当前位置:文档之家› 第三章红外吸收光谱法

第三章红外吸收光谱法

第三章红外吸收光谱法
第三章红外吸收光谱法

第一章质谱习题

1、有机质谱图的表示方法有哪些?是否谱图中质量数最大的峰就是分子离子峰,为什么?

2、以单聚焦质谱仪为例,说明质谱仪的组成,各主要部件的作用及原理。

3、有机质谱的分析原理及其能提供的信息是什么?

4、有机化合物在离子源中有可能形成哪些类型的离子?从这些离子的质谱峰中可以得到一些什么信息?

5、同位素峰的特点是什么?如何在谱图中识别同位素峰?

6、谱图解析的一般原则是什么?

7.初步推断某一酯类(M=116)的结构可能为A或B或C,质谱图上m/z 87、m/z 59、m/z 57、m/z29处均有离子峰,试问该化合物的结构为何?

(B)

(A)

(C)

8.下列化合物哪些能发生McLafferty重排?

9.下列化合物哪些能发生RDA重排?

10.某化合物的紫外光谱:262nm(15);红外光谱:3330~2500cm-1间有强宽吸收,1715 cm-1处有强宽吸收;核磁共振氢谱:δ11.0处为单质子单峰,δ2.6处为四质子宽单峰,δ2.12处为三质子单峰,质谱如图所示。参照同位素峰强比及元素分析结果,分子式为C5H8O3,试推测其结构

式。

部分习题参考答案

1、表示方法有质谱图和质谱表格。质量分析器出来的离子流经过计算机处理,给出质谱图和质谱数据,纵坐标为离子流的相对强度(相对丰度),通常最强的峰称为基峰,其强度定为100%,其余的峰以基峰为基础确定其相对强度;横坐标为质荷比,一条直线代表一个峰。也可以质谱表格的形式给出质谱数据。

最大的质荷比很可能是分子离子峰。但是分子离子如果不稳定,在质谱上就不出现分子离子峰。根据氮规则和分子离子峰与邻近峰的质量差是否合理来判断。

2、质谱仪的组成:进样系统,离子源,质量分析器,检测器,数据处理系统和真空系统。

进样系统:在不破坏真空度的情况下,使样品进入离子源。气体可通过储气器进入离子源;易挥发的液体,在进样系统内汽化后进入离子源;难挥发的液体或固体样品,通过探针直接插入离子源。

真空系统:质谱仪需要在高真空下工作:离子源(10-3~10-5Pa );质量分析器(10 -6 Pa )。真空系统保持质谱仪需要的真空强度。

离子源:是质谱仪的“心脏”。离子源是样品分子离子化和各种碎片离子的场所。质谱分析时离子源的选择至关重要。采用高能电子轰击气态有机分子,使其失去一个电子成为分子离子,分子离子可以裂解成各种碎片离子,这些离子在电场加速下达到一定的速度,形成离子流进入质量分析器。

质量分析器:在磁场存在下,带电离子按曲线轨迹飞行按质荷比(m/z)被分离开来。它是根据质谱方程式:m/e=(H02R2)/2V,离子在磁场中的轨道半径R取决于:m/e、H0、V。改变加速电压V, 可以使不同m/e 的离子进入检测器。

检测器和数据处理系统:把被质量分析器分离开来的各离子按照质荷比(m/z)及相对强度大小产生信号被记录下来,排列成质谱。

3、使待测的样品分子气化,用具有一定能量的电子束(或具有一定能量的快速原子)轰击气态分子,使处于气态的分子失去价电子生成分子离子,分子离子进一步断裂生成不同质量的碎片离子。这些带正电荷的离子在电场和磁场作用下,按质荷比(m/z)及相对强度大小产生信号被记录下来,排列成谱即为质谱(mass spectroscopy)。

提供的信息:可以确定分子量和分子式;根据分子离子及碎片离子峰,可以推断一些有关分子结构的信息;质谱仪常带有标准谱库,可以初步判断未知化合物;与气相色谱联用(GC-MS,LC-MS),可以对混合物进行定性和定量分析。

4、在离子源中有可能形成分子离子、同位素离子、碎片离子、多电荷离子和亚稳离子等。解析质谱图时主要关注分子离子、同位素离子、碎片离子。

由分子离子可以得到分子量,在高分辨率质谱中可以直接获得分子式;对于低分辨率质谱,可以结合同位素离子峰来推断分子式。

碎片离子根据其裂解规律获得有关分子结构信息,推导可能的结构式并进行验证。

5、组成有机化合物的大多数元素在自然界是以稳定的同位素混合物的形式存在。通常轻同位素的丰度最大,如果质量数以M表示,则其中同位素的质量大多数为M+1,M+2等。这些同位素在质谱中形成的离子称为同位素离子,在质谱图中往往以同位素峰组的形式出现,分子离子峰是由丰度最大的轻同位素组成。同位素峰组强度比与其同位素的相对丰度有关。

6、谱图解析可依据质谱中离子的类型和开裂的一般规律进行。解析程序归结起来有以下几个步骤:

(1)确定分子离子峰和决定分子式;

(2)确定碎片离子的特征,首先要注意高质量端碎片离子的中性碎片丢失的特征,同时也要注意谱图低质量端形成的一些特征性离子系列。

(3)提出可能的结构式并进行验证。

7.(B)

8.((A、C)

9.(B)

10.(CH3COCH2CH2COOH)

第二章紫外吸收光谱习题

1. 频率(MHz)为4.47×108的辐射,其波长数值为

(1)670.7nm (2)670.7μ(3)670.7cm (4)670.7m

2. 紫外-可见光谱的产生是由外层价电子能级跃迁所致,其

能级差的大小决定了

(1)吸收峰的强度(2)吸收峰的数目

(3)吸收峰的位置(4)吸收峰的形状

3. 紫外光谱是带状光谱的原因是由于

(1)紫外光能量大(2)波长短(3)电子能级差大

(4)电子能级跃迁的同时伴随有振动及转动能级跃迁的原因

4. 化合物中,下面哪一种跃迁所需的能量最高

(1)σ→σ* (2)π→π* (3)n→σ* (4)n→π*

5.下列化合物,紫外吸收λmax值最大的是

(1)(2)(3)(4)

6.用示差光度法测量某含铁溶液, 用5.4×10-4mol·L-1Fe3+溶液作参比,在相同条件下显色,用1cm吸收池测得样品溶液和参比溶液吸光度之差为0.300。已知e=2.8×103L·mol-1·cm-1,则样品溶液中Fe3+的浓度有多大?

7.确称取1.00mmol的指示剂于100mL容量瓶中溶解并定容。取该溶液2.50mL5份,分别调至不同pH并定容至25.0mL,用1.0cm吸收池在650nm波长下测得如下数据:

pH 1.00 2.00 7.00 10.00 11.00

A 0.00 0.00 0.588 0.840 0.840

计算在该波长下In-的摩尔吸光系数和该指示剂的pKa。

8.称取维生素C 0.05g溶于100ml的0.005mol/L硫酸溶液中,再准确量取此溶液2.00ml稀释至100ml,取此溶液于1cm吸收池中,在lmax245nm处测得A值为0.551,求试样中维生素C的百分含量。

9.某试液用2.0cm的吸收池测量时T=60%,若用1.0cm、3.0cm和4.0cm吸收池测定时,透光率各是多少?

10. 化合物A在紫外区有两个吸收带,用A的乙醇溶液测得吸收带波长λ1=256nm,λ2=305nm,而用A的己烷溶液测得吸收带波长为λ1=248nm、λ2=323nm,这两吸收带分别是何种电子跃迁所产生?A属哪一类化合物?

11. 异丙叉丙酮可能存在两种异构体,它的紫外吸收光谱显示(a)在λ=235nm有强吸

收,ε=1.20×104,(b)在λ>220nm区域无强吸收,请根据两吸收带数据写出异丙丙酮两种异构体的结构式。

12. 下列化合物的紫外吸收光谱可能出现什么吸收带?并请估计其吸收波长及摩尔吸光系数的范围。

(1)

(2)

(3)

(4)

13. 化合物A和B在环己烷中各有两个吸收带,A:λ1=210nm,ε1=1.6×104,λ2=330nm,ε2=37。B:λ1=190nm,ε=1.0×103,λ2=280nm,ε=25,判断化合物A和B各具有样结构?它们的吸收带是由何种跃迁所产生?

14. 下列4种不饱和酮,已知它们的n→π*跃迁的K吸收带波长分别为225nm,237nm,349nm和267nm,请找出它们对应的化合物。

(1)(2)

(3)

(4)

15. 计算下列化合物在乙醇溶液中的K吸收带波长。

(1)

(2)

(3)

16. 已知化合物的分子式为C7H10O,可能具有α,β不饱和羰基结构,其K吸收带波长λ=257nm(乙醇中),请确定其结构。

部分习题参考答案

1—5 (1)、(3)、(4)、(1)、(2)

6、,

7、(1)已知:AL-=0.840 AHL=0.00 pH=7.00时,A=0.588

(2)

8、245nm=560) (98.39%)

9、T2=77.46%,T3=46.48%,T4=36.00%

10. π→π*,n→π*

11. (a)(b)

12. (1)K,R;(2)K,B,R;(3)K,B;(4)K,B,R

13. (A)CH2=CH-COR;(B)RCOR'

14. (1)267nm;(2)225nm;(3)349nm;(4)237nm

15. (1)270nm(2)238nm(3)299nm

16.

第三章红外吸收光谱法

1.一种能作为色散型红外光谱仪色散元件的材料为

A 玻璃

B 石英

C 卤化物晶体

D 有机玻璃

2. 预测H2S分子的基频峰数为

(A)4 (B)3 (C)2 (D)1

3. CH3—CH3的哪种振动形式是非红外活性的

(A)υC-C (B)υC-H (C)δasCH (D)δsCH

4. 化合物中只有一个羰基,却在1773cm-1和1736 cm-1处出现

两个吸收峰,这是因为

(A)诱导效应(B)共轭效应(C)费米共振(D)空间位阻

5. Cl2分子在红外光谱图上基频吸收峰的数目

A 0

B 1

C 2

D 3

6. 红外光谱法, 试样状态可以

A 气体状态

B 固体状态

C 固体, 液体状态

D 气体, 液体, 固体状态都可以在含羰基的

7. 红外吸收光谱的产生是由

A 分子外层电子、振动、转动能级的跃迁

B 原子外层电子、振动、转动能级的跃迁

C 分子振动-转动能级的跃迁

D 分子外层电子的能级跃迁

8. 色散型红外分光光度计检测器多

A 电子倍增器

B 光电倍增管

C 高真空热电偶

D 无线电线圈

9.一个含氧化合物的红外光谱图在3600~3200cm-1有吸收峰, 下列化合物最可能

A CH3-CHO

B CH3-CO-CH3

C CH3-CHOH-CH3

D CH3-O-CH2-CH3

10、产生红外吸收的两个条件是什么?

11、影响物质红外光谱中峰位的因素有哪些?

12、红外光谱中官能团是如何进行分区的?

13 某化合物,沸点为159~161℃,含氯而不含氮和硫,它不溶于水、稀酸、稀碱以及冷的浓硫酸,但能溶于发烟硫酸,它与热的硝酸银醇溶液不发生沉淀。用热的高锰酸钾溶液处理时,可使化合物慢慢溶解,如此所得溶液用硫酸酸化,得到一个中和当量为157±1的沉淀物,其红外显示1600、1580、1500、742 cm-1有强峰,试推测其结构。

14. 一个化合物分子式为C4H6O2,已知含一个酯羰基和一个乙烯基。用溶液法制作该化合物的红外光谱有如下特征谱带:3090cm-1(强) ,1765cm-1(强),1649cm-1(强),1225cm-1(强)。请指出这些吸

收带的归属,并写出可能的结构式。

15、有一化合物,已知其分子式为C3H4O,其红外光谱图如下,请分析出其可能的结构式。

16.某化合物在3640-1740cm-1区间,IR光谱如下图所示.该化合物应是氯苯(I),苯(II), 或4-叔丁基甲苯中的哪一个?说明理由.

部分习题参考答案

1. ( D )

2.(B)

3.(A)

4. (C)

5. ( A )

6. ( D )

7. ( C )

8. ( C )

9. ( C )

10、答:产生红外吸收的第一个条件是:只有当红外辐射频率等于振动量子数的差值与分子振动频率的乘积时,分子才能吸收红外辐射,产生红外吸收光谱。即νL =△υ×v。

产生红外吸收的第二个条件是:分子在振动,转动过程中必须有偶极矩的净变化。即偶极矩的变化△μ≠0。

11、答:(1)诱导效应:若分子中存在吸电子基团的诱导效应常使吸收峰向高波数方向移动。

(2)共轭效应:参与共轭的双键比普通的双键键长大,键力常数减小,其吸收峰向低波数方向移动。(3)氢键效应:氢键的发生使分子间的化学键力常数减小,使振动频率向低波数移动。

(4)振动偶合效应:指当两个化学键振动的频率相等或相近并具有一个公共原子时,由于一个键的振动通过公共原子使另一个键的长度发生改变,从而形成强烈的相互作用,这种相互作用的结果使振动频率发生变化,一个向高频移动一个向低频移动。

(5)空间效应:包括环状化合物的张力效应和空间位阻效应。对于环外双键,随着环张力的增大,其振动频率增高。而环内双键的振动频率随环张力的增加而降低。

(6)外部因素:试样的状态、溶剂的极性和测定条件都会引起基频峰的位移。

12、答:(1)、X-H伸缩振动区(4000—2500 cm-1)

(2)、三键和累积双键伸缩振动区( 2500—2000cm-1)

(3)、双键的伸缩振动区( 2000—1500cm-1)

(4)、C-H的变形振动区( 1500—1300cm-1)

13.

14. CH3COOCH=CH2

15答:(1)计算其不饱和度:(3′2+2-4)?2=2可能为烯,炔及含有羰基的化合物

(2)3300 cm-1 处宽带,羟基

结合 1040 cm-1 处的吸收,可推测含有O-H,

由此可排除含有羰基的可能性

(3)2110 cm-1 处的吸收,可知此化合物有碳碳三键吸收

结合化合物的分子式可知此化合物为 2-丙炔醇

16解:应为III, 因为IR中在1740-2000cm-1之间存在一个双峰,强度较弱,为对位双取代苯的特征谱带,而在2500-3640cm-1之间的两个中强峰,则为CH3-对称与不对称伸缩振动的特征谱带.

第四章核磁共振波谱习题

1. 下列化合物中哪些质子属于磁等价核

(A)HaHbC=CFaFb (B) CHaHbF (C). R—CO—NHaHb (D)

2. 苯环上哪种取代基存在时,其芳环质子化学位移最大

(A)—CH2CH3 (B)—OCH3 (C)—CH=CH2 (D)—CHO

3. 质子的化学位移有如下顺序:苯(7.27)>乙烯(5.25)>乙炔(1.80)>乙烷(0.80),其原因是

(A)导效应所致

(B)杂化效应和各向异性效应协同作用的结果

(C)向异性效应所致

(D)杂化效应所致

4. 在通常情况下,在核磁共振谱图中将出现几组吸收峰

(A)3 (B)4 (C)5 (D)6

5. 3个不同的质子Ha、Hb、Hc,其屏蔽常数的大小为σb>σa>σc。则它们的化学位移如何?

(A)δa>δb>δc (B)δb>δa>δc (C)δc>δa>δb (D)δb>δc>δa 6. 下列化合物中,甲基质子化学位移最大的是

(A)CH3CH3 (B)CH3CH=CH2 (C)CH3C≡CH(D)CH3C6H5

7 下列化合物中羰基碳化学位移δC最大的是

(A)酮(B)醛(C)羧酸(D)酯

8.试计算①200及400MHz仪器的磁场强度是多少Tesla(T)。②13C共振频率是多少?

9.用H0=2.3487T的仪器测定19F及31P,已知它们的磁旋比分别为2.5181×108T-1?s-1及1.0841×108T-1?s-1试计算它们的共振频率。

10.计算顺式与反式桂皮酸Ha与Hb的化学位移。

桂皮酸

11. 一化合物分子式为C6H11NO,其1H谱如图所示,补偿扫描信号经重水交换后消失,试推断化合物的结构式。

12. 根据核磁共振图,推测C8H9Br的结构。

13. 由核磁共振图,推断C11H16O的结构。

14. 由核磁共振图,推断C10H12O2的结构。

15 由核磁共振图,推断C8H8O的结构。

部分习题参考答案

1 (B)、2(D)、3(B);4(A)、 5(C)、6(D)7(A)

8(①4.6974及9.3947;②50.286及100.570MHz)

9(94.128及40.524MHz)

10 (顺式:δa=6.18,δb=7.37,反式:δa=6.65,δb=7.98)

11.

12

13

14.

15.

模拟试题(一)

一、选择题(请将符合题意的选项写在括号中,每小题2分,共22分)

1. 在丁酮质谱中,质荷比值为29的碎片离子是发生了()

A、α-裂解产生的

B、I-裂解产生的

C、重排裂解产生的

D、γ-H迁移产生的。

2. 将下列化合物按1H化学位移值从大到小排列( )。

A. a、b、c、d B . a、c、b、d C. c、d、a、b D. d、c、b、a

3. 在碱性条件下,苯酚的最大吸波长将发生何种变

化?

红移 B. 蓝移 C. 不变 D. 不能确定

4. 某芳烃(M=134), 质谱图上于m/e91处显一强峰,试问其可能的结构是:

5. 可分别用作红外光谱和质谱检测器的是:

A. 相板、光电倍增管;

B. 光电管、Faraday杯;

C. 热电偶、光电倍增管;

D. 光电管、热电偶

6. 乙醇高分辨1HNMR谱图中,由低场到高场排列的质子种类及相应峰数(括号内数字为偶合分裂峰数)为:

A. CH3 (3)—CH2 (4)—OH(1);

B. CH3 (4)—CH2( 3)—OH(1);

C. OH(1)—CH2(4)—CH3(3);

D. OH(3)—CH2(3)—CH3(4)

7. 红外光可引起物质的能级跃迁。

A、分子的电子能级的跃迁,振动能级的跃迁,转动能级的跃迁;

B、分子内层电子能级的跃迁;

C、分子振动能级及转动能级的跃迁;

D、分子转动能级的跃迁。

8二溴乙烷质谱的分子离子峰(M)与M+2、M+4的相对强度为:()

A、1:1:1

B、2:1:1

C、1:2:1

D、1:1:2

9. 指出下列四种化合物中,哪一种化合物的分子离子峰为奇数()

A、C6H6 B、 C6H5NO2 C、 C4H2N6O D、C9H10O2

10、下列羰基化合物中C=O伸缩振动频率最高的

是:

A. RCOR’

B. RCOCl

C. RCOF

D. RCOBr

11.化合物中,下面哪一种跃迁所需的能量最

高?()

A、σ→σ﹡

B、π→π﹡

C、n→σ﹡

D、n→π﹡

二、填空题 (19分 )

1、质谱计通常由、、三个主要部分和两个辅助部分组成。在离子的分离中,单聚焦质量分析器只实现了聚焦,而双聚焦质量分析器除具有单聚焦质量分析大路的聚焦功能外,还实现了聚焦。

2、连续波核磁共振谱仪主要由、、、频率或磁场扫描单元以及信号放大和显示单元等部件组成。

3、红外光谱测定技术中固体样品的测定可采

用、、、。

4下列化合物能吸收最长波长的光是,能吸收最短波长的光是,因

。(只考虑π→π*跃迁。)

A B C

5.写出下列化合物的质谱中的主要碎片离子

②CH3CH2OCH2CH3

三、问答题(25分)

1、简述质谱分析法中怎样判断分子离子?

2..解释何谓红移,何谓蓝移?

4.在含有一个溴原子的化合物中,M和M+2峰有怎样的相对强度?

5试说明苯酚和环己醇的红外光谱有何不同?

四、计算题 ( 共 20分 )

1.某化合物(不含N元素)分子离子区质谱数据为M(72),相对丰度100%; M+1(73),相对丰度3.5%;M+2(74),相对丰度0.5%。

(1)分子中是否含有Br Cl?

(2) 分子中是否含有S?

(3)试确定其分子式。

2.据Woodward-Fieser规则计算下列化合物的最大吸收波长lmax(全部正确才能得满分)

五、推断题(14分)

1、分子式为C8H8O的化合物,IR(cm-1):3050,2950,1695,1600,1590,1460,1370,1260,760,690等处有吸收,

(1)分子中有没有羟基(—O H)?。

(2)有没有苯环。

(3)其结构为。

2.某未知物的分子式为C3H6O,质谱数据和核磁共振谱如图1、2所示,试推断其结构。

图1 、C3H6O的质谱

图2 、C3H6O的核磁共振谱

部分习题参考答案

一、选择题

1、B

2、C

3、A

4、B

5、C

6、C

7、C

8、C

9、B10、C 11、A

二、填空题

1、离子源、质量分析器、离子检测器方向聚焦能量聚焦

2、磁体、射频发生器、射频放大和接收器、探头

3、压片法糊状法熔融(或溶解)成膜法裂解法

4 C、B,共轭体系中,吸收带向长波方向移动,共轭体系愈大,跃迁产生的波长越大,因为B中没有共轭系统,C中共轭链最长

5.①

m/z:77 CH3C≡O+ m/z: 43 CH3 + m/z:

15 m/z:105

②CH3CH2+ m/z:29 CH3CH2O+ =CH2 m/z:59 HO+ =CH2 m/z: 31

三、简答题

1、①分子离子必须是一个奇电子离子。②分子离子的质量奇偶性必须符合氮规则。③合理的中性丢失。

2、使化合物吸收波长向长波方向移动的现象叫红移。

使化合物吸收波长向短波方向移动的现象叫蓝移。

3 大约是1:1

4 苯酚在1600-1400 cm-1有苯环的骨架伸缩振动,770-730,715-68

5 cm-1有苯环单取代C-H面外弯曲振动

环己醇在2800-3000有饱和氢的伸缩振动

四、计算题

1、(1) 不含Br Cl (2) 无S (3) C3H4O2

2、

五、结构推断

1、

1.没有

2.有

3.

2 从核磁共振可知只有一种氢,从质谱可知58→4

3 可见含有甲基,43→15 说明含有羰基,结

合其不饱和度=1 可推知是

模拟试题(二)

一、选择题(请将符合题意的选项写在括号中,每小题2分,共22分)

1、含奇数个氮原子有机化合物,其分子离子的质荷比值为:()

A、偶数

B、奇数

C、不一定

D、决定于电子数

2、某化合物在220-400范围内没有紫外吸收,该化合物可能属于哪一类()

A、芳香族化合物

B、含共轭双键的化合

C、含羰基的化合物

D、烷烃

3、下面化合物在核磁共振波谱(氢谱)中出现单峰的是:

A. CH3CH2Cl

B. CH3CH2OH

C. CH3CH3

D. CH3CH(CH3)2

4、一种能作为色散型红外光谱仪的色散元件材料为:()

A、玻璃

B、石英

C、红宝石

D、卤化物晶体

5、紫外-可见分光光度计法合适的检测波长范围为()

A、400-800 nm

B、200-800 nm

C、200-400 nm

D、10-1000nm

6、在红外光谱中,羰基()的伸缩振动吸收峰出现的波数(cm-1)范围是()

A、1900-1650

B、 2400-2100

C、1600-1500

D、1000-650

7、某化合物在紫外光区204nm处有一弱吸收,在红外光谱中有如下吸收峰:3300-2500 cm-1(宽峰),1710 cm-1,则该化合物可能是()

A、醛

B、酮

C、羧酸

D、烯烃

8、核磁共振波谱解析分子结构的主要参数是()

A、质荷比

B、波数

C、化学位移

D、保留值

9、某有机物C8H7N的不饱和度为()

A 、 4 B、 5 C、 6 D、 7

10分子的紫外-可见光吸收光谱呈带状光谱,其原因是什么()

A、分子中价电子运动的离域性

B、分子中价电子的相互作用

C、分子振动能级的跃迁伴随着转动能级的跃迁

D、分子电子能级的跃迁伴随着振动、转动能级能级的跃迁

11、预测H2O分子的基本振动数为:()

A、4

B、3

C、2

D、1

二、填空题 (19分 )

1、质谱(MS)仪器中,单聚焦质量分析器只实现了聚焦,而双聚焦质量分析器既实现了聚焦,又实现了聚焦。

2、弛豫过程对于核磁共振信号的观察很重要,弛豫过程一般分

为、。

3、酮类化合物易发生断裂和断裂,长链脂肪酮还容易发生重排,

写出2-戊酮()发生上述三种变化产生的离子及其质荷

比、、、等。

4、影响红外光谱中基团频率位移的因素

有、、。此外,振动耦合、费米共振等也会使振动频率位移。

5、写出羰基()化合物发生电子跃迁的主要类型

、、、

三、问答题(25分)

1. 预期化合物有哪些红外吸收带?

2.简述质谱碎裂的一般规律和影响因素。

4.解释生色团和助色团?

5. 以亚甲基为例说明分子的基本振动模式。

四、计算题 ( 共20分 )

1、据Woodward-Fieser规则计算化合物的最大吸收波长lmax(全部正确才能得满分)

2、某化合物分子离子区质谱数据为M(104),相对丰度100%; M+1(105),相对丰度6.45%;M+2(106),相对丰度4.77%。

(1)由上可知分子中是否含Cl Br?

(2) 是否含有S?

(3)其分子式为

五、推断题(14分)

1、分子式为C7H8O的化合物,IR(cm-1):3040(cm-1),1010(cm-1),3380(cm-1),2935(cm-1),1465(cm-1),690(cm-1),740(cm-1)等处有吸收,而在1735(cm-1),2720(cm-1),1380(cm-1),1182(cm-1)等处没有吸收峰。试推测其结构。

2.某未知物经测定是只含C、H、O的有机化合物,红外光谱显示在3 100~3 600 cm?1之间无吸收,其质谱如图,

?该化合物有没有羧基或羟基?

?从M+1与M的丰度比可推知其分子中的碳原子数可能为多少?

?分子中是否含有苯环?

(4)其结构为。

部分习题参考答案

一、选择题

1、 B

2、D 3 、 C 4、D 5、B 6、A 7、C 8、C 9、C 10、D 11、B

二、填空题

1 、方向聚焦、方向聚焦、能量聚焦

2、自旋-晶格弛豫、自旋-自旋弛豫

3、α、i、麦氏重排、CH3CH2CH2+ m/z:43、 CH3+ m/z:15、CH3C≡O+ m/z:43、CH3CH2CH2C≡O+ m/z:71、

m/z: 58

4、电子效应、空间效应、氢键

5、σ→σ* ∏→∏*n→∏*n→σ*

三、简答题

1.1、CN : 2200cm-1 COOH上-OH: 3200-2500 cm-1 羰基 1700 cm-1 苯环:3010-3100 cm-1、

1600-1400 cm-1 、880,780-690cm-1等处有吸收峰。

最新.9.23第三章 红外-答案

第三章红外光谱 一、名词解释 基频峰、倍频峰、费米共振、特征频率区、指纹区 基频峰:当分子吸收一定频率的红外线后,振动能级从基态(V )跃迁到第一激 发态(V 1 )时所产生的吸收峰,称为基频峰。 倍频峰:如果振动能级从从基态(V 0)跃迁到第二激发态(V 2 )、第三激发态(V 3 )…… 所产生的吸收峰称为倍频峰。 费米共振:当一振动的倍频(或组频)与另一振动的基频吸收峰接近时,由于发生相互作用而产生很强的吸收峰或发生裂分,这种倍频(或组频)与基频峰之间的振动偶合称费米共振。 特征频率区:特征谱带区有机化合物的分子中一些主要官能团的特征吸收多发生在红外区域的 4000~1500cm-2 。该区域吸收峰比较稀疏, 容易辨认, 故通常把该区域叫特征谱带区。 红外光谱指纹区:红外吸收光谱上 1500~40Ocm-1的低频区, 通常称为,在核指纹区。该区域中出现的谱带主要是 C-X (X=C,N s O) 单键的伸缩振动以及各种弯曲振动对和确认有机化合物时用处很大。 二、填空 1.红外光谱的产生是由于------------------。 化学键的振动与转动跃迁。 2.红外光谱产生的条件是-----------------------------、 --------------------------------------------------。 红外光谱产生的条件是辐射的能量满足跃迁所需能量,辐射引起偶极矩的变化。 3.红外光谱中影响基团频率位移的因素有外部因素和内部因素,内部因素主要有、、等。此外,振动耦合、费米共振等也会使振动频率位移。 外部因素(样品的状态等)、电子效应(诱导效应、共轭效应和偶极场效应)、空间效应、氢键 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为,相反则称为。红外活性,非红外活性。 5.基团-OH和-NH,-C≡N和-C≡CH,-C=C-和-C=N-的伸缩振动频率范围分别是cm-1, cm-1, cm-1。4000—2500(3000) 、 2500—2000 、2000—1500

第四章 振动光谱

第四章振动光谱 一、教学目的 理解掌握震动光谱分析的基本理论,掌握红外光谱图的分析处理,了解红外光谱实验技术。 二、重点、难点 重点:震动光谱分析的基本理论,红外光谱图的分析处理。 难点:震动光谱分析的基本理论。 三、教学手段 多媒体教学 四、学时分配 4学时 引言: ●1900~1910年间,科布伦茨(W.W.C。blentz)首先用红外光测量了一些有 机物液体的吸收光谱而建立起一种新的分析方法——红外光谱法。他发现分子中的一定原子群可以吸收特定的频率,这些特定的频率犹如人类的指纹,可以用来辨认分子中特定原子群的存在。 ●它主要可以用作分子结构的基础研究和物质化学组成(物相)的分析(包括定性和 定量)。红外光谱法作分子结构的研究可以测定分子的键长、键角大小,并推断分子的立体构型,或根据所得的力常数,间接得知化学键的强弱,也可以从正则振动频率来计算热力学函数等。 ●不过红外光谱法更多的用途是根据谱的吸收频率的位置和形状来判定本知物,并按 其吸收的强度来测定它们的含量。因此红外光谱法在目前已成为十分方便而有效的分析方法之一。 ●红外光谱法应用得较多的是在有机化学领域,对无机化合物和矿物的红外鉴定开始 较晚。红外光谱法对测定矿物的结构或组分虽不如X射线衍射分析那么成熟,却也有其独特长处。 所谓振动光谱是指物质因受光的作用,引起分子或原子基团的振动,从而产生对光的吸收。如果将透过物质的光辐射用单色器加以色散,使波长授长短依次排列,同时测量在不同波长处的辐射强度,得到的是吸收光谱。如果用的光源是红外光波,即0.78~1000μm,就是红外吸收光谱。如果用的是强单色光,例如激光,产生的是激光拉曼光谱。本章主要介绍红外光谱的原理及其在无机非金属材料中的应用,对拉曼光谱只作简单的介绍。

第三章红外吸收光谱法

第一章质谱习题 1、有机质谱图的表示方法有哪些?是否谱图中质量数最大的峰就是分子离子峰,为什么? 2、以单聚焦质谱仪为例,说明质谱仪的组成,各主要部件的作用及原理。 3、有机质谱的分析原理及其能提供的信息是什么? 4、有机化合物在离子源中有可能形成哪些类型的离子?从这些离子的质谱峰中可以得到一些什么信息? 5、同位素峰的特点是什么?如何在谱图中识别同位素峰? 6、谱图解析的一般原则是什么? 7.初步推断某一酯类(M=116)的结构可能为A或B或C,质谱图上m/z 87、m/z 59、m/z 57、m/z29处均有离子峰,试问该化合物的结构为何? (B) (A) (C) 8.下列化合物哪些能发生McLafferty重排? 9.下列化合物哪些能发生RDA重排? 10.某化合物的紫外光谱:262nm(15);红外光谱:3330~2500cm-1间有强宽吸收,1715 cm-1处有强宽吸收;核磁共振氢谱:δ11.0处为单质子单峰,δ2.6处为四质子宽单峰,δ2.12处为三质子单峰,质谱如图所示。参照同位素峰强比及元素分析结果,分子式为C5H8O3,试推测其结构 式。

部分习题参考答案 1、表示方法有质谱图和质谱表格。质量分析器出来的离子流经过计算机处理,给出质谱图和质谱数据,纵坐标为离子流的相对强度(相对丰度),通常最强的峰称为基峰,其强度定为100%,其余的峰以基峰为基础确定其相对强度;横坐标为质荷比,一条直线代表一个峰。也可以质谱表格的形式给出质谱数据。 最大的质荷比很可能是分子离子峰。但是分子离子如果不稳定,在质谱上就不出现分子离子峰。根据氮规则和分子离子峰与邻近峰的质量差是否合理来判断。 2、质谱仪的组成:进样系统,离子源,质量分析器,检测器,数据处理系统和真空系统。 进样系统:在不破坏真空度的情况下,使样品进入离子源。气体可通过储气器进入离子源;易挥发的液体,在进样系统内汽化后进入离子源;难挥发的液体或固体样品,通过探针直接插入离子源。 真空系统:质谱仪需要在高真空下工作:离子源(10-3~10-5Pa );质量分析器(10 -6 Pa )。真空系统保持质谱仪需要的真空强度。 离子源:是质谱仪的“心脏”。离子源是样品分子离子化和各种碎片离子的场所。质谱分析时离子源的选择至关重要。采用高能电子轰击气态有机分子,使其失去一个电子成为分子离子,分子离子可以裂解成各种碎片离子,这些离子在电场加速下达到一定的速度,形成离子流进入质量分析器。

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基.却在1773cm -1和1736 cm -1 处出现两个吸收峰.这是因 为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍.每个球从静止位置伸长1cm.哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器.同紫外可见分光光度法有哪些相似和不同之处 答: 红外 紫外 基本原理 当物质分子吸收一定波长的光能.能引起分子振动和转动的能及跃迁.产生的吸收光谱一般在中红外区.称为红外光谱 当物质分子吸收一定波长的光能.分子外层电子或分子轨道电子由基态跃迁到激发态.产生的吸收光谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的.同时伴随转动能级跃迁.一般振动能级间隔约为~1eV 。

仪器分析课后习题答案

第一章绪论 第二章光学分析法导论 第三章紫外-可见吸收光谱法 第四章红外吸收光谱法 第五章分子发光分析法 第六章原子发射光谱法 第七章原子吸收与原子荧光光谱法第八章电化学分析导论 第九章电位分析法 第十章极谱分析法 第十一章电解及库仑分析法

第十二章色谱分析法 第一章绪论 1.解释下列名词: (1)仪器分析和化学分析;(2)标准曲线与线性范围;(3)灵敏度、精密度、准确度和检出限。 答:(1)仪器分析和化学分析:以物质的物理性质和物理

化学性质(光、电、热、磁等)为基础的分析方法,这类方法一般需要特殊的仪器,又称为仪器分析法;化学分析是以物质化学反应为基础的分析方法。 (2)标准曲线与线性范围:标准曲线是被测物质的浓度或含量与仪器响应信号的关系曲线;标准曲线的直线部分所对应的被测物质浓度(或含量)的范围称为该方法的线性范围。 (3)灵敏度、精密度、准确度和检出限:物质单位浓度或单位质量的变化引起响应信号值变化的程度,称为方法的灵敏度;精密度是指使用同一方法,对同一试样进行多次测定所得测定结果的一致程度;试样含量的测定值与试样含量的真实值(或标准值)相符合的程度称为准确度;某一方法在给定的置信水平上可以检出被测物质的最小浓度或最小质量,称为这种方法对该物质的检出限。

2. 对试样中某一成分进行5次测定,所得测定结果(单位μg ?mL -1)分别为 0.36,0.38,0.35,0.37,0.39。 (1) 计算测定结果的相对标准偏差; (2) 如果试样中该成分的真实含量是0.38 μg ?mL -1, 试计算测定结果的相对误差。 解:(1)测定结果的平均值 37.0539.037.035.038.036.0=++++=x μg ? mL -1 标准偏差 1 2 222212 0158.01 5)37.039.0()37.037.0()37.035.0()37.038.0()37.036.0(1 )(-=?=--+-+-+-+-=--=∑mL g n x x s n i i μ 相对标准偏差 %27.4%10037.00158.0%100=?=?=x s s r (2)相对误差 %63.2%10038.038.037.0%100-=?-=?-=μ μ x E r 。

第七章原子发射光谱分析习题

第七章原子发射光谱分析(网上习题) 一、选择题 1.原子发射光谱是由下列哪种跃迁产生的( ) (1) 辐射能使气态原子外层电子激发 (2) 辐射能使气态原子内层电子激发 (3) 电热能使气态原子内层电子激发 (4) 电热能使气态原子外层电子激发答案:(4) 2.发射光谱定量分析选用的“分析线对”应是这样的一对线() (1) 波长不一定接近,但激发电位要相近 (2) 波长要接近,激发电位可以不接近 (3) 波长和激发电位都应接近 (4) 波长和激发电位都不一定接近答案:(3) 3.发射光谱分析中, 具有低干扰、高精度、高灵敏度和宽线性范围的激发光源是( ) 答案:(4) (1) 直流电弧(2) 低压交流电弧 (3) 电火花(4) 高频电感耦合等离子体 4.电子能级差愈小, 跃迁时发射光子的() (1) 能量越大(2) 波长越长(3) 波数越大(4) 频率越高 答案:(2) 5.下面哪种光源, 不但能激发产生原子光谱和离子光谱, 而且许多元素的离子线强度大于原子线强度()

(1)直流电弧 (2)交流电弧 (3)电火花 (4)高频电感耦合等离子体 答案:(4) 6.下面几种常用激发光源中, 分析灵敏度最高的是() (1)直流电弧(2)交流电弧(3)电火花(4)高频电感耦合等离子体 答案:(4) 7.下面几种常用的激发光源中, 最稳定的是() (1)直流电弧(2)交流电弧 (3)电火花(4)高频电感耦合等离子体 答案:(4) 8.下面几种常用的激发光源中, 背景最小的是( ) (1)直流电弧(2)交流电弧 (3)电火花(4)高频电感耦合等离子体 答案:(1) 9.下面几种常用的激发光源中, 激发温度最高的是( ) (1)直流电弧(2)交流电弧 (3)电火花(4)高频电感耦合等离子体 答案:(3)

第三章 红外吸收光谱分析

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

红外光谱特征峰解析常识

红外光谱特征峰解析常识 编写李炎平 红外特征光谱峰存在一定特征规律,正确的记录了化学结构和特征,识记特征波谱峰有助于我们解析红外光谱。下面我将一些特征波谱峰简要罗列如下,如有疏漏之处还望批评指出。 , 羟基:特征峰范围(3650~3200)cmˉ1,一般在 3600cmˉ1处有较强峰。 , 羧基:特征峰范围(3500~2500)cmˉ1,一般峰波 数小于羟基。 , 饱和烷烃—C—H :特征峰小于3000cmˉ1,一般在 (2950~2850)cm处,如有峰在(1390~1360)cmˉ1 处,则说明有—CH,如有峰在1450cmˉ1处,则说3 明有——, CH2 , 不抱和烷烃:特征峰大于3000cmˉ1,对于烯烃 _C,C,H在3050 cmˉ1处和(1600~1330)cmˉ1 ,C,C,H处有峰,对于炔烃在(3360~3250)cmˉ1 处有峰,在(700~600)cmˉ1处有枪宽峰。 C,C, 对于:在(1700~1645)cmˉ1处有特征峰,不 过不太明显,只具有指示作用。 ,CHO,,COC,,,COOC,, 对于在(1900~1600)cm处有强峰。 ,C,O,,,C,O,C,,,C,N,,,C,O,C,, 指纹区:等,在 (1330~900)cmˉ1处有中强峰, , 对于:在(900~400)cmˉ1处有中强或弱峰。 (CH)2n

, 对于醛类:特征范围为羰基峰+(2900~2700)cmˉ1。 , 对于:在(1300~900)cmˉ1处有两强峰(可,C,O,C, 能有一个弱峰)。 , 特征区范围(4400~1330)cmˉ1,指纹区范围(1330~400)cmˉ1。 , 通常将中红外光谱区域划分为四个部 分。 1)4000~2500cm-1,为含氢基团的伸 缩振动区,通常称为“氢键区”。 2)2500~2000cm-1叁键和累积双键区。 3)2000~1500cm-1,双键区。 4)小于1500cm-1,单键区。

第四章 红外分光光光度法(书后习题参考答案)

第四章 红外分光光光度法(书后习题参考答案) 1.CO 的红外光谱在2 170cm -1处有一振动吸收峰.问 (1)CO 键的力常数是多少? (2)14CO 的对应峰应在多少波数处发生吸收? 解:碳原子的质量2323100.210022.612--?=?= C m g 氧原子的质量2323106.210022.616--?=?=O m g (1) σ =2071cm -1 O C O C m m m m k c ?+= )(21πσ 2346 210210)6.22(106.22)217010314.32()2(--?+???????=+=O C O C m m m m c k σπ =18.6×105 dyn·cm -1=18.6N·cm -1(厘米克秒制) (2)14CO 2323103.210022.614-?=?=C m g 2071106.23.210)6.23.2(106.1810314.3214623 510≈???+??????=--σcm -1 或O C O C O C O C m m m m m m m m +???+=1212141412σσ σ =2080cm -1 2.已知C―H 键的力常数为5N/cm ,试计算C―H 键伸展振动的吸收峰在何波数?若将氘(D )置换H ,C―D 键的振动吸收峰为多少波数. 解:C-H 键:k =5N·cm -1=5.0×105dyn·cm -1 碳原子的质量:m C =2.0×10-23g, 氢原子的质量:23 231017.010022.61--?=?= H m g 氘原子的质量: 23231034.010022.62--?=?=D m g 依2121)(21m m m m k c ?+= πσ得 29961017.00.210)17.00.2(10510314.3214623 510≈???+??????=--σcm -1 21991034.00.210)34.00.2(10510314.3214623 510≈???+??????=--σcm -1 3.指出以下振动在红外光谱中是活性的还是非活性的 分 子 振 动 (1)CH 3一CH 3 C―C 伸缩振动 (2)CH 3一CC13 C―C 伸缩振动 (3)SO 2 对称伸缩振动 (4)CH 2=CH 2 C―H 伸缩振动 C C H H

红外吸收光谱分析及其应用

红外吸收光谱分析及其应用 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 红外吸收光谱分析也叫红外分光光度法,十一研究物质分子对红外辐射的吸收特性二建立起来的一种定性(包括结构分析)、定量分析法。根据试样的红外吸收光谱进行定性、定量分析和确定分子结构等分析的方法,称为红外吸收光谱法。 原理:当分子中某个基团的振动频率和红外光的振动频率一致时,分子就吸收红外光的能量,从原来的基态振动能级跃迁到能量较高的振动能级。物质对红外光的吸收曲线称为红外吸收光谱(IR)。 分子吸收红外光必须满足如下两个条件: 1.红外光的能量应恰好能满足振动能级跃迁所需要的能量,当红外光的频率与分子中某基团的振动频率相同时,红外光的能量才恩能够被吸收。 2.分子必须有偶极矩的变化。 与UV(紫外光谱)相比,IR的特点:IR频率范围小、吸收峰数目多、吸收曲线复杂、吸收强度弱。IR峰出现的频率位置由振动能级差决定;吸收峰的个数与分组振动自由度的数目有关;吸收峰的强度则主要取决于振动过程中偶极矩变化的大小和能级跃迁的几率。 红外吸收光谱具有高度的特征性,除光学异构外,没有两种化合物的红外光谱是完全相同的。红外光谱中往往具体要几组相关峰可以互相佐证而增强了定性和结构分析的可靠性,因此在官能团定性方面,是紫外、核磁、质谱等结构分析方法所不及的。红外光谱法可测定链、位置、顺反、晶型等异构体,而质谱法对异构体的鉴别则无能为力;红外光谱测定的样品范围广,无机、有机、高分子等

红外吸收光谱的解析分解

红外吸收光谱法 第一节概述 一、红外光谱测定的优点 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 二、红外波段的划分 σ=104/λ(λnm σcm-1) 红外波段范围又可以进一步分为远红外、中红外、近红外 波段波长nm 波数cm-1 近红外0.75~2.5 13300~4000 中红外 2.5~15.4 4000~650 远红外15.4~830 650~12 三、红外光谱的表示方法 红外光谱图多以波长λ(nm)或波数σ(cm-1)为横坐标,表示吸收峰的位置,多以透光率T%为纵坐标,表示吸收强度,此时图谱中的吸收“峰”,其实是向下的“谷”。一般吸收峰的强弱均以很强(ε大于200)、强(ε在75-200)、中(ε在25-75)、弱(ε在5-25)、很弱(ε小于5),这里的ε为表观摩尔吸收系数 红外光谱中吸收峰的强度可以用吸光度(A)或透过率T%表示。峰的强度遵守朗伯-比耳定律。吸光度与透过率关系为 A=lg( ) T1 所以在红外光谱中“谷”越深(T%小),吸光度越大,吸收强度越强。

第二节 红外吸收光谱的基本原理 一、分子的振动与红外吸收 任何物质的分子都是由原子通过化学键联结起来而组成的。分子中的原 子与化学键都处于不断的运动中。它们的运动,除了原子外层价电子跃迁以 外,还有分子中原子的振动和分子本身的转动。这些运动形式都可能吸收外 界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此 在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测 得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。 1、双原子分子的振动 分子的振动运动可近似地看成一些用弹簧连接着的小球的运动。以双原子 分子为例,若把两原子间的化学键看成质量可以忽略不计的弹簧,长度为r (键 长),两个原子分子量为m 1、m 2。如果把两个原子看成两个小球,则它们之 间的伸缩振动可以近似的看成沿轴线方向的简谐振动,如图3—2。因此可以 把双原子分子称为谐振子。这个体系的振动频率υ(以波数表示),由经典力 学(虎克定律)可导出: C ——光速(3×108 m/s ) υ= K ——化学键的力常数(N/m ) μ——折合质量(kg ) μ= 如果力常数以N/m 为单位,折合质量μ以原子质量为单位,则上式可简 化为 υ=130.2 双原子分子的振动频率取决于化学键的力常数和原子的质量,化学键越强,相对原子质量越小,振动频率越高。 H-Cl 2892.4 cm -1 C=C 1683 cm -1 C-H 2911.4 cm -1 C-C 1190 cm -1 同类原子组成的化学键(折合质量相同),力常数大的,基本振动频率就 大。由于氢的原子质量最小,故含氢原子单键的基本振动频率都出现在中红 外的高频率区。 2、多原子分子的振动 1πμ2c K m 1m 2m 1m2+ K μ

第四章 红外吸收光谱法.

第四章 红外吸收光谱法 3、CO 的红外吸收光谱在2170cm -1处有一振动吸收峰。试求CO 键的力常数。 解:根据μπγK c 21= 则 μγπ2)2(c K = 其中2321211002.0)1612(1612)(??+?=?+= L m m m m μ=1.14×10-23g=1.14×10-26Kg 则μγπ2)2(c K ==(2×3.14×3×108×2.17×105)2×1.14×10-26 =1905N/m =19.05N/cm 答:CO 键的力常数19.05 N /cm 。 5、指出下列各种振动形式中,哪些是红外活性振动,哪些是非红外活性振动。 分子结构 振动形式 (1) CH 3-CH 3 γ(C -C ) (2) CH 3—CCl 3 γ(C -C ) (3) SO 2 γs ,γas (4) H 2C CH 2 (a) υ(CH)C H C (b) υ C H C (c) W(CH) H H C H H ++++ (d)τ(CH) C H H C H H -++- 解:只有发生使偶极矩有变化的振动才能吸收红外辐射,即才是红外活性的,否 则为红外非活性的。也即只有不对称的振动形式才是红外活性的,对称的振动则为红外非活性的。因此,上述结构中: 红外活性振动有:(2)CH 3—CCl 3 γ(C -C ) (3)SO 2 γas (4)H 2C CH 2 中的(a) υ(CH)、(d)τ(CH),(3)SO 2 γs (伸缩振动) (c) W(CH) 红外非活性的有:(a) CH 3-CH 3 υ(CH) 4)H 2C CH 2 中的(b) υ(CH) 6、OH 和 O 是同分异构体,试分析两者红外光谱的差异。

仪器分析红外吸收光谱法习题和答案解析

红外吸收光谱法 一.填空题 1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。 3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则 称为红外非活性的。一般来说,前者在红外光谱图上出现吸收峰。5.红外分光光度计的光源主要有能斯特灯和硅碳棒。 6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。 7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。 8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。 二、选择题 1.二氧化碳分子的平动、转动和振动自由度的数目分别(A) A. 3,2,4 B. 2,3,4 C. 3,4,2 D. 4,2,3 2.乙炔分子的平动、转动和振动自由度的数目分别为(C) A. 2,3,3 B. 3,2,8 C. 3,2,7 D. 2,3,7 4.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH 3CH 2 COH的吸收 带?(D) A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。 B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。 C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。 D. 3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1。 1900—1650cm-1为 C==O伸缩振动,3000—2700cm-1为饱和碳氢C—H伸缩振动(不饱和的其频率高于3000 cm-1),1475——1300cm-1为C—H变形振动(如—CH 3 约在1380—1460cm-1)。

红外光谱分析法习题含答案

红外光谱分析法试题 一、简答题 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 2.以亚甲基为例说明分子的基本振动模式. 3.何谓基团频率?它有什么重要用途? 4.红外光谱定性分析的基本依据是什么?简要叙述红外定性分析的过程. 5.影响基团频率的因素有哪些? 6.何谓指纹区?它有什么特点和用途? 二、选择题 1.在红外光谱分析中,用 KBr制作为试样池,这是因为 ( ) A KBr晶体在 4000~ 400cm -1 范围内不会散射红外光 B KBr在 4000~ 400 cm -1 范围内有良好的红外光吸收特性 C KBr在 4000~ 400 cm -1 范围内无红外光吸收 D 在 4000~ 400 cm -1 范围内,KBr 对红外无反射 2.一种能作为色散型红外光谱仪色散元件的材料为 ( ) A 玻璃 B 石英 C 卤化物晶体 D 有机玻璃 3.并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) A 分子既有振动运动,又有转动运动,太复杂 B 分子中有些振动能量是简并的 C 因为分子中有 C、H、O以外的原子存在 D 分子某些振动能量相互抵消了 4.下列四种化合物中,羰基化合物频率出现最低者为 ( ) A I B II C III D IV 5.在下列不同溶剂中,测定羧酸的红外光谱时,C=O伸缩振动频率出现最高者为 ( ) A 气体 B 正构烷烃 C 乙醚 D 乙醇 6.水分子有几个红外谱带,波数最高的谱带对应于何种振动? ( )

A 2个,不对称伸缩 B 4个,弯曲 C 3个,不对称伸缩 D 2个,对称伸缩 7.苯分子的振动自由度为( ) A 18 B 12 C 30 D 31 8.在以下三种分子式中C=C双键的红外吸收哪一种最强? (1) CH3-CH = CH2(2) CH3-CH = CH-CH3(顺式)(3) CH3-CH = CH-CH3(反式)( ) A(1)最强 B (2)最强 C (3)最强 D 强度相同 9.在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带( ) A 向高波数方向移动 B 向低波数方向移动 C 不移动 D 稍有振动 10.以下四种气体不吸收红外光的是( ) A H2O B CO 2 C HCl D N2 11.某化合物的相对分子质量Mr=72,红外光谱指出,该化合物含羰基,则该化合物可能的分子式为( ) A C4H8O B C3H4O 2 C C3H6NO D (1) 或(2) 12.红外吸收光谱的产生是由于( ) A 分子外层电子、振动、转动能级的跃迁 B 原子外层电子、振动、转动能级的跃迁 C 分子振动-转动能级的跃迁 D 分子外层电子的能级跃迁 13. Cl2分子在红外光谱图上基频吸收峰的数目为( ) A 0 B 1 C 2 D 3 14.红外光谱法试样可以是( ) A 水溶液 B 含游离水 C 含结晶水 D 不含水 15.能与气相色谱仪联用的红外光谱仪为( ) A 色散型红外分光光度计 B 双光束红外分光光度计 C 傅里叶变换红外分光光度计 D 快扫描红外分光光度计 16.试比较同一周期内下列情况的伸缩振动(不考虑费米共振与生成氢键)产生的红外吸收峰,频率最小的是( ) A C-H B N-H C O-H D F-H 17.已知下列单键伸缩振动中C-C C-N C-O键力常数k/(N?cm-1) 4.5 5.8 5.0吸收峰波长λ/μm 6 6.46 6.85问C-C, C-N, C-O键振动能级之差⊿E顺序为( ) A C-C > C-N > C-O B C-N > C-O > C-C C C-C > C-O > C-N D C-O > C-N > C-C 18.一个含氧化合物的红外光谱图在3600~3200cm -1有吸收峰,下列化合物最可能的是( )

4第四章红外吸收光谱法 副本

作业题 第四章 红外分光光度法 第一节 概述 填空题 1、红外光区位于 光区和 光区之间,波长范围为 ,习惯上又可将其细分为 、 和 三个光区,应用较多的是 光区。 2、红外谱图纵坐标一般为 ,横坐标一般为 。 简答题: 红外分光光度法的特点。 第二节 基本原理 1、分子内部的运动方式有三种, 即: 、 和 ,相应于这三种不同的运动形式,分子具有 能级、 能级和 能级。 2、一般多原子分子的振动类型分为 振动和 振动。 3、乙烷的振动自由度是 。 4、甲酸的振动自由度是 。 判断题: 1、对称结构分子,如H 2O 分子,没有红外活性。 ( ) 2、水分子的H -O -H 对称伸缩振动不产生吸收峰。 ( ) 选择题: 1、试比较同一周期内下列情况的伸缩振动(不考虑费米共振与生成氢键)产生的红外吸收峰, 频率最小的是 ( ) A C-H B N-H C O-H D F-H 2、已知下列单键伸缩振动中 C-C C-N C-O 键力常数k/(N ?cm -1 ) 4.5 5.8 5.0 λ/μm 6 6.46 6.85 问C-C, C-N, C-O 键振动能级之差⊿E 顺序为 ( ) A C-C > C-N > C-O B C-N > C-O > C- C C C-C > C-O > C-N D C-O > C-N > C-C 3、判断下列各分子的碳碳对称伸缩振动在红外光谱中哪个是非活性的() A. CH 3CH 3 B. CH 3CCl 3 C. C C H Cl H Cl D. C C H Cl Cl H 4、在有机化合物的红外吸收光谱中,出现在4000~1250cm -1 频率范围的可用于鉴定官能团,这一段频率范围称为( ) A. 指纹区 B.倍频区 C.特征区 D.合频区 5、 以上①、②、③、④四种烯的υ C=C 值为: A.①为1650cm -1 ;②为1678cm -1 ;③为1657cm -1 ;④为1781cm -1 B.①为1781cm -1 ;②为1657cm -1 ;③为1650cm -1 ;④为1678cm -1 C.①为1650cm -1 ;②为1657cm -1 ;③为1678cm -1 ;④为1781cm -1 D.①为1781cm -1 ;②为1678cm -1 ;③为1657cm -1 ;④为1650cm -1 6、乙烯分子的振动自由度为: A.20 B.13 C.12 D.6 E.15 7、下列环烯化合物中,υC=C 出现最低波数者为: A. B. C. D. E. 8、下列合物中υC=C 吸收强度最大的化合物为: A.R -CH =CH 2 B.R -CH =CH -R (顺) C.R -CH =CH -R (反) D.R 1-CH =CH -R 2(顺) E.R 1-CH =CH -COR 2(反) 9、孤立甲基的弯曲振动一般为1380cm -1 ,异丙基中的甲基裂分为1385cm -1 和1375cm -1 ,叔丁基中的甲基裂分为1395cm -1 和1370cm -1 ,造成裂分的原因是: A.分子的对称性 B.振动偶合 C. 费米共振 D.诱导效应

红外吸收光谱解析汇总(波谱分析)

GJhO的红外吸收光H 2十2汉4 — 10 解:1?计算不饱和度,为饱和脂肪族类化合物。0 2 2?特征峰及相关峰: u;二2970口打百莒) ' 2874c/w ](s) 笳;J476

结构式中可能含有一个苯环利一个卷键或两个取健.r& 图的240(H210(km 无吸收峰.町否定垒键的存在. 人特征峰及相关峰’ :H 3070(?m~' (ir)300 lt?w~] ( w) t?c_c 1597cm L4 48ft7rw_1.1581c 人级74&湖弋邻位取代) V^3 2954cw_l v^H2847cm~ 1435 cm1 Uc-o-c1288CW _1(ys) v^_o_c1126cnr l(s)J 综匕,结构中存^Ar—COOCH3单尤结构。 不饱利度等于& ■个举环片去4个* 1个羡搭占去I个.还余1个不饱和度?mittra中无t玄y 峰.不存衽「=<、基团"结合苯为邻取代?从怙5減去已知的C JJ IKO J.还#10^1,02.故应还有_个一coocto^Hjo 缥上所述.其结构式町链为= *¥> 1.计算木饱和度,^=2+2X^0-]Q=6 O 「邻位取代萃 按旱峰.分裂峰1581cm 1的存一在,提示GF有可能自接与苯环相连.发生共枫.

第七章 红外光谱法

第七章 红外吸收光谱法 1. 试计算下列红外辐射的波数所对应的红外吸收峰的波长为多少μm 。 (1)1.59×103 cm -1 (2)9.52×102 cm -1 (3)7.94×102 cm -1 (4)7.25×102 cm -1 解: 44 1010σλλσ = =由得 (1)6.29;(2)10.50;(3)12.59;(4)13.79 2. 已知近红外区、中红外区、远红外区的波长范围分别为0.75~2.5 μm 、2.5~25 μm 、25~200 μm ,试求它们的波数和频率范围各为多少? 波数范围 频率范围 0.75~2.5 μm 1.3×104~4×103 4×108~1.2×108 2.5~25 μm 4000~400 1.2×108~1.2×107 25~200 μm 400~50 1.2×107~1.5×106 8. 下列振动中哪些不会产生红外吸收峰? 解:若振动前后能引起偶极矩变化者为红外活性。 (B ), (C ), 不会产生红外吸收峰 9. 指出下列化合物的红外特征吸收带,并试写出它们的吸收波数范围。 A B

C D 10. CS 2是线性分子,试画出它的基本振动类型,并指出那些振动是红外活性的。 参照课本中CO 2的振动类型(解略)。 11. 下面两个化合物中,哪一个化合物的C=O ν吸收带出现在较低频率?为什么? 解: (b )在较低的频率。由于氮原子上的孤对电子与苯环产生n-π共轭,使共轭体系中电子云的密度趋于平均化,使C=O 之间电子云密度降低,键力常数减小,因此振动吸收转向低波数方向。 12. 一个化合物的分子式是C 8H 7N ,其红外光谱图如图1所示,试确定其结构式。 图1 C 8H 7N 的红外光谱图 解:不饱和度171862 -Ω=++= 可能有一个苯环(其不饱和度为4),3030,1607及1508cm -1处的吸收印证了苯环的存在。 2217 cm -1处的强吸收,说明可能有-C N ≡。 817 cm -1处的单吸收峰说明苯环上产生对位取代,因而,可能结构为 CH 3 CN 经与红外谱图对照,没有发现矛盾。

红外吸收光谱的测定及结构分析

仪器分析实验 ——红外吸收光谱的测定及结构分析 ) ? 【 学号:2061 班级:应用化工技术11-2 姓名:韩斐

一、实验的目的与要求 1.掌握红外光谱法进行物质结构分析的基本原理,能够利用红外光谱鉴别官能团,并根据 官能团确定未知组分的主要结构; 2., 3.了解仪器的基本结构及工作原理; 4.了解红外光谱测定的样品制备方法; 5.学会傅立叶变换红外光谱仪的使用。 二、原理 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 — ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。 三、仪器与试剂 510P FT-IR Spectrometer(美国Nicolet公司); 2. FW-4型压片机(包括压模等)(天津市光学仪器厂);真空泵;玛瑙研钵;红外灯;镊子;可拆式液体池;盐片(NaCl, KBr, BaF2等)。 3.试剂:KBr粉末(光谱纯);无水乙醇(AR);滑石粉;丙酮;脱脂棉; 4.测试样品:对硝基苯甲酸;苯乙酮等。 . 四、实验步骤 1.了解仪器的基本结构及工作原理

红外吸收光谱法习题与答案解析

六、红外吸收光谱法(193题) 一、选择题 ( 共61题 ) 1. 2 分 (1009) 在红外光谱分析中,用 KBr制作为试样池,这是因为: ( ) (1) KBr 晶体在 4000~400cm-1范围内不会散射红外光 (2) KBr 在 4000~400 cm-1范围内有良好的红外光吸收特性 (3) KBr 在 4000~400 cm-1范围内无红外光吸收 (4) 在 4000~400 cm-1范围内,KBr 对红外无反射 2. 2 分 (1022) 下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪 一结构与光谱是一致的?为什么? ( ) 3. 2 分 (1023) 下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构 与光谱是一致的,为什么? 4. 2 分 (1068) 一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与 光谱最近于一致?

5. 2 分 (1072) 1072 羰基化合物中,C = O 伸缩振动 频率出现最低者为 ( ) (1) I (2) II (3) III (4) IV 6. 2 分 (1075) 一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 7. 2 分 (1088) 并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) (1) 分子既有振动运动,又有转动运动,太复杂 (2) 分子中有些振动能量是简并的 (3) 因为分子中有 C、H、O 以外的原子存在 (4) 分子某些振动能量相互抵消了 8. 2 分 (1097) 下列四组数据中,哪一组数据所涉及的红外光谱区能够包括CH3- CH2-CH = O的吸收带( ) 9. 2 分 (1104) 请回答下列化合物中哪个吸收峰的频率最高? ( ) 10. 2 分 (1114) 在下列不同溶剂中,测定羧酸的红外光谱时,C=O 伸缩振动频率出现最高者为( ) (1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇

相关主题
文本预览
相关文档 最新文档