当前位置:文档之家› 各向异性地层性质及测井响应

各向异性地层性质及测井响应

各向异性地层性质及测井响应
各向异性地层性质及测井响应

1. 均匀各向异性介质中的电阻率测井响应

均匀各向异性介质中电偶极子和磁偶极子视电阻率表达式,即普通电阻率测井和感应测井的测量结果为:

a R R =

gm R =

2V H H V

R R σλσ==为各向异性系数; θ为相对地层倾角;

对于层状地层,垂向电阻率总是大于水平电阻率:V H R R ≥,因此,各向异性系数α通常总是大于1的。下面给出两种特殊情况的结果:

1) 对于θ=0的特殊情况,即直井情况,H a R R =;

2) 对于θπ=/2(90

度)的特殊情况,即水平井情况,a R =。 因此,在有倾角的各向异性地层中,普通电阻率测井或感应测井仪器反映的是地层垂向电阻率和水平电阻率的加权平均:由0度时的H R 变化到90

度时的

从物理机制看,感应测井在直井中的涡流是水平方向的,因此仅得到水平电阻率,而在斜井中由于涡流存在于两个方向,所以其读数为垂向和水平向电阻率的平均值。在直井中,感应测井只是反映地层水平电阻率,普通电阻率测井或侧向测井也主要反映地层水平电阻率,这是常规电测井在反映各向异性方面的局限性。

2. 各向异性指数系数[2,4,12]

在各向异性地层中,电阻率测井的响应还与井下仪器的结构有关,不同测井仪器测量出的视电阻率之间往往存在明显的差异。如在泥岩层中,感应测井仪测量的视电阻率明显低于0.4m 电位测井仪;在砂泥岩互层,梯度测井仪测量值异

常地低。因而利用各种电测井仪的响应差异可识别电阻率各向异性地层。

在垂直井眼中,假定地层是水平的,砂泥岩薄互层、不同粒度大小的砂岩层、岩层中薄层的电阻性或电导性条带等都使地层表现为各向异性。

各向异性指数主要与砂泥岩电阻率反差程度和砂泥岩相对厚度有关。

图1是砂泥岩互层水平电阻率、垂直电阻率与各向异性指数关系图。图1中R sh =1.0Ω·m ,Rsd=10.0Ω·m 。h sh =h sd 目处是各向异性指数2λ最大的地方,约为3,此时R h 约为1.8Ω·m ,而R v 约为5.5Ω·m 。

R h o r R v (Ω.m )Vsh (%)

实验室里已经观测到页岩的电导率具有各向异性,其系数λ介于1~3之间(Schlumberger 等,1934年;Keller 和Frischknecht ,1966年)。各向异性系数只在横向各向同性的情况下才有意义[4]。

图4-3所示为典型的电阻率各向异性的直方图。从图4-3中可以看出,对于大多数油藏,电阻率比值小于1.5,而较高的电阻率各向异性一般小于2.2[12]。

3. 各向异性系数与孔隙结构的关系[8]

各向异性系数

λ===式中,f f b x φσσ=反映裂缝附加导电性的大小。x 值愈大,附加导电性愈

强,反之附加导电性愈弱,本文称之为裂缝附加导电性系数。各向同性的介质中x=0;λ=1。f φ为裂缝孔隙度;σb 、σf 分别为基岩和裂缝内流体的电导率;Ω为裂缝的倾角。

图1为接近双201井参数计算的裂缝角度与各向异性系数的关系。

由于深侧向测井聚焦优于浅侧向测井,近似的有深侧向测井视电导率σLLD=σh,浅侧向测井视电导率σLLS=σσ。当砂岩具有裂缝时,对于高角度裂缝(一般大于70°),由于裂缝引起地层纵向电阻率比水平方向电阻率低,此时,各向异性系数λ<1,故出现正差异,即深侧向大于浅侧向;反之,对于低角度裂缝砂岩(一般小于40°),λ>1,纵向电阻率大于水平方向电阻率,此时,出现负异常,即深侧向小于浅侧向。裂缝产状40°~70°时,深、浅侧向测井相近(见图2)。

4. 各向异性地层的各电测井响应

层状各向异性地层中双侧向测井响应特征[2]

双侧向测井主要受水平电阻率的影响,而垂直电阻率对深浅侧向响应的影响程度不一样。浅侧向由于回流电极靠近电流发射电极,主电流在回流至回流电极

时,一部分电流沿着地层的垂直方向流动,因而其测井响应包含部分垂直电阻率信息;而深侧向由于回流电极较远,主电流在流向地层深处时就发散了,因此,相对浅侧向来说,深侧向受垂直电阻率的影响程度就要小得多。在层状各向异性地层中,深浅侧向出现了相当程度的分离,从某种意义上讲,这也是侧向测井的“双轨”现象。因此,在实际测井中,如若出现所谓的泥岩层“双轨”现象,这时就要考虑是否由岩层的各向异性所引起。

由于深浅侧向受地层各向异性影响程度不一样,这样可通过测量值来考查它们与各向异性指数的关系。图3是在层状各向异性地层中的浅深侧向测井值的比值R LLs /R LLd 与各向异性指数λ的关系图,泥浆电阻率为 1.0Ω·m ,井眼直径为0.20m ,图中忽略了R LLs 小于R LLd 的部分。由图3可以看出,浅深侧向测井值的比值与地层各向异性指数的对数呈正比关系,且近似线性。

地层各向异性系数(2V H H V

R R σλσ==)对双侧向测井响应的影响[11] 图1的计算条件:井眼直径20cm,泥浆电阻率1Ω·m,目的层厚10m,各向异性目的层水平方向电阻率Rh=20Ω·m,围岩电阻率Rs=2Ω·m。从图1可以看出,在直井(井斜0°)和水平井(井斜90°)环境中双侧向测井响应随地层各向异性系数的变化关系的差异非常大。直井中双侧向仪器所发出的电流面方向平行于地层水平方向,仪器所测得的视电阻率基本反映各向异性地层水平方向的电阻率,随各向异性系数基本不变化。

而在水平井中仪器发出电流面

垂直于水平地层,双侧向测井响应受到垂向电阻率的影响明显。

层状各向异性地层中双感应测井响应特征[2]

在垂直井中,双感应测井不受地层垂直电阻率的影响,可直接得到更为准确的各向异性地层的水平电阻率。

在垂直井眼中,对于层状各向异性地层,感应发射线圈发射电磁波,在地层中感应出的涡流沿水平方向流动,这时在接收线圈上测得的信号反映的是地层水平电阻率信息。如要利用感应测井测量地层垂直电阻率,必须使发射线圈和接收线圈轴与垂直电阻率方向垂直或保持一定角度。

在层状各向异性地层中,双侧向和双感应的测井响应特征是大有差异的,双感应的深、中感应测井曲线完全重合,而双侧向的深、浅侧向测井曲线则出现了一定程度的分离,由这些特性即可判断出低阻地层的各向异性存在与否。

另外:

各向异性层状沉积岩层的双侧向响应特征[5]

在直井中,沉积岩层理面与井轴垂直。图2为不同井眼条件下无限厚电性各向异性地层的双侧向测井响应。由图2可知,深、浅视电阻率不仅与井径dh、泥浆电阻率Rm大小有关,还与地层各向异性系数λ有关。深、浅侧向视电阻率随着地层各向异性系数的增大而增大,且浅侧向视电阻率RLLS受地层各向异性的影响更为明显,与深侧向视电阻率RLLD出现了明显差异,其原因主要是深、浅侧向的聚焦能力不同。图2中Rh为地层层理方向电阻率。

图3为Rm=0.1Ω·m,Rh=10Ω·m条件下计算的地层层理方向电阻率与深、浅侧向视电阻率的比值随地层倾角的变化关系。由图3可知,在水平地层情况下,深、浅侧向视电阻率值主要反映地层层理方向电阻率。对于倾斜地层,随着地层倾角的变大,垂向电阻率Rv对视电阻率的影响变大,特别是水平井视电阻率将主要反映地层垂向电阻率。

对于有限厚地层,其电测井的响应还要受到围岩的影响。考虑最简单的三层介质情况,假设目的层厚度为3m,层理方向电阻率为 1.9Ω·m,垂向电阻率为

10.5Ω·m,其电性各向异性系数为2.351,上、下围岩电阻率为1Ω·m,泥浆电阻率为0.1Ω·m,井眼直径为20cm。不同倾角情况下,地层的视电阻率响应曲线如图4。随着地层倾角θ的增大,地层视厚度(由曲线的半幅点确定)增大,视电阻率也增大。由于受到地层厚度的限制,对于垂直地层(对应水平井)情况,深、浅侧向的测井值均未接近垂向电阻率,这主要是受围岩的影响造成的。

对于水平地层,从电性各向同性到明显的各向异性,深、浅双侧向也从正差异转向负差异,而且和高倾角地层的深、浅电阻率存在明显差异,如图5。图5的计算条件:地层厚度为5m,围岩电阻率为1Ω·m,冲洗带地层层理方向电阻率为4Ω·m,原状地层层理方向电阻率为20Ω·m,井径为20cm,泥浆电阻率为0.1Ω·m,泥浆侵入半径为0.8m。对于倾斜地层,由于各向异性的影响,深、浅双侧向的幅度差异特征则更为复杂。随地层倾角的增大,深、浅双侧向从负差异向正差异过渡(图6)。图6的计算条件:地层各向异性系数为3,其他条件同图5。因此,对于倾斜各向异性地层来说,单纯利用深、浅电阻率的正负差异来识别油、气、水层则更为困难。

结论:(1)深、浅侧向视电阻率与地层各向异性有关,且浅侧向视电阻率受地层各向异性的影响更为明显。(2)地层倾角较小时,深、浅侧向视电阻率主要反映地层层理方向的电阻率;随着地层倾角的变大,地层垂向电阻率对视电阻率的影响变大。(3)含油气地层深、浅侧向视电阻率幅度差异受地层倾角和地层各向异性影响,不能简单地利用双侧向幅度差异来识别油气层。

参考文献

[1] J.D.Klein,饱和度对电性各向异性的影响

[2] 覃世银管志宁,层状各向异性地层的识别与评价

[3] 高伟,陈科贵,周祺,地层电性各向异性对电阻率测井的影响

[4] W.David Kennedy David C.Herrick,电性各向异性介质中含水饱和度的计算

[5] 邓少贵,仝兆岐,范宜仁,各向异性倾斜地层双侧向测井响应数值模拟

[6] 李金柱,孙波,利用常规测井和电成像资料评价薄层砂岩

[7] 党瑞荣,王洪淼,谢雁,三分量感应测井仪及其对各向异性地层的识别

[8] 欧阳健,李善军,双侧向测井识别与评价渤海湾深层裂缝性砂岩油层的解释方法

[9] 沈金松,用有限差分法计算各向异性介质中多分量感应测井的响应

[10]洪德成,杨善德,张量感应测井视值解释方法的改进

[11]夏培,刘迪仁,万文春水平井各向异性地层双侧向测井响应数值模拟

[12]王甜甜,多分量感应测井响应特性及解释方法研究

测井曲线代码大全

测井曲线代码 RD、RS—深、浅侧向电阻率 RDC、RSC—环境校正后的深、浅侧向电阻率VRD、VRS—垂直校正后的深、浅侧向电阻率DEN—密度 DENC—环境校正后的密度 VDEN—垂直校正后的密度 CNL—补偿中子 CNC—环境校正后的补偿中子 VCNL—垂直校正后的补偿中子 GR—自然伽马 GRC—环境校正后的自然伽马 VGR—垂直校正后的自然伽马 AC—声波 V AC—垂直校正后声波 PE—有效光电吸收截面指数 VPE—垂直校正后的有效光电吸收截面指数SP—自然电位 VSP—垂直校正后的自然电位 CAL—井径 VCAL—垂直校正后井径 KTh—无铀伽马 GRSL—能谱自然伽马 U—铀 Th—钍 K—钾 WCCL—磁性定位 TGCN—套管中子 TGGR—套管伽马 R25—2.5米底部梯度电阻率 VR25—环境校正后的2.5米底部梯度电阻率DEV—井斜角 AZIM—井斜方位角 TEM—井温 RM—井筒钻井液电阻率 POR2—次生孔隙度 POR—孔隙度 PORW—含水孔隙度 PORF—冲洗带含水孔隙度 PORT—总孔隙度 PERM—渗透率 SW-含水饱和度 SXO—冲洗带含水饱和度

SH—泥质含量 CAL0—井径差值 HF—累计烃米数 PF—累计孔隙米数 DGA—视颗粒密度 SAND,LIME,DOLM,OTHR—分别为砂岩,石灰岩,白云岩,硬石膏含量 VPO2—垂直校正次生孔隙度 VPOR—垂直校正孔隙度 VPOW—垂直校正含水孔隙度 VPOF—垂直校正冲洗带含水孔隙度 VPOT—垂直校正总孔隙度 VPEM—垂直校正渗透率 VSW-垂直校正含水饱和度 VSXO—垂直校正冲洗带含水饱和度 VSH—垂直校正泥质含量 VCAO—垂直校正井径差值 VDGA—垂直校正视颗粒密度 VSAN,VLIM,VDOL,VOTH—分别为垂直校正砂岩,石灰岩,白云岩,硬石膏含量岩石力学参数 PFD1—破裂压力梯度 POFG—上覆压力梯度 PORG—地层压力梯度 POIS—泊松比 TOUR—固有剪切强度 UR—单轴抗压强度 YMOD—杨氏模量 SMOD—切变模量 BMOD—体积弹性模量 CB—体积压缩系数 BULK—出砂指数 MAC MAC—偶极子阵列声波 XMAC-Ⅱ—交叉偶极子阵列声波 DTC1—纵波时差 DTS1—横波时差 DTST1—斯通利波时差 DTSDTC-纵横波速度比 TFWV10-单极子全波列波形 TXXWV10-XX偶极子波形 TXYWV10- XY偶极子波形 TYXWV10- YX偶极子波形 TYYWV10- YY偶极子波形 WDST-计算各向异性开窗时间 WEND-计算各向异性关窗时间

测井曲线典型形态

测井曲线的形态代表了地层特征,如自然电位曲线分为钟型,漏斗型,锯齿型,指型等,他们分别代表了各种信息。但是其中SP曲线幅度又分为高幅,中幅,低幅。请问一下这些幅度是怎样定义的。是用公式算的还是直接看曲线的。还有双测向曲线,声波时差,微电极曲线齿型是什么意思。 电位的形状确实可以指示出一定的沉积环境,,比如“漏斗”:有口向上的漏斗,有口向下的漏斗,这就能分出沉积顺序,逆序还是正序。 不同测井曲线的形态以及变化关系,都反映了不同的沉积环境,是沉积相的指相标志,也是层析地层划分识别的标志之一,你随便找一本层序地层学的书都有介绍幅度一般代表了当时的沉积能量; 一般都指的是电位或者伽马曲线. 至于曲线形态: 1)钟型;底部突变接触,代表三角洲水下分流河道; 2)漏斗型:顶部突变接触,代表三角洲前缘,河口坝微相; 3)箱型:顶底界面均为突变接触,表示水动力条件稳定,代表潮汐砂体或者废弃水下分流河道; 4)齿形:反映沉积过程中能量快速变化,一般代表河道侧翼,席状砂,分流间湾微相. 1、曲线幅度 高幅度:反映海湖岸的滩、坝砂岩体,由于波浪的作用淘冼、冲刷干净泥质含量少,改造彻底、分选好,中━细砂岩渗透性好, 故高幅度。 中幅度:反映河道砂岩,水流冲刷强、物源丰富,分选差。 低幅度:反映河漫滩相,水流冲刷弱沉积物以细粒为主故以低幅度为主。 2、曲线形态 钟形:下粗上细,反映水流能量逐渐减弱,物源供应的不断减少。其代表相是蛇曲河点砂坝。曲线反映底为冲刷面,上面为河道 6, 砾石堆积,再上为河道砂,最上是河道侧向迁移后形成的堤岸砂,漫滩泥,沉积序列为河道的正粒序结构特征。 漏斗形:下细上粗反映向上水流能量加强,分选逐渐变好。代表相为海相滩坝砂岩体;另外

烃源岩测井响应特征及识别评价方法

天然气勘探 收稿日期:2012-08-08;修回日期:2012-09- 29.基金项目:国家“973”项目(编号:2009CB219406);国家科技重大专项(编号:2008ZX05025- 004)联合资助.作者简介:杨涛涛(1981-),男,陕西西安人,工程师,硕士,主要从事海域油气勘探与综合评价工作.E-mail:yang tt_hz@petrochina.com.cn.烃源岩测井响应特征及识别评价方法 杨涛涛1,2,范国章1,2,吕福亮1,2,王 彬1,2,吴敬武1,2,鲁银涛1, 2 (1.中国石油天然气股份有限公司杭州地质研究院,浙江杭州310023; 2.中国石油集团杭州地质研究所,浙江杭州310023 )摘要:烃源岩识别评价是油气地质研究的基础工作之一,是石油地质学研究的热点。常规的岩心样品分析虽能提供准确的烃源岩地球化学指标,但受样品来源和分析化验经费的限制,单口井往往很难获得连续的地球化学分析数据,难以满足精细勘探的需要。测井信息纵向分辨率高、资料连续准确,且烃源岩在测井曲线上具有明显的响应特征。通过对前人烃源岩测井识别评价研究成果的充分调研,详细地阐述了烃源岩在自然伽马、电阻率、声波时差、密度和中子等测井曲线上的响应特征,基于此开展烃源岩测井识别评价。为不断提高烃源岩测井评价精度,国内外学者研究了测井信息与烃源岩定量化学指标的对应关系。系统介绍了多种基于测井资料的烃源岩定量评价方法,并建立了相应的计算模型。通过该模型可直接获取烃源岩的有机质丰度等参数,在实际应用中取得了不错的效果。关键词:烃源岩;测井响应特征;定性识别;ΔLg R法;定量评价中图分类号:TE122.1+ 15 文献标志码:A 文章编号:1672-1926(2013)02-0414- 09引用格式:Yang Taotao,Fan Guozhang,LüFuliang,et al.The logging features and identificationmethods of source rock[J].Natural Gas Geoscience,2013,24(2):414- 422.[杨涛涛,范国章,吕福亮,等.烃源岩测井响应特征及识别评价方法[J].天然气地球科学,2013,24(2):414- 422.]0 引言 烃源岩控制着油气分布,对其识别评价是油气地质研究的基础工作之一,如何快速准确地识别烃源岩一直是研究的热点。岩心样品分析虽能提供准确的烃源岩地球化学指标,但受样品来源和分析化验经费的限制,单井往往难以获得连续的分析数据,常以有限分析数据的平均值来代表烃源岩品质,并以此评估 某层段烃源岩的生烃潜力[ 1 ]。由于有机质具有较强的非均质性[2- 3],实验分析方法不但研究周期长,分析 费用昂贵, 而且评价结果受分析样品代表性影响较大,掩盖了局部高(或低)丰度对烃源岩评价的影响,特别是当缺少取心样品或岩屑受到污染时,评价结果将受到严重影响,难以满足油气勘探的需要。 测井资料具有纵向分辨率高、资料连续准确等特点,可反映地层岩性及流体等特征,国内外学者一直致力于探讨烃源岩与测井资料之间的关系。前人 利用对烃源岩敏感的自然伽马、电阻率、声波时差和密度等测井曲线,提出多种烃源岩定性识别方 法[3- 22];依据测井信息与烃源岩定量化学指标的对 应关系,建立了相应的计算模型,可直接获取烃源岩 各项参数,在实际应用中取得了较好的效果[ 23- 32]。经分析资料刻度后,烃源岩测井识别评价获得纵向连续数据,可弥补分析资料不足而造成烃源岩识别评价的困难, 也具有经济、快捷的特点。本文在对烃源岩测井识别评价充分调研的基础上,详细阐述了烃源岩测井响应特征,系统介绍了烃源岩测井定性识别及定量评价方法,以期对深化测井资料在烃源岩研究应用方面有所裨益。 1 国内外研究现状 1.1 国外概况 国外学者[3- 9]从20世纪40年代起探索烃源岩 测井识别评价。早在1945年Beers等就开始使用 第24卷第2期2013年4月天然气地球科学 NATURAL GAS GEOSCIENCEVol.24No.2 Ap r. 2013

测井曲线解释

主要测井曲线及其含义 主要测井曲线及其含义 一、自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。Rmf ≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。 ⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 二、普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。③求岩层孔隙度。④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 三、微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 四、双感应测井 感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。 感应测井曲线的应用:①划分渗透层。②确定岩层真电阻率。③快速、直观地判断油、水层。 油层: RILD>RILM>RFOC

各向异性地层性质及测井响应

1. 均匀各向异性介质中的电阻率测井响应 均匀各向异性介质中电偶极子和磁偶极子视电阻率表达式,即普通电阻率测井和感应测井的测量结果为: a R R = gm R = 2V H H V R R σλσ==为各向异性系数; θ为相对地层倾角; 对于层状地层,垂向电阻率总是大于水平电阻率:V H R R ≥,因此,各向异性系数α通常总是大于1的。下面给出两种特殊情况的结果: 1) 对于θ=0的特殊情况,即直井情况,H a R R =; 2) 对于θπ=/2(90 度)的特殊情况,即水平井情况,a R =。 因此,在有倾角的各向异性地层中,普通电阻率测井或感应测井仪器反映的是地层垂向电阻率和水平电阻率的加权平均:由0度时的H R 变化到90 度时的 从物理机制看,感应测井在直井中的涡流是水平方向的,因此仅得到水平电阻率,而在斜井中由于涡流存在于两个方向,所以其读数为垂向和水平向电阻率的平均值。在直井中,感应测井只是反映地层水平电阻率,普通电阻率测井或侧向测井也主要反映地层水平电阻率,这是常规电测井在反映各向异性方面的局限性。 2. 各向异性指数系数[2,4,12] 在各向异性地层中,电阻率测井的响应还与井下仪器的结构有关,不同测井仪器测量出的视电阻率之间往往存在明显的差异。如在泥岩层中,感应测井仪测量的视电阻率明显低于0.4m 电位测井仪;在砂泥岩互层,梯度测井仪测量值异

常地低。因而利用各种电测井仪的响应差异可识别电阻率各向异性地层。 在垂直井眼中,假定地层是水平的,砂泥岩薄互层、不同粒度大小的砂岩层、岩层中薄层的电阻性或电导性条带等都使地层表现为各向异性。 各向异性指数主要与砂泥岩电阻率反差程度和砂泥岩相对厚度有关。 图1是砂泥岩互层水平电阻率、垂直电阻率与各向异性指数关系图。图1中R sh =1.0Ω·m ,Rsd=10.0Ω·m 。h sh =h sd 目处是各向异性指数2λ最大的地方,约为3,此时R h 约为1.8Ω·m ,而R v 约为5.5Ω·m 。 R h o r R v (Ω.m )Vsh (%) 实验室里已经观测到页岩的电导率具有各向异性,其系数λ介于1~3之间(Schlumberger 等,1934年;Keller 和Frischknecht ,1966年)。各向异性系数只在横向各向同性的情况下才有意义[4]。

第8章 密度测井和岩性密度测井

第八章 密度测井和岩性密度测井 此两种测井方法是由伽马源向地层发射伽马射线,经与地层介质相互作用后,再由伽马探测器接收(即为伽马-伽马测井),地层不同,探测器记录的读数不同,从而被用来研究地层性质。 §1 密度测井、岩性密度测井的地质物理基础 一、岩石的体积密度b ρ(即真密度): V G b =ρ (单位体积岩石的质量) 对含水纯岩石: φρφρρρρφ ?+-=?+?=+=f ma f ma ma f ma b V V V V G G )1( 单位:(g/cm 3) 其中:V V V ma =+φ (1)组成岩石的骨架矿物不同,ρma 不同,如石英为2.65,方解石为2.71,白云石为2.87,对于相同孔隙度得到的体积密度也就不同,由此可判断岩性;另一方面,利用体积密度计算孔隙度时,必须得先确定岩性。 (2)孔隙性地层的密度小于致密地层,且随着φ的增加ρb 减小,由此可求φ。 且(盐水泥浆)(淡水泥浆)1.10 .1=f ρ 二、康普顿散射吸收系数∑ 中等能量γ射线与介质发生康普顿散射康普顿散射而使其强度减小的参数(康普顿减弱系数---由康普顿效应引起的伽马射线通过单位距离物质减弱程度): A N z b A e ρσ??=∑ 沉积岩中大多数核素A z 均接近于0.5(见表8-1, P 138),常见的砂岩、石灰岩、白云

岩的A z 的平均值也近似为0.5(见表8-2), 所以对于一定能量范围的伽马射线(e σ为常数),∑只与b ρ有关。 密度测井利用此关系,通过记录康普顿散射的γ射线的强度来测量岩石的密度。 三、岩石的光电吸收截面 1、线性光电吸收系数:当γ的能量大于原子核外电子的结合能时,发生光电效应的概率。 n A Z λρτ1.40089 .0= 2、岩石的光电吸收截面指数Pe 它是描述发生光电效应时物质对伽马光子吸收能力的一个参数,即伽马光子与岩石中一个电子发生光电效应的平均光电吸收截面,单位b/电子。而它与原子序数关系为: Pe=aZ 3.6 a 为常数,地层岩性不同,Pe 有不同的值,也就是说Pe 对岩性敏感,可以以来确定岩性,Pe 是岩性密度测井测量的一个参数。 3、体积光电吸收截面 体积光电吸收截面也是描述发生光电效应时物质对伽马光子吸收能力的一个参数,它是指每立方米物质的光电吸收截面,以U 来表示,单位b/cm 3。地层岩性不同,其体积光电吸收截面不同(表8-2,139页)。U 对岩性敏感,也是岩性密度测井所要确定的一个参数。岩石的体积光电吸收截面为: ∑==n i i i V U U 1 Ui 、Vi 分别为组成岩石各部分的光电吸收截面和相对体积。如孔隙度为φ的纯砂岩的光电吸收截面为: f ma U U U ??+-=)1( 体积光电吸收截面U 与光电吸收截面指数Pe 有近似关系: b U Pe ρ/≈ 故可由Pe 求得U 。 §2 地层密度测井

实验二钻测井资料层序地层分析报告

实验二钻测井资料层序地层分析报告 一、试验目的 指标总结各种地层界面在不同资料上的层序地层特征;充分利用钻测井资料识别层序和体系域边界和最大海泛面;解释深切谷沉积序列;分析体系域类型及其测井响应;描述相对海平面变化历史;撰写钻测井资料层序地层分析实验报告。 二、地质背景 研究区域为美国俄克拉何马Anadarko盆地石炭系混合碳酸盐岩台地钻井剖面。碳酸盐岩曾出露地表遭受风化剥蚀,海平面发生规律性变化,从而形成了以不整合为层序边界的、具不同测井响应特征的岩性组合。 三、地层岩性及测井资料的对应关系 该地区主要发育的岩性为砂岩、灰岩与页岩。 砂岩:在自然电位曲线上为较高的值,而电阻率为中低值。 灰岩:在自然电位曲线上为中等的值,电阻率也为中等值。 页岩:在自然电位曲线上为较低的值,电阻率也为较低值。 四、试验结果 根据砂岩、灰岩和页岩纵向上的旋回性与横向的展布特征,将测井剖面划分为3个层序,在这里我们只对中间的层序进行详细的研究。其中中间的层序又可划分为3个体系域,分别为低位体系域(LST)、海侵体系域(TST)和高位体系域(HST)。 1、层序的划分 在研究区井段中,最下层为页岩,其代表的是深水环境,而紧邻其上的是一套代表河道沉积的砂岩,为一套深切谷沉积。说明该区曾暴露地表,遭受风化剥蚀,形成Ⅰ型层序界面。该界面为中间层序的底界,深切谷是Ⅰ型层序界面的典型标志,因此中间层序为Ⅰ型层序。剖面最上为一层代表河道沉积的砂岩,而其下伏岩层也为代表深水环境的一层页岩,说明中间层序顶界也为Ⅰ型层序界面。由于上下两个层序仅可见少部分层段,无法详细研究,因此仅对中间层序进行研究。 2、体系域划分及特征

地层元素测井研究进展

地层元素测井研究进展 张一祯 (西北大学地质学系/大陆动力学国家重点实验室,陕西西安710069) [摘一要]一地层元素测井是一种利用剥谱分析二聚类分析等技术对地层进行评价的测井方法三地层元素测井以元素测量为基础,从岩石成分的角度提供丰富的地质信息三通过对地层元素测井的原理及仪器的讨论,对地层元素测井的历史沿革及发展动态进行回顾,并且对地层元素测井的技术发展方向和研究趋势进行了展望三 [关键词]一地层元素测井;岩性识别;地层元素测井仪器 [中图分类号]一P631.8+1一一[文献标识码]一B一一[文章编号]一1004-1184(2015)01-0112-03 [收稿日期]一2014-08-13 [作者简介]一张祯(1989-),女,陕西延安人,在读硕士研究生,主攻方向:油气成藏机理及分布规律三 一一地层元素测井(ECS)的前身是次生伽马能谱测井(GST),它是将仪器记录的非弹性散射和俘获伽马能谱的剥谱分析结果,同实验标准谱作对比得到地层元素的组成,并利用氧化物闭合模型以及聚类分析等分析技术确定地层中矿物的类型及含量,最终对地层进行评价的测井方法三 目前此类方法可以提供的原始数据是硅二铝二钙二铁二镁二钆等地层元素的含量,其综合解释结果可以提供地层岩性剖面三 1一地层元素测井的工作原理及仪器 特征 1.1一地层元素测井的工作原理 在地下钻孔作业的环境中,中子源发射的4MeV 中子进入周围的地层,在1~2μs 内,这些快速运动的中子与周围地层中元素的原子核通过较强的吸引力发生相互作用,以弹性和非弹性的方式进行散射,直到最终失去能量三这一过程具体分为如下两个阶段:(1)非弹性散射伽马能谱阶段:周围地层中元素的原子核由于和快中子发生相互作用而变成了激发态的复核,之后通过发射一条或多条γ射线回到基态,在这个过程中发射的γ射线被称为非弹性散射γ射线三不同的原子核发生非弹性散射时具有不同的反应截面面积,放出的伽马射线能量也存在不同,在地层中与快中子发生非弹性散射的主要有C二O二Si二Ca 及Fe 等元素的原子核三(2)热中子俘获伽马能谱阶段:快中子经过一系列的速度放缓以及能量降低,最终变为热中子,并被周围地层中元素的原子核所捕获,同时发射一条或多条γ射线三此时发射的γ射线称为热中子俘获γ射线三不同原子核具有不同的能级,因而各种原子核放出的γ射线能量也不相同三在地层元素测井中主要由H二Cl二Si二Ca二Fe二S二Ti二Cr 及K 等元素的原子核与热中子发生俘获作用产生俘获γ射线[1]三1.2一地层元素测井仪器 地层元素测井仪器主要中子源和BGO 晶体探测器组成(见图1)三该仪器可以测量足够多的元素种类从而对地层进行岩性识别三其中中子源发出能量为4MeV 的快中子与地层中元素的原子核发生非弹性反应,同时放射出一条或多条伽马射线,经过能量的衰减,快中子减速形成热中子,热中子被俘获产生俘获伽马射线三BGO 晶体探测器则可以探测并 记录这些非弹性散射伽马能谱和俘获伽马能谱三地层元素测井仪器的优点是可以和多种测井仪联合测量,并且不受井眼和泥浆类型的影响[2-3]三 图1一地层元素测井仪 (以斯伦贝谢公司的ECS 测井仪为例,据张锋,2011) 2一地层元素测井的历史沿革及发展 动态 1)地层元素测井研究的早期主要以识别矿物和岩性为主(尤其是识别沉积岩),其中比较有代表性的研究者为斯伦贝谢和贝克休斯公司三 (1)以Herron 为代表的斯伦贝谢道尔实验室,其主张用从元素-矿物-岩性的方法来判断沉积岩的岩性三 Herron 等(1983)发现元素与矿物的传递式三他用因子分析统计的方法分析岩心数据,建立元素与矿物数据之间的定量关系三即元素含量与矿物丰度的矩阵关系: [E]=[C]四[M]式中:E 为元素重量百分含量列矩阵,M 为矿物重量百分含量列矩阵,C 为系数方阵三Herron 比较了矿物含量的计算值和测量值,发现两种方法所得结果一致,从而确定了元素与矿物之间的传递公式[4]三 Herron(1986)对委内瑞拉东北部的重油砂岩岩心和地球化学测井数据进行了因子分析,分析表明用4种因子可以解释86%的地层矿物成份,其中高岭石和伊利石两种因子可以解释与泥岩有关的大部分矿物成份,高岭石因子与Al二Th二U 以及地壳内的稀有元素Dy二Eu二La 和Sm 有关;伊利石因子则与Cr二Fe二K二Mg二Na 和V 有关三重矿物因子则与抗剥蚀的元 2 11一2015年1月 第37卷一第1期 一一一一一一一一一一一一一一一一一 地下水 Ground water 一一一一一一一一一一一一一一一一 Jan.,2015Vol.37一NO.1

高斯小波用于测井层序地层自动划分的研究

收稿日期:2006-09-22 基金项目:中石油创新基金项目(w 060122);中国石油大学博士创新基金项目(B2004 02) 作者简介:房文静(1972-),女(汉族),山东高唐人,讲师,博士研究生,从事测井方法及应用研究。 文章编号:1673 5005(2007)02 0055 04 高斯小波用于测井层序地层自动划分的研究 房文静1,2 ,范宜仁1 ,邓少贵1 ,李 霞 1 (1.中国石油大学地球资源与信息学院,山东东营257061;2.中国石油大学物理科学与技术学院,山东东营257061)摘要:不同级别层序界面的识别是层序地层学研究的关键问题。在层序地层单元的分界面上,测井曲线表现为突变,而高斯小波对信号突变点具有敏感性和多尺度分析特性,因此测井数据的高斯小波变换能够表征这种突变。以胜坨油田某井为例,对自然电位测井数据进行高斯小波变换,将一维测井数据拓展为二维深度 尺度空间,使其内部的能量聚集与分布得以清晰展示。依据小波时频色谱信息和能量信息,选取识别不同级别层序地层界面的最佳尺度,获取最佳尺度下小波系数模极值的信息。结果表明,小波系数曲线模极值能反映地层岩性的变化,与各级层序界面具有较好的对应关系,从而可据其实现不同级别层序界面的划分。与岩性剖面相比,该方法可用来准确划分层序界面。这些探索为地层层序的自动划分提供了一种新的思路。关键词:测井数据;层序地层;小波变换;高斯小波;模极值中图分类号:P 631 4 文献标识码:A Applicati on of G auss wavelet to de m arcate l og stratigraphic sequence auto maticall y FANG W en jing 1,2 ,FAN Y i ren 1 ,DENG Shao gu i 1 ,L I X ia 1 (1.Facult y of Geo R esource and Information in Ch i na Uni vers it y of P etrole um,D ongy in g 257061,Shandong P rovince ,Chi na ;2.Co llege of Phy sics and T echnology in Chi na Universit y of P etro leu m,D ongy ing 257061,Shandong P rovince ,China )Abstrac t :The key to sequence strati g raphy ana l ysis i s to i dentify sequence boundaries o f d ifferent l evels .D ue to the sens i tiv it y o f Guass w ave let to t he flex po i nts o f t he si gna l and t he multi sca l e ana l ysis o f the w avelet reso l u tion ,the abruptl y chang i ng po i nts a t the i nterface o f strati g raph i c sequence shown fro m the logg i ng curve can be revea l ed c l ear l y by G auss wave l et transf o r m ati on o f l ogg i ng data .Spontaneous potenti a l(SP)l ogg i ng curve from a w ell i n Shengtuo O ilfiel d w as processed by G aussw ave let transfo r mation .By th i s transf o r mation ,the logg i ng data were expanded fro m 1 D dept h space to 2 D dept h sca l e space ,wh ich makes t he co llecti on and distri buti on of its i nner energy revea led clea rl y .T he opti m u m sca l es correspondi ng to boundar i es o f strati graphic sequence were de ter m i ned by ti m e frequency chromatogra m and energy inf o r ma ti on .O n t he basis of t he scales ,the i nfor m ati on on the m odul us of wavelet coefficient was obtai ned .The m odu l usm ax i m a o fw ave l e t coeffic i entw ere found to re fl ect the lit ho l ogy and to correspond to the strati g raph i c sequence of d ifferent leve,l and t herefore rea lizi ng t he c l ar ifi cation of stratigraph i c sequence auto m aticall y .Co mpared w it h t he li tho l og i cal pro fil e ,thismethod can be applied t o detect sequence bound ar i es quantitativel y and correctly .A ll these researches provide a completel y ne w and effecti ve m et hod for de m arcati ng sequence .K ey word s :logg i ng data ;sequence strati graphy ;w ave let transf o r m;G auss w ave let ;m odulusm ax i m a 近年来层序地层学研究得到了较快的发展,但基本上还是局限于用地震、测井、钻井和露头资料所进行的人工 相面 式研究。为实现自动划分层序地层,目前已提出熵分析[1] 、活度函数分析 [2] 和深 -频分析 [3 4] 等划分方法。小波变换是一门新兴理 论,能够有效地实现信号时 频域分析,并且引入了多尺度分析的思想,能够模拟 由粗到细,逐级分 层 的人工解释方法,是测井数据时频分析与地质解释恰当的数学工具。高斯小波是高斯函数的一阶导数,应用其划分层序界面的思想来源于信号的模 2007年 第31卷 中国石油大学学报(自然科学版) V o.l 31 N o .2 第2期 Journa l of Ch i na U n i ve rs i ty o f P etro l eu m A pr .2007

地层元素测井伽马能谱数值模拟

地层元素测井伽马能谱数值模拟 在地质勘探研究过程中,尤其在测井行业中,由于进行相应物理实验的成本较大,但是随着计算机的不断发展,蒙特卡罗方法成为了核测井中一种重要的研究手段,在测井的前期理论工作中起着不可忽视的作用。本文通过双群扩散理论,建立地层元素测井中γ射线对探测器的贡献率的函数,通过相应的参数分析,其结果表明:在地层元素测井中,其γ分布的影响因素主要是中子在地层中的慢化长度和γ射线在地层中的衰减系数而决定。 基于MCNP5和Geant4两款MC软件在元素测井中的应用,建立造岩元素Al、Ca、Fe、H、O、K、Mg、Na、Si的单元素PGNAA模拟模型,评价了两款软件中子活化模拟准确性,结果表明MCNP5软件模拟结果同IAEA截面库的数据更为接近;通过对比MCNP5和Geant4模拟快中子激发γ能谱的差异,表明了MCNP5与Geant4在造岩元素的快中子激发γ射线模拟研究中,二者存在较大差异,为今后元素测井的研究提供参考依据。通过地层元素测井中孔隙度对γ分布的影响,根据《实用地质分析标准物质手册》以及标准石灰岩模型井的参数,建立以D-T中子源的地层元素测井模型,采用MCNP5程序模拟了地层中子和γ射线的耦合输运过程,得到了不同孔隙度、不同源距下的γ注量分布,其结果表明在近源距处,γ射线的注量率与孔隙度相关性较大,而在远源距处,γ射线的注量率则与孔隙度的相关性较小;通过孔隙灵敏度以及相应屏蔽体的设置关系,得出在地层元素测井中探测器的最佳源距位置。 通过比较不同探测器的性能,结合地层元素测井中测井条件和要求,认为在地层元素测井中LaBr3探测器是最为合适,并利用MCNP数值模拟方法仿真实际的测井条件,评估元素检出限。

碳酸盐岩储层评价方法及标准

碳酸盐岩储层评价 一、储层岩石学特征评价 1、内容和要求 (1)颜色; (2)矿物成分、含量、结构等,其中矿物结构分粒屑结构、礁岩结构、残余结构、晶粒结构。 粒屑结构:要求描述粒屑组分、含量、基质、胶结物等特征。粒屑组分描述应包括内碎屑、生屑和其他颗粒(鲕粒、球粒、团粒)的大小、形态、分选、磨圆、排列方向、破碎程度等方面的内容。对鲕粒还应描述内部结构;粒屑含量是指采用镜下面积目估法或计点统计法确定各种碎屑的含量;基质(一般把粒径<0.032mm的颗粒划为基质=成分、含量、颗粒形态、结晶程度、类型、成因及胶结物(亮晶)成分、含量、晶体的大小、结晶程度、与颗粒接触关系、胶结物形态(栉壳状、粒状、再生边或连生胶结)、胶结世代及胶结类型等都是应描述的内容。 礁岩结构:分析原地生长的生物种类、骨架孔隙的发育情况,确定粘结结构类型(叠层状、席状、皮壳状)、规模大小及成因;分析异地堆积的类型(分散礁角砾、接触礁角砾)、成因、各类礁角砾的大小和含量,描述其形态、分布等。 残余结构:确定原结构类型、残余程度,分析成因。 晶粒结构:描述晶体形态、晶粒间接触关系以及晶间孔发育和连通程度,确定晶粒大小、各种晶粒的比例。 (3)沉积构造 物理成因构造 a.流动构造:确定类型(冲刷痕、皱痕、微型层理及渗流砂),描述形态、大小和排列方向; b.变形构造:确定类型(滑塌构造、水成岩墙),描述特征; c.暴露构造:确定类型(雨痕、干裂、席状裂隙、鸡丝构造、帐蓬构造),描述特征; d.重力成因构造:确定类型(递变层理、包卷构造,枕状构造、重荷模构造),描述特征。 化学成因构造

a.结晶构造:确定类型(晶痕、示底构造),描述特征; b.压溶构造:确定类型(缝合线、叠锥构造)描述特征; c.交代增生构造:确定类型(结核、渗滤豆石),描述特征。 生物沉积构造 a.生物遗迹:确定类型(足迹、爬痕、潜穴、钻孔),描述形态和分布; b.生物扰动构造:确定类型(定形扰动、无定形扰动),描述形态和分布; c.鸟眼构造:描述鸟眼孔的大小、充填物质与充填情况、分布特点,分析成因。 生物—化学沉积构造 a. 葡萄状构造:确定大小、藻的类型,分析成因; b. 叠层石构造:确定大小、藻的类型,分析成因; (4)、沉积层序研究 在单井剖面上划分沉积旋回,确定其性质、大小;分析旋回间的接触及组合关系;在旋回内部划分次级旋回并分析不同级别沉积旋回的成因及控制因素。 建立研究井的沉积层序及单维模式。 2、技术和方法 (1)岩心观察和描述 系统地观察描述岩心的颜色、矿物成分、肉眼可见的沉积结构和构造、古生物类型以及孔、洞、缝发育情况。 (2)岩心实验室分析 岩心薄片鉴定。 酸蚀分析。将岩石制成光面,放入酸液(浓度为23%的醋酸或5%~10%的盐酸)中,作用一定时间后取出,清洗干净,用放大镜或显微镜观察岩石的结构、构造和不溶组分。 揭片分析。将涂有醋酸盐的薄膜覆盖在经酸蚀后的岩石光面上,作用一定时间后揭下该薄膜,在显微镜下观察岩石的结构和构造。 非碳酸盐组分分离。把岩石制成3cm×3cm×0.6cm的样品,放入浓度为20%的醋酸中浸泡,使碳酸盐全部溶解掉,然后在显微镜下观察酸不溶物的成分和特征。 扫描电镜观察。鉴定岩石的矿物成分、超显微结构和构造、超微古生物化石。

测井地质学 知识点

第二章测井层序地层分析 第二节层序地层单元及其测井特征 一、基本术语:体系域、低位域、海侵域、高位域、陆架边缘体系域等 二、体系域 1.类型:低位域、海侵域、高位域、陆架边缘体系域 2.低位域:陆棚坡折和深水盆地沉积背景、斜坡构造背景、生长断层背景下的低位域组成 3.海侵域:以沉积作用缓慢、低砂泥比值,一个或多个退积型准层序组为特征、主要沉积体系类型 4.高位域:沉积物供给速率常>可容空间增加的速率,形成了向盆内进积的一个或多个准层序组,底部以下超面为界,顶部以Ⅰ型或Ⅱ型层序界面为界特征;主要沉积体系类型 5.陆架边缘体系域:以一个或多个微弱前积到加积准层序组为特征,准层序组朝陆地方向上超到Ⅱ型层序边界之上,朝盆地方向下超到Ⅱ层序边界之上。 三、湖平面变化与层序结构 1.湖平面变化与体系域 2.层序结构类型及特征:一分层序、二分层序、三分层序、四分层序 第三节测井地层地层分析方法 一、基本术语:基准面、基准面旋回、分形 二、一般工作流程 1.测井—地震—生物等时地层格架建立 2.关键层序界面识别 3.研究区测井—地质岩相知识库的建立 4.关键井的岩相识别、重建岩相序列 5.建立多井关键性剖面 6.预测油气分布 三、单井测井层序分析方法 1.测井资料预处理

2.沉积旋回分析:旋回性及旋回级次是沉积岩层重要的固有属性;旋回 级次分析:常规测井旋回分析、小波分析和地层累积方法等 3.沉积间断点识别:地层倾角测井--累计倾角交会图法、地层倾角测井-- 累积水平位移交汇图法、地层倾角测井--倾角矢量图法、自然电位和 视电阻率组合法、声波时差响应法等 四、米氏周期分析及分形研究 五、沉积层序的分形特征研究 1.分形的概念 2.地质学运用分形理论需要考虑的问题 3.分数维的计算 4.分数维的应用 第三章测井沉积学研究 第一节测井沉积学概念 一、基本概念:测井相、测井相标志 二、测井相分析的基本原理 三、测井相标志与地质相标志的关系:确定岩石组分的测井相标志、判断沉积 结构的测井相标志、判断沉积构造的测井相标志 四、由测井相到沉积相的逻辑模型 第二节岩石组合及层序的测井解释模型 一、测井曲线的一般特征 1.常规组合测井曲线:测井曲线幅度特征、测井曲线形态特征、接触关 系、曲线光滑程度、齿中线、多层的幅度组合--包络线形态、层序的 形态组合特征 2.地层倾角测井的微电导率曲线特征:从曲线形态和曲线的相似性判断 岩性—颗粒粗细,进行微细旋回的划分;根据四条电导率曲线特征值 的平行度,可以衡量平行及非平行层理;利用倾角矢量模式解释沉积 构造,研究古水流方向;根据倾角矢量模式组合解释褶皱、断层、不 整合;利用倾角测井曲线识别裂缝;利用双井径差值分析现代地应力二、层序特征测井解释模型

典型地层测井响应特征

典型地层测井响应特征 煤层:(三高三低)电阻率高、声波时差高、中子孔隙度高、密度值低、GR低、光电有效截面积Pe低。SP变化不明显 碳酸盐岩和火成岩裂缝性地层:(三低一高)GR低、电阻率低、孔隙度低、声波时差高。纯泥岩(特殊泥岩除外):电阻率系列值低、声波时差值高、GR高、密度值低、中子孔隙度高。 高致密层:电阻率系列高阻对齐、对应其他曲线应是:密度高、中子孔隙度值低、声波低、GR低。 1、油、气、水层在测井曲线上显示不同的特征: (1)油层: 声波时差值中等,曲线平缓呈平台状。 自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。 微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。 长、短电极视电阻率曲线均为高阻特征。感应曲线呈明显的低电导(高电阻)。 井径常小于钻头直径。 油层:当Rmf>Rw时: 电阻率为低侵特征(ILD >ILM> LL8) (2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。气层:声波时差变大(在未压实的疏松地层出现周波跳跃)、中子孔隙度低、密度值低、电阻率高、 (3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。 (4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。 砂岩地层(水层): 当Rmf>Rw时:SP负异常、微电极为正差异(微电位>微梯度)、电阻率为高侵特征(LL8>ILM>ILD)、井径缩径、 当Rmf=Rw或咸水泥浆时:SP无差异、 当Rmf

测井资料交会图法在火山岩岩性识别中的应用

文章编号 1004Ο5589(2003)02Ο0136Ο05 测井资料交会图法在火山岩岩性识别中的应用 赵 建 高福红 吉林大学地球科学学院,长春130026 摘 要 在火山岩储层研究中,岩性识别显得越来越重要。在评述目前常用的岩性识别方法后,重点以测井资料交会图法为例,以松辽盆地徐家围子断陷升平气田深层白垩系营城组火山岩为对象,优选出密度测井、自然伽玛测井、声波测井、电阻率、钍铀等测井项目的数据进行交会,编制出测井曲线交会图版,并以此为依据识别出该区的火山岩主要岩性有:安山岩、玄武岩、流纹岩和凝灰岩等。识别结果与实际情况相吻合。 关键词 火山岩 岩性识别 交会图 中图分类号 P588.1 文献标识码 A 收稿日期 2002Ο11Ο04;改回日期 2003Ο03Ο20 作者简介 赵 建(1976-),男,河南周口人,硕士研究生,从事含油气盆地研究. 通讯作者简介 高福红(1962-),女,辽宁朝阳人,副教授,从事沉积学和含油气盆地研究. Application of Crossplots B ased on Well Log Data in Identifying Volcanic Lithology Jian Zhao ,Fuhong G ao College of Earth Sciences ,Jili n U niversity ,Changchun ,130061Chi na Abstract Lithologyical identification is becoming increasingly important in the study of volcanic rock reser https://www.doczj.com/doc/1818400785.html,mon methods in identifying volcanic lithology are introduced briefly here.The volcanic rocks of Y ingcheng Formation in Shengping G as Field are used as examples and well log crossplots are compiled based on the following data :density log ,gamma 22ray log ,acoustic log ,resistivity log ,thorium and uranium log.By this means ,andesite ,basalt ,rhyolite and tuff are identified.The identification result is well coincident with the lithological fact in the area. K ey w ords volcanic rock ,lithology identification ,crossplot 1 概 述 火成岩油气藏目前已成为世界油气田勘探开发的一个新领域。在美国、前苏联、古巴和墨西哥等很多国家都有这类油气藏被发现[1]。我国大多数油田也相继发现有这类储层。例如在准噶尔盆地西北缘的石炭系和二叠系中发现了一批火山岩油藏,而且探明的地质储量相当可观;二连盆地白垩系地层中、黄骅凹陷北堡地区、苏北地区等相继发现了火山岩储层油气藏。目前,在松辽盆地北部营城组火山岩地层油气勘探也取得了较好的效果。所有这些都 展示了火山岩良好的勘探前景。对这类特殊的储层 进行研究时,要进行火山岩岩性识别。识别含油气盆地中的火山岩岩性最直接有效的方法是岩心分析,但是考虑到油田上的生产效益,深层钻井取心成本很高,因此不可能在每口井中都取心,加上过去的老井在钻探过程中,遇到火山岩层时常常又不够重视,所以取心更是很少。因此利用间接的方法进行岩性识别成了必然。 在不同的地区,由于喷发方式和所处的构造不同,火山岩的岩性具有很大差异,岩石类型多样化,结构、构造复杂化。比如在我国中部的石西地区火 世界地质 G lobal G eology ,2003,22(2):136~140

相关主题
文本预览
相关文档 最新文档