卷及答案

二 1 求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式时才能保证A一定有LU分解。 3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,, 4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2)

(3)由事后误差估计式,右端为 而左端 这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7 讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵 ,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 , 故高斯-赛德尔法收敛的充要条件是。 9 设求解方程组的雅可比迭代格式为,其中,求证:若,则相应的高斯-赛德尔法收敛。证明由于是雅可比法的迭代矩阵,故 又,故, 即,故故系数矩阵A按行严格对角占优,从而高斯-赛德尔法收敛。 10设A为对称正定矩阵,考虑迭代格式 求证:(1)对任意初始向量,收敛; (2)收敛到的解。 证明(1)所给格式可化为 这里存在是因为,由A对称正定,,故也对称正定。 设迭代矩阵的特征值为,为相应的特征向量,则与做内积,有 因正定,故,从而,格式收敛。

数值分析报告报告材料期末复习资料

数值分析期末复习 题型:一、填空 二、判断 三、解答(计算) 四、证明 第一章 误差与有效数字 一、有效数字 1、 定义:若近似值x*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n 位,就说 x*有n 位有效数字。 2、 两点理解: (1) 四舍五入的一定是有效数字 (2) 绝对误差不会超过末位数字的半个单位eg. 3、 定理1(P6):若x*具有n 位有效数字,则其相对误差限为 4、 考点: (1)计算有效数字位数:一个根据定义理解,一个根据定理1(P7例题3) 二、避免误差危害原则 1、 原则: (1) 避免大数吃小数(方法:从小到大相加;利用韦达定理:x1*x2= c / a ) (2) 避免相近数相减(方法:有理化)eg. 或 (3) 减少运算次数(方法:秦九韶算法)eg.P20习题14 *(1)1 1 102n r a ε--≤ ?; x εx ε x εx ++=-+();1ln ln ln ???? ? ?+=-+x εx εx x cos 1-2sin 22x =

三、数值运算的误差估计 1、 公式: (1) 一元函数:|ε*( f (x *))| ≈ | f ’(x *)|·|ε*(x )|或其变形公式求相对误差(两边同时除以f (x *)) eg.P19习题1、2、5 (2) 多元函数(P8)eg. P8例4,P19习题4 第二章 插值法 一、 插值条件 1、 定义:在区间[a,b]上,给定n+1个点,a ≤x 0<x 1<…<x n ≤b 的函数值 yi=f(xi),求次数不超过n 的多项式P(x),使 2、 定理:满足插值条件、n+1个点、点互异、多项式次数≤n 的P(x)存在且唯一 n i y x P i i n ,,2,1,0)(Λ==

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

数值分析大作业三 四 五 六 七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:');

flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag==1 sigma=k*eps; x0=sigma; k=k+1; m=0; flag1=1; while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0;

end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +?? =-= ?-???解: Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1;

数值分析试卷及答案

二 1求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式 时才能保证A一定有LU分解。

3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,,

4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2) (3)由事后误差估计式,右端为 而左端

这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方 法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵

,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 ,

数值分析第一次作业及参考答案

数值计算方法第一次作业及参考答案 1. 已测得函数()y f x =的三对数据:(0,1),(-1,5),(2,-1), (1)用Lagrange 插值求二次插值多项式。(2)构造差商表。(3)用Newton 插值求二次插值多项式。 解:(1)Lagrange 插值基函数为 0(1)(2)1 ()(1)(2)(01)(02)2 x x l x x x +-= =-+-+- 同理 1211 ()(2),()(1)36 l x x x l x x x = -=+ 故 2 20 2151 ()()(1)(2)(2)(1) 23631 i i i p x y l x x x x x x x x x =-==-+-+-++=-+∑ (2)令0120,1,2x x x ==-=,则一阶差商、二阶差商为 011215 5(1) [,]4, [,]20(1) 12 f x x f x x ---= =-= =----- 0124(2) [,,]102 f x x x ---= =- 实际演算中可列一张差商表: (3)用对角线上的数据写出插值多项式 2 2()1(4)(0)1*(0)(1)31P x x x x x x =+--+-+=-+ 2. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使 截断误差不超过6 10-,问使用函数表的步长h 应取多少 解: ()40000(), (),[4,4],,,, 1.x k x f x e f x e e x x h x x h x x th t ==≤∈--+=+≤考察点及

(3) 2000 4 43 4 3 () ()[(()]()[()] 3! (1)(1) (1)(1) 3!3! .(4,4). 6 f R x x x h x x x x h t t t e t h th t h e h e ξ ξ =----+ -+ ≤+??-= ≤∈- 则 4 36 ((1)(1) 100.006. t t t h - -+± << Q在点 得 3.求2 () f x x =在[a,b]上的分段线性插值函数() h I x,并估计误差。 解: 22 22 11 1 111 22 11 11 1 () () k k k k h k k k k k k k k k k k k k k k k k k x x x x x x I x x x x x x x x x x x x x x x x x x x x x ++ + +++ ++ ++ + --- =+= --- ?-? -=+- - [] 2 11 22 11 ()()()[()] 11 ()() 44 h h k k k k k k k k R x f x I x x x x x x x x x x x x x h ++ ++ =-=-+- =--≤-= 4.已知单调连续函数() y f x =的如下数据 用插值法计算x约为多少时() 1. f x=(小数点后至少保留4位) 解:作辅助函数()()1, g x f x =-则问题转化为x为多少时,()0. g x=此时可作新 的关于() i g x的函数表。由() f x单调连续知() g x也单调连续,因此可对() g x的数值进行反插。的牛顿型插值多项式为 1()0.110.097345( 2.23)0.451565( 2.23)( 1.10) 0.255894( 2.23)( 1.10)(0.17) x g y y y y y y y - ==-+++++ -++-

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

数值分析试卷及其答案

1、(本题5分)试确定7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22 =3.142857…=1103142857 .0-? π=3.141592… 所以 312102 11021005.0001264.0722--?=?=<=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22 作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3102 1 0005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:??? ?? ??=????? ??????? ??--654131*********x x x ; 解 设???? ? ??????? ? ?????? ??===????? ??--11111 1 131321112323121 32 132 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,215 27 ,25,2323121321- ==-== -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23 ,97,910(,)563, 7,4(== (3分) 3、(本题6分)给定线性方程组???????=++-=+-+=-+-=-+17 7222382311387 510432143213 21431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

学习数值分析的经验

数值分析实验的经验、感受、收获、建议班级:计算131 学号:2012014302 姓名:曾欢欢数值分析实验主要就是学习MATLAB的使用以及对数值分析类容的应用,可以使学生更加理解和记忆数值分析学得类容,也巩固了MATLAB的学习,有利于以后这个软件我们的使用。在做实验中,我们需要具备较好的编程能力、明白MATLAB软件的使用以及掌握数值分析的思想,才能让我们独立自主的完成该作业,如果是上述能力有限的同学,需要借助MATLAB的书以及网络来完成实验。 数值分析实验对于我来说还是有一定难度,所以我课下先复习了MATLAB的使用方法以及编写程序的基本类容,借助互联网和同学老师资源完成了数值分析得实验的内容。在实验书写中,我复习了各种知识,所以我认为这门课程是有必要且是有用处的,特别是需要处理大量实验数据的人员,很有必要深入了解学习它,这样在以后的工作学习里面就减少了很多计算问题也提高了实验结果的精确度。 学习数值分析的经验、感受、收获、建议 数值分析的内容包括插值与逼近,数值微分与数值积分,非线性方程与线性方程组的数值解法,矩阵的特征值与特征向量计算,常微分方程数值解等。 首先我们必须明白数值分析的用途。通常所学的其他数学类学科都是由公式定理开始,从研究他们的定义,性质再到证明与应用。但实际上,尤其是工程,物理,化学等其它具体的学科。往往我们拿到

手的只是通过实验得到的数据。如果是验证性试验,需要代回到公式进行分析,验证。但往往更多面对的是研究性或试探性试验,无具体公式定理可代。那就必须通过插值,拟合等计算方法进行数据处理以得到一个相对可用的一般公式。还有许多计算公式理论上非常复杂,在工程中不实用,所以必须根据实际情况把它转化成多项式近似表示。学习数值分析,不应盲目记公式,因为公事通常很长且很乏味。 其次,应从公式所面临的问题以及用途出发。比如插值方法,就是就是把实验所得的数据看成是公式的解,由这些解反推出一个近似公式,可以具有局部一般性。再比如说拟合,在插值的基础上考虑实验误差,通过拟合能将误差尽可能缩小,之后目的也是得到一个具有一定条件下的一般性的公式。。 建议学习本门课程要结合知识与实际,比如在物理实验里面很多地方有用到线性拟合的知识,这样我们可以对数值分析得类容加以巩固,在学习中不能死记硬背,应该理解记忆,以及结合列题加以记忆和应用,只能在题里面我们才能去应用它。对于本学期的期末考试,由于本人注重了理论知识的记忆和应用,但是在复习过程中自己没有亲自去导致计算能力较弱,在考试过程中一道大题的计算耗费了大量的时间且错了,虽然解答题目的步骤和思想应该是没有问题的,所以同学们除了掌握基本的理论知识以外,得加强计算能力的锻炼,避免不必要的浪费时间以及精力,导致不愉快的结果。

数值分析作业答案part

6.4.设??? ? ? ??=5010010a b b a A ,0det ≠A ,用a ,b 表示解线性方程组f Ax =的雅可比迭代与 高斯—塞德尔迭代收敛的充分必要条件。 解 雅可比迭代法的迭代矩阵 ? ??? ??? ? ??----=???? ? ??----????? ??=-050100100100000001010101 a b b a a b b a B J , ?? ? ?? -=-1003||2ab B I J λλλ,10||3)(ab B J = ρ。 雅可比迭代法收敛的充分必要条件是3 100 ||

数值分析试卷及其答案2

1、(本题5分)试确定7 22作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22=3.142857…=1103142857.0-? π=3.141592… 所以 3 12 10 2 110 21005.0001264.07 22--?= ?= <=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3 10 2 10005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:???? ? ??=????? ??????? ??--654131321 112321x x x ; 解 设???? ? ? ?????? ? ?????? ??===????? ? ?--11 1 11113 1321 11232312132 1 32 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,21527,25,2323121321- == - == -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23,97,910( ,)5 63, 7,4(== (3分) 3、(本题6分)给定线性方程组??? ? ? ??=++-=+-+=-+-=-+17722238231138751043214321 321431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析大作业

数值分析报大作业 班级:铁道2班 专业:道路与铁道工程 姓名:蔡敦锦 学号:13011260

一、序言 该数值分析大作业是通过C语言程序编程在Microsoft Visual C++ 6.0编程软件上运行实现的。本来是打算用Matlab软间来计算非线性方程的根的。学习Matlab也差不多有一个多月了,感觉自己编程做题应该没什么问题了;但是当自己真心的去编程、运行时才发现有很多错误,花了一天时间修改、调试程序都没能得到自己满意的结果。所以,我选择了自己比较熟悉的C程序语言来编程解决非线性的求值问题,由于本作业是为了比较几种方法求值问题的收敛速度和精度的差异,选择了一个相对常见的非线性函数来反映其差异,程序运行所得结果我个人比较满意。编写C语言,感觉比较上手,程序出现问题也能比较熟练的解决。最终就决定上交一份C程序语言编程的求值程序了!

二、选题 本作业的目的是为了加深对非线性方程求根方法的二分法、简单迭代法、、牛顿迭代法弦截法等的构造过程的理解;能将各种方法的算法描述正确并且能够改编为程序并在计算机上实现程序的正确合理的运行,能得到自己满意的结果,并且能调试修改程序中可能出现的问题和程序功能的增减修改。本次程序是为了比较各种方法在求解同一非线性方程根时,在收敛情况上的差异。 为了达到上面的条件我选择自己比较熟悉的语言—C语言来编程,所选题目为计算方程f(x)=x3-2x-5=0在区间[2,3]内其最后两近似值的差的绝对值小于等于5 ?的根的几种方法的比较。 110- 本文将二分法、牛顿法、简单迭代法、弦截法及加速收敛法这五种方法在同一个程序中以函数调用的方式来实现,比较简洁明了,所得结果能很好的比较,便于分析;发现问题和得出结论。

数值分析试题及答案

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111l x = C .() 00l x =1,()111 l x = D . () 00l x =1,()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得 分 评卷人 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间 内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 9和29 2. ()() 0101 f x f x x x -- 3. 1 8 4. ()()120 f f < 5. ()12 00.1 1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+???? =??L 得 分 评卷人 三、计算题(每题15分,共60分) 1. 已知函数 21 1y x = +的一组数据: 求分 段线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

数值分析考试复习总结

1 误差 相对误差和绝对误差得概念 例题: 当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生? 答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差: 建立数学模型过程中产生:模型误差 参数误差 选用数值方法产生:截断误差 计算过程产生:舍入误差 传播误差 6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差. 解 a 的相对误差:由于 31021|)(|-?≤-≤a x x E . x a x x E r -=)(, 221018 1 10921)(--?=?≤ x E r . (1Th ) )(a f 对于)(x f 的误差和相对误差. |11||)(|a x f E ---==()25 .0210113 21??≤ -+---a x x a =310- 33 104110|)(|--?=-≤a f E r . □ 2有效数字 基本原则:1 两个很接近的数字不做减法: 2: 不用很小得数做分母(不用很大的数做分子) 例题: 4.改变下列表达式使计算结果比较精确: (1) ;1||,11211<<+--+x x x x 对 (2) ;1,11>>- - +x x x x x 对 (3) 1||,0,cos 1<<≠-x x x x 对. 解 (1) )21()122x x x ++. (2) ) 11(2x x x x x -++. (3) x x x x x x x cos 1sin )cos 1(sin cos 12+≈ +=-. □

数值计算方法试题集及答案要点

《数值计算方法》复习试题 一、填空题: 1、 ?? ??? ?????----=410141014A ,则A 的LU 分解为 A ? ???????? ???=????????? ?? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(, 0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求 得?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(, 1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对 1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公

北航数值分析大作业第一题幂法与反幂法

《数值分析》计算实习题目 第一题: 1. 算法设计方案 (1)1λ,501λ和s λ的值。 1)首先通过幂法求出按模最大的特征值λt1,然后根据λt1进行原点平移求出另一特征值λt2,比较两值大小,数值小的为所求最小特征值λ1,数值大的为是所求最大特征值λ501。 2)使用反幂法求λs ,其中需要解线性方程组。因为A 为带状线性方程组,此处采用LU 分解法解带状方程组。 (2)与140k λλμλ-5011=+k 最接近的特征值λik 。 通过带有原点平移的反幂法求出与数k μ最接近的特征值 λik 。 (3)2cond(A)和det A 。 1)1=n λλ2cond(A),其中1λ和n λ分别是按模最大和最小特征值。 2)利用步骤(1)中分解矩阵A 得出的LU 矩阵,L 为单位下三角阵,U 为上三角阵,其中U 矩阵的主对角线元素之积即为det A 。 由于A 的元素零元素较多,为节省储存量,将A 的元素存为6×501的数组中,程序中采用get_an_element()函数来从小数组中取出A 中的元素。 2.全部源程序 #include #include void init_a();//初始化A double get_an_element(int,int);//取A 中的元素函数 double powermethod(double);//原点平移的幂法 double inversepowermethod(double);//原点平移的反幂法 int presolve(double);//三角LU 分解 int solve(double [],double []);//解方程组 int max(int,int); int min(int,int); double (*u)[502]=new double[502][502];//上三角U 数组 double (*l)[502]=new double[502][502];//单位下三角L 数组 double a[6][502];//矩阵A int main() { int i,k; double lambdat1,lambdat2,lambda1,lambda501,lambdas,mu[40],det;

数值分析试卷及其答案1

1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知6 5.0102 1 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620*2102 1 ,6,0,10325413.0-?= -=-=?=ε绝对误差限n k k X 2分 2. 已知?? ???=0 01 A 220- ?????440求21,,A A A ∞ (6分) 解: {}, 88,4,1max 1==A 1分 {}, 66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=0 1 A A T 4 2 ???? ? -420?????0 01 2 20 - ???? ?440= ?????0 01 80 ???? ?3200 2分 {}32 32,8,1max )(max ==A A T λ

1分 24322==A 3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (0,1……)产生的序列{}k x 收敛于 2 解: ①迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3 分 ②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-= a a x a x ?? 3分 4. 给定线性方程组,其中:?? ?=13A ?? ?2 2,?? ? ???-=13b 用迭代公式 )()()()1(k k k Ax b x x -+=+α(0,1……)求解,问取什么实数α ,可使 迭代收敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --???--=-=ααααα21231A I B 2分

相关主题
文本预览
相关文档 最新文档