当前位置:文档之家› 钛合金高温形变强韧化机理

钛合金高温形变强韧化机理

钛合金高温形变强韧化机理
钛合金高温形变强韧化机理

第35卷1999 第1期

年1月

金属学报

ACTA METALLURGICA SINICA

Vol.35No.1

January1999钛合金高温形变强韧化机理*

周义刚 曾卫东 李晓芹 俞汉清

(西北工业大学材料科学与工程学院,西安710072)

曹春晓

(北京航空材料研究院,北京100095)

摘 要 详细研究并讨论了钛合金高温形变强韧化机理.结果表明,三态组织中少量等轴 相与基体 相没有固定的位向关系,位错容易找到可开动的滑移面,对变形起着协调作用,因而合金具有较高的塑性;大量网篮交织的条状 ,不仅增加了相界面,提高了合金的强度与抗蠕变能力,而且不断改变裂纹扩展方向,导致裂纹路径曲折、分枝多,断裂韧性好.新的变形理论适用于 ,近 ,( + )和近 型钛合金.

关键词 高温形变,强韧化机理,三态组织,钛合金

中图法分类号 T G146.2 文献标识码 A 文章编号 0412-1961(1999)01-0045-48

AN INVESTIGATION OF HIGH-TEMPERATURE DEFORMA TION STRENGTHENING AND TOUGHENING

MECHANISM OF TITANIUM ALLOY

Z H O U Yigang,ZEN G Weidong,LI Xiaoqin,YU H anqing

Col lege of M aterials Science and Engineering,Northw estern Polytechnical Universi ty,Xi an710072

CAO Chunx iao

Beijing Institute of Aeronauti cal M aterials,Beijing100095

Cor resp ondent:ZH OU Yigang,p r o f essor,Tel:(029)8493939,Fax:(029)8491000,

E-mail:z engjiang@https://www.doczj.com/doc/1811438050.html,

M anuscript received1998-05-12,in revised form1998-08-11

ABSTRAC T T he high-temperature deformation strengthening and toug hening mechanisms have been investigated.It is found that equiax ed alpha phases in tri-modal m icrostructure have no inherent orien taion w ith transformed beta m atrix,dislocations can easily find their slip plane,so they give coordination of materials deform ation,and result in higher ductility.The striature alpha phases not only increase the strength and creep properties,but also change the cracks propagation directions,thus cracks make a more w inding w ay along or cross grain boundary between striature alpha phases,and materials show a higher fracture toug hness.T his new deformation theory applies to ,near ,( + )and titanium alloys. KEY W ORDS hig h-tem perature deformation,streng thening and toug hening mechanism,tri-modal microstructure,titanium alloy

国内外对( + )钛合金的变形通常是在相变点以下3050!进行,称为常规锻造.常规锻造获得的等轴组织具有室温强度高、塑性好等优点,但其高温性能、抗疲劳裂纹扩展能力和断裂韧性较差[1].50年代后期,C roan等人[2]提出了 锻造工艺,其优点是提高了合金的抗蠕变性能、冲击和断裂韧性,但是明显降低塑性和热稳定性,导致? 脆性#和?组织遗传性#[3].60年代初,She egarev等人[4]提出的形变热处理理论,有效地提高了合金的强度和韧性,但是

*收到初稿日期:1998-05-12,收到修改稿日期:1998-08-11

作者简介:周义刚,男,1930年生,教授锻后水冷的组织在随后的低温时效过程中分解,降低合金的热稳定性.因此,如何解决钛合金强度-塑性-韧性的相互匹配,一直是钛合金科学工作者努力解决的课题.

本文提出的钛合金高温形变强韧化工艺(又称近 锻造工艺),是在相变点以下1015!加热、变形.为控制变形温度,以坯料的平均相变点确定名义加热温度,并采用金相试样法测定和控制炉温精度.变形后快淬的锻件经两次高温加一次低温的强韧化处理后,获得由一定数量的等轴初生 、条状 构成的网篮和转变 基体组成的三态组织,从而克服了以往研究的不足,使合金的强度-塑性-韧性得以兼顾.

1 高温形变强韧化的设计

文献[5]指出,魏氏 的断裂韧性和抗蠕变能力比等轴 好.单就提高合金蠕变性能和断裂韧性而言,应尽量增加合金组织中魏氏 相的相对含量,但要受塑性下降的限制,等轴初生 含量不能过低.研究结果证明[6],只要组织中含有10% 15%的等轴 ,塑性不会过于下降,超过20%对塑性也无裨益,而会抑制其它性能的发挥.因此,钛合金强韧化设计的理论基础是将初生 含量控制在20%左右,可获得强度-塑性-韧性的最佳匹配.TC11(Ti-6.5Al-3.5Mo -1.5Zr -0.3Si(质量分数,%))合金等轴初生 含量( ,体积分数)随加热温度的变化关系见图1.由图可以看出,加热温度低于960!

图1 TC11合金加热温度与等轴 含量的关系

Fig.1 Correlation betw een the volume fraction of equiaxed al

pha ( )and theheating temperatur e of T C11alloy ?equiax ed %transfor med

(相变点以下40!左右),初生 含量随温度的变化不大;只有当温度升高到相变点以下10 15!时,初生 才能迅速降至10% 15%,加上变形及热处理发生的再结晶增加的10%左右的等轴 相,可以使 相的总含量控制在20%左右.

2 实验结果与分析

2.1 显微组织

从图2可以看到,传统的常规锻造获得等轴组织(图2a ), 锻造获得网篮组织(图2c ),而近 锻造得到三态组织(图2b).三态组织是由体积分数(下同)分别为10% 20%的等轴 ,50% 60%网篮交织的条状 和转变 基体构成的多层次组织.等轴 是坯料加热未超过相变点而被保留下来的;一定宽长比的条状 是变形及冷却产生的次生 相在均匀化和高温处理时进一步聚集长大形成的.由于变形后采用快速水冷,保留了大量的晶体缺陷,因而结晶核心多,条状 和转变 基体中的魏氏 相尺寸细小、无固定方式排列且呈网篮状交织.

2.2 力学性能

从表1中可以看出,等轴 相的含量对室温强度无明显影响,常规、近 和 锻造处于同一水平.这与Henning 等人[7]

的研究一致.但其高温性能有明显差异,近 锻造样品520!的高温性能相当于常规锻造样品500!的性能水平.520!,100h,300MPa 条件下的蠕变性能明显优于常规锻造(表2),其原因与三态组织中交织分布的条状 和片间 条内点状析出物(图3)阻碍位错滑移有关[8]

.近 锻造的塑性和热稳定性与常规锻造处于同一数量级,即使试样经过520!,100h 热暴露后,!值仍保持在30%左右,未出现脆性和失稳现象(表1);疲劳-蠕变交互作用寿命高于常规锻造的性能水平,主要是拉伸保时过程中蠕变应

图2 常规锻、近 锻和 锻获得的显微组织

Fig.2 Opt ical microstr uctures developed by conv entional for ging,near beta for ging and beta forg ing (a)equiaxed microstr ucture developed by conventional forg ing (b)tr i-modal microstructure developed by near beta forg ing (c)lamellar micr ostructur e developed by beta forg ing

46

金 属 学 报35卷

表1 T C11钛合金的室温拉伸性能和热稳定性

Table 1 Roo m-temperatur e tensile and thermal stability of T C11alloy For ging method Room-emperatur e tensile proper ty

?b ?0.2#!M Pa M Pa %% T hermal stability 500!,100h 500!,100h ?b #!?b #!M Pa %%M P a %%Conventional 1061101814.846.2108714.038.8108112.031.7N ear

1098104916.843.8110915.037.7115316.636.6

1083

990

12.8

19.6

1069

11.3

17.0

1094

10.2

16.4

表2 T C11钛合金的高温拉伸、持久和蠕变性能

Table 2 High-temperature tensile ?b (t),duration ?b (d)and creep str ength (?)o f T C11alloy

Fo rging met hod

?b (t),M Pa 500!520! ?b (d),M Pa 500!,100h

520!,100h

?,% 500!,100h,343M P a

520!,100h,343M Pa

Convent ional 748698598-0.1290.224N ear

7747497066070.1030.134

772

761

706

608

0.063

0.125

表3 T C11钛合金的低周疲劳、疲劳蠕变性能和断裂韧性

Table 3 L ow-cycle fatigue life,N f (l),fatigue-creep life,N f (c)and fracture toughness,K ,of T C11alloy Forg ing method

N f (l),cyc

20!,715M Pa

N f (c),cyc

520!,3min,480M P a

K M Pa &m Conventional 6658252973.1N ear 14376829888.6

7631

11780

91.9

图3 三态组织中 条内析出物

Fig.3 Separation substance in beta phase in tri -modal mi

crostr ucture

变积累和空洞形核机制不同造成的[9].近 锻造的断裂韧性值与 锻造的水平基本相当(表3).可见,近 锻造获

得的三态组织,其力学性能具有明显的优越性.3 高温形变强韧化机理

3.1 细观结构模型

文献[10]指出,钛合金拉伸断裂的空洞,主要是由微区变形不均匀造成应力集中引起的,而这种微区变形不均匀的程度与滑移带的长度和间距有关.Terlinde 等人根据

位错基本理论和对位错滑移模型的近似假设,推导出拉伸塑性应变?mi n 同位

错滑移带间距D 的关系表达式?mi n =ln(1+0.15Nb

D

)式中,?m in 为拉伸塑性应变,N 为位错塞积的总数目,b 为Burgers 矢量长度,D 为滑移带之间的间距.

可见,材料的塑性变形能力与位错滑移带间距呈相反的变化趋势,即随着滑移带间距的减小.材料断裂前所能承受的塑性变形能力增加,塑性值提高.

本文采用干扰法测量了三种组织形态的滑移带平均间

距D 分别为:等轴组织0.09%

m,三态组织0.27%m,片状组织3.63%m.这足以说明三态组织的塑性远优于片状

组织、接近于等轴组织水平的原因.3.2 强韧化机理

已有研究表明,等轴和片状组织拉伸塑性明显差异的原因是两者的变形机理不一样[11].等轴组织材料的拉伸变形是在 相个别晶粒中以滑移开始的,随着变形程度的增加,滑移占据越来越多的 晶粒,并向周围的转变 组织扩展,滑移带间距小(0.09%m),晶界处位错塞积应力小.因而推迟了空洞的形核和发展,断裂前将产生更大的变形,从而获得更高的塑性.片状组织中由于同一 束具有

47 1期周义刚等:钛合金高温形变强韧化机理

相同的惯析面,位错能毫无阻碍地穿过互相平行的 束,垂直滑距长(3.63%m),易出现粗滑移带和微区变形不均匀,在晶界处易产生严重的位错塞积,促进空洞的形成和发展,导致试样过早断裂.三态组织中既有等轴 又有条状 ,因而是上述两种变形机理的综合.少量等轴 同基体没有固定的位向关系,位错容易找到可开动的滑移面,因而对变形起协调作用;同时,50%60%网篮交织的条状 降低了等轴 间的平均自由程[12],使滑移带间距减小(0.27%m),位错线分布均匀、细密,没有局部的位错严重塞积现象(图4),从而推迟了空洞的形核和发展,显示出较高的塑性.

文献[13]指出,造成片状和等轴组织断裂韧性不同的原因,主要与裂纹扩展路径和曲折程度有关.三态组织中,由于含有50%60%厚度为35%m的条状 相,裂纹不能象在等轴组织中那样平直地穿过转变 基体中的魏氏 相,只能沿着 / 相界面扩展或穿过 集束.若 集束的位向与主裂纹扩展方向相近,裂纹沿 片间通过;若 集束的位向与主裂纹走向很不一致,裂纹穿过集束,

但裂

图4 三态组织的位错形貌

Fig.4 Dislocation morpholog y in tri-modal microstr ucture

图5 三态组织中裂纹扩展路径

Fig.5 Winding crack propagation path in tri-mo dal mi crostructure 纹扩展至集束边界,将产生停滞效应或被迫改变方向(图5).因此,裂纹随着 片和 集束位向的变化不断改变扩展方向.路径越曲折,消耗能量越多,断裂韧性越高.

基于上述原因,三态组织不仅具有好的塑性,同时具有高的热强性和断裂韧性.

4 结论

(1)接近钛合金相变点的近 锻造,可获得由一定数量的等轴初生 ,条状 构成的网篮和转变 基体组成的三态组织.

(2)三态组织既有好的塑性、又有高的强度和韧性的原因,取决于组织中不同成分的不同变形机理.少量等轴 对变形起着协调作用,推迟了空洞的形核和发展,断裂前将产生更大的变形,从而显示较高的塑性;大量网篮交织的条状 不仅增加了相界面,提高了合金强度与抗蠕变能力,而且裂纹扩展将随着 片和 集束的位相不断改变方向,导致裂纹路径曲折、分枝多,因而断裂韧性好.所以,三态组织是等轴和片状组织两种变形机理的综合.

参考文献

[1]Okad a M.In:Froes F H,Caplan I L eds.,Titanium 92,Scien ce

and Technology,San Diego,Cali fornia,T MS,1992:1551

[2]Croan L S,Ri zzitano F J.W AL Repor t401/268,Watertown Arsend

Laboratories,Watertown,Mass,1958

[3]Zhou Y G.A cta Metall Sin,1980;16:302

(周义刚.金属学报,1980;16:302)

[4]Sheegarev A S,Glyaooev A P.Research on High-Strength Alloys

and Ref ined Grain.Moscow:Academy of Science Press,1963:142 &?()?+,?,./012?+,3.455(?-67+18/)97+: 57;7927<8:=59(1-+1=/8/>?+/68:=;2/5>1( (1=.

?758+1:4?6-+7,Α333Β,1963:142)

[5]Fenti man W P,Goosey R E.In:Jaffee R I,Promi sel N E eds.,T h e

Science Te chn olog y and Application of T itanium.London:Pergamon Press,1970:987

[6]Wang J Y,Ge Z M,Zhou Y B.Titanium Alloy in A viation I n dus

try.Shanghai:Shanghai Sci ence Press,1985:221

(王金友,葛志明,周彦邦.航空用钛合金.上海:上海科学技术出版社,1985:221)

[7]Henning H J.DMIC Re port S-24,Defen se Metal s Information Cen

ter,Battelle M emorial Institute,1968

[8]Zhou Y G,Zhang B C.Acta A eronautica A stronautica Sinica,1989;

10(1):A64

(周义刚,张宝昌.航空学报,1989;10(1):A64)

[9]Zhou Y,Zh ou Y G,Yu H Q.A cta Metall Sin,1992;28:A132

(周煜,周义刚,俞汉清.金属学报,1992;28:A132)

[10]Terlinde G,Luetjering G.Metall Trans,1982;13A:1283

[11]Zhou Y G,Zeng W D,Yu H Q.Mater Sci Eng,1996;A221:58

[12]Tobin A.A D-A007427,1975

[13]Minomi M,Kobayashi T.ISIJ I nt,1991;31:848

48

金 属 学 报35卷

AZ31镁合金塑性变形不均匀性与变形机制的研究

AZ31镁合金塑性变形不均匀性与变形机制的研究镁合金性能优异、应用广泛,但较差的室温塑性及变形过程中的不均匀性极大地制约了它的生产应用。深入研究镁合金的变形不均匀性及内在塑性变形机制是理解镁合金变形行为的关键。 本文以商用轧制AZ31镁合金为初始材料,基于数字图像相关方法(DIC)、电子背散射衍射技术(EBSD),建立了微观尺度应变不均匀性及组织变形不均匀性的有效表征方法。在此基础上详细研究了晶粒尺度变形不均匀性与变形机制的内在联系,并深化了对不均匀变形条件下塑性变形机制的行为理解。 获得的主要研究结论如下:借助纳米级表面标记颗粒实现了试样表面高分辨应变场的分析,探索了晶粒以及晶内孪晶尺度的应变分布情况,证实了应变分布在微观尺度的不均匀性。同时结合微观组织结构及变形机制的研究解释了应变不均匀性的产生原因,研究表明晶体取向的自身软硬程度以及与相邻区域的相对软硬状态都会影响应变的分布,在某些界面处的应变累积是由于界面两侧缺乏有效的塑性变形机制以完成应变的传递。 为理解局部应变对塑性变形机制的行为影响,对晶界处的孪晶穿透行为进行了详细的统计研究。总结了孪晶穿透在小取向差角晶界处容易发生的规律,探究了Schmid因子对孪晶穿透的影响,并利用几何协调因子m’从应变协调角度解释了某些不遵循Schmid定律的孪晶行为。 分析表明m’可以较好地解释局部应变下的孪晶变体选择行为,但对于孪晶穿透在何处发生并没有良好的预测性。基于EBSD获得的取向数据,建立了晶粒尺度组织变形不均匀性的两种可视化表征方法。 验证了“晶内取向分散”方法表征晶粒分裂的有效性及优越性,并运用“晶

内取向发展”方法揭示了介观变形带的信息。研究表明晶粒分裂在低应变量下就已经发生,结合Sachs模型及低能位错结构(LEDS)理论分析得出晶内同一组滑移体系间相对开动量的不同会导致晶内各部分不同的转动行为。 利用上述表征方法能够帮助对热变形过程中组织的不均匀变化及动态再结晶形核机制的理解。研究表明在低应变阶段,晶粒长大可以降低体系能量从而弱化晶内变形的不均匀性,晶粒长大过程中晶界的迁移大多符合降低界面能量的要求。 随着应变量的增加,晶内变形的不均匀性迅速增加,并在不均匀变形组织中观察到晶界突出和应变诱发的矩形晶界迁移形貌。AZ31镁合金在200℃的热变形过程中同时存在着不连续动态再结晶(DDRX)及连续动态再结晶(CDRX)的形核机制。

变形高温合金的特性、分类及用途

科技名词定义 塑性变形 科技名词定义 中文名称:塑性变形 英文名称:plastic deformation 定义:岩体、土体受力产生的、力卸除后不能恢复的那部分变形。 应用学科:水利科技(一级学科);岩石力学、土力学、岩土工程(二级学科);土力学(水利)(三级学科) 本内容由全国科学技术名词审定委员会审定公布 塑性变形(Plastic Deformation),的定义是物质-包括流体及固体在一定的条件下,在外力的作用下产生形变,当施加的外力撤除或消失后该物体不能恢复原状的一种物理现象。

目录 介绍 机理 影响 介绍 机理 影响 展开 编辑本段介绍 材料在外力作用下产生而在外力去除后不能恢复的那部分变形 塑性变形 。材料在外力作用下产生应力和应变(即变形)。当应力未超过材料的弹性极限时,产生的变形在外力去除后全部消除,材料恢复原状,这种变形是可逆的弹性变形。当应力超过材料的弹性极限,则产生的变形在外力去除后不能全部恢复,而残留一部分变形,材料不能恢复到原来的形状,这种残留的变形是不可逆的塑性变形。在锻压、轧制、拔制等加工过程中,产生的弹性变形比塑性变形要小得多,通常忽略不计。这类利用塑性变形而使材料成形的加工方法,统称为塑性加工。 编辑本段机理 固态金属是由大量晶粒组成的多晶体,晶粒内的原子按照体心立方、面心立方或紧密六方等方式排列成有规则的空间结构。由于多种原因,晶粒内的原子结构会存在各种缺陷。原

塑性变形 子排列的线性参差称为位错。由于位错的存在,晶体在受力后原子容易沿位错线运动,降低晶体的变形抗力。通过位错运动的传递,原子的排列发生滑移和孪晶(图1)。滑移是一部分晶粒沿原子排列最紧密的平面和方向滑动,很多原子平面的滑移形成滑移带,很多滑移带集合起来就成为可见的变形。孪晶是晶粒一部分相对于一定的晶面沿一定方向相对移动,这个晶面称为孪晶面。原子移动的距离和孪晶面的距离成正比。两个孪晶面之间的原子排列方向改变,形成孪晶带。滑移和孪晶是低温时晶粒内塑性变形的两种基本方式。多晶体的晶粒边界是相邻晶粒原子结构的过渡区。晶粒越细,单位体积中的晶界面积越大,有利于晶间的移动和转动。某些金属在特定的细晶结构条件下,通过晶粒边界变形可以发生高达300~3000%的延伸率而不破裂。 编辑本段影响 金属在室温下的塑性变形,对金属的组织和性能影响很大,常会出现加工硬化、内应力和各向异性等现象。 加工硬化 塑性变形引起位错增殖,位错密度增加,不同方向的位错发 塑性变形力学原理 生交割,位错的运动受到阻碍,使金属产生加工硬化。加工硬化能提高金属的硬度、强度和变形抗力,同时降低塑性,使以后的冷态变形困难。

镁合金塑性变形与断裂行为的研究

镁合金塑性变形与断裂行为的研究 刘天模,卢立伟,刘宇 重庆大学材料科学与工程学院,重庆(400030) E-mail: haonanwa@https://www.doczj.com/doc/1811438050.html, 摘要:通过室温压缩拉伸实验,研究了AZ31挤压镁合金的断裂失效机制。研究表明,在压缩破坏实验中有镦粗现象,金相显示沿粗大晶界处形成了大量的孪晶,部分孪晶界诱发裂纹源,裂纹沿晶界处传播,同时部分孪晶对裂纹起钝化阻碍作用,断口扫描表明属于韧脆混合断裂;在拉伸破坏实验中出现明显颈现象,金相显示沿拉长晶晶界处形成大量孪晶,孪晶和裂纹之间存在交互作用,断口扫描表明属于韧性断裂,同时显示出空洞形核诱发裂纹的机制。 关键词:压缩变形;拉伸变形;孪晶;断裂 中图分类号:TG 1. 引言 镁合金属于密排六方晶体结构,其轴比(c/a)值为1.623,接近理想的密排值1.633,室温滑移系少在室温塑性变形时,出现大量的孪晶协调其塑性变形,塑性变形能力差,容易断裂[1]。金属的断裂是指金属材料在变形超过其塑性极限而呈现完全分开的状态。因为材料受力时,原子相对位置发生了改变,当局部变形量超过一定限度时,原子间的结合力遭到破坏,便出现了裂纹,裂纹经过扩展而使金属断开。金属塑性的好坏表明了它抑制断裂能力的高低。在塑性加工生产中,尤其是对塑性较差的材料,断裂常常是引起人们极为关注的问题。加工材料的表面和内部的裂纹,以至于整体的断裂,都会使得成品率和生产率大大降低[2,13]。因此,研究镁合金塑性变形中的断裂行为和规律对于有效地防止金属成形过程中的断裂,充分发挥金属材料潜在的塑性有重要意义. 2. 实验内容 实验材料选用AZ31挤压材,挤压温度为300℃,挤压比为4.5,挤压速度为1mm/s,将挤压样加工成标准压缩样Φ7×14mm和标准拉伸样,并选此标准压缩样进行400℃保温2小时的退火,利用新三思万能电子试验机CMT-5150以1mm/min的速度沿挤压方向进行压缩和拉伸破坏实验;然后利用数码相机对失效后试样断口方向及断面进行拍照宏观分析;再对失效试样的压缩或拉伸方向进行金相显微组织分析;最后利用扫描电子显微镜对压缩和拉伸的断口形貌进行分析。 3.试验结果 3.1 挤压态压缩破坏样 3.1.1 断口宏观分析

“钢的热处理原理及工艺”作业题

“钢的热处理原理及工艺”作业题 第一章固态相变概论 1、扩散型相变和无扩散型相变各有哪些特点? 2、说明晶界和晶体缺陷对固态相变成核的影响。 3、说明相界面和应变能在固态相变中的作用,并讨论它们对新相形状的影响。 4、固-固相变的等温转变动力学曲线是“C”形的原因是什么? 第二章奥氏体形成 1、为何共析钢当奥氏体刚刚完成时还会有部分渗碳体残存?亚共析钢加热转变时是否也存在碳化物溶解阶段? 2、连续加热和等温加热时,奥氏体形成过程有何异同?加热速度对奥氏体形成过程有何影响? 3、试说明碳钢和合金钢奥氏体形成的异同。 4、试设计用金相-硬度法测定40钢和T12钢临界点的方案。 5、将40、60、60Mn钢加热到860℃并保温相同时间,试问哪一种钢的奥氏体晶粒大一些? 6、有一结构钢,经正常加热奥氏体化后发现有混晶现象,试分析可能原因。 第三章珠光体转变 1、珠光体形成的热力学特点有哪些?相变主要阻力是什么?试分析片间距S与过冷度△T的关系。 2、珠光体片层厚薄对机械性能有什么影响?珠光体团直径大小对机械性能影响如何? 3、某一GCr15钢制零件经等温球化退火后,发现其组织中除有球状珠光体外,还有部分细片状珠光体,试分析其原因。 4、将40、40Cr、40CrNiMo钢同时加热到860℃奥氏体化后,以同样冷却速度使之发生珠光体转变,它们的片层间距和硬度有无差异? 5、试述先共析网状铁素体和网状渗碳体的形成条件及形成过程。 6、为达到下列目的,应分别采取何热处理方法? (1)为改善低、中、高碳钢的切削加工性; (2)经冷轧的低碳钢板要求提高塑性便于继续变形; (3)锻造过热的60钢毛坯为细化其晶粒; (4)要消除T12钢中的网状渗碳体; 第四章、马氏体转变

GH4169 镍基变形高温合金资料

GH4169 镍基变形高温合金资料 中国牌号:GH4169/GH169 美国牌号:Inconel 718/UNS NO7718 法国牌号:NC19FeNb 一、GH4169概述 GH4169合金是以体心四方的γ"和面心立方的γ′相沉淀强化的镍基高温合金,在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位, 并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。 该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。 1.1 GH4169 材料牌号 GH4169(GH169)

1.2 GH4169 相近牌号 Inconel 718(美 国),NC19FeNb(法国) 1.3 GH4169 材料的技术标准 1.4 GH4169 化学成分该合金的化学成分分为3类:标准成分、优质成分、高纯成分,见表1-1。优质成分的在标准成分的基础上降碳增铌,从而减少碳化铌的数量,减少疲劳源和增加强化相的数量,提高抗疲劳性能和材料强度。同时减少有害杂质和气体含量。高纯成分是在优质标准基础上降低硫和有害杂质的含量,提高材料纯度和综合性能。 核能应用的GH4169合金,需控制硼含量(其他元素成分不变),具体含量由供需双方协商确定。当ω(B)≤0.002%时,为与宇航工业用的GH4169合金加以区别,合金牌号为GH4169A。 表 1-1[1]%

基于CPFEM的TA15钛合金高温塑性变形研究

基于CPFEM的TA15钛合金高温塑性变形研究晶体塑性理论将晶体塑性变形的物理机制及变形几何学与单晶或多晶的弹塑性本构方程相结合,从介观尺度(即晶粒尺度)上解释材料的各种塑性变形行为。将晶体塑性理论与有限元方法相结合的方法称为晶体塑性有限元方法(Crystal Plastic Finite Element Method,CPFEM),该方法从材料变形的物理机制出发,可以较为准确的反映材料的微观特性。 目前晶体塑性有限元模拟已成为力学界和材料界的研究热点。钛与钛合金是一种重要的结构材料,以其优异的性能广泛应用在航空航天等领域。 钛有两种同素异构晶型:密排六方(HCP)点阵的α-Ti相和体心立方(BCC)点阵的β-Ti相,由于晶格类型不同,其变形机制差别较大。文中综合采用了有限元方法、晶体塑性理论、元胞自动机等现代科学技术方法。 从介观尺度出发,根据合金微观晶格结构的不同,研究新型近α型钛合金—TA15钛合金的高温塑性变形,研究在相变点温度以上及以下的TA15钛合金高温的高温塑性变形行为。文中采用元胞自动机方法得到了相变点上的TA15钛合金的初始晶粒形貌。 建立了适用于变形温度在相变点以上的TA15合金的高温塑性变形的晶体塑性有限元模型。模拟结果表明多晶体在塑性变形的过程中,晶粒与晶粒之间以及晶粒内部的应力分布存在着明显的差异,晶粒内部与晶粒外部的塑性变形非常不均匀。 通过对滑移系上的剪应变进行分析表明由于各晶粒的取向不同和晶粒间的取向差的差异,不同晶粒的滑移系开动情况差别很大;在同一晶粒内部,由于需要协调相邻晶粒的应变情况,因此滑移系开动的程度也不完全相同。建立了适用

高温合金切削特点

切削特点 a、切削力大:比切削45号钢大2~3倍。 b、切削温度高:比切削45号钢高50%左右。 c、加工硬化严重:切削它时的加工表面和已加工表面的硬度比基体高50~100%。 d、刀具易磨损:切削时易粘结、扩散、氧化和沟纹磨损。 刀具材料 a、高速钢:应选用高钒、高碳、含铝高速钢。 b、硬质合金:应采用YG类硬质合金。最好采用含TaC或NbC的细颗粒和超细颗粒硬质合金。如YG8、YG6X、YG10H、YW4、YD15、YGRM、YS2、643、813、712、726等。 c、陶瓷:在切削铸造高温合金时,采用陶瓷刀具也有其独特的优越性。 刀具几何参数 变形高温合金(如锻造、热轧、冷拔)。刀具前角γ0为10°左右;铸造高温合金γ0为0°左右,一般不鐾负倒棱。刀具后角一般α=10°~15°。粗加工时刀倾角λs为-5°~-10°,精加工时λs =O~3°。主偏角κr为45°~75°。刀尖圆弧半径r为0.5~2mm,粗加工时,取大值。 切削用量 a、高速钢刀具:切削铸造高温合金切削速度Vc为3m/min左右,切削变形高温合金Vc=5~10m/min。 b、硬质合金刀具:切削变形高温合金Vc:40~60m/min;切削铸造高温合金Vc=7~10m/min。进给量f和切削深度αp均应大于0.1mm,以免刀具在硬化后的表面进行切削,而加剧刀具磨损。 切削液 粗加工时,采用乳化液、极压乳化液。精加工时,采用极压乳化液或极压切削油。铰孔时,采用硫化油85~90%+煤油10~15%,或硫化油(或猪油)+CCl4。高温合金攻丝十分困难,除适当加大底孔直径外,应采用白铅油+机械油,或氯化石蜡用煤油稀释,或用MoS2油膏。 高温合金钻孔

TA15钛合金高温变形行为研究

TA15钛合金高温变形行为研究 TA15钛合金的名义成分为Ti-6.5Al-2Zr-1Mo-1V,属于高Al当量的近α型钛合金。该合金既具有α型钛合金良好的热强性和可焊性,又具有接近于α+β型钛合金的工艺塑性,是一种综合性能优良的钛合金,被广泛用于制造高性能飞机的重要构件。对金属热态加工过程进行数值模拟,需要确定材料对热力参数的动态响应特征,即材料的流动应力与热力参数之间的本构关系,这对锻造工艺的合理制定,锻件组织的控制以及成型设备吨位的确定具有科学和实际的指导意义。 中国船舶重工集团公司725所的科研人员以TA15合金的热模拟压缩试验为基础,研究了变形工艺参数对TA15合金高温变形时流动应力的影响,这些研究对制定合理的TA15合金锻造热加工工艺,有效控制产品的性能、提高产品质量提供了借鉴。 热模拟压缩试验所用材料为轧制态Φ55mmTA15合金棒材,相变点为995±5℃,将该棒料切割加工成Φ8mm×12mm的小棒料进行试验。研究结果表明:(1)TA15合金在高温变形过程中,流动应力首先随应变的增大而增加,达到峰值后再下降,最后趋于稳定值。同一应变速率下,随着变形温度的升高,合金的流动应力降低;同一变形温度下,随着应变速率的减小,合金的流动应力减小。(2)TA15合金属于热敏感型和应变速率敏感型材料。应变速率较小时,变形温度对稳态应力和峰值应力的影响较小;应变速率较大时,变形温度对稳态应力和峰值应力的影响较大。变形温度较低时,应变速率对稳态应力和峰值应力的影响较大;变形温度较高时,应变速率对稳态应力和峰值应力的影响较小。(3)建立了TA15合金高温变形时的流动应力本构方程,经显著性检验和相关系数检验,证明所建立的方程具有较好的曲线拟合特性,方程的计算值与实验数据吻合较好。

钛合金表面处理

钛合金表面处理 引言 钛在高温下易于与空气中的O、H、N等元素及包埋料中的Si、Al、Mg等元素发生反应,在铸件表面形成表面污染层,使其优良的理化性能变差,硬度增加、塑性、弹性降低,脆性增加。 钛的密度小,故钛液流动时惯性小,熔钛流动性差致使铸流率低。铸造温度与铸型温差(300℃)较大,冷却快,铸造在保护性气氛中进行,钛铸件表面和内部难免有气孔等缺陷出现,对铸件的质量影响很大。 因此,钛铸件的表面处理与其它牙用合金相比显得更为重要,由于钛的独特的理化性能,如导热系数小、表面硬度、及弹性模量低,粘性大,电导率低、易氧化等,这对钛的表面处理带来了很大的难度,采用常规的表面处理方法很难达到理想的效果。必须采用特殊的加工方法和操作手段。 铸件的后期表面处理不仅是为了得到平滑光亮的表面,减少食物及菌斑等的积聚和粘附,维持患者的正常的口腔微生态的平衡,同时也增加了义齿的美感;更重要的是通过这些表面处理和改性过程,改善铸件的表面性状和适合性,提高义齿的耐磨、耐蚀和抗应力疲劳等理化特性。 一、表面反应层的去除 表面反应层是影响钛铸件理化性能的主要因素,在钛铸件研磨抛光前,必须达到完全去除表面污染层,才能达到满意的抛光效果。通过喷砂后酸洗的方法可完全去除钛的表面反应层。 1. 喷砂:钛铸件的喷砂处理一般选用白刚玉粗喷较好,喷砂的压力要比非贵金属者较小,一般控制在0.45Mpa以下。因为,喷射压力过大时, 砂粒冲击钛表面产生激烈火花,温度升高可与钛表面发生反应,形成二次污染,影响表面质量。时间为15~30秒,仅去除铸件表面的粘砂、表面烧结层和部分和氧化层即可。其余的表面反应层结构宜采用化学酸洗的方法快速去除。 2. 酸洗:酸洗能够快速完全去除表面反应层,而表面不会产生其他元素的污染。HF—HCl系和HF—HNO3系酸洗液都可用于钛的酸洗,但 HF—HCl系酸洗液吸氢量较大,而HF—HNO3系酸洗液吸氢量小,可控制HNO3的浓度减少吸氢,并可对表面进行光亮处理,一般HF的浓度在3%~5 %左右,HNO3的浓度在15%~30%左右为宜。 二、铸造缺陷的处理 内部气孔和缩孔内部缺陷:可等热静压技术(hot isostatic pressing)去除, 但

金属强韧化原理

1金属材料强韧化的目的和意义? 目的:A.节约材料,降低成本,节约贵重的合金元素的使用,增加材料在使用过程中的可靠性和延长服役寿命。 B.希望所使用的材料既有足够的强度,又有较好的韧性,但通常的材料二者不可兼得。 意义:在于理解材料强韧化机理、组织形态、微观结构与金属的强度、韧性之间的确切关系,以便找出适宜的冶金技术途径来提高金属的强韧性,使之达到新的水平或研究出新的高强韧性的金属。这是一个具有重大的理论意义和经济价值的研究开发领域。理解材料强韧化机理,掌握材料强韧化现象的物理本质,是合理运用和发展材料强韧化方法从而挖掘材料性能潜力的基础。 2.金属材料强韧化的主要机制有哪些? 1)物理强韧化:所谓物理强韧化是指在金属内部晶体缺陷的作用和通过缺陷之间的相互作用,对晶体的力学性能产生一定的,进而改变金属性能。 2)化学强韧化:化学强韧化是指是元素的本质决定的因素以及元素的种类不同和元素的含量不同造成的材料性能的改变。 3)机械强韧化:就是除了结构、尺寸、形状方面的机械原因外,主要指界面作用造成的强韧化。 4)复合组织强韧化:即两种或两种以上的金属组织复合在一起,其中有的组织强度比较高,有的组织韧性比较高,复合后起到了既提高强度有提高韧性的作用。 3.如何理解强化和韧化的关系 强度是是在给定条件(温度/压力/应力状态/应变速率/周围介质)下材料达到给定变形量所需要的应力,或材料发生破坏的应力,研究变形及断裂是研究强度的重要手段和过程。 韧性是断裂过程的能量参量,是材料强度与塑性的综合表现,它是材料在外加负荷作用下从变形到断裂全过程吸收能量的能力,所吸收的能量愈大,则断裂韧性愈高。 一般情况下,材料的强度和韧性是不可兼得的,在提高金属材料强度的同时塑性必然会下降,反之,在改善金属的塑性的同时,强度也会下降。目前,晶粒细化是提高金属强韧化的有效方法,金属的晶粒变细后,强度提高,韧性又不显著降低。 4.试举出3种最新强韧化技术方法的例子。 1)细晶强化:它是常温下一种有效的材料强化手段。细化晶粒可以提高金属的强

高温钛合金

高温钛合金性能要求 请帮忙推荐满足以下条件的高温钛合金,可以是一种合金同时满足4个温度条件的使用,也可是每个温度条件使用不同的合金。 性能要求如下: (1)常温塑性≥5%。 (2)高温性能 分别在550℃、600℃、650℃、700℃下满足σb≥520MPa,σ0.2≥420 MPa。 (3)持久性能 应力为450 MPa,分别在550℃、600℃、650℃、700℃下保持0.5h/1h/2h 不断。 (4)蠕变性能 应力为450 MPa,分别在550℃、600℃、650℃、700℃下, 保持0.5h,残余变形量≤1.6%; 保持1h,残余变形量≤3%; 保持2h,残余变形量≤5%。 一、目前已有的高温钛合金 (1)名义成分

600℃高温钛合金的室温力学性能 600℃高温钛合金的高温力学性能(600℃) 600℃高温钛合金的蠕变性能(600℃) 600℃高温钛合金Ti-600合金的持久性能(φ14mm棒材) 600℃高温钛合金Ti-600热稳定性能(φ14mm棒材)

550℃高温钛合金的力学性能 * 540℃,300MPa,100h应力热暴露后室温拉伸性能; ** 试验条件:540℃,300MPa,100h,ε≤0.1%。 *** TTi-53311S合金550℃,100h,302.1MPa蠕变残余变形,0.186% 二、现状 (1)应用现状 Ti-1100合金是在Ti-6242S合金成分的基础上,通过调整A1、Sn、Mo和Si元素的含量,Ti-1100合金已用于制造莱康明公司T55—712改型发动机的高压压气机轮盘和低压涡轮叶片等零件。 IMI829合金已用于RB211-535E4发动机的高压压气机,取代了RB211-535C上的镍基合金材料。IMI834合金已在多种发动机上得到了试验和应用,如波音777飞机选用的民用大型发动机Trent700(湍达)的高压压气机的所有轮盘、鼓筒及后轴,EJ200发动机的高压压气机转子也采用了IMI834合金。IMI834也正用于普惠公司的PW350发动机上。 俄罗斯推荐BT25Y用于航空发动机高压压气机450~550℃下使用的轮盘和转子叶片,推荐BT18Y用于550~600℃下使用的轮盘。BT36还没获得应用。 我国550℃下获得应用的钛合金有Ti-53311S(西北院),7715D(上钢),两合金均用于航天发动机;Ti-55(金属所)已在试车阶段(航空),Ti-633G(西北院)没获得应用。600℃的钛合金均在试验室研究阶段。 (2)未来发展 目前,现有钛合金的使用温度已基本达到其上限,600℃以上使用环境下,一是改变现有合金设计理念,重新设计合金;二是考虑使用镍基高温合金、Ti-Al金属间化合物。 Ti-Al金属间化合物有以α2为基的Ti3Al和以γ为基的TiAl,据称,Ti3Al基金属间化合物的使用温度在650℃以上,TiAl基金属间化合物的正常使用温度为700℃,短时可用到900℃。但Ti-Al金属间化

钢的强韧化处理机制

钢的强韧化处理机制 王立洲 (辽宁工程技术大学材料科学与工程学院阜新123000) 本文根据钢的淬火组织特点,归纳了提高钢强韧性的途径,介绍了一些强韧化处理工艺。 随着工业的发展,各种机械对钢铁材料的机械性能要求逐渐增高。材料及热处理工艺的 研究得到迅速的发展。其中,利用现有材料,通过调整一般的热处理方法,在同时改善钢的强度和韧性指标方面的工作取得了显著的进步。它对充分发挥材料的性能潜力有着重要的意义。这些工艺方法通称为强韧化处理,是热处理发展的一个值得注意的方向。 强韧化处理的发展是建立在我们对钢中各种组织的特点,形成条件,机械性能,以及在外力作用下的破断过程的认识不断深入的基础之上的。 透射电子显微镜技术的应用,使我们对各种组织超显微精细结构的认识跨进了一大步, 开始有可能比较深入地研究组织和机械性能的关系。 另一方面,从材料断裂过程的研究中知道,在各种应力作用下,材料的破断是通过微裂纹的形成及扩展的方式进行的。钢铁材料的各种组织形态在各种应力状态下,抵抗微裂纹的形成和扩展的能力是不同的,因此表现出不同的性能指标。但是无论哪一种组织,只要它形成微裂纹的倾向比较小,或者微裂纹一旦形成后,在这类组织中扩张时消耗的功愈大,它就会有较高的强韧性。这样,我们就有可能采用适当的热处理工艺方法和调整工艺参数,能动地控制钢的组织,充分利用对钢强韧化有利的因素,排除不利的因素,更充分地发挥材料的强度和韧性的潜力。 目前发展的强韧化处理工艺有多种多样,归结起来,它们大多通过一种或几种途径达到强韧化效果的。 (1)充分利用位错型马氏体和下贝氏体组织形态,尽量减少或避免片状孪品马氏体的出现。 (2)细化钢的奥氏体晶粒和细化过剩碳化物。 (3)获得马氏体与具有良好塑性的第二相的复合组织。 (4)形变热处理。 下面将简要介绍这些强化处理的机理。 一位错型马氏体的扩大应用 很久以来就知道,在保证淬、回火零件强度指标的前提下,选用含碳量较低的钢,能够 使零件热处理后获得较高的韧性。改变热处理工艺参数,可以在中碳及高碳钢中获得以板条马氏体为主的淬火组织,显著改善中碳钢及高碳钢的强韧性。这种控制淬火组织形态的方法,已成为中、高碳钢强韧化的一条重要途径。 1、中碳钢的高温淬火 一般含碳量为0.35%一0.55%之间的中碳钢经正常温度淬火,获得片状和板条马氏体的混合组织。这两种淬火马氏体对钢强韧性的贡献是不同的。钢的含碳量愈高,正常淬火组织中片状马氏体的比例愈高,钢的强度虽然有所增加,但断裂韧度不断减小。断裂韧度的这种变 化是韧性较高的板条马氏体相对量减少的结果。但是,提高中碳钢淬火温度和延长淬火保温时间,则有利于在淬火后得到较多数量的板条马氏体,提高钢的断裂韧度。例如,将40CrNIMo 钢的淬火温度从570℃提高到1200℃,淬火后得到了板条马氏体和极少量残留奥氏体。在淬火不回火状态下,钢的断裂韧度提高70%,在淬火和低温200℃回火状态下,可提高20%。 我们将5CrMnMo热锻模具钢的淬火加热温度从830~850提高到900℃,淬火后将获得近乎单一的板条马氏体组织,图1给出了在500一520℃的高温回火状态下,淬火温度对强度、塑性和断裂韧度的影响。

GH3039 镍基变形高温合金资料

GH3039 镍基变形高温合金资料 中国牌号:GH3039/GH39 俄罗斯牌号:ЭИ602/XH75MБГЮ 一、GH3039概述 GH3039为单相奥氏体型固溶强化合金,在800℃以下具有中等的热强性和良好的热疲劳性能,1000℃以下抗氧化性能良好。长期使用组织稳定,还具有良好的冷成形性和焊接性能。适宜于850℃以下长期使用的航空发动机燃烧室和加力燃烧室零部件。该合金可以生产板材、棒材、丝材、管材和锻件。 1.1 GH3039 材料牌号 GH3039(GH39) 1.2 GH3039 相近牌号ЭИ602,ХН75МБГЮ(俄罗斯) 1.3 GH3039 材料的技术标准 1.4 GH3039 化学成分见表1-1。 表 1-1%

注:1.合金中允许有Ce存在。 2.合金中ω(Cu)=0.20%。 1.5 GH3039 热处理制度热轧及冷轧板材和带材固溶处理:1050~1090℃,空冷。棒材及管材固溶处理:1050~1080℃,空冷或水冷。 1.6 GH3039 品种规格和供应状态可以供应各种规格的热轧板、冷轧板、带材、棒材、丝材、管材、和锻件。板材、带材和管材固溶处理和酸洗后交货。丝材于冷加工状态或固溶状态供应棒材不热处理交货。 1.7GH3039 熔炼和铸造工艺合金采用电弧炉熔炼、电弧炉或非真空感应炉加电渣重熔或真空电弧重熔以及真空感应炉加电渣或真空电弧重熔工艺。 1.8GH3039 应用概况与特殊要求用该合金材制作的航空 发动机燃烧室及加力燃烧室零部件,经过长期的生产和使用考验,使用性能良好。 二、GH3039 物理及化学性能 2.1 GH3039 热性能 2.1.1 GH3039 热导率见表2-1。 表 2-1[1]

GH2150变形高温合金GH150

GH2150沉淀硬化型变形高温合金GH150 GH2150概述: GH2150是Fe-Ni-Cr基沉淀硬化型变形高温合金,使用温度小于750℃。合金加入铬、钨和钼元素进行固溶强化,加入钛、铝和铌元素形成时效强化相,加入微量硼、锆和铈元素净化并强化晶界。合金的强度高、塑性好、膨胀系数低,长期使用组织稳定;合金的热加工塑性好,并具有满意的焊接、冷成形和切削加工性能。适用于制作在700℃以下工作的喷气发动机板材焊接承力结构件,以及在600℃以下长期工作的燃气轮机转子和压气机叶片。 GH2150应用概况及特性: GH2150已用于制作航空发动机燃烧室外套、安装边等高温部件。相近合金在国外用于喷气发动机燃烧室外套和在600℃以下使用的涡轮叶片等零部件。 GH2150在超过800℃使用时,析出μ相及γ相聚集长大,会导致合金的力学性能下降。 GH2150对应牌号: GH150(中), BЖ105,XH45MBTЮБР, ЭП718, GH2150化学成分:

GH2150执行标准: GB/T 14992-2005 GH2150其他特点: 这类合金铬、镍含量相对较低,故抗氧化的温度仅约800%,但是含弥散强化相形成元素(v、A1、Ti)量相对较高,在固溶体基体上可形成化合物强化相,所以常用热处理形式为固溶处理+时效。通过固溶处理,可以使合金固溶强化;通过时效处理,可以使合金析出细小强化相[VC、Ni3A1、Ni3Ti,Ni3(A1?Ti)],从而提高室温和高温强度。固溶并时效处理后的组织为奥氏体+弥散化合物。例如GH2132的化合物量为2.5%、GH2135的化合物量为14%这类合金通常应用于高温下受力的零件,如涡轮盘、螺栓和工作温度不高的转子叶片等。 GH2150热处理制度: 棒材、圆饼、环形件:(1040-1060)℃/AC+ 750℃±10℃*(16-24)h/AC 冷轧板材:(1040-1080)℃/AC+ 750℃±10℃*16h/AC 冷拉焊丝:1050℃±10℃/AC GH2150熔化温度范围: 1320℃-1365℃ GH2150密度: 8.26 GH2150主要规格: GH2150无缝管、GH2150钢板、GH2150圆钢、GH2150锻件、GH2150法兰、 GH2150圆环、GH2150焊管、GH2150钢带、GH2150直条、GH2150丝材及配套焊材、GH2150圆饼、GH2150扁钢、GH2150六角棒、GH2150大小头、GH2150弯头、GH2150三通、GH2150加工件、GH2150螺栓螺母、GH2150紧固件。 篇幅有限,如需更多更详细介绍,欢迎咨询了解。

twip钢的强韧化原理及应用

燕山大学 金属强韧化原理及其应用 题目:TWIP钢强韧化原理及应用院系:材料科学与工程学院 班级:材料学14班 学号:S12080502041 姓名:李培

TWP钢强韧化原理及应用 1.1 TWP钢的出现与意义 随着人们生活水平的日益提高,有车一族在城市中的比重越来越大,现代汽车的发展趋势是轻量化,节能和安全等,为适应这一发展需要,在汽车制造中有必要采用高强度的钢板。据统计,汽车重量每减轻1%,燃料消耗可降低0.6%~1.0%,而能耗高会导致尾气排放量增加,因此,汽车减重对节能和环保意义重大。汽车减重的一个重要手段是采用高强度钢。基于这种情况汽车工业迫切需要人们对高强度钢的研究和开发。近年来新开发的含15-25mass%Mn、2-4mass%Si和2-4mass%Al的高Mn钢显示出极高的延伸率(60-95%)和中等的强度(600-1100MPa),其抗拉强度和延伸率的乘积在50000 MPa%以上,其优良的力学性能来自于形变过程中的孪生诱发塑性效应,即TWIP效应。TWIP钢是现在研究较广泛的超高强度钢,它不仅具有高强度,高的应变硬化率,还有非常优良的塑性,韧性和成形性能。从现代汽车用钢对高强度和高塑性的要求来看,TWIP 钢是最佳选择。 1.2 TWIP钢的发展现状 TWIP钢在使用时无外载荷,冷却到室温下的组织是稳定的残余奥氏体,但是如果施加一定的外部载荷,由于应变诱导产生机械孪晶,会产生大的无颈缩延伸,显示出非常优异的力学性能。由于加入了大量的Al,钢的密度也会有所下降。目前国外的研究已经从第1代的Fe-25Mn-3Al-3Si-0.03C系列到第2代的Fe-23Mn-0.6C系一直到目前的Fe-26Mn-11Al-1.1C和Fe-6Al-0.05Ti-0.05Nb-0.02B 系。德国马普钢铁研究所G..Frommeyer课题组研制和开发了Fe-Mn-Si-Al系高锰奥氏体TRIP/TWIP钢,并申请专利(专利号:1997DE19727759,EP9810981)并注册商标“HSD”。国内开展这方面的研究起步较晚,但勿庸置疑,TWIP钢具有极高的强塑积,优势十分明显。TWIP钢的开发在我国具有极大的潜力,蕴涵着巨大的商机和市场。

高温合金GH4169

常州市天志金属材料有限公司 一、GH4169 概述 GH4169合金是以体心四方的γ"和面心立方的γ′相沉淀强化的镍基高温合金,在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。 该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。 1.1 GH4169 材料牌号 GH4169(GH169) 1.2 GH4169 相近牌号 Inconel 718(美国),NC19FeNb(法国) 1.3 GH4169 材料的技术标准 GJB 2612-1996 《焊接用高温合金冷拉丝材规范》 HB 6702-1993 《WZ8系列用GH4169合金棒材》 GJB 3165 《航空承力件用高温合金热轧和锻制棒材规范》 GJB 1952 《航空用高温合金冷轧薄板规范》 GJB 1953《航空发动机转动件用高温合金热轧棒材规范》 GJB 2612 《焊接用高温合金冷拉丝材规范》 GJB 3317《航空用高温合金热轧板材规范》 GJB 2297 《航空用高温合金冷拔(轧)无缝管规范》 GJB 3020 《航空用高温合金环坯规范》 GJB 3167 《冷镦用高温合金冷拉丝材规范》 GJB 3318 《航空用高温合金冷轧带材规范》 GJB 2611《航空用高温合金冷拉棒材规范》 YB/T5247 《焊接用高温合金冷拉丝》 YB/T5249 《冷镦用高温合金冷拉丝》 YB/T5245 《普通承力件用高温合金热轧和锻制棒材》 GB/T14993《转动部件用高温合金热轧棒材》 GB/T14994 《高温合金冷拉棒材》 GB/T14995 《高温合金热轧板》 GB/T14996 《高温合金冷轧薄板》 GB/T14997 《高温合金锻制圆饼》 GB/T14998 《高温合金坯件毛坏》 GB/T14992 《高温合金和金属间化合物高温材料的分类和牌号》 HB 5199《航空用高温合金冷轧薄板》 HB 5198 《航空叶片用变形高温合金棒材》 HB 5189 《航空叶片用变形高温合金棒材》 HB 6072 《WZ8系列用GH4169合金棒材》

高温钛合金的特性及其在航空发动机中的应用

技术应用 Technical application ·93· 中国高新科技 2019年第39期 高温钛合金的特性及其在航空发动机中的应用 0 引言 钛合金具有耐腐蚀性好、密度低、强度高、耐热性高等诸多优点,高温钛合金指一般长时间使用温度高于400℃的钛合金,相较普通钛合金具有更好的比强度、高温蠕变抗力、疲劳强度、持久强度和组织稳定性。由于航空发动机中的零部件处于高温、高压、高转速的极端环境中,因而要求材料具有耐高温、重量轻及抗蠕变能力强等特点。高温钛合金凭借其优异的材料力学特性可以很好地满足航空发动机的这些要求,并且可以很好地提高发动机的推重比及燃油效率。随着航空发动机高推重比的要求越来越高,其内部的工作温度和压强越来越高,对高温钛合金特性提出了更加严苛的要求。目前工程上应用比较成熟的钛合金,比如英国的IMI834钛合金,最高使用温度已经达到600℃左右。目前高温钛合金的使用已经成为衡量航空发动机先进程度的指标之一。本文重点阐述了高温钛合金的高温力学性能及其在航空发动机上的应用,并对我国如何发展高温钛合金提供一些思路。 1 高温钛合金的特性 1.1 高温钛合金的氧化行为 由于航空发动机是在高温下工作的,其中的高温钛合金部件会承受氧化腐蚀的作用,钛合金的高温力学性能也受其抗氧化腐蚀能力的制约。钛合金的氧化会在其表面形成一层氧化膜,使得金属内部与外界环境隔离,性质较稳定,不会被进一步氧化,但随着温度的升高,表面氧化膜的循环层状剥落。钛合金在高温应用时由于受到氧化腐蚀作用的影响,其高温力学性能会有所下降。李旭升等总结了使用温度在500℃~750℃的高温钛合金的氧化行为,研究表明温度对高温钛合金的氧化速率有很大的影响,在氧化初期氧化增重呈直线型变化,随着氧化层的增重,化学反应速率减小,呈抛物线形增重,并且氧化膜的组成除TiO 2外还有Al2O 3。曾尚武等研究了TC4钛合金的高温氧化行为,研究发现TC4在650℃的氧化膜中能够在循环氧化时保持完整,但在更高温度时可能会开裂和剥落。目前有多种提高高温钛合金抗氧化能力的方法,如在纯钛加入其他合 金元素,制成多种新型钛合金。如加入铝元素,形成一层致密的氧化膜,保护钛合金免受氧化腐蚀,从而提高钛合金的高温抗氧化能力,此外,硅元素及铬元素同样可以形成氧化膜。然而过度的合金化也会影响材料的物理性质,在提高高温钛合金抗氧化能力的同时,高温钛合金的其他高温力学性能可能也会受到影响,使其无法很好地应用在航空发动机中,因此如何合理地添加合金元素还需要继续进行研究。另外一种方法是在钛合金表面填涂具有抗高温氧化的材料,比如通过在TC4高温钛合金表面进行渗铝的形式可以很好地提高其高温抗氧化能力,此外还有预氧化等方法也可以提高抗氧化能力。但目前每种方法都有一定的局限性,需要综合运用多种抗氧化措施来保证高温钛合金的高温力学性能。 1.2 高温钛合金的疲劳特性 在航空发动机中结构或零件承受的主要是交变载荷,疲劳失效是主要的失效模式。张亚娟等通过试验研究了Ti-6Al-4V钛合金的疲劳裂纹扩展特性,研究表明随着应

Fe-Ni-Al基超强钢的纳米析出行为和强韧化机制研究

Fe-Ni-Al基超强钢的纳米析出行为和强韧化机制研究 本质更安全的过程设计作为化工过程众多保护层中最有效和最重要的一道,逐渐受到了越来越多的从业人员和国内外学者的重视。而换热网络综合是提高化工过程能源利用率,实现高效 节能,达到经济效益的有效方法。 随着化工产业的转型升级和加快转变发展方式的迫切需求,研究本质更安全的换热网络优化设计对实现化工行业节能减排、绿色环保、安全可持续化发展具有重要意义。本文通过对化工过程本质安全进行量化表征,采用数学规划法构建本质安全与换热网络综合的数学模型,采用线性加权和法进行多目标优化求解,最终 获得本质更安全的换热网络。 主要研究内容包括:(1)换热器与换热网络的模拟与安全评价:首先,采用评价指数的方法,对换热网络的本质安全易爆性、毒性、存量进行量化表征,获得描述换热网络的本质安全量化指标。然后,对换热器和换热网络进行模拟和基于本质安全易爆性、毒性、存量的本质安全评价。 结果表明,在提高换热网络本质安全性的同时,会增加换热网络 的经济费用。(2)换热网络的经济和安全同步优化:由于提高换热网络的安全性会相应地增加经济费用,所以本文对换热网络的经济和安全同步优化。 超高强钢不仅在航空航天、交通运输、安全防护、先进核能以及国防装备等国民经济重要领域发挥着重要作用,而且也是未来轻型化结构设计和先进能源应用的

关键材料。然而现行超高强度钢的强化始终基于传统的半共格析出产生强共格畸变的学术思路,导致超高强度钢中析出相数量有限且分布不均匀,在承载时易萌生裂纹,既降低了塑韧性又影响服役安全性。 此外,昂贵的制备成本也限制了其实际应用,成为困扰高端钢铁工业发展的难题。本文针对低成本高性能化的研究目标,提出通过低错配低能界面设计超高密度共格析出以及利用析出相强的有序效应实现高剪切应力的学术思想。 使用低成本且轻质的Al代替传统超强钢中重要元素Co、Ti等,通过调整Al、Mo 含量等最小化两相理论晶格错配度,并采取简单的热处理制度制备了体积密度大于1024m-3、尺寸为2~4纳米的B2结构Ni(Al,Fe)增强的成分为 Fe-18Ni3Al4.5Mo0.8Nb0.08C的新型马氏体时效钢。该纳米析出在产生显著强化效果的同时有效提高了马氏体时效钢的均匀塑性变形能力,从而使其获得了优异的力学性能,其中抗拉强度超过2200 MPa,延伸率超过8%。 优化Fe-Ni-Al基马氏体钢中纳米第二相的析出行为。发现Mo极低的扩散速率以及析出的高驱动力作用下,纳米析出的形核过程为局部低含量溶质元素的剧烈重排,低Al核心使得形核时两相的弹性畸变几乎为零,整体上降低形核势垒,从而促进超高密度析出。 第二相长大亦为局域化行为,最小化的粗化驱动力和低扩散速率抑制了不稳定高密纳米析出的局部粗化行为,使得组织热稳定性高,在长时时效后新型马氏体钢仍具有良好的力学性能。在获得均匀弥散组织的基础上,研究了共格有序增强马氏体钢的塑性变形机制。 发现在强有序效应钉扎下,大量可动位错在高应力下滑移切过析出后能够击穿位错网络及小角度晶界,产生剧烈的位错增殖并抑制显著平面滑移带的产生,提高

强韧化处理工艺的应用

强韧化处理工艺的应用 摘要 关键词 1. 65Mn钢强韧化处理工艺 65Mn钢强韧化处理工艺方案为:淬火加热温度830-840℃,时间为10min;等温淬火温度250-260℃,时间大于或等于30 min;回火温度250-260℃,时间2h。其工艺曲线如图1、2所示。 图1等温淬火保温时间对65Mn钢冲击韧性及硬度的影响 图2 65Mn钢强韧化处理工艺 2.4耐磨性试验 65Mn钢强韧化处理与常规处理耐磨性试验结果见表2。由表2可见.65Mn 钢经强韧化处理后,耐磨性较常规处理提高20% 。 2. 5 65Mn钢经强韧化处理与常规处理后冲击韧性与硬度的对比

试验结果见表3。由表3可见,在保持相同硬度的情况下,65Mn钢经强韧化处理后的冲击韧性较常规淬火处理提高5.20倍。 3试验结果分析 3.1 65Mn钢常规处理 65Mn钢是具有第一类回火脆性的钢种,其常规处理工艺的回火温度又正好在其回火脆 性温度区域内,因而冲击韧性很低。 图6为835-845℃加热、油冷的显微金相组织图像。 3. 2 65Mn钢强韧化处理 3.2.1等温淬火温度在马氏体点以下 65Mn钢的马氏体点为254 C ,当等温淬火温度在马氏体点以下时,转变产物为马氏体和 残余奥氏体。这时等温淬火温度的变化只能改变马氏体和残余奥氏体数量。等温淬火温度越 高,奥氏体残余量越大,韧性提高而硬度降低。与常规处理相比,其冲击韧性提高较小。 图7为65Mn钢在830-840℃下加热,等温淬火温度分别为180℃和240`C,等温淬火保 温时间30 min的显微金相组织图像。

图6 65Mn钢常规处理显徽金相组织(×400) 图7 65Mn钢等沮摔火温度在马氏体点以下的 显徽金相组织( X 400) (a)等温淬火温度180℃(b)等温淬火温度2dfl'C 3. 2. 2等温淬火温度高于马氏体点 当等温淬火温度高于马氏体点时,转变产物为贝氏体和残余奥氏体。而在250-260 ℃等温淬火时,转变产物为下贝氏体、马氏体和残余奥氏体。这时,等温淬火保温时间的变化决定于下贝氏体的转变量。当等温淬火保温时间较短时。下贝氏体转变量较小,残余奥氏体量较大。在随后的冷却过程中,剩余的奥氏体又部分地转变为马氏体,这时冲击韧性较低。当等温淬火保温时间足够长时,转变产物主要是下贝氏体和一定数量的马氏体及少量的残余奥氏体。正是由于 65Mn钢经强韧化处理后,可增加具有强韧性的下贝氏体转变量。从而降低了具有硬脆性的马氏体转变量,因此能够大幅度提高65Mn钢的冲击韧性和耐磨性。 图8为65Mn钢经830-840℃加热、250--260℃等温淬火时,不同等温淬火保温时间的 显微金相组织图像。

相关主题
文本预览
相关文档 最新文档