当前位置:文档之家› 广度优先搜索和深度优先搜索

广度优先搜索和深度优先搜索

广度优先搜索和深度优先搜索
广度优先搜索和深度优先搜索

有两种常用的方法可用来搜索图:即深度优先搜索和广度优先搜索。它们最终都会到达所有

连通的顶点。深度优先搜索通过栈来实现,而广度优先搜索通过队列来实现。

深度优先搜索:

深度优先搜索就是在搜索树的每一层始终先只扩展一个子节点,不断地向纵深前进直到不能再前进(到达叶子节点或受到深度限制)时,才从当前节点返回到上一级节点,沿另一方向又继续前进。这种方法的搜索树是从树根开始一枝一枝逐渐形成的。

下面图中的数字显示了深度优先搜索顶点被访问的顺序。

"* ■ J 严-* 4

t C '4 --------------------------------- --- _

为了实现深度优先搜索,首先选择一个起始顶点并需要遵守三个规则:

(1) 如果可能,访问一个邻接的未访问顶点,标记它,并把它放入栈中。

(2) 当不能执行规则1时,如果栈不空,就从栈中弹出一个顶点。

(3) 如果不能执行规则1和规则2,就完成了整个搜索过程。

广度优先搜索:

在深度优先搜索算法中,是深度越大的结点越先得到扩展。如果在搜索中把算法改为按结点的层次进行搜索,本层的结点没有搜索处理完时,不能对下层结点进行处理,即深度越小的结点越先得到扩展,也就是说先产生的结点先得以扩展处理,这种搜索算法称为广度优先搜索法。

在深度优先搜索中,算法表现得好像要尽快地远离起始点似的。相反,在广度优先搜索中,

算法好像要尽可能地靠近起始点。它首先访问起始顶点的所有邻接点,然后再访问较远的区

域。它是用队列来实现的。

下面图中的数字显示了广度优先搜索顶点被访问的顺序。

实现广度优先搜索,也要遵守三个规则:

⑴ 访问下一个未来访问的邻接点,这个顶点必须是当前顶点的邻接点,标记它,并把它插入到队列中。(2)如果因为已经没有未访问顶点而不能执行规则1

时,那么从队列头取一个顶点,并使其

成为当前顶点。

(3)如果因为队列为空而不能执行规则2,则搜索结束。

广度优先搜索

类剔:搜索算法

数据结构:图

时间复杂感0( I叭+ |虔D二Q們空「可复杂度od ^|+|j|)= cx^)最佳解:是完全生是

BFS是一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位址,彻底地搜索整张图,直到找到结果为止。BFS并不使用经验法则算法。

从算法的观点,所有因为展开节点而得到的子节点都会被加进一个先进先出的伫列中。一般的实作里,其邻居节点尚未被检验过的节点会被放置在一个被称为open的容器中(例如伫列或是链表),而被检验过的节点则被放置在被称为closed的容器中。(open-closed 表)

实作方法

1.首先将根节点放入伫列中。

2.从伫列中取出第一个节点,并检验它是否为目标。

o 如果找到目标,则结束搜寻并回传结果。

o 否则将它所有尚未检验过的直接子节点加入伫列中。

3. 若伫列为空,表示整张图都检查过了一一亦即图中没有欲搜寻的目标。结束搜 寻并回传“找

不到目标”。

4. 重复步骤2。

C 的实作

广度优先搜索算法:

对图G=(V,E)进行广度优先搜索的主算法如下。

void TRAVEL_BFS(VLi nk G[], i nt visited[], i nt n)

{ int i;

for(i = 0; i < n; i ++)

{ visited[i] = 0;

/* 標記數組賦初值(清零) */

}

for(i = 0; i < n; i ++)

if(visited[i] == 0)

BFS(G,i);

} 深度优先搜索是图论中的经典算法, 利用深度优先搜索算法可以产生目标图的相应 拓扑 排序表,利用拓扑排序表可以方便的解决很多相关的 图论问题,如最大路径问题等等。void BFS(VLi nk G[], i nt v)

{ int w;

VISIT(v);

/* visited[v] = 1;

/* ADDQ(Q,v);

while(!EMPTYQ(Q))

{ v = DELQ(Q);

/* w = FIRSTADJ(G,v); /* while(w != -1)

{ if(visited[w] == 0)

{ VISIT(w);

/* ADDQ(Q,w);

/* visited[w] = 1;

/* }

w = NEXTADJ(G,v); /*

}

}

}

訪問頂點v*/ 頂點v 對應的訪問標記置爲 1*/ 退出隊頭元素v*/ 求v 的第1個鄰接點。無鄰接點則返回 -1*/ 訪問頂點v*/ 當前被訪問的頂點w 進隊*/ 頂點w 對應的訪問標記置爲 1*/ 求v 的下一個鄰接點。若無鄰接點則返回 -1*/

8 3 6 12 5 11 概况 图 是 9)( |\ 10 : 深度优先铁素 定义一: O (g(n))={f(n) | 如果存在正常数 cl 、c2和正整数 n0,使得当 n>=n0时, 0=n0时, c 和正整数 n0 ,使得当 n>=n0时, 數据结构: Q ㈣ __________________________ O 伽) 否 完全性: 其他: 耐ISL 良鹽厦:-_ 空间复杂厦: 最佳解: 0<=f(n)<=cg( n) 恒成立} 定义三: Q (g(n))={f(n) |如果存在正常数 0<=cg(n)<=f(n) 恒成立} O (g(n))={f(n) |如果存在正常数

图的深度优先遍历算法课程设计报告

合肥学院 计算机科学与技术系 课程设计报告 2013~2014学年第二学期 课程数据结构与算法 课程设计名称图的深度优先遍历算法的实现 学生姓名陈琳 学号1204091022 专业班级软件工程 指导教师何立新 2014 年9 月 一:问题分析和任务定义 涉及到数据结构遍会涉及到对应存储方法的遍历问题。本次程序采用邻接表的存储方法,并且以深度优先实现遍历的过程得到其遍历序列。

深度优先遍历图的方法是,从图中某顶点v 出发: (1)访问顶点v ; (2)依次从v 的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v 有路径相通的顶点都被访问; (3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 二:数据结构的选择和概要设计 设计流程如图: 图1 设计流程 利用一维数组创建邻接表,同时还需要一个一维数组来存储顶点信息。之后利用创建的邻接表来创建图,最后用深度优先的方法来实现遍历。 图 2 原始图 1.从0开始,首先找到0的关联顶点3 2.由3出发,找到1;由1出发,没有关联的顶点。 3.回到3,从3出发,找到2;由2出发,没有关联的顶点。 4.回到4,出4出发,找到1,因为1已经被访问过了,所以不访问。

所以最后顺序是0,3,1,2,4 三:详细设计和编码 1.创建邻接表和图 void CreateALGraph (ALGraph* G) //建立邻接表函数. { int i,j,k,s; char y; EdgeNode* p; //工作指针. printf("请输入图的顶点数n与边数e(以逗号做分隔符):\n"); scanf("%d,%d",&(G->n),&(G->e)); scanf("%c",&y); //用y来接收回车符. for(s=0;sn;s++) { printf("请输入下标为%d的顶点的元素:\n",s); scanf("%c",&(G->adjlist[s].vertex)); scanf("%c",&y); //用y来接收回车符.当后面要输入的是和单个字符有关的数据时候要存贮回车符,以免回车符被误接收。 G->adjlist[s].firstedge=NULL; } printf("请分别输入该图的%d条弧\n",G->e); for(k=0;ke;k++) { printf("请输入第%d条弧的起点和终点(起点下标,终点下标):\n",(k+1)); scanf("%d,%d",&i,&j); p=(EdgeNode*)malloc(sizeof(EdgeNode)); p->adjvex=j; p->next=G->adjlist[i].firstedge; G->adjlist[i].firstedge=p; } } 2.深度优先遍历 void DFS(ALGraph* G,int v) //深度优先遍历 { EdgeNode* p;

图的深度广度优先遍历操作代码

一、实验目的 1.掌握图的各种存储结构,特别要熟练掌握邻接矩阵和邻接表存储结构; 2.遍历是图各种应用的算法的基础,要熟练掌握图的深度优先遍历和宽度优先遍历算法,复习栈和队列的应用; 3.掌握图的各种应用的算法:图的连通性、连通分量和最小生成树、拓扑排序、关键路径。 二、实验内容 实验内容1**图的遍历 [问题描述] 许多涉及图上操作的算法都是以图的遍历为基础的。写一个程序,演示在连通无向图上遍历全部顶点。 [基本要求] 建立图的邻接表的存储结构,实现无向图的深度优先遍历和广度优先遍历。以用户指定的顶点为起点,分别输出每种遍历下的顶点访问序列。 [实现提示] 设图的顶点不超过30个,每个顶点用一个编号表示(如果一个图有N个顶点,则它们的编号分别为1,2,…,N)。通过输入图的全部边输入一个图,每条边是两个顶点编号对,可以对边依附顶点编号的输入顺序作出限制(例如从小到大)。 [编程思路] 首先图的创建,采用邻接表建立,逆向插入到单链表中,特别注意无向是对称插入结点,且要把输入的字符在顶点数组中定位(LocateVex(Graph G,char *name),以便后来的遍历操作,深度遍历算法采用递归调用,其中最主要的是NextAdjVex(Graph G, int v, int w);FirstAdjVex ()函数的书写,依次递归下去,广度遍历用队列的辅助。 [程序代码] 头文件: #include #include #define MAX_VERTEX_NUM 30 #define MAX_QUEUE_NUMBER 30 #define OK 1 #define ERROR 0 #define INFEASIBLE -1

答深度优先搜索算法的特点是

习题 3 1、答:深度优先搜索算法的特点是 ①一般不能保证找到最优解; ②当深度限制不合理时,可能找不到解,可以将算法改为可变深度限制; ③方法与问题无关,具有通用性; ④属于图搜索方法。 宽度优先搜索算法的特点是 ①当问题有解时,一定能找到解; ②当问题为单位耗散值,并且问题有解时,一定能找到最优解; ③效率低; ④方法与问题无关,具有通用性; ⑤属于图搜索方法。 2、答:在决定生成子状态的最优次序时,应该采用深度进行衡量,使深度大的 结点优先扩展。 3、答:(1)深度优先 (2)深度优先 (3)宽度优先 (4)宽度优先 (5)宽度优先 4、答:如果把一个皇后放在棋盘的某个位置后,它所影响的棋盘位置数少,那 么给以后放皇后留下的余地就大,找到解的可能性也大;反之留下的余地就小,找到解的可能性也小。 并不是任何启发函数对搜索都是有用的。 6、讨论一个启发函数h在搜索期间可以得到改善的几种方法。 7、答:最短路径为ACEBDA,其耗散值为15。 8、解:(1)(S,O,S0,G) S:3个黑色板和3个白色板在7个空格中的任何一种布局都是一个状态。 O:①一块板移入相邻的空格; ②一块板相隔1块其他的板跳入空格; ③一块板相隔2块其他的板跳入空格。 S0: B B B W W W G: W W W B B B W W W B B B W W W B B B

W W W B B B W W W B B B W W W B B B W W W B B B (2)1401231231234567333377 =???????????=?P P P (3)定义启发函数h 为每一白色板左边的黑色板数的和。 显然,)()(n h n h *≤,所以该算法具有可采纳性。 又,?? ?≤-=),()()(0)(j i i j n n c n h n h t h ,所以该启发函数h 满足单调限制条件。 9、解: ((( ),( )),( ),(( ),( ))) ((S,( )),( ),(( ),( ))) ((A,( )),( ),(( ),( ))) ((A,S),( ),(( ),( ))) ((A,A),( ),(( ),( ))) ((A),( ),(( ),( ))) (S,( ),(( ),( ))) (A,( ),(( ),( ))) (A,S,(( ),( ))) (A,A,(( ),( ))) (A,(( ),( )))

深度优先遍历(邻接矩阵)

上机实验报告 学院:计算机与信息技术学院 专业:计算机科学与技术(师范)课程名称:数据结构 实验题目:深度优先遍历(邻接矩阵)班级序号:师范1班 学号:201421012731 学生姓名:邓雪 指导教师:杨红颖 完成时间:2015年12月25号

一、实验目的: 1﹒掌握图的基本概念和邻接矩阵存储结构。 2﹒掌握图的邻接矩阵存储结构的算法实现。 3﹒掌握图在邻接矩阵存储结构上遍历算法的实现。 二、实验环境: Windows 8.1 Microsoft Visual c++ 6.0 二、实验内容及要求: 编写图的深度优先遍历邻接矩阵算法。建立图的存储结构,能够输入图的顶点和边的信息,并存储到相应存储结构中,而后输出图的邻接矩阵。 四、概要设计: 深度优先搜索遍历类似于树的先根遍历,是树的先根遍历的推广。假设初始状态是图中所有的顶点未曾被访问,则深度优先遍历可从图的某个顶点V出发,访问此顶点,然后依次从V的未被访问的邻接点出发深度优先遍历图,直至图中所有和V有路径相通的顶点都被访问到;若此时图中尚有顶点未被访问,则另选图中的一个未被访问的顶点,重复上述过程,直至图中所有顶点都被访问到为止。 以图中无向图G4为例,深度优先遍历图的过程如图所示。假设从顶点V1出发进行搜索,在访问了顶点V1后,选择邻接点V2。因为V2未曾访问,则从V2出发进行搜索。依次类推,接着从V4,V8,V5出发进行搜索。在访问了V5之后,由于V5的邻接点已都被访问,则搜索回到V8。由于同样的理由,搜索继续回到V4,V2直至V1,此时由于V1的另一个邻接点为被访问,则搜索又从V1到V3,再继续进行下去。由此得到顶点的访问序列为: V1 V2 V4 V8 V5 V3 V6 V7 五、代码 #include #include #define n 8 #define e 9 typedef char vextype; typedef float adjtype; int visited[n]; //定义结构体

深度优先与广度优先

深度优先与广度优先 (一)深度优先搜索的特点是:(1)从上面几个实例看出,可以用深度优先搜索的方法处理的题目是各种各样的。有的搜索深度是已知和固定的,如例题2-4,2-5,2-6;有的是未知的,如例题2- 7、例题2-8;有的搜索深度是有限制的,但达到目标的深度是不定的。但也看到,无论问题的内容和性质以及求解要求如何不同,它们的程序结构都是相同的,即都是深度优先算法(一)和深度优先算法 (二)中描述的算法结构,不相同的仅仅是存储结点数据结构和产生规则以及输出要求。(2)深度优先搜索法有递归以及非递归两种设计方法。一般的,当搜索深度较小、问题递归方式比较明显时,用递归方法设计好,它可以使得程序结构更简捷易懂。当搜索深度较大时,如例题2- 5、2-6。当数据量较大时,由于系统堆栈容量的限制,递归容易产生溢出,用非递归方法设计比较好。(3)深度优先搜索方法有广义和狭义两种理解。广义的理解是,只要最新产生的结点(即深度最大的结点)先进行扩展的方法,就称为深度优先搜索方法。在这种理解情况下,深度优先搜索算法有全部保留和不全部保留产生的结点的两种情况。而狭义的理解是,仅仅只保留全部产生结点的算法。本书取前一种广义的理解。不保留全部结点

的算法属于一般的回溯算法范畴。保留全部结点的算法,实际上是在数据库中产生一个结点之间的搜索树,因此也属于图搜索算法的范畴。(4)不保留全部结点的深度优先搜索法,由于把扩展望的结点从数据库中弹出删除,这样,一般在数据库中存储的结点数就是深度值,因此它占用的空间较少,所以,当搜索树的结点较多,用其他方法易产生内存溢出时,深度优先搜索不失为一种有效的算法。(5)从输出结果可看出,深度优先搜索找到的第一个解并不一定是最优解。例如例题2-8得最优解为13,但第一个解却是17。如果要求出最优解的话,一种方法将是后面要介绍的动态规划法,另一种方法是修改原算法:把原输出过程的地方改为记录过程,即记录达到当前目标的路径和相应的路程值,并与前面已记录的值进行比较,保留其中最优的,等全部搜索完成后,才把保留的最优解输出。 二、广度优先搜索法的显著特点是:(1)在产生新的子结点时,深度越小的结点越先得到扩展,即先产生它的子结点。为使算法便于实现,存放结点的数据库一般用队列的结构。(2)无论问题性质如何不同,利用广度优先搜索法解题的基本算法是相同的,但数据库中每一结点内容,产生式规则,根据不同的问题,有不同的内容和结构,就是同一问题也可以有不同的表示方法。(3)当结点到跟结点的费用(有的书称为耗散值)和结点的深度成正比时,特别是当每一结点到根结点的费用等于深度时,用广度优先法得到的解是最优解,但如果不成正比,则得到的解不一

图的深度优先遍历实验报告

一.实验目的 熟悉图的存储结构,掌握用单链表存储数据元素信息和数据元素之间的关系的信息的方法,并能运用图的深度优先搜索遍历一个图,对其输出。 二.实验原理 深度优先搜索遍历是树的先根遍历的推广。假设初始状态时图中所有顶点未曾访问,则深度优先搜索可从图中某个顶点v出发,访问此顶点,然后依次从v的未被访问的邻接点出发深度优先遍历图,直至图中所有与v有路径相通的顶点都被访问到;若此时图有顶点未被访问,则另选图中一个未曾访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。 图的邻接表的存储表示: #define MAX_VERTEX_NUM 20 #define MAXNAME 10 typedef char VertexType[MAXNAME]; typedef struct ArcNode{ int adjvex; struct ArcNode *nextarc; }ArcNode; typedef struct VNode{ VertexType data; ArcNode *firstarc;

}VNode,AdjList[MAX_VERTEX_NUM]; typedef struct{ AdjList vertices; int vexnum,arcnum; int kind; }ALGraph; 三.实验容 编写LocateVex函数,Create函数,print函数,main函数,输入要构造的图的相关信息,得到其邻接表并输出显示。 四。实验步骤 1)结构体定义,预定义,全局变量定义。 #include"stdio.h" #include"stdlib.h" #include"string.h" #define FALSE 0 #define TRUE 1 #define MAX 20 typedef int Boolean; #define MAX_VERTEX_NUM 20

深度优先与广度优先

深度优先搜索和广度优先搜索的比较 (一)深度优先搜索的特点是: (1)从上面几个实例看出,可以用深度优先搜索的方法处理的题目是各种各样的。有的搜索深度是已知和固定的,如例题2-4,2-5,2-6;有的是未知的,如例题2-7、例题2-8;有的搜索深度是有限制的,但达到目标的深度是不定的。 但也看到,无论问题的内容和性质以及求解要求如何不同,它们的程序结构都是相同的,即都是深度优先算法(一)和深度优先算法(二)中描述的算法结构,不相同的仅仅是存储结点数据结构和产生规则以及输出要求。 (2)深度优先搜索法有递归以及非递归两种设计方法。一般的,当搜索深度较小、问题递归方式比较明显时,用递归方法设计好,它可以使得程序结构更简捷易懂。当搜索深度较大时,如例题2-5、2-6。当数据量较大时,由于系统堆栈容量的限制,递归容易产生溢出,用非递归方法设计比较好。 (3)深度优先搜索方法有广义和狭义两种理解。广义的理解是,只要最新产生的结点(即深度最大的结点)先进行扩展的方法,就称为深度优先搜索方法。在这种理解情况下,深度优先搜索算法有全部保留和不全部保留产生的结点的两种情况。而狭义的理解是,仅仅只保留全部产生结点的算法。本书取前一种广义的理解。不保留全部结点的算法属于一般的回溯算法范畴。保留全部结点的算法,实际上是在数据库中产生一个结点之间的搜索树,因此也属于图搜索算法的范畴。 (4)不保留全部结点的深度优先搜索法,由于把扩展望的结点从数据库中弹出删除,这样,一般在数据库中存储的结点数就是深度值,因此它占用的空间较少,所以,当搜索树的结点较多,用其他方法易产生内存溢出时,深度优先搜索不失为一种有效的算法。 (5)从输出结果可看出,深度优先搜索找到的第一个解并不一定是最优解。例如例题2-8得最优解为13,但第一个解却是17。 如果要求出最优解的话,一种方法将是后面要介绍的动态规划法,另一种方法是修改原算法:把原输出过程的地方改为记录过程,即记录达到当前目标的路径和相应的路程值,并与前面已记录的值进行比较,保留其中最优的,等全部搜索完成后,才把保留的最优解输出。 二、广度优先搜索法的显著特点是: (1)在产生新的子结点时,深度越小的结点越先得到扩展,即先产生它的子结点。为使算法便于实现,存放结点的数据库一般用队列的结构。 (2)无论问题性质如何不同,利用广度优先搜索法解题的基本算法是相同的,但数据库中每一结点内容,产生式规则,根据不同的问题,有不同的内容和结构,就是同一问题也可以有不同的表示方法。 (3)当结点到跟结点的费用(有的书称为耗散值)和结点的深度成正比时,特别是当每一结点到根结点的费用等于深度时,用广度优先法得到的解是最优解,但如果不成正比,则得到的解不一定是最优解。这一类问题要求出最优解,一种方法是使用后面要介绍的其他方法求解,另外一种方法是改进前面深度(或广度)优先搜索算法:找到一个目标后,不是立即退出,而是记录下目标结点的路径和费用,如果有多个目标结点,就加以比较,留下较优的结点。把所有可能的路径都搜索完后,才输出记录的最优路径。 (4)广度优先搜索算法,一般需要存储产生的所有结点,占的存储空间要比深度优先大得多,因此程序设计中,必须考虑溢出和节省内存空间得问题。

图论深度优先搜索实验报告

深度优先遍历 一、实验目的 了解深度优先遍历的基本概念以及实现方式。 二、实验内容 1、设计一个算法来对图的进行深度优先遍历; 2、用C语言编程来实现此算法。用下面的实例来调试程序: 三、使用环境 Xcode编译器 四、编程思路 深度优先遍历图的方法是,从邻接矩阵出发:访问顶点v;依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;构造一个遍历辅助矩阵visited[]进行比较若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止,并将顶点信息存储在数组Q[]里面。反复搜索可以通过使用函数的嵌套来实现。

五、调试过程 1.程序代码: //为方便调试,程序清晰直观删除了邻接矩阵的构造函数, //并且修改了main()函数,只保留了DFS函数 #include #define N 4 //定义顶点数 int a[N][N]= { {0,1,1,1} ,{1,0,0,0} ,{1,0,0,1} ,{1,0,0,1} }; //邻接矩阵由之前程序函给出 int visited[N]={0}; //遍历比较的辅助矩阵,初始化为0矩阵int Q[N]; //用来存储各个顶点的信息 static int last=-1; void DFS(int G[][N], int s) { visited[s] = 1; Q[++last]=s; for (int i=0;i

邻接矩阵的深度优先遍历

#include #include using namespace std; #define INFINITY 32767 #define MAX_VEX 50 #define OK 1 #define FALSE 0 #define TRUE 1 #define ERROR -1 bool *visited; //图的邻接矩阵存储结构 typedef struct { char *vexs; //动态分配空间存储顶点向量 int arcs[MAX_VEX][MAX_VEX]; //邻接矩阵 int vexnum, arcnum; //图的当前定点数和弧数 }Graph; //图G中查找顶点c的位置 int LocateVex(Graph G, char c) { for(int i = 0; i < G.vexnum; ++i) { if(G.vexs[i] == c) return i; } return ERROR; } //创建无向网 void CreateUDN(Graph &G){ //采用数组(邻接矩阵)表示法,构造无向图G cout << "请输入定点数和弧数:"; cin >> G.vexnum >> G.arcnum; cout << "请输入" << G.vexnum << "个顶点" << endl; G.vexs = (char *) malloc((G.vexnum+1) * sizeof(char)); //需要开辟多一个空间存储'\0' //构造顶点向量 for(int i = 0; i < G.vexnum; i++) { cout << "请输入第" << i+1 << "个顶点:"; cin >> G.vexs[i]; } G.vexs[G.vexnum] = '\0';

邻接矩阵表示图深度广度优先遍历

*问题描述: 建立图的存储结构(图的类型可以是有向图、无向图、有向网、无向网,学生可以任选两种类型),能够输入图的顶点和边的信息,并存储到相应存储结构中,而后输出图的邻接矩阵。 1、邻接矩阵表示法: 设G=(V,E)是一个图,其中V={V1,V2,V3…,Vn}。G的邻接矩阵是一个他有下述性质的n阶方阵: 1,若(Vi,Vj)∈E 或∈E; A[i,j]={ 0,反之 图5-2中有向图G1和无向图G2的邻接矩阵分别为M1和M2: M1=┌0 1 0 1 ┐ │ 1 0 1 0 │ │ 1 0 0 1 │ └0 0 0 0 ┘ M2=┌0 1 1 1 ┐ │ 1 0 1 0 │ │ 1 1 0 1 │ └ 1 0 1 0 ┘ 注意无向图的邻接是一个对称矩阵,例如M2。 用邻接矩阵表示法来表示一个具有n个顶点的图时,除了用邻接矩阵中的n*n个元素存储顶点间相邻关系外,往往还需要另设一个向量存储n个顶点的信息。因此其类型定义如下: VertexType vertex[MAX_VERTEX_NUM]; // 顶点向量 AdjMatrix arcs; // 邻接矩阵 int vexnum, arcnum; // 图的当前顶点数和弧(边)数 GraphKind kind; // 图的种类标志

若图中每个顶点只含一个编号i(1≤i≤vnum),则只需一个二维数组表示图的邻接矩阵。此时存储结构可简单说明如下: type adjmatrix=array[1..vnum,1..vnum]of adj; 利用邻接矩阵很容易判定任意两个顶点之间是否有边(或弧)相联,并容易求得各个顶点的度。 对于无向图,顶点Vi的度是邻接矩阵中第i行元素之和,即 n n D(Vi)=∑A[i,j](或∑A[i,j]) j=1 i=1 对于有向图,顶点Vi的出度OD(Vi)为邻接矩阵第i行元素之和,顶点Vi 的入度ID(Vi)为第i列元素之和。即 n n OD(Vi)=∑A[i,j],OD(Vi)=∑A[j,i]) j=1j=1 用邻接矩阵也可以表示带权图,只要令 Wij, 若或(Vi,Vj) A[i,j]={ ∞, 否则。 其中Wij为或(Vi,Vj)上的权值。相应地,网的邻接矩阵表示的类型定义应作如下的修改:adj:weightype ; {weightype为权类型} 图5-6列出一个网和它的邻接矩阵。 ┌∞31∞∞┐ │∞∞51∞│ │∞∞∞∞∞│ │∞∞6∞∞│ └∞322∞┘ (a)网(b)邻接矩阵 图5-6 网及其邻接矩阵 对无向图或无向网络,由于其邻接矩阵是对称的,故可采用压缩存贮的方法,

图的深度优先遍历和广度优先遍历

华北水利水电学院数据结构实验报告 20 10 ~20 11 学年第一学期2008级计算机专业 班级:107学号:200810702姓名:王文波 实验四图的应用 一、实验目的: 1.掌握图的存储结构及其构造方法 2.掌握图的两种遍历算法及其执行过程 二、实验内容: 以邻接矩阵或邻接表为存储结构,以用户指定的顶点为起始点,实现无向连通图的深度优先及广度优先搜索遍历,并输出遍历的结点序列。 提示:首先,根据用户输入的顶点总数和边数,构造无向图,然后以用户输入的顶点为起始点,进行深度优先和广度优先遍历,并输出遍历的结果。 三、实验要求: 1.各班学号为单号的同学采用邻接矩阵实现,学号为双号的同学采用邻接表实现。 2.C/ C++完成算法设计和程序设计并上机调试通过。 3.撰写实验报告,提供实验结果和数据。 4.写出算法设计小结和心得。 四、程序源代码: #include #define MaxVerNum 50 struct edgenode { int endver; int inform; edgenode* edgenext; }; struct vexnode { char vertex; edgenode* edgelink; }; struct Graph { vexnode adjlists[MaxVerNum]; int vexnum; int arcnum; }; //队列的定义及相关函数的实现 struct QueueNode

{ int nData; QueueNode* next; }; struct QueueList { QueueNode* front; QueueNode* rear; }; void EnQueue(QueueList* Q,int e) { QueueNode *q=new QueueNode; q->nData=e; q->next=NULL; if(Q==NULL) return; if(Q->rear==NULL) Q->front=Q->rear=q; else { Q->rear->next=q; Q->rear=Q->rear->next; } } void DeQueue(QueueList* Q,int* e) { if (Q==NULL) return; if (Q->front==Q->rear) { *e=Q->front->nData; Q->front=Q->rear=NULL; } else { *e=Q->front->nData; Q->front=Q->front->next; } } //创建图 void CreatAdjList(Graph* G) { int i,j,k; edgenode* p1; edgenode* p2;

广度优先搜索和深度优先搜索

有两种常用的方法可用来搜索图:即深度优先搜索和广度优先搜索。它们最终都会到达所有 连通的顶点。深度优先搜索通过栈来实现,而广度优先搜索通过队列来实现。 深度优先搜索: 深度优先搜索就是在搜索树的每一层始终先只扩展一个子节点,不断地向纵深前进直到不能再前进(到达叶子节点或受到深度限制)时,才从当前节点返回到上一级节点,沿另一方向又继续前进。这种方法的搜索树是从树根开始一枝一枝逐渐形成的。 下面图中的数字显示了深度优先搜索顶点被访问的顺序。 "* ■ J 严-* 4 t C '4 --------------------------------- --- _ 为了实现深度优先搜索,首先选择一个起始顶点并需要遵守三个规则: (1) 如果可能,访问一个邻接的未访问顶点,标记它,并把它放入栈中。 (2) 当不能执行规则1时,如果栈不空,就从栈中弹出一个顶点。 (3) 如果不能执行规则1和规则2,就完成了整个搜索过程。 广度优先搜索: 在深度优先搜索算法中,是深度越大的结点越先得到扩展。如果在搜索中把算法改为按结点的层次进行搜索,本层的结点没有搜索处理完时,不能对下层结点进行处理,即深度越小的结点越先得到扩展,也就是说先产生的结点先得以扩展处理,这种搜索算法称为广度优先搜索法。 在深度优先搜索中,算法表现得好像要尽快地远离起始点似的。相反,在广度优先搜索中, 算法好像要尽可能地靠近起始点。它首先访问起始顶点的所有邻接点,然后再访问较远的区 域。它是用队列来实现的。 下面图中的数字显示了广度优先搜索顶点被访问的顺序。 实现广度优先搜索,也要遵守三个规则: ⑴ 访问下一个未来访问的邻接点,这个顶点必须是当前顶点的邻接点,标记它,并把它插入到队列中。(2)如果因为已经没有未访问顶点而不能执行规则1

深度优先搜索的基本思想

深度优先搜索的基本思想 搜索是人工智能中的一种基本方法,也是信息学竞赛选手所必须熟练掌握的一种方法,它最适合于设计基于一组生成规则集的问题求解任务,每个新的状态的生成均可使问题求解更接近于目标状态,搜索路径将由实际选用的生成规则的序列构成。我们在建立一个搜索算法的时候.首要的问题不外乎两个:以什么作为状态?这些状态之间又有什么样的关系?我们就简单的说一下深度优先搜索的基本思想吧。 如算法名称那样,深度优先搜索所遵循的搜索策略是尽可能“深”地搜索树。在深度优先搜索中,对于当前发现的结点,如果它还存在以此结点为起点而未探测到的边,就沿此边继续搜索下去,若当结点的所有边都己被探寻过.将回溯到当前结点的父结点,继续上述的搜索过程直到所有结点都被探寻为止。 深度优先搜索在树的遍历中也称作树的先序遍历。对于树而言,深度优先搜索的思路可以描述为: (1)将根结点置为出发结点。 (2)访问该出发结点. (3)依次将出发结点的子结点置为新的出发结点.进行深度优先遍历(执行(2))。 (4)退回上一层的出发结点。 深度优先搜索的具体编程可用递归过程或模拟递归来实现。他们各有各的优缺点。递归形式的程序符合思维习惯.编写起来较容易.但由于递归过程的调用借助较慢的系统栈空间传递参数和存放局部变量,故降低了执行效率。模拟递归使用数组存放堆栈数据,在管理指针和每层选择决策上不如递归容易编程.但一旦熟悉了程序框架,调试起来要比递归程序方便,由于数组一般使用静态内存.访问速度较快,执行效率也较高. 经典例子、找零钱(money.pas) 问题描述:有2n个人排队购一件价为0.5元的商品,其中一半人拿一张1元人民币,另一半人拿一张0.5元的人民币,要使售货员在售货中,不发生找钱困难,问这2n个人应该如何排队?找出所有排队的方案。(售货员一开始就没有准备零钱) 输入: 输入文件money.in仅一个数据n 输出: 输出文件money.out若干行,每行一种排队方案,每种方案前加序号No.i,每种方案0表示持0.5元钞票的人,1表示持1元钞票的人 样例: money.in

采用非递归深度优先遍历算法

2007-05-27 晴 //采用非递归深度优先遍历算法,可以将回溯法表示为一个非递归过程 #include using namespace std; class Knap { friend int Knapsack(int p[],int w[],int c,int n ); //设置友元函数 public: void print() //定义类内函数打印结果 { for(int m=1;m<=n;m++) { cout<

}; private: int Bound(int i); void Backtrack(int i); int c; //背包容量 int n; //物品数 int *w; //物品重量数组int *p; //物品价值数组int cw; //当前重量 int cp; //当前价值 int bestp; //当前最优值int *bestx; //当前最优解int *x; //当前解 }; int Knap::Bound(int i) //装满背包

if(i<=n) b+=p/w*cleft; return b; } void Knap::Backtrack(int i) { if(i>n) { if(bestp

深度优先算法与广度优先算法的比较

DFS与BFS的比较 姓名:班级:学号: 一、图的遍历 1.图的遍历的含义 图的遍历是指从图中某结点出发,按某既定方式访问图中各个可访问到的结点,使每个可访问到的结点恰被访问一次。 2.图的遍历方式:深度优先与广度优先 二、DFS与BFS的区别 1.概念 深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问止。 广度优先遍历可定义如下:假设从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使“先被访问的顶点的邻接点”先与“后被访问的顶点的邻接点”被访问,直至图中所有已被访问的顶点的邻接点都被访问到。若此时图中尚有顶点未被访问,则另选图中一个曾被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。 2. 路径 深度优先就是,从初始点出发,不断向前走,如果碰到死路了,就往回走一步,尝试另一条路,直到发现了目标位置。这种方法,即使成功也不一定找到一条好路,但是需要记住的位置比较少。 广度优先就是,从初始点出发,把所有可能的路径都走一遍,如果里面没有目标位置,则尝试把所有两步能够到的位置都走一遍,看有没有目标位置;如果还不行,则尝试所有三步可以到的位置。这种方法,一定可以找到一条最短路径,但需要记忆的内容实在很多,要量力而行。 3.算法实现 (1) 图的深度优先算法的一般性描述: long DFS(图s,结点v。) { // 从结点v。出发,深度优先遍历图s,返回访问到的结点总数 int nNodes; //寄存访问到的结点数目 访问v。;

数据结构实验四图的深度优先与广度优先遍历

天津理工大学实验报告学院(系)名称:计算机与通信工程学院

实验思路: 首先,定义邻接矩阵和图的类型,定义循环队列来存储,本程序中只给出了有向图的两种遍历,定义深度优先搜索和广度优先搜索的函数,和一些必要的函数,下面的程序中会有说明,然后是函数及运行结果! #include #include using namespace std; #define MAX_VERTEX_NUM 20//最大顶点数 #define MaxSize 100 bool visited[MAX_VERTEX_NUM]; enum GraphKind{AG,AN,DG,DN};//图的种类,无向图,无向网络,有向图,有向网络 struct ArcNode{ int adjvex; ArcNode * nextarc; }; struct VNode{ int data; ArcNode * firstarc; }; struct Graph{ VNode vertex[MAX_VERTEX_NUM]; int vexnum,arcnum;//顶点数,弧数 GraphKind kind;//图的类型 }; struct SeqQueue{ int *base; int front,rear; }; SeqQueue InitQueue(){//循环队列初始化 SeqQueue Q; Q.base = new int; Q.front=0; Q.rear=0; return Q; } void DeQueue(SeqQueue &Q,int &u){//出队操作 u = *(Q.base+Q.front); Q.front = (Q.front+1)%MaxSize; } int QueueFull(SeqQueue Q){//判断循环队列是否满 return (Q.front==(Q.rear+1)%MaxSize)?1:0; }

邻接矩阵表示图_深度_广度优先遍历

*问题描述: 建立图的存储结构,能够输入图的顶点和边的信息,并存储到相应存储结构中,而后输出图的邻接矩阵。 1、邻接矩阵表示法: 设G=(V,E)是一个图,其中V={V1,V2,V3…,Vn}。G的邻接矩阵是一个他有下述性质的n阶方阵: 1,若(Vi,Vj)∈E 或∈E; A[i,j]={ 0,反之 图5-2中有向图G1的邻接矩阵为M1 M1=┌0 1 0 1 ┐ │ 1 0 1 0 │ │ 1 0 0 1 │ └0 0 0 0 ┘ 用邻接矩阵表示法来表示一个具有n个顶点的图时,除了用邻接矩阵中的n*n个元素存储顶点间相邻关系外,往往还需要另设一个向量存储n个顶点的信息。因此其类型定义如下: VertexType vertex[MAX_VERTEX_NUM]; // 顶点向量 AdjMatrix arcs; // 邻接矩阵 int vexnum, arcnum; // 图的当前顶点数和弧(边)数 GraphKind kind; // 图的种类标志 若图中每个顶点只含一个编号i(1≤i≤vnum),则只需一个二维数组表示图的邻接矩阵。此时存储结构可简单说明如下: type adjmatrix=array[1..vnum,1..vnum]of adj; 利用邻接矩阵很容易判定任意两个顶点之间是否有边(或弧)相联,并容易求得各个顶点的度。

对于有向图,顶点Vi的出度OD(Vi)为邻接矩阵第i行元素之和,顶点Vi 的入度ID(Vi)为第i列元素之和。即 n n OD(Vi)=∑A[i,j],OD(Vi)=∑A[j,i]) j=1j=1 用邻接矩阵也可以表示带权图,只要令 Wij, 若或(Vi,Vj) A[i,j]={ ∞, 否则。 其中Wij为或(Vi,Vj)上的权值。相应地,网的邻接矩阵表示的类型定义应作如下的修改:adj:weightype ; {weightype为权类型} 2、图的遍历: *深度优先搜索 深度优先搜索遍历类似于树的先根遍历,是树的先根遍历的推广。假设初始状态是图中所有的顶点未曾被访问,则深度优先遍历可从图的某个顶点V出发,访问此顶点,然后依次从V的未被访问的邻接点出发深度优先遍历图,直至图中所有和V有路径相通的顶点都被访问到;若此时图中尚有顶点未被访问,则另选图中的一个未被访问的顶点,重复上述过程,直至图中所有顶点都被访问到为止。 以图中无向图G 4为例,深度优先遍历图的过程如图所示。假设从顶点V 1 出 发进行搜索,在访问了顶点V 1后,选择邻接点V 2 。因为V 2 未曾访问,则从V 2 出 发进行搜索。依次类推,接着从V 4,V 8 ,V 5 出发进行搜索。在访问了V 5 之后,由于 V 5的邻接点已都被访问,则搜索回到V 8 。由于同样的理由,搜索继续回到V 4 ,V 2 直至V 1,此时由于V 1 的另一个邻接点为被访问,则搜索又从V 1 到V 3 ,再继续进 行下去。由此得到顶点的访问序列为: V 1 V 2 V 4 V 8 V 5 V 3 V 6 V 7

图的深度优先搜索,广度优先搜索,代码

#include #include #include #define MAX_VERTEX_NUM 50 typedef struct Arcnode { int adjvex; struct Arcnode *nextarc; } Arcnode; typedef struct VNode { int data; Arcnode *firstarc; } VNode, AdjList[MAX_VERTEX_NUM]; typedef struct { AdjList vertice; int vexnum, arcnum; int kind; } Graph; int visit[100];//用来标记每个定点是否被访问过 void changeV_G(int v[], Graph &G, int n);//将邻接矩阵转换成邻接表int FirstAdjVex(Graph G, int v); int NextAdjVex(Graph G, int v, int w); void DFS(Graph G, int v); void DFSTraverse(Graph G, int v[]); void changeV_G(int v[], Graph &G, int n) { for(int i=0; iadjvex=j;

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历实现 深度优先遍历过程 1、图的遍历 和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。它是许多图的算法的基础。 深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。它们对无向图和有向图均适用。 注意: 以下假定遍历过程中访问顶点的操作是简单地输出顶点。 2、布尔向量visited[0..n-1]的设置 图中任一顶点都可能和其它顶点相邻接。在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。为了避免重复访问同一个顶点,必须记住每个已访问的顶点。为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。 -------------------------- 深度优先遍历(Depth-First Traversal) 1.图的深度优先遍历的递归定义 假设给定图G的初态是所有顶点均未曾访问过。在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。 图的深度优先遍历类似于树的前序遍历。采用的搜索方法的特点是尽可能先对纵深方向进行搜索。这种搜索方法称为深度优先搜索(Depth-First Search)。相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。 2、深度优先搜索的过程 设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的

相关主题
文本预览
相关文档 最新文档