当前位置:文档之家› 晶闸管及其应用讲解

晶闸管及其应用讲解

晶闸管及其应用讲解
晶闸管及其应用讲解

晶闸管及其应用

课程目标

1 了解晶闸管结构,掌握晶闸管导通、关断条件

2 掌握可控整流电路的工作原理及分析

3 理解晶闸管的过压、过流保护

4 掌握晶闸管的测量、可控整流电路的调试和测量

课程内容

1 晶闸管的结构及特性

2 单相半波可控整流电路

3 单相半控桥式整流电路

4 晶闸管的保护

5 晶闸管的应用实例

6 晶闸管的测量、可控整流电路的调试和测量

学习方法

从了解晶闸管的结构、特性出发,掌握晶闸管的可控整流应用,掌握晶闸管的过压和过流保护方式,结合实物和实训掌握晶闸管管脚及好坏的判断,通过应用实例,了解晶闸管的典型应用。

课后思考

1晶闸管导通的条件是什么?导通时,其中电流的大小由什么决定?晶闸管阻断时,承受电压的大小由什么决定?

2为什么接电感性负载的可控整流电路的负载上会出现负电压?而接续流二极管后负载上就不出现负电压了,又是为什么?

3 如何用万用表判断晶闸管的好坏、管脚?

4 如何选用晶闸管?

晶闸管的结构及特性

一、晶闸管外形与符号:

图5.1.1 符号

图5.1.2 晶闸管导通实验电路图

为了说明晶闸管的导电原理,可按图5.1.2所示的电路做一个简单的实验。

(1)晶闸管阳极接直流电源的正端,阴极经灯泡接电源的负端,此时晶闸管承受正向电压。控制极电路中开关S断开(不加电压),如图5.1.2(a)所示,这时灯不亮,说明晶闸管不导通。

(2)晶闸管的阳极和阴极间加正向电压,控制极相对于阴极也加正向电压,如图5.1.2(b)所示.这时灯亮,说明晶闸管导通。

(3)晶闸管导通后,如果去掉控制极上的电压,即将图5.1.2(b)中的开关S断开,灯仍然亮,这表明晶闸管继续导通,即晶闸管一旦导通后,控制极就失去了控制作用。

(4)晶闸管的阳极和阴极间加反向电压如图5.1.2(C),无论控制极加不加电压,灯都不亮,晶闸管截止。

(5)如果控制极加反向电压,晶闸管阳极回路无论加正向电压还是反向电压,晶闸管都不导通。

从上述实验可以看出,晶闸管导通必须同时具备两个条件:

(1) 晶闸管阳极电路加正向电压;

(2) 控制极电路加适当的正向电压(实际工作中,控制极加正触发脉冲信号)。

二、伏安特性

图5.1.3 晶闸管的伏安特性曲线

晶闸管的导通和截止这两个工作状态是由阳极电压U、阳极电流I及控制极电流I G决定的,而这几个量又是互相有联系的。在实际应用上常用实验曲线来表示它们之间的关系,这就是晶闸管的伏安特性曲线。图5.1.3所示的伏安特性曲线是在I G=0的条件下作出的。

当晶闸管的阳极和阴极之间加正向电压时,由于控制极未加电压,晶闸管内只有很小的电流流过,这个电流称为正向漏电流。这时,晶闸管阳极和阴极之间表现出很大的内阻,处于阻断(截止)状态,如图5.1.3第一象限中曲线的下部所示。当正向电压增加到某一数值时,漏电流突然增大,晶闸管由阻断状态突然导通。晶闸管导通后,就可以通过很大电流,而它本身的管压降只有1V左右,因此特性曲线靠近纵轴而且陡直。晶闸管由阻断状态转为导通状态所对应的电压称为正向转折电压U BO。在晶闸管导通后,若减小正向电压,正向电流就逐渐减小。当电流小到某一数值时,晶闸管又从导通状态转为阻断状态,这时所对应的最小电流称为维持电流I H。

当晶闸管的阳极和阴极之间加反向电压时(控制极仍不加电压),其伏安特性与二极管类似,电流也很小,称为反向漏电流。当反向电压增加到某一数值时,反向漏电流急剧增大,使晶闸管反向导通,这时所对应的电压称为反向转折电压U BR。

从图5.1.3的晶闸管的正向伏安特性曲线可见,当阳极正向电压高于转折电压时元件将导通。但是这种导通方法很容易造成晶闸管的不可恢复性击穿而使元件损坏,在正常工作时是不采用的。晶闸管的正常导通受控制极电流I G的控制。为了正确使用晶闸管,必须了解其控制极特性。

当控制极加正向电压时,控制极电路就有电流I G,晶闸管就容易导通,其正向转折电压降低,特性曲线左移。控制极电流愈大,正向转折电压愈低,如图5.1.4所示。

实际规定,当晶闸管的阳极与阴极之间加上6V直流电压,能使元件导通的控制极最小电流(电压)称为触发电流(电压)。由于制造工艺上的问题,同一型号的晶闸管的触发电压和触发电流也不尽相同。如果触发电压太低,则晶闸管容易受干扰电压的作用而造成误触发;如果太高,又会造成触发电路设计上的困难。因此,规定了在常温下各种规格的晶闸管的触发电压和触发电流的范围。例如对KP50型的晶闸管,触发电压和触发电流分别为≤3.5V和8~150mA。

图5.1.4 控制极电流对晶闸管转折电压的影响

三、主要参数

为了正确地选择和使用晶闸管,还必须了解它的电压、电流等主要参数的意义。晶闸管的主要参数有以下几项:

(1)正向重复峰值电压U FRM

在控制极断路和晶闸管正向阻断的条件下,可以重复加在晶闸管两端的正向峰值电压,称为正向重复峰值电压,用符号U FRM 表示。按规定此电压为正向转折电压的80%。

(2)反向重复峰值电压U RRM

就是在控制极断路时,可以重复加在晶闸管元件上的反向峰值电压,用符号U RRM 表示。按规定此电压为反向转折电压的80%。

(3)正向平均电流I F

在环境温度不大于40o C 和标准散热及全导通的条件下,晶闸管通过的工频正弦半波电流(在一个周期内的)平均值,称为正向平均电流I F ,简称正向电流。通常所说多少安的晶闸管,就是指这个电流。如果正弦半波电流的最大值为I m ,则

π

ωωπ

π

m

m I t td I =

=

?

)(sin 21

I 0

F

然而,这个电流值并不是一成不变的,晶闸管允许通过的最大工作电流还受冷却条件、环境温度、元件导通角、元件每个周期的导电次数等因素的影响。

(4)维持电流I H

在规定的环境温度和控制极断路时,维持元件继续导通的最小电流称为维持电流I H 。当晶闸管的正向电流小于这个电流时,晶闸管将自动关断。

单相半波可控整流电路

把不可控的单相半波整流电路中的二极管用晶闸管代替,就成为单相半波可控整流电路。下面将分析这种可控整流电路在接电阻性负载和电感性负载时的工作情况。

一、阻性负载

图5.1.5 接电阻性负载的单相半波可控整流电路

图5.1.5是接电阻性负载的单相半波可控整流电路,负载电阻为R L。从图可见,在输入交流电压u的正半周时,晶闸管T承受正向电压,如图5.1.6(a)。假如在t1时刻给控制极加上触发脉冲如图5.1.6(b),晶闸管导通,负载上得到电压。当交流电压u下降到接近于零值时,晶闸管正向电流小于维持电流而关断。在电压u原负半周时,晶闸管承受反向电压,不可能导通,负载电压和电流均为零。在第二个正半周内,再在相应的t2时刻加入触发脉冲,晶闸管再行导通。这样,在负载R L上就可以得到如图5.1.6.(c)所示的电压波形。图5.1.6(d)所示的波形为晶闸管所承受的正向和反向电压,其最高正向和反向电压均为输入交流

电压的幅值2U。

图5.1.6 接电阻性负载时单相半波

可控整流电路的电压与电流波形

显然,在晶闸管承受正向电压的时间内,改变控制极触发脉冲的输入时刻(移相),负载上得到的电压波形就随着改变,这样就控制了负载上输出电压的大小。图5.1.6是接电阻性负载时单相半波可控整流电路的电压与电流的波形。

晶闸管在正向电压下不导通的电角度为控制角(又称移相角),用α表示,而导通的电角度则称为导通角,用θ表示如图5.1.6.(c )。很显然,导通角θ愈大,输出电压愈高。整流输出电压的平均值可以用控制角表示,即

?=π

ωωπ00

)(sin 221t td U U

)

cos 1(22a U +=π

2cos 145.0a

U +?

= (5.1)

从式(5.1)看出,当α=0时(θ=180o

)晶闸管在正半周全导通,U O =0.45U ,输出电压最高,相当于不可控二极管单相半波整流电压。若α=180o

,U 0 =0,这时θ=0,晶闸管全关断。

根据欧姆定律,电阻负载中整流电流的平均值为

2cos 145.000a R U R U I L L +?==

(5.2)

此电流即为通过晶闸管的平均电流。

二、电感性负载与续流二极管

上面所讲的是接电阻性负载的情况,实际上遇到较多的是电感性负载,象各种电机的励磁绕组、各种电感线圈等,它们既含有电感,又含有电阻。有时负载虽然是纯电阻的,但串了电感线圈等,它们既含有电感,又含有电阻。有时负载虽然是纯电阻的,但串了电感滤波器后,也变为电感性的了。整流电路接电感性负载和接电阻性负载的情况大不相同。

图5.1.7接电感性负载的可控整流电路

电感性负载可用串联的电感元件L 和电阻元件R 表示(图5.1.7)。当晶闸管刚触发导通时,电感元件中产生阻碍电流变化的感应电动势(其极性在图5.1.7中为上正下负),电路中电流不能跃变,将由零逐渐上升如图5.1.8 (a),当电流到达最大值时,感应电动势为零,而后电流减小,电动势e L 也就改变极性,在图5.1.7中为下正上负。此后,在交流电压u 到达零值之前,e L 和u 极性相同,晶闸管当然导通。即使电压u 经过零值变负之后,只要e L 大于u ,晶闸管继续承受正向电压,电流仍将继续流通,如图5.1.8 (a)。只要电流大于维持电流时,晶闸管不能关断,负载上出现了负电压。当电流下降到维持电流以下时,晶闸管才能关断,并且立即承受反向电压,如图5.1.8 (b)所示。

综上可见,在单相半波可控整流电路接电感性负载时,晶闸管导通角θ将大于(180o

-α)。负载电感愈大,导通角θ愈大,在一个周期中负载上负电压所占的比重就愈大,整流输出电压和电流的平均值就愈小。为了使晶闸管在电源电压u 降到零值时能及时关断,使负载上不出现负电

压,必须采取相应措施。

我们可以在电感性负载两端并联一个二极管D来解决上述出现的问题,如图5.1.9。当交流电压u过零值变负后,二极管因承受正向电压而导通,于是负载上由感应电动势e L产生的电流经过这个二极管形成回路。因此这个二极管称为续流二极管。

图5.1.8 接电感性负载时单相半波可控整流电路

的电压与电流波形

图5.1.9电感性负载并联续流二极管

这时负载两端电压近似为零,晶闸管因承受反向电压而关断。负载电阻上消耗的能量是电感元件释放的能量。

单相半控桥式整流电路

单相半波可控整流电路虽然具有电路简单、调整方便、使用元件少的优点,但却有整流电压脉动大、输出整流电流小的缺点。较常用的是半控桥式整流电路,简称半控桥,其电路如图5.1.20所示。电路与单相不可控桥式整流电路相似,只是其中两个臂中的二极管被晶闸管所取代。

在变压器副边电压u的正半周(a端为正)时,T1和D2承受正向电压。这时如对晶闸管T1引入触发信号,则T1和D2导通,电流的通路为

a→T1→R L→D2→b

图5.1.20电阻性负载的单相半控桥式整流电路

这时T2和D1都因承受反向电压而截止。同样,在电压u的负半周时,T2和D1承受正向电压。这时,如对晶闸管T2引入触发信号,则T2和D1导通,电流的通路为:

b→T2→R L→D1→a

图5.1.21 电阻性负载时单相半控桥式

整流电路的电压与电流的波形

这时T1和D2处于截止状态。电压与电流的波形如图5.1.21所示。显然,与单相半波整流[图5.1.6(c)相比,桥式整流电路的输出电压的平均值要大一倍,即

2cos 219.00a

U U +?

= (5.3)

输出电流的平均值为

2cos 19.000a

R U R U I L L +?==

(5.4)

例5.1有一纯电阻负载,需要可调的直流电源:电压U 0=0~180V ,电流I 0=0~6A 。现采用单相半控桥式整流电路图5.1.20,试求交流电压的有效值,并选择整流元件。

解 设晶闸管导通角θ为180o (控制角α=0)时,U 0=180V ,I 0=6A 。 交流电压有效值

V V U U 2009

.0180

9.00===

实际上还要考虑电网电压波动、管压降以及导通角常常到不了180o

(一般只有160 o ~170

o

左右)等因素,交流电压要比上述计算而得到的值适当加大10%左右,即大约为220V 。

因此,在本例中可以不用整流变压器,直接接到220V 的交流电源上。 晶闸管所承受的最高正向电压U FM 、最高反向电压U RM 和二极管所承受的最高反向电

压都等于

V V U U U RM FM 31022041.12=?===

流过晶闸管和二极管的平均电流是

A A I I I D T 326

210===

=

为了保证晶闸管在出现瞬时过电压时不致损坏,通常根据下式选取晶闸管的U FRM 和U RRM :

U FRM ≥(2-3)U FM =(2-3)×310V=(620-930)V U RRM ≥(2-3)U RM =(2-3)×310V=(620-930)V

根据上面计算,晶闸管可先用KP5-7型,二极管可先用2CZ5/300型。因为二极管的反向工作峰值电压一般是取反向击穿电压的一半,已有较大余量,所以选300V 已足够。

晶闸管的保护

晶闸管虽然具有很多优点,但是,它们承受过电压和过电流的能力很差,这是晶闸管的主要弱点,因此,在各种晶闸管装置中必须采取适当的保护措施。

一、晶闸管的过电流保护

由于晶闸管的热容量很小,一旦发生过电流时,温度就会急剧上升而可能把PN结烧坏,造成元件内部短路或开路。

晶闸管发生过电流的原因主要有:负载端过载或短路;某个晶闸管被击穿短路,造成其他元件的过电流;触发电路工作不正常或受干扰,使晶闸管误触发,引起过电流。晶闸管承受过电流能力很差,例如一个100A的晶闸管,它的过电流涌力如表5.1所列。这就是说,当100A的晶闸管过电流为400A时,仅允许持续0.02s,否则将因过热而损坏。由此可知,晶闸管允许在短时间内承受一定的过电流,所以,过电流保护的作用就在于当发生过电流时,在通的时间内将过电流切断,以防止元件损坏。

晶闸管过电流保护措施有下列几种:

(1)快速熔断器

普通熔断丝由于熔断时间长,用来保护晶闸管很可能在晶闸管烧坏之后熔断器还没有熔断,这样就起不了保护作用。因此必须采用用于保护晶闸管的快速熔断器。快速熔断器用的是银质熔丝,在同样的过电流倍数之下,它可以在晶闸管损坏之前熔断,这是晶闸管过电流保护的主要措施。

4 2

图5.1.22 快速熔断器的接入方式

快速熔断器的接入方式有三种,如图5.1.22所示。其一是快速熔断器接在输出(负载)端,这种接法对输出回路的过载或短路起保护作用,但对元件本身故障引起的过电流不起保护作用。其二是快速熔断器与元件串联,可以对元件本身的故障进行保护。以上两种接法一般需要同时采用。第三种接法是快速熔断器接在输入端,这样可以同时对输出端短路和元件短路实现保护,但是熔断器熔断之后,不能立即判断是什么故障。

熔断器的电流定额应该尽量接近实际工作电流的有效值,而不是按所保护的元件的电流定额(平均值)选取。

(2)过电流继电器

在输出端(直流侧)装直流过电流继电器,或在输入端(交流侧)经电流互感器接入灵敏的过电流继电器,都可在发生过电流故障时动作,使输入端的开关跳闸。这种保护措施对过载是有效的,但是在发生短路故障时,由于过电流继电器的动作及自动开关的跳闸都需要一定时间,如果短路电流比较大,这种保护方法不很有效。

(3)过流截止保护

利用过电流的信号将晶闸管的触发脉冲移后,使晶闸管的导通角减小或者停止触发。

二、晶闸管的过电压保护

晶闸管耐过电压的能力极差,当电路中电压超过其反向击穿电压时,即使时间极短,也容易损坏。如果正向电压超过其转折电压,则晶闸管误导通,这种误导通次数频繁时,导通后通过的电流较大,也可能使元件损坏或使晶闸管的特性下降。因此必须采取措施消除晶闸管上可能出现的过电压。

引起过电压的主要原因,是因为电路中一般都接有电感元件。在切断或接通电路时,从一个元件导通转换到另一个元件导通时,以及熔断器熔断时,电路中的电压往往都会超过正常值。有时雷击也会引起过电压。

晶闸管过电压的保护措施有下列几种:

(1)阻容保护

可以利用电容来吸收过电压,其实质就是将造成过电压的能量变成电场能量储存到电容器中,然后释放到电阻中去消耗掉。这是过电压保护的基本方法。

阻容吸收元件可以并联在整流装置的交流侧(输入端)、直流侧(输出端)或元件侧,如图5.1.23所示。

5.1.23 阻容吸收元件与硒堆保护

(2)硒堆保护

硒堆(硒整流片)是一种非线性电阻元件,具有较陡的反向特性。当硒堆上电压超过某一数值后,它的电阻迅速减小,而且可以通过较大的电流,把过电压能量消耗在非线性电阻上,而硒堆并不损坏。

硒堆可以单独使用,如图5.1.23,也可以和阻容元件并联使用。

晶闸管的应用实例

一、晶闸管调光、调温电源

晶闸管调光和调温装置在工业、商业、影剧院以及家用电器中已得到广泛的应用。现介绍一种既实用又便于制作的晶闸管调光、调温电源,如图5.1.24.所示。粗线为主电路,细线为触发电路,由220V电网供电,负载电阻R d可以是白炽灯、电熨斗、烘干电炉以及其它的电热设备。晶闸管的额定电流选择取决于负载的大小,家庭用的一般选用KP5-7为宜。熔断器的熔体若选用普通锡铅熔丝,其额定电流选2~3A较合适。

电路工作原理:在晶闸管VT1、TV2处于关断状态时,电源电压u2在正半周对电容C1充电,其充电速度取决于充电回路的时间常数τ=(R1+R)C1。当C1充电到晶闸管VT1所需的触发电

压时,VT1被触通。VT1管导通到电源电压u2正半波结束为止。由图可见,调整R值,就能改变C1的充电速度,负载两端电压也即发生变化。晶闸管VT2的触发电压是由C2充电所储蓄的电能来提供,但极性必须是上负下正。但在电源电压u2正半周,VT1管尚示导通时,C2充电方向是上正下负,与触发VT2管所需的方向相反。当VT1导通时,C2虽经VT1、R3放电,但由于R3阻值较大,故一般情况下,当电源电压u2正半波结束,VT1管被关断时,C2仍有一定上正下负的电荷。这样,在u2进入负半周时,电容C2必须先放电而后反向充电,当C2反充电到VT2管所需的触发电压时,VT2管才被触通,从而使两个晶闸管的导通角大致相同。假如VT1管导通角很大时,C2不存在先放电后充电现象,而是在VT2管一开始承受正向电压C2就充电,这样,C2也很快地到VT2管所需的触发电压使VT2触通,VT2的导通角同样也很大。反之,R调大,VT1导通角变小,则C2在触发VT2之前必须先放电,然后再反充电到VT2的触发电压,VT2管的导通角同样也就变小。可见,本电路只要调节R,就能同时改变VT1和VT2的导通角,从而调节灯光的强弱或温度的高低。

FU 500V,2-3A(锡铅)VT1,VT2KP5-7 R 10Kω

R1 500Ω R2,R4 1kΩ R3 7.5kΩ

C1 C2 10μF 二极管 2CP12

图5.1.24 调光、调温电源

二、过电压自动断电保护电路

如图5.1.25电路所示:TR是抽头式自耦调压器;Q1是电压选择开关,将电网输入电压选择在220V输出(如果交流电网220V电压比较稳定,那么TR与Q1可以不用);TS是同步过电压保护部分的变压器;二极管VD1~VD4和晶闸管VT1组成主电路电子开关。当VT1导通时,电子开关接通,VT1关断时,电子开关关断主电路无输出。

VT1KP5-7 VT2KP5-1 VD1-VD42CP40

图5.1.25过电压自断电晶闸管保护电路

当输入的电源电压值正常时,稳压管2CW7载止,VT2关断,同步过压变压器TS的10V 二次侧绕组电压经VD5对200μF电容充电而获得直流电压,它作为VT1的触发电压,使VT1管被触通。主电路电子开关接通,允许输出。

VD6整流滤波所形成的直流取样电压的变化反映了交流电网电压的变化。当输入的电网电压过高时,稳压管2CW7被击穿,晶闸管VT2被触通,由于VT2导通后两端管压降不到1V,不足以触通晶闸管VT1,故主电路电子开关被关断,自动地切断电源,从而使电器得到保护。待电网电压恢复正常后,要重新起动VT1,必须先按下常闭按钮SB,VT2被关断,当按钮SB复位时,VT1被触通,电子开关重新接通主电路,电路恢复正常供电。

VT2被触通电压,一般调整在当电网电压升高到240V为宜。可变电阻R是晶闸管VT2门极限流电阻,也可用固定电阻代替。

晶闸管的测量、可控整流电路的调试和测量

一.实验目的

1.加深对晶闸管单相半波整流电路的理解。 2.对实验出现的问题加以分析和排除。 二.实验仪器设备 1.负载灯箱单元 2.触发电路单元 3.主电路单元 4.电源部分 5.三用表 6.示波器

三.实验内容及步骤 1.晶闸管的测量 (1)电极判别

万用表置R ×1K 挡,将可控硅其中一端假定为控制极,与黑表笔相接,然后用红表笔分别接另外两个脚。若有一次出现正向导通,则假定的控制极是对的,而导通那次红表笔所接的脚是阴极K ,另一极则是阳极A 。如果两次均不导通,则说明假定的不是控制极,可重新设定一端为控制极。 (2)好坏判别

在正常情况下,可控硅的GK 是一个PN 结,具有PN 结特性,而GA 和AK 之间存在反向串联的PN 结,故其间电阻值均为无穷大。

如果GK 之间的正反向电阻都等于零,或GK 和AK 之间正反向电阻都很小,说明可控硅内部击穿短路。如果GK 之间正反向电阻都为无穷大,说明可控硅内部断路。

将万用表置R ×1挡,红表笔接阴极K ,黑表笔接阳极A ,在黑表笔接A 的瞬时碰触控制极G (给G 加上触发信号),万用表指针向右偏转,说明可控硅已经导通。此时即使断开黑表笔与控制极G 的接触,可按硅仍将继续保持导通状态。

2.单相半波整流

(1)按图接线,检查无误后接通电源。

A

N

V 触发脉冲

(2)调节触发角α,使α=00

用示波器观察输出波形,测出输出电压U R ,记入表中。

(3)调节触发角α,使α=300

用示波器观察输出波形,测出输出电压U R ,记入表中。

(4)调节触发角α,使α=900

用示波器观察输出波形,测出输出电压U R ,记入表中。

(5)调节触发角α,使α=1500

用示波器观察输出波形,测出输出电压U R ,记入表中。

(6)调节触发角α,使α=1800

用示波器观察输出波形,测出输出电压U R ,记入表中。

晶闸管及其应用讲解

晶闸管及其应用 课程目标 1 了解晶闸管结构,掌握晶闸管导通、关断条件 2 掌握可控整流电路的工作原理及分析 3 理解晶闸管的过压、过流保护 4 掌握晶闸管的测量、可控整流电路的调试和测量 课程内容 1 晶闸管的结构及特性 2 单相半波可控整流电路 3 单相半控桥式整流电路 4 晶闸管的保护 5 晶闸管的应用实例 6 晶闸管的测量、可控整流电路的调试和测量 学习方法 从了解晶闸管的结构、特性出发,掌握晶闸管的可控整流应用,掌握晶闸管的过压和过流保护方式,结合实物和实训掌握晶闸管管脚及好坏的判断,通过应用实例,了解晶闸管的典型应用。 课后思考 1晶闸管导通的条件是什么?导通时,其中电流的大小由什么决定?晶闸管阻断时,承受电压的大小由什么决定? 2为什么接电感性负载的可控整流电路的负载上会出现负电压?而接续流二极管后负载上就不出现负电压了,又是为什么? 3 如何用万用表判断晶闸管的好坏、管脚? 4 如何选用晶闸管?

晶闸管的结构及特性 一、晶闸管外形与符号: 图5.1.1 符号 图5.1.2 晶闸管导通实验电路图 为了说明晶闸管的导电原理,可按图5.1.2所示的电路做一个简单的实验。 (1)晶闸管阳极接直流电源的正端,阴极经灯泡接电源的负端,此时晶闸管承受正向电压。控制极电路中开关S断开(不加电压),如图5.1.2(a)所示,这时灯不亮,说明晶闸管不导通。 (2)晶闸管的阳极和阴极间加正向电压,控制极相对于阴极也加正向电压,如图5.1.2(b)所示.这时灯亮,说明晶闸管导通。 (3)晶闸管导通后,如果去掉控制极上的电压,即将图5.1.2(b)中的开关S断开,灯仍然亮,这表明晶闸管继续导通,即晶闸管一旦导通后,控制极就失去了控制作用。 (4)晶闸管的阳极和阴极间加反向电压如图5.1.2(C),无论控制极加不加电压,灯都不亮,晶闸管截止。 (5)如果控制极加反向电压,晶闸管阳极回路无论加正向电压还是反向电压,晶闸管都不导通。 从上述实验可以看出,晶闸管导通必须同时具备两个条件: (1) 晶闸管阳极电路加正向电压; (2) 控制极电路加适当的正向电压(实际工作中,控制极加正触发脉冲信号)。

晶闸管及其应用教案

课题 任务九晶闸管及其应用 9.1 单、双向晶闸管和单结晶闸管的认识和检测 课型 新课授课班级授课时数 2 教学目标 了解单向、双向晶闸管和单结晶体管的结构、引脚、主 要参数、基本特性 教学重点 万用表的正确使用方法 教学难点 单、双向晶闸管和单结晶闸管的认识和检测 学情分析 教学效果 教后记

A、导入新课 实物展示:向学生展示单向、双向晶闸管和单结晶体管,提出本次课任务。 B、新授课 基础知识 一、单向晶闸管 ㈠外形 单向晶闸管的外形如图9-1所示。 图9-1 单向晶闸管外形 ㈡结构与符号 单向晶闸管是由三个PN结及其划分为四个区组成,如图9-2所示。由外层的P型和N型半导体分别引出阳极A和阴极K,由中间的P型半导体引出控制极G。文字符号用“V”表示。 (a)结构(b)符号 图9-2 单向晶闸管的结构与符号展示法 (结合演示讲解) 实物展示

㈢工作特性 ⒈单向晶闸管的导通必须具备两个条件: ①在阳极(A)与阴极(K)之间必须为正向电压(或正向偏压);即: U AK>0; ②在控制极(G)与阴极(K)之间也应有正向触发电压;即:U GK >0。 ⒉晶闸管导通后,控制极(G)将失去作用,即:当U GK=0,晶闸管仍然导通。 ⒊单向晶闸管要关断时必须满足: 使其导通(工作)电流小于晶闸管的维持电流值或在阳极(A)与阴极(K)之间加上反向电压(反向偏压);即:I V<I H或U AK<0。 二、双向晶闸管 ㈠外形 双向晶闸管的外形如图9-3所示。 图 9-3 双向晶闸管外形 ㈡结构与符号 双向晶闸管的结构与符号如图9-4所示,它是一个NPNPN五层结构的半导体器件,其功能相当于一对反向并联的单向晶闸管,电流可以从两个方向通过。所引出的三个电极分别为第一阳极T1、第二阳极T2和控制极G。结合演示讲解 实物展示

晶闸管的工作原理和应用

晶闸管的工作原理与应用 时间:2009-09-21 14120次阅读【网友评论10条我要评论】收藏 1 晶闸管(SCR) 晶体闸流管简称晶闸管,也称为可控硅整流元件(SCR),是由三个PN结构成的一种大功率半导体器件。在性能上,晶闸管不仅具有单向导电性,而且还具有比硅整流元件更为可贵的可控性,它只有导通和关断两种状态。 晶闸管的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪声;效率高,成本低等。因此,特别是在大功率UPS供电系统中,晶闸管在整流电路、静态旁路开关、无触点输出开关等电路中得到广泛的应用。 晶闸管的弱点:静态及动态的过载能力较差,容易受干扰而误导通。 晶闸管从外形上分类主要有:螺栓形、平板形和平底形。 2 普通晶闸管的结构和工作原理 晶闸管是PNPN四层三端器件,共有三个PN结。分析原理时,可以把它看作是由一个PNP管和一个NPN管所组成,其等效图解如图1(a)所示,图1(b)为晶闸管的电路符号。 图1 晶闸管等效图解图 2.1 晶闸管的工作过程 晶闸管是四层三端器件,它有J1、J2、J3三个PN结,可以把它中间的NP分成两部分,构成一个PNP型三极管和一个NPN型三极管的复合管。

当晶闸管承受正向阳极电压时,为使晶闸管导通,必须使承受反向电压的PN结J2失去阻挡作用。每个晶体管的集电极电流同时就是另一个晶体管的基极电流。因此是两个互相复合的晶体管电路,当有足够的门极电流Ig流入时,就会形成强烈的正反馈,造成两晶体管饱和导通。 设PNP管和NPN管的集电极电流分别为IC1和IC2,发射极电流相应为Ia和Ik,电流放大系数相应为α1=IC1/Ia和α2=IC2/Ik,设流过J2结的反相漏电流为ICO,晶闸管的阳极电流等于两管的集电极电流和漏电流的总和: Ia=IC1+IC2+ICO =α1Ia+α2Ik+ICO (1) 若门极电流为Ig,则晶闸管阴极电流为:Ik=Ia+Ig。 因此,可以得出晶闸管阳极电流为: (2) 硅PNP管和硅NPN管相应的电流放大系数α1和α2随其发射极电流的改变而急剧变化。当晶闸管承受正向阳极电压,而门极未接受电压的情况下,式(1)中 Ig=0,(α1+α2)很小,故晶闸管的阳极电流Ia≈ICO,晶闸管处于正向阻断状态;当晶闸管在正向门极电压下,从门极G流入电流Ig,由于足够大的Ig流经NPN管的发射结,从而提高放大系数α2,产生足够大的集电极电流IC2流过PNP管的发射结,并提高了PNP管的电流放大系数α1,产生更大的集电极电流IC1流经NPN 管的发射结,这样强烈的正反馈过程迅速进行。 当α1和α2随发射极电流增加而使得(α1+α2)≈1时,式(1)中的分母 1-(α1+α2)≈0,因此提高了晶闸管的阳极电流Ia。这时,流过晶闸管的电流完全由主回路的电压和回路电阻决定,晶闸管已处于正向导通状态。晶闸管导通后,式(1)中1-(α1+α2)≈0,即使此时门极电流Ig=0,晶闸管仍能保持原来的阳极电流Ia而继续导通,门极已失去作用。在晶闸管导通后,如果不断地减小电源电压或增大回路电阻,使阳极电流Ia减小到维持电流IH以下时,由于α1和α2迅速下降,晶闸管恢复到阻断状态。 2.2 晶闸管的工作条件 由于晶闸管只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1。 表1 晶闸管导通和关断条件

教案-晶闸管及其应用

课题:8.1 晶闸管 8.2 晶闸管触发电路 授课时数:2 教学目标:1.掌握晶闸管的结构和工作原理。 2.了解晶闸管触发电路。 教学重点:1.晶闸管的分类、结构、型号、参数和工作特性。 2.单结晶体管的特性及晶闸管触发电路的工作原理。 教学难点:1.晶闸管的工作特性。 2.单结晶体管触发电路的工作原理。 A.引入 晶闸管俗称可控硅。具有体积小、重量轻、效率高、寿命长、使用方便等优点。它广泛应用于无触点开关电路及可控整流设备中。 B.复习 三端集成稳压器的分类。 C.新授课 8.1 晶闸管 8.1.1 单向晶闸管 1.单向晶闸管的结构和符号 (1)外形 平面型、螺栓型和小型塑封型等几种。 (2)符号及内部结构 三个电极:阳极A、阴极K、控制极G 4层半导体: P—1N—2P—2N 1 P—引出线为控制极;1P—引出线为阳极;2N—引出线为阴极 2

3个PN结( J,2J,3J) 1 文字符号:一般用SCR、KG、CT、VT表示。 2.单向晶闸管的工作原理: (1)实验演示: ①正向阻断:A-K加正向电压,G无电压-不导通。 ②反向阻断:A-K加反向电压,G无论是否加控制电压-不导通。 ③触发导通:A—K加正向电压,G,K加正向电压—导通。 ④导通后控制极失去控制作用:晶闸管一旦导通,降低或去掉控制极电压仍导通。 (2)工作特点: ①单向晶闸管导通必须具备两个条件:一是晶闸管阳极与阴极间接正向电压;二是控制极与阴极之间也要接正向电压。 ②晶闸管一旦接通后,去掉控制极电压时,晶闸管仍然导通。 ③导通后的晶闸管若要关断时,必须将阳极电压降低到一定程度。 ④晶闸管具有控制强电的作用,即利用弱电信号对控制极的作用,就可使晶闸管导通去控制强电系统。 3.单向晶闸管主要参数 (1)额定正向平均电流 在规定环境温度和散热条件下,允许通过阳极和阴极之间的电流平均值。 (2)维持电流 在规定环境温度、控制极断开的条件下,保持晶闸管处于导通状态所需要的最小正向电流。 (3)控制极触发电压和电流 在规定环境温度及一定正向电压条件下,使晶闸管从关断到导通,控制极所需的最小电压和电流。 (4)正向阻断峰值电压 在控制极开路和晶闸管正向阻断的条件下,可以重复加在晶闸管两端的正向峰值电压。 (5)反向阻断峰值电压 在控制极断开时,可以重复加在晶闸管上的反向峰值电压。 4.晶闸管的型号及含义 (1)型号 3 表示额定电压为500 V 表示额定正向平均电流为5 A 表示晶闸管元件 表示N型硅材料

晶闸管的应用

晶闸管的实际应用 摘要:晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。这些特点使得晶闸管在实际产品的电路中应用的非常广泛,各式电子产品中都能够找到它的身影,对晶闸管做更为深入的研究有助于进一步打开电子市场! 关键词:晶闸管可控调光整流电路 晶闸管又名反向阻断型可控硅SRC。它的问世,开创了传统的电力电子技术阶段,一方面由于其功率变换能力的突破,另一方面实现了弱点对以晶闸管为核心的强电变换电路的控制,使电子技术步入了功率领域,在工业界引起了一场技术革命!晶闸管的问世使得它在工业、商业、影剧院以及家用电器中已得到广泛应用,主要应用有调光和调温装置、跑马彩灯控制等,下面我们分析一下它的具体应用。 一、晶闸管导通原理分析: 图一、晶闸管导通电路图 (1)晶闸管阳极接直流电源的正端,阴极经灯泡接电源的负端,此时晶闸管承受正向电压。控制极电路中开关S断开(不加电压),如图一(a)所示,这时灯不亮,说明晶闸管不导通。 (2)晶闸管的阳极和阴极间加正向电压,控制极相对于阴极也加正向电压,如图一(b)所示.这时灯亮,说明晶闸管导通。 (3)晶闸管导通后,如果去掉控制极上的电压,即将图一(b)中的开关S断开,灯仍然亮,这表明晶闸管继续导通,即晶闸管一旦导通后,控制极就失去了控制作用。 (4)晶闸管的阳极和阴极间加反向电压如图一(c),无论控制极加不加电压,灯都不亮,晶闸管截止。

(5)如果控制极加反向电压,晶闸管阳极回路无论加正向电压还是反向电压,晶闸管都不导通。 二、晶闸管的伏安特性图: 图二、晶闸管的伏安特性曲线 三、晶闸管的控制角和导通角: 图三、晶闸管的工作波形图

晶闸管及其应用

晶闸管及其应用

晶闸管及其应用 课程目标 1 了解晶闸管结构,掌握晶闸管导通、关断条件 2 掌握可控整流电路的工作原理及分析 3 理解晶闸管的过压、过流保护 4 掌握晶闸管的测量、可控整流电路的调试和测量 课程内容 1 晶闸管的结构及特性 2 单相半波可控整流电路 3 单相半控桥式整流电路 4 晶闸管的保护 5 晶闸管的应用实例 6 晶闸管的测量、可控整流电路的调试和测量 学习方法 从了解晶闸管的结构、特性出发,掌握晶闸管的可控整流应用,掌握晶闸管的过压和过流保护方式,结合实物和实训掌握晶闸管管脚及好坏的判断,通过应用实例,了解晶闸管的典型应用。

课后思考 1晶闸管导通的条件是什么?导通时,其中电流的大小由什么决定?晶闸管阻断时,承受电压的大小由什么决定? 2为什么接电感性负载的可控整流电路的负载上会出现负电压?而接续流二极管后负载上就不出现负电压了,又是为什么? 3 如何用万用表判断晶闸管的好坏、管脚? 4 如何选用晶闸管?

晶闸管的结构及特性 一、晶闸管外形与符号: 图 5.1.1 符号 图5.1.2 晶闸管导通实验电路图 为了说明晶闸管的导电原理,可按图5.1.2所示的电路做一个简单的实验。 (1)晶闸管阳极接直流电源的正端,阴极经灯泡接电源的负端,此时晶闸管承受正向电压。控制极电路中开关S断开(不加电压),如图

5.1.2(a)所示,这时灯不亮,说明晶闸管不导通。 (2)晶闸管的阳极和阴极间加正向电压,控制极相对于阴极也加正向电压,如图5.1.2(b)所示.这时灯亮,说明晶闸管导通。 (3)晶闸管导通后,如果去掉控制极上的电压,即将图5.1.2(b)中的开关S断开,灯仍然亮,这表明晶闸管继续导通,即晶闸管一旦导通后,控制极就失去了控制作用。 (4)晶闸管的阳极和阴极间加反向电压如图5.1.2(C),无论控制极加不加电压,灯都不亮,晶闸管截止。 (5)如果控制极加反向电压,晶闸管阳极回路无论加正向电压还是反向电压,晶闸管都不导通。 从上述实验可以看出,晶闸管导通必须同时具备两个条件: (1) 晶闸管阳极电路加正向电压; (2) 控制极电路加适当的正向电压(实际工作 中,控制极加正触发脉冲信号)。 二、伏安特性

晶闸管及其应用.(DOC)

课题 9.1晶闸管简介 课型 新课授课班级授课时数1教学目标 1.认识晶闸管的结构和符号 2.能理解晶闸管工作原理 3.熟记晶闸管导通与关断的条件 教学重点 晶闸管的结构和工作原理 教学难点 工作原理 学情分析 教学效果 教后记

新课 A.复习 1.三端集成稳压器的分类。 2.画出实现输出 10 V的稳压电源图。 B.引入 二极管整流,当V i固定,V o是固定值,许多场合,所需的直流电源电压应能改变,具有可控性。 C.新授课 一、晶闸管的结构符号 1.结构:实物演示。 阳极a 阴极c4层半导体 控制极g 2.符号: 3.3个PN结(g与c之间为一个PN结)。 二、工作原理: 1.实验演示: (1)a≠c加反向电压,无论是否加控制电压——不导通; 控制极加反向电压,a≠c加正向电压——不导通。 (2)a,c加正向电压,g,c加正向电压,导通。 2.工作特点: (1)导通条件:晶闸管阳极与阴极间必须加正向电压, 控制极与阴极间也要接正向电压。 (2)晶闸管一旦导通,降低或去掉控制极电压仍导通。 (3)关断条件:减小阳极电流< I H 维持电流。 方法:断开阳极电源、阳-阴间加反向电压。

讨论: ①V1,V2如何连接? V2的b极与V1的c极连接,V2的c极与V1的b极连接。 ②a,c加正向电压,V1,V2是否导通? 不加g极,中间取反偏,V1无基极电流,不导通。 ③控制极与阴极间加正向电压,V1工作状态如何? V1有基极电流而导通。 ④V1,V2工作状态:饱和,总压降1 V。 ⑤V1,V2导通后,g极去掉,V1,V2状态如何:V1,V2仍维持导通,反馈电流代替V1基本电流。 ⑥要使V1,V2截止,应采取什么措施? a.去掉U gK。 b.I A<I H(调电位器)。 三、简易检测: 1.检测阳、阴极:正常时R E1,R E2都很大(指针基本不动)。 2.检测控制极是否短路或断开: (1)一个PN结。 (2)方法:同判别普通二极管一样。 四、主要参数: 1.额定正向平均电流:允许通过阳极与阴极之间的电流平均值。 2.维持电流:保持晶闸管导通的最小正电流。 3.晶闸管导通的最小正触发电压和电流;晶闸管从关断到导通,晶闸管所需的最小电压和电流。 4.正向阻断峰值电压:正向电压最大值。 5.反向阻断峰值电压:反向电压最大值。 练习 习题九91 小结1.晶闸管结构及符号2.工作原理 3.主要参数 布置作业 习题九92补充画波形

晶闸管的发展及其应用

目 录 第一章 电力电子技术简介及其器件发展 (1) 第二章 晶闸管 (2) 2.1 晶闸管的产生及符号 (2) 2.2晶闸管的导通与关断条件 (3) 2.3 晶闸管的工作原理 (4) 2.4 晶闸管的阳极伏安特性 (5) 2.5 晶闸管的主要参数 (6) 2.5.1 晶闸管的重复峰值电压 (7) 2.5.2晶闸管的额定通态平均电流额定电流T I (AV ) (7) 2.6 通态平均电压T U (AV ) (8) 2.7 门极触发电压GT U 和门极触发电流GT I (8) 2.8 维持电流H T (9) 2.8 掣住电流L I (9) 2.9 断态电压临界上升率du /dt (9) 2.10 通态电流临界上升率di /dt (10) 第三章 双向晶闸管及其派生晶闸管 (11) 3.1 双向晶闸管 (11) 3.2 快速晶闸管 (12) 3.4 光控晶闸管 (13) 第四章 晶闸管的保护与串并联使用 (14) 4.1 过电压保护 (14) 4.1.1操作过电压 (14) 4.1.2雷击过电压 (15) 4.1.3换相过电压 (15) 4.1.4关断过电压 (15) 4.2 过电压保护措施 (15) 4.2.1操作过电压的保护 (15) 4.2.2浪涌(雷击)过电压的保护 (15) 4.2.3 过电流保护 (17) 4.4 晶闸管的串、并联 (18) 第五章 晶闸管应用实例 (19) 5.1 单相全控桥式整流电路 (19)

5.2 三相全控桥式整流电路 (20) 总结 (22) 参考文献 (23)

第一章电力电子技术简介及其器件发展 第一章电力电子技术简介及其器件发展 电力电子技术,即由国际电工委员会命名的,一门将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路进而实现电能的变换和控制的完整学科。突出对“电力”的变换,变换的功率可以大到数百甚至数千兆瓦,也可以小到几瓦或更小。 电力电子技术包括电力电子器件、变流电路和控制技术3个部分,其中电力电子器件是基础,变流电路是电力电子技术的核心。 电力电子技术的发展取决于电力电子器件的研制与应用。它既是电力电子技术的基础,也是电力电子技术发展的动力。早在20世纪三四十年代,人们就开始应用电机组、汞弧整流器、闸流管、电抗器、接触器等进行了对电能的变换和控制。到20世纪50年代第一个晶闸管诞生后,在其后近50年里,电力电子器件如雨后春笋发展起来。以器件为核心的电力电子技术的发展可分为两个阶段:1957—1980年称为传统电力电子技术阶段;1980年至今称为现代电力电子技术阶段。所以晶闸管的诞生与应用在电力电子技术发展史可谓起到承前启后的作用,本论文将主要介绍晶闸管的诞生、发展与应用。 20世纪50年代初,普通的整流器SR开始使用,实际上已经开始取代汞弧整流器。但电力电子技术真正的开始是在由于1957~1958年第一个反向阻断型可控硅SCR的诞生,也就是现在的晶闸管。一方面由于其功率变换能力的突破,另一方面实现了弱电对以晶闸管为核心的强点变换电路的控制,是电子技术步入了功率领域,在工业上引起了一场技术革命。在随后的20年内,随着晶闸管特性不断的改进及功率等级的提高,晶闸管已经形成了从低压小电流到高压大电流的系列产品。同时研制出了一系列晶闸管的派生器件,如不对称晶闸管ASCR、逆导晶闸管RCT、双向晶闸管TRIAC、门极辅助关断晶闸管GATT、光控晶闸管LASCR 等器件,大大地推进了各种电力变换器在冶金、运输、化工、机车牵引、矿山、电力等行业的应用,促进了工业的技术进步,开始了传统的“晶闸管及其应用”的电力电子技术发展的第一阶段,即传统电力电子技术阶段。 20世纪70年代后期,尤其是20世纪80年代以后,各种高速、全控型的器件先后问世,并获得迅速的发展。下表是目前几种晶闸管在国内外的研究水平:

常见晶闸管的原理与运用

(一)普通晶闸管 普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分另为阳极A、阴极K和门极G、图8-4是其电路图形符号。 普通晶闸管的阳极与阴极之间具有单向导电的性能,其内部可以等效为由一只PNP晶闸管和一只NPN晶闸管组成的组合管,如图8-5所示。 当晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G 所加电压是什么极性,晶闸管均处于阻断状态。当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K 极之间压降约为1V。 普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K 之间仍保持正向电压,晶闸管将维持低阻导通状态。只有把阳极A电压撤除或阳极A、阴极K之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。普通晶闸管一旦阻断,即使其阳极A与阴极K

之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。 普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。 (二)双向晶闸管 双向晶闸管(TRIAC)是由NPNPN五层半导体材料构成的,相当于两只普通晶闸管反相并联,它也有三个电极,分别是主电极T1、主电极T2和门极G。图8-6是双向晶闸管的结构和等效电路,图8-7是其电路图形符号。 双向晶闸管可以双向导通,即门极加上正或负的触发电压,均能触发双向晶闸管正、反两个方向导通。图8-8是其触发状态。

第9章--电力二极管、电力晶体管和晶闸管的应用简介讲解学习

目录目录 第9章电力二极管、电力晶体管和晶闸管的应用简介 0 9.1 电力二极管的应用简介 0 9.1.1 电力二极管的种类 0 9.1.2 各种常用的电力二极管结构、特点和用途 0 9.1.3 电力二极管的主要参数 0 9.1.4 电力二极管的选型原则 (1) 9.2 电力晶体管的应用简介 (2) 9.2.1 电力晶体管的主要参数 (2) 9.2.2 电力晶体管的选型原则 (2) 9.3 晶闸管的应用简介 (3) 9.3.1 晶闸管的种类 (3) 9.3.2 各种常用的晶体管结构、特点和用途 (3) 9.3.3 晶闸管的主要参数 (4) 9.3.4 晶闸管的选型原则 (5) 9.4 总结 (6)

第9章电力二极管、电力晶体管和晶闸管的应用简介 9.1 电力二极管的应用简介 电力二极管(Power Diode)在20世纪50年代初期就获得应用,当时也被称为半导体整流器;它的基本结构和工作原理与信息电子电路中的二极管相同,都以半导体PN结为基础,实现正向导通、反向截止的功能。电力二极管是不可控器件,其导通和关断完全是由其在主电路中承受的电压和电流决定的。电力二极管实际上是由一个面积较大的PN结和两端引线以及封装组成的。 9.1.1 电力二极管的种类 电力二极管主要有普通二极管、快速恢复二极管和肖特基二极管。 9.1.2 各种常用的电力二极管结构、特点和用途 名称结构特点、用途实例图片 整流二极管 多用于开关频率不高(1kHz以下)的整流电路中。其反向恢复时间较长,一般在5s以上,其正向电流定额和反向电压定额可以达到很高。 快速恢复二极管 恢复过程很短,特别是反向恢复过程很短(一般在5s以下)。快恢复外延二极管,采用外延型P-i-N结构,其反向恢复时间更短(可低于50ns),正向压降也很低(0.9V左右)。从性能上可分为快速恢复和超快速恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100ns以下,甚至达到20~30ns。 肖特基二极管 优点:反向恢复时间很短(10~40ns),正向恢复过程中也不会有明显的电压过冲;在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管;因此,其开关损耗和正向导通损耗都比快速二极管还要小,效率高。 弱点:(1)当所能承受的反向耐压提高时其正向压降也会高得不能满足要求,因此多用于200V以下的低压场合.(2)反向漏电流较大且对温度敏感,因此反向稳态损耗不能忽略,而且必须更严格地限制其工作温度。 9.1.3 电力二极管的主要参数 1.正向平均电流I F(AV)。 正向平均电流指电力二极管长期运行时,在指定的管壳温度(简称壳温,用T C表示)和散热条件下,其允许流过的最大工频正弦半波电流的平均值。其是按照电流的发热效应来定义的,使用时应按有效值相

相关主题
文本预览
相关文档 最新文档