当前位置:文档之家› 梯度结构对氧化铝陶瓷涂层结合强度及抗冲击性能影响的试验研究_程西云

梯度结构对氧化铝陶瓷涂层结合强度及抗冲击性能影响的试验研究_程西云

梯度结构对氧化铝陶瓷涂层结合强度及抗冲击性能影响的试验研究_程西云
梯度结构对氧化铝陶瓷涂层结合强度及抗冲击性能影响的试验研究_程西云

氧化铝陶瓷的制备与应用

论文题目:氧化铝陶瓷的制备与应用 学院:材料科学与工程学院 专业班级:材料化学2班 学号:20090488 姓名:王杰 日期:2011-10-19

氧化铝陶瓷的制备与应用 摘要:氧化铝陶瓷是用途最广泛的陶瓷材料中的一种,它可用作机器及设备制造中的耐腐蚀材料、化工专业中的抗腐蚀材料、电工及电子技术中的绝缘材料、热工技术中的耐高温材料以及航空、国防等领域中的某些特种材料。 Abstract: the alumina ceramics is the most widely use of one of the ceramic material, it can be used as the machine and equipment manufacture of corrosion resistant material, chemical corrosion materials in the professional, electrical and electronic technology of thermal insulation materials, high temperature resistant materials and technologies in the aerospace, defense, etc to some of the special material. 关键词:氧化铝陶瓷耐磨性机械强度耐化学腐蚀 Keywords: alumina ceramics Wear resistance Mechanical strength Chemical corrosion-resistant 氧化铝陶瓷是一种用途广泛的陶瓷。因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。[1] 1.硬度大经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。 2.耐磨性能极好经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。

不锈钢表面金属陶瓷涂层技术

摘要 近年来,随着现代化工业的不断进步与发展,人们对于材料的性能要求越来越高,其中较为重要的一点便是材料的耐磨性。众所周知,磨损现象不论在科研实践还是日常生活中都是很常见的,并且若不及时更换调整便极有可能造成严重的安全事故。因此,如何提高易磨损材料的耐磨性能便显得尤为重要。 锌锅沉没辊是热浸镀锌设备中一种重要零件,我国锌锅沉没辊的辊轴与辊套需要从国外进口,不仅价格昂贵而且磨损严重,平均一周就需要更换一次设备,导致轧制的成本很高。所以锌锅沉没辊辊轴与辊套的耐磨性是一个越来越受到重视的问题。本设计旨在制备316L不锈钢表面的耐磨陶瓷涂层来缓解锌锅沉没辊的辊轴与辊套过于严重的磨损,以此延长锌锅沉没辊的辊轴与辊套的寿命,提高生产效率。 我们通常用表面合金化、表面形变强化、表面涂层强化等方法来提高材料耐磨性。本设计借助钎涂原理,分别以氧化铝和碳化钨作为陶瓷增强相材料,Ni82CrSiB合金为钎料,利用真空钎涂的方法制作出较为耐磨的陶瓷涂层,从而达到提高不锈钢表面耐磨性的要求。试验结果表明:氧化铝与钎料的润湿效果不够理想,在涂层中没能发现氧化铝相,即以氧化铝作为陶瓷增强相材料无法达到预期目标;而碳化钨颗粒在涂层中分布较均匀,涂层表面光滑,有金属光泽,并且与不锈钢表面冶金结合良好,硬度达到了不锈钢基体的6倍以上,有望大幅提高材料的耐磨性能。 关键词:金属陶瓷涂层;钎涂技术;硬度

Brazing Process of Metal-ceramic Coating on Stainless Steel Abstract In recent years, with the continuous progress and modernization of industrial development, people are increasingly demanding high-performance materials, one of the important points is the wear resistance. As we all know, the wear phenomena both in research and practice is still very common in daily life, and if not timely replacement of adjustments it is very likely result in serious accidents. Therefore, how to improve the wear resistance of the material is particularly important. The zinc pot sink roll is one of the important parts of hot dip galvanizing equipments. The bush of zinc pot sink rolls needs to be imported from abroad, and it is not only expensive but also badly worn., it needs to be replaced once per week, and that would lead to the high cost of rolling. Therefore, the wear resistance of the zinc pot sink roller bearing is a question with more and more attention. This design is in order to prepare the surface of 316L stainless steel wear-resistant ceramic coating to solve the zinc pot sink roll shaft and insert wear too serious problem to extend the life of the equipment and The main methods of improving the wear resistance for material are surface strain hardening, surface alloying, surface coating strengthened and so on. In this design, we use the braze coating principle, and make the Al2O3 and WC as ceramic reinforcement materials, Ni82CrSiB as the brazing. The method of using the vacuum braze coating to produce more wear-resistant ceramic coating, so as to improve wear resistance of the stainless steel surface requirements. The results showed that: The wetting effect of Al2O3 and brazing filler is not satisfactory, and we could not find alumina phase in the coating, that is to say, Al2O3 as the ceramic reinforcement materials can not achieve the desired goal. However, WC particles in the coating are distributed more evenly. The coating surface is smooth, with a metallic luster, and it is a good metallurgical bond with the stainless steel surface. Its hardness is more than 6 times the stainless steel substrate, and it can be required to improve the wear resistance. Key Words:metal-ceramic coating; braze coating process; hardness

微晶氧化铝陶瓷的制备

[-- 微晶氧化铝陶瓷的制备、应用与发展 --] imrking2007-08-08 18:04 20世纪二三十年代以来,科学技术的高速发展,对陶瓷提出了新的挑战。尽管陶瓷中的玻璃相使其变得坚硬致密,然而也正是它妨碍了陶瓷强度的进一步提高。同时,玻璃相也是陶瓷绝缘性能,特别是高频绝缘性能差的根源。随着陶瓷制造工艺的不断进步,特别是对陶瓷烧结过程、显微结构的深入研究,人们已制造出玻璃相含非常低甚至几乎不含玻璃相而由许多微小晶粒结合成的结晶态陶瓷,实现了从传统陶瓷到先进陶瓷的重大飞跃。 先进陶瓷材料是指以精制高纯人工合成的无机化合物为原料,采用精密控制的工艺,经烧结而制得的陶瓷材料,以其具有的高强度、高硬度、耐磨损、耐腐蚀、耐高温及声、光、电、磁等优异性能而区别于传统陶瓷(日用陶瓷、建筑卫生陶瓷等),亦称为高技术陶瓷、精细陶瓷、精密陶瓷、现代技术陶瓷、工业陶瓷、特种陶瓷等[1]。无论从材料本身性能或材料所采用的制备技术来看,先进陶瓷材料已成为陶瓷科学和材料与工程科学领域里非常活跃、极富挑战性的前沿研究学科,微晶氧化铝陶瓷也是先进陶瓷材料中异军突起的重要陶瓷材料之一。 国内微晶氧化铝陶瓷简介 作为引领我国先进陶瓷技术与产业发展方向的中材高新材料股份有限公司,在20世纪末已出色完成一批用于航天等高科技领域和现代军事技术所不可替代的先进陶瓷关键材料,进入21世纪,又依托其在工业陶瓷领域三十多年所取得的一系列科技成果和研发经验等优势,加快了公司一系列陶瓷制品的产业化进程。目前,公司已是国内最大的微精耐磨氧化铝陶瓷生产企业之一,拥有微晶耐磨氧化铝球石、衬砖和衬片三大类产品,其中氧化铝瓷球拥有从φ3到φ80的14种规格,从75MQ到95MQ的9大系列;氧化铝衬砖拥有H40、H50、H60、H70等4种规格,90、95两大系列;氧化铝衬片有5种规格,4大系列。年生产总量可达22000吨,产品规模始终处于国内同行业的领跑地位,并居亚洲第一,产品质量已获中国产品质量协会颁发的最高信誉AAA等级证书。 中材高新微晶耐磨耐腐蚀氧化铝产品具有高强度、高硬度、耐磨、耐腐蚀等特性,作为磨介和研磨护层应用于物料的物理粉碎过程中,广泛用于建筑卫生陶瓷、工业陶瓷、电子陶瓷、高档耐火材料、特种水泥、搪瓷、非金属矿产品深加工、化工及医药、涂料等行业。它不仅可以提高产品质量、大幅度提高化工产品的研磨细度、减少化工产品杂质的引入,而且能提高研磨效率25%-35%,降低能耗30%以上。 近年来,中材高新积极改进生产工艺,提高产品质量。90B系列氧化铝制品(球石、衬砖等)的当量磨耗≤0.2‰,已远远优于行业标准,90G耐磨氧化铝球石已达到与意大利BITOSSI公司高档球相当的质量水平,其当量磨耗

氧化铝陶瓷参数表

氧化铝陶瓷参数表氧化铝陶瓷参数表

理化指标: 项目 95氧化铝陶瓷管、棒 99氧化铝陶瓷管、棒 AL2O3(%) 92-96.5 98.2-99.5 体积密度(g/cm3) ≥ 3.65 3.86 莫氏硬度 9 9 线膨胀系数(×10-6℃)(25-800℃) 6.2-7.6 7.8-8.3 导热系数(w/m.K) 21 33 绝缘强度(KV/mm) 15 19 体积电阻率(Ω。cm)100℃ > 1015 1016 直流击穿强度(Kv/mm) 17.2-20.3 15.2-16.7 吸水率(%)< 0.05 0.002 常温耐压强度(MPa) ≥ 500 620 常温抗折强度(MPa) ≥ 510 610 耐火度(℃)≥ 2000 2030 最高使用温度(℃) ≥ 1600 1700 1810 550 (523) 52.3 二、硬度对照表: 根据德国标准DIN50150,以下是常用范围的钢材抗拉强度与维氏硬度、布氏硬度、洛氏硬度的对照表。 抗拉强度RmN/mm2 维氏硬度HV 布氏硬度HB 洛氏硬度HRC 250 80 76.0 - 270 85 80.7 - 285 90 85.2 - 305 95 90.2 - 320 100 95.0 - 335 105 99.8 - 350 110 105 - 370 115 109 - 380 120 114 - 400 125 119 - 415 130 124 - 430 135 128 - 450 140 133 - 465 145 138 - 480 150 143 - 490 155 147 - 510 160 152 -

氧化铝陶瓷制作工艺

氧化铝陶瓷介绍 来自:中国特种陶瓷网发布时间:2005-8-3 11:51:15 氧化铝陶瓷制作工艺简介 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 一粉体制备: 郑州玉发集团是中国最大的白刚玉生产商,和中科院上海硅酸盐研究所成立玉发新材料研究中心研究生产多品种α氧化铝。专注白刚玉和煅烧α氧化铝近30年,因为专注所以专业,联系QQ2596686490,电话156390七七八八一。 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm?微米?以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,?一般为重量比在10—30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150—200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍: 1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长

金属陶瓷

金 属 陶 瓷 材 料 2014级材料一班 王倩文 1430140512

目录 一、金属陶瓷的定义 (3) 二、金属陶瓷的特点 (4) 1.金属对陶瓷相的润湿性好。 (4) 2.金属相与陶瓷相应无剧烈的化学反应 (4) 3.金属相与陶瓷相的膨胀系数相差不会过大 (4) 三、金属陶瓷的行业现状 (5) 1.中国硬质合金工业产业分布、生产企业和研发机构 (5) 2.碳化钛基金属陶瓷 (5) 2.1 切削加工领域的应用 (6) 2.2 航天航空工业方面的应用 (6) 2.3 其他方面的应用 (7) 3.碳氮化钛基金属陶瓷 (8) 3.1 Ti(C,N)基金属陶瓷组分和成分设 (8) 3.2 晶粒细化 (9) 3.3 Ti(C,N)基金属陶瓷的应用 (9) 4.三元硼化物金属陶瓷 (10) 四、金属陶瓷的发展趋势 (11) 1.新材料的研究与开发。 (11) 2.超细晶粒和纳米级金属陶瓷。 (12) 3.梯度金属陶瓷的应用开发。 (12) 4.金属陶瓷回收再利用问题。 (12) 5.基础研究的发展。 (13)

材料是人类文明的里程碑,是人类赖以生存和得以发展的重要物质基础。正是材料的使用、发现和发明,才使人类在与自然界的斗争中,走出混沌蒙昧的时代,发展到科学技术高度发达的今天。当今世界,能源、信息、材料已成为人类现代文明进步的标志,继金属、有机高分子材料以后,金属陶瓷材料正以其卓越的性能、繁多的品种和广泛的用途进入各行各业,其发展之快,作用之大,令世人瞩目。金属陶瓷材料具有比强度高、比模量高、耐磨损、耐高温等优良性能,在众多场合已被作为新材料的代名词,成为现代高新技术、新兴产业和传统工业技术改造的物质基础,也是发展现代国防所不可缺少的重要部分,引起了世界各国尤其是发达国家的高度重视,纷纷投入巨资进行研究开发,把金属陶瓷材料作为本国高技术发展的一个重要领域。 一、金属陶瓷的定义 金属陶瓷是由陶瓷硬质相与金属或合金粘结相组成的结构材料。从金属陶瓷英文单词Cermets来,是由Ceramic(陶瓷)和Metal(金属)结合构成的。金属陶瓷既保持了陶瓷的高强度、高硬度、耐磨损、耐高温、抗氧化和化学稳定性等特性,又具有较好的金属韧性和可塑性。由于“金属陶瓷”和“硬质合金”两个学科术语没有明确的分界,所以具体材料也很难划分界线,从材料的组元看,“硬质合金”应该

活性氧化铝吸附

发现改性活性氧化铝对磷的吸附作用以物理吸附为主,随着温度和pH值的升高,除磷效果呈现下降的趋势。并且水中的浊质对吸附除磷效果的影响比较大,活性氧化铝可以用于滤后饮用水的深度除磷。活性氧化铝吸附哪家好?您可以选择安徽天普克环保吸附材料有限 公司,下面小编为您介绍,希望能给您带来一定程度上的帮助。 对比研究了在pH值为7、滤速为8m/h、连续过滤时间为3h 时7种自来水厂常用滤料(煤质柱状炭、活化沸石、陶粒、椰壳炭、石英砂、生物页岩陶粒、石英海砂)与活性氧化铝对DTP(溶解性总磷)质量浓度为50μg/L的模拟水样和颗粒态总磷(PP)质量浓度为50μ g/L的模拟水样中磷的吸附,研究发现在滤料的厚度相同、粒径范围

一致、pH值、滤速相同的情况下,活性氧化铝对DTP的去除效果明显。 要优于其他7种滤料,活性氧化铝对DTP的平均去除率为82.19%。而去除PP和浊度的效果相近,活性氧化铝对PP和浊度的去除不存在优势。用19.8t活性氧化铝为某鱼塘用水建造了日处理 500m3的吸附床,使磷含量由0.5 mg/L降到0.05 mg/L,过滤速度为1~2 m/h。装置连续运行900d而未对吸附剂进行再生,仍能达到设计的出水要求。他们还计划放大处理装置,把一个容积为116 000m3的湖泊水的磷含量,从0.16mg/L降低到0.03mg/L以内。 安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安

徽合肥空港寿县新桥产业园投资建设生产基地。公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。 产品系列化、经营多元化,这些都是企业的发展方针,而OEM----更是公司多年的经营模式,并且得到广泛好评。我们的用户涉及石油、化工、冶金、汽车、空调、电子仪表等行业,我们的客户群不仅是在国内而且遍及东南亚、欧美等地。公司热忱欢迎国内外客商与我们真诚合作。我们将以精美的产品、可靠的技术、精益求精的服务满足广大客户的要求。 分子筛广泛用于制氧、炼油、化工化肥、医药、钢铁、冶金、酒精、玻璃行业,是气体、液体纯制、分离干燥的好的产品。安徽天普克环保吸附材料有限公司始建于2001年,已有18多年历史,产品有分子筛系列3A分子筛、4A分子筛、5A分子筛、lOX分子筛、13x 分子筛、K13X中空玻璃专用分子筛、变压吸附、富氧专用分子筛、活性氧化铝、瓷球等塔填料。 安徽天普克环保吸附材料有限公司周边交通便利,环境优美,我们热忱欢迎新老客户来厂洽谈业务,我们将以优良的产品、合理的价格,为客户提供批发,零售来料交工等服务。

惰性氧化铝瓷球和活性氧化铝瓷球的区别

惰性氧化铝瓷球和活性氧化铝瓷球的区别 惰性氧化铝瓷球和活性氧化铝瓷球有哪些区别?用途和应用范围是哪些? 惰性氧化铝瓷球 惰性氧化铝瓷球就是普通瓷球,作为反应中装填催化剂层前后的隔离物使用。惰性氧化铝球是惰性的,不会与物料发生反应,起保护作用。 惰性瓷球具有强度高、高化学稳定性和热稳定性的特性,惰性瓷球可以耐高温、压和酸、碱、盐及各种溶剂的腐蚀,惰性瓷球大量应用于石油、化工、化肥及环保等行业。惰性瓷球作为反应器内催化剂的支撑和覆盖材料,可缓冲进入反应器内液体和气体对催化剂的冲击,保护催化剂,并提高反应器内液体和气体的分布。 应用范围 惰性瓷球大量应用于石油、化工、化肥及环保等行业。 活性氧化铝瓷球 活性氧化铝瓷球具有一定的吸附作用,可以用来吸附一些极性物质。简单说就是活性氧化铝是活性的,会与物料结合发生反应的。活性氧化铝球具有许多毛细孔道,表面积大,可作为吸附剂、干燥剂及催化剂使用。同时还根据吸附物质的极性强弱来确定,对水、氧化物、醋酸、碱等具有较强的亲合力,活性氧化铝球是一种微水深度干燥剂,也是吸附极性分子的吸附剂。活性氧化铝球除离子类似于阴离子交换树脂,但对一些离子的选择性阴离子树脂大。活性氧化铝吸附脱离子效果好,容量稳定,每立方米活性氧化铝大概吸一些离子6400 克。产品具有强度高、磨损低、水浸不变软、不膨胀、不粉化、不破裂等优点。 应用领域 活性氧化铝球具有许多毛细孔道,表面积大,可作为吸附剂、干燥剂及催化剂使用。同时还根据吸附物质的极性强弱来确定,对水、氧化物、醋酸、碱等具有较强的亲合力,活性氧化铝球是一种微水干燥剂,也是吸附极性分子的吸附剂。活性氧化铝球可大量用于石油裂解气、乙烯丙烯气的干燥和制氢、空分装置、仪表风干机的干燥、双氧水中离子处理还可以去除废气中的硫气氢、二氧化硫、烃类等污染物质,特别适应除离子处理。 另外,活性氧化铝一般不称为瓷球,惰性氧化铝才叫瓷球。

氧化铝陶瓷制作及强化工艺

氧化铝陶瓷制作及强化工艺 氧化铝陶瓷制作工艺 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650-1990℃,透射波长为1~6μm Al2O380%或75 %外, 体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA. 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来

上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有 很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度 小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二、成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、 1mm, 15~ 60μm、介于 制备。通常以水为熔剂介质,再加入解胶剂与粘结剂,充分研磨之后排气,然后倒 注入石膏模内。由于石膏模毛细管对水分的吸附,浆料遂固化在模内。空心注浆时,在模壁吸附浆料达要求厚度时,还需将多余浆料倒出。为减少坯体收缩量、应尽量 使用高浓度浆料。 氧化铝陶瓷浆料中还需加入有机添加剂以使料浆颗粒表面形成双电层使料

浆稳定悬浮不沉淀。此外还需加入乙烯醇、甲基纤维素、海藻酸胺等粘结剂及聚丙烯胺、阿拉伯树胶等分散剂,目的均在于使浆料适宜注浆成型操作。 三、烧成技术: 将颗粒状陶瓷坯体致密化并形成固体材料的技术方法叫烧结。烧结即将坯体内颗粒间空洞排除,将少量气体及杂质有机物排除,使颗粒之间相互生长结合, 中。 硬度较高,需用更硬的研磨抛光砖材料对其作精加工。如SiC、B4C或金刚钻等。通常采用由粗到细磨料逐级磨削,最终表面抛光。一般可采用<1μm微米的Al2O3微粉或金刚钻膏进行研磨抛光。此外激光加工及超声波加工研磨及抛光的方法亦可采用。有些氧化铝陶瓷零件需与其它材料作封装处理。 氧化铝陶瓷强化工艺

(整理)惰性氧化铝陶瓷球

名称:惰性氧化铝陶瓷球 惰性瓷球主要采用优级工业氧化铝、优质高岭土,掺加优一定量的长石、石英及增强剂、增塑剂、脱模剂等原料,经严格科学配方、模具优化设计、原料精选、球磨、制泥、陈腐、真空练泥、等静压成型、干燥、烧结等系列适宜的生产工艺加工而成。 惰性氧化铝瓷球是一种高强度、高空隙率的新型支撑、覆盖及保护催化剂用球形支撑保护填料。其主要原理为:采用刚玉和莫来石-刚玉、莫来石为产品主晶相,以高岭土和长石玻璃烧结体为结构桥梁,利用了氧化铝烧结体刚玉和网络针状结构莫来石的高机械强度、耐高温、抗氧化、耐磨损、耐强酸碱化学腐蚀、优良的耐急冷急热性及极低的化学活性。产品含有大量网络针状结构莫来石和刚玉晶体及部份残余石英,烧结致密,质地坚硬,不粉化。产品特别具有优良的耐化学腐蚀性能:除氢氟酸外,能耐所有的无机酸和有机酸及所有的酸性气体、中性气体。除非产品遇原料气、液中杂质污染需清洗或更换外,在化工工艺设备中充当催化剂覆盖、支撑剂、保护剂使用,产品本身不会出现任何问题,保证使用寿命大于10年。 由于产品具有较高且均匀的空隙率和大的的比表面积,可以有效地截除各种原料汽液中的胶质、焦粉、重金属等其它固体颗料杂质,避免其沉积在催化剂床层导致催化剂阻塞、烧焦甚至毒害催化剂。 产品应用 广泛应用于炼油、煤炼油、煤制烯烃、石油化工、化肥、甲醇、二甲醚等煤化工、天然气化工、冶炼、环保、精细化工等工业的填料塔内(如煤气净化器、天然气干燥吸附器、全馏分油加氢装置、合成氨变换炉、烟气制酸转化器等)中使用。通过多家用户使用后表明:产品具有使塔处理效率高、压降减少、流量增大,并使反应器操作弹性增大,操作变异过程中减少了对催化剂的冲击阻力,有效地保护了催化剂不被油品中的杂质污染导致催化剂结焦、中毒,延长了催化剂的使用寿命,对提高装置运行效率、提高产品质量、降低装置运行费用,对确保工艺操作正常、安全,节能降耗等方面具有重要作用。 产品主要技术指标为: 耐温度:1300℃,耐酸度:98.%, 耐碱度:86%, 堆积比重:1.4T/m3 瓷球应用范围 主要技术指标

氧化铝陶瓷制作工艺简介

无机非金属材料工艺学 无机非金属材料工艺学第三次作业 班级:材料科学与工程2班(非金属) 姓名:伍洋婷 学号:201211101076 2015年4月7日

氧化铝陶瓷生产技术工艺简介氧化铝陶瓷的低温烧结技术 氧化铝陶瓷是一种以Al 2O 3 为主要原料,以刚玉(α—Al 2 O 3 )为主晶相的 陶瓷材料。 一、通过提高Al 2O 3 粉体的细度与活性降低瓷体烧结温度。 目前,制备超细活化易烧结Al 2O 3 粉体的方法分为二大类,一类是机械 法,另一类是化学法。机械法是用机械外力作用使Al 2O 3 粉体颗粒细化,常用 的粉碎工艺有球磨粉碎、振磨粉碎、砂磨粉碎、气流粉碎等等。通过机械粉碎方法来提高粉料的比表面积,尽管是有效的,但有一定限度,通常只能使粉料的平均粒径小至1μm左右或更细一点,而且有粒径分布范围较宽,容易带入杂质的 缺点。近年来,采用湿化学法制造超细高纯Al 2O 3 粉体发展较快,其中较为成 熟的是溶胶—凝胶法。由于溶胶高度稳定,因而可将多种金属离子均匀、稳定地分布于胶体中,通过进一步脱水形成均匀的凝胶(无定形体),再经过合适的处理便可获得活性极高的超微粉混合氧化物或均一的固溶体。目前此法大致有以下3种工艺流程。 (1)形成金属氧有机基络合物溶胶→水解并缩合成含羟基的三度空间高分子结构→溶胶蒸发脱水成凝胶→低温煅烧成活性氧化物粉料。 (2)含有不同金属离子的酸盐溶液和有机胶混合成溶液→溶胶蒸发脱水成凝胶→低温煅烧成粉体。 (3)含有不同金属离子的溶胶直接淬火、沉积或加热成凝胶→低温煅烧成粉 体。湿化学法制备的Al 2O 3 粉体粒径可达到纳米级,粒径分布范围窄,化学纯 度高,晶体缺陷多。因此化学法粉体的表面能与活性比机械法粉体要高得多。采 用这种超细Al 2O 3 粉体作原料不仅能明显降低氧化铝瓷的烧结温度(可降15 0℃—300℃),而且可以获得微晶高强的高铝瓷材料。表二是日本住友化学 有限公司生产的易烧结Al 2O 3 粉料理化指标。 二、通过瓷料配方设计掺杂降低瓷体烧结温度 氧化铝陶瓷的烧结温度主要由其化学组成中Al 2O 3 的含量来决定,Al 2 O 3 含量越高,瓷料的烧结温度越高,除此之外,还与瓷料组成系统、各组成配 比以及添加物种类有关。比如,在Al 2O 3 含量相当时,CaO-Al 2 O 3 -S iO 2系Al 2 O 3 瓷料比MgO-Al 2 O 3 -SiO 2 系瓷料的烧结温度低,对于 我国目前大量生产的CaO-MgO-Al 2O 3 -SiO 2 系统瓷料而言,为使 其具有较低的烧结温度与良好性能,应控制其SiO 2 /CaO处于16~06之内,MgO含量不超过熔剂类氧化物总量的1/3,同时,在配方中引入少量的 La 2O 3 、Y 2 O 3 、Cr 2 O 3 、MnO、TiO 2 、ZrO 2 、Ta 2 O 3 等氧化物 能进一步降低烧结温度、改善瓷体的微观组织结构和性能。目前配方设计中所加入的各种添加剂,根据其促进氧化铝陶瓷烧结的作用机理不同,可以将它们分为形成新相或固溶体的添加剂和生成液相的添加剂二大类。 1、与Al 2O 3 形成新相或固溶体的添加剂。 这类添加剂是一些与氧化铝晶格常数相接近的氧化物,如TiO 2、Cr 2 O 3、Fe 2 O 3 、MnO 2 等,在烧成中,这些添加物能与Al 2 O 3 生成固溶体, 这类固溶体或为掺入固溶体(如Ti4+置换Al3+时),或为有限固溶体,或为 连续固溶体(如Cr 2O 3 与形成的Al 2 O 3 ),它们可以活化晶格(TI4+、A

MOCVD法制备金属陶瓷功能梯度材料的研究

第30卷 第4期西南师范大学学报(自然科学版)2005年8月Vol.30 No.4Journal of S outhwest China Normal University(Natural Science)Aug.2005 文章编号:10005471(2005)04068205 MOCV D法制备金属陶瓷功能梯度材料的研究① 章娴君1, 郑慧雯1,2, 张庆熙1, 王显祥3 11西南师范大学化学化工学院,重庆400715;21巴蜀中学,重庆400013; 31四川农业大学生命科学与理学院,四川雅安625014 摘要:利用金属有机化学气相沉积(MOCVD)方法,以Mo(CO)6,Si(OC2H5)4为物源,在Al2O3陶瓷基片上制备了金属陶瓷功能梯度材料,并用XPS,XRD,SEM等技术对其成分分布,物相组成和表面形貌进行测试和表征.结果表明:材料的组成沿厚度方向呈连续梯度变化,符合功能梯度材料的变化规律. 关 键 词:功能梯度材料(F GM);金属有机化学气相沉积(MOCVD);X射线光电子能谱(XPS);表面形貌 中图分类号:TB34文献标识码:A 金属陶瓷功能梯度材料(F GM)是针对高温、热循环和大温度落差的工作条件而开发的一类新型超耐热材料[14].材料一侧为耐高温、耐热冲刷特性的陶瓷材料,另一侧为具有高强度、高韧性的金属材料,其间为金属/陶瓷过渡层.由于材料微观结构沿某一个或某几个特定的方向呈连续变化,从而消除了由于金属和陶瓷物性参数的巨大差异而在材料内部产生的热应力界面,达到缓和热应力和耐热隔热的目的.因而,金属陶瓷功能梯度材料(F GM)是一类很有希望用于宇航、核能等高技术领域的新型复合材料[5].目前国内外已制备出的金属/陶瓷F GM有TiN2TiC,ZrO22Ni,TiAl2Cu,ZrO22Ti6Al4,SiC2Al,TiC2Ni,YSZ2 Ni,YSZ2Ni2Nb等[6].但还未见用化学气相沉积的方法制备Mo/SiO2功能梯度材料的相关报道. 本文以Mo(CO)6,Si(OC2H5)4为物源,采用功能梯度材料(F GM)的设计思想,利用MOCVD技术,通过改变沉积温度,沉积气压和反应气源中各组分的成份比来调节和控制薄膜的组织和成份,使之发生连续变化来制备Mo/SiO2功能梯度材料,并以XPS,XRD,SEM等技术研究该材料的成分分布,物相组成和表面形貌. 1 实 验 111 材料的成分设计 SiO2和Mo的热学和物理性能如表1.由表1可见,SiO2和Mo物理性质相差很大,尤其是热性能不匹配,会使不连续的梯度层间产生很大热应力.采用功能梯度材料(F GM)的逆设计思想,能获得合理组分构成的梯度层设计,有利于材料结构性能的平缓过渡,即可解决上述难题.设计中,假定Mo/SiO2功能梯度材料由5层组成,每层梯度材料是由均匀的SiO2和Mo构成,表面层为纯金属Mo,最底层为纯陶瓷SiO2,中间为过渡层.采用公式C=(x/d)p计算不同梯度层各成分的含量[7],其中:C为体积分数,x为各梯度层与表面层之间的距离,d为样品的厚度,p为成分分布指数.在本实验中,经理论分析p=1为最佳取值,计算所得各梯度层的最佳成份分布如图1所示. ①收稿日期:20040725 基金项目:重庆市攻关资助项目. 作者简介:章娴君(1944),女,四川成都人,教授,主要从事有机新材料研究.

HGT3683.1-2014 工业瓷球 惰性瓷球

ICS 71.120; 81.060.20 G94 备案号:7419-2014 中华人民共和国化工行业标准 HG/T 3683.1- 2014 代替HG/T3683.1- 2000 工业瓷球惰性瓷球 Industrial ceramic ball Inert ceramic ball 2014-05-06发布 2014-10-01 实施中华人民共和国工业和信息化部发布

HG/T 3683.1—2014 前言 HG/T3683《工业瓷球》分为三个部分: ——第 1 部分:工业瓷球惰性瓷球; ——第 2 部分:工业瓷球活性瓷球; ——第 3 部分:工业瓷球开孔瓷球。 本部分为 HG/T3683 的第 1 部分。 本部分按照GB/T 1.1-2009给出的规则起草。 本部分代替 HG/T3683.1 — 2000 《工业瓷球惰性瓷球》,与 HG/T3683.1 — 2000 相比,主要技术变化如下: ——耐碱度指标对不同 Al2O3 含量都统一为一个指标; ——耐急变温差对不同 Al2O3 含量都统一为一个指标; ——增加了最高耐热温度指标; ——按产品的不同规格,提高了抗压强度指标。 本部分由中国石油和化学工业联合会提出。 本部分由全国非金属化工设备标准化技术委员会(SAC/TC162)归口。 本部分起草单位:萍乡市中天化工填料有限公司、萍乡市环球化工填料有限公司、中国石化工程建设有限公司、工业陶瓷国家测试中心。 本部分主要起草人:陈峥、刘家明、邬树其、胡自斌、梁艳、王雷、邬海啸、胡兆阳。 本部分所代替标准的历次版本发布情况为: —— HG/T3683.1—2000。

梯度功能材料讲稿

梯度功能材料 一、引言 许多结构件会遇到各种服役条件,因此,要求材料的性能应随构件中的位置而不同。例如,民用或军用刀具都只需其刃部坚硬,其它部位需要具有高强度和韧性;一个齿轮轮体必须有好的韧性,而其表面则必须坚硬和耐磨;涡轮叶片的主体必须高强度、高韧性和抗蠕变,而它的外表面必须耐热和抗氧化。诸如此类,可以发现现在应用的许多材料都是属于这个范畴。众所周知,构件中材料成分和性能的突然变化常常会导致明显的局部应力集中,无论该应力是内部的还是外加的。但人们同样知道,如果从一种材料过渡到另一种材料是逐步进行的,这些应力集中就会大大地降低。为了减少材料的应力集中,提高材料的性能,人们发展了一种新型的功能梯度材料(Functionaily Gradient Materials,简称FGM)。虽然FGM 产生的时间不长,但很快引起世界各国科学家的极大兴趣和关注。日本、美国、德国、俄罗斯、英国、法国、瑞士等许多国家相继开展FGM的研究。其应用已扩展到宇航.核能源、电工材料、光学工程、化学工业、生物医学工程等各个领域中。 二、梯度功能材料的发展 梯度功能材料(FGM)是一种集各种组分(如金属、陶瓷、纤维、聚合物等)一体的新型材料,其结构、物性参数和物理、化学、生物等单一或综合性能都呈连续变化,以适应不同环境,实现某一特殊功能。 梯度功能材料其实早就出现在自然界中。神奇的大自然早制造出多种梯度材料。例如,竹子是一种典型的梯度功能材料,人类和动物身体中的骨骼也是一种梯度材料,其特点是结构中的最强单元承受最高的应力。但是,在生命体中的梯度结构与人造梯度结构之间存在很大的差异。有生命的“FGMs”也是“有智能的”,它们能够感受所处环境的变化(包括局部的应力集中),产生相应的结构修改,而人造梯度材料至少在目前还缺乏这种功能。 人造梯度功能材料并不是新的事物,只不过人们没有意识到而已。人类制造的钢制器件实质就是一种功能梯度材料。1900年,美国的伍德用明胶作成了光折射率沿径向连续变化的圆柱棒,称之为梯度折射材料。由于制作工艺没有解决,未能得到实际应用,没有引起人们的注意。1969年,日本板玻璃公司的北野等人用离子交换工艺制成玻璃梯度折射棒材和光纤,达到了实用水平,梯度折射率材料的研究才迅速发展起来,研究的国家也从美国和日本扩展到二十几个国家。 1972年,Bever和Duwez提出了功能梯度这个概念。功能梯度材料作为一个规范化正式概念于1984由日本国力宇航实验室提出。由于航天飞机中,燃烧室内外表面的温差达到1000K以上,普通的金属材料难以满足这种苛刻的使用环境。一系列政府报告论述了日本在以太空飞机为重点的航天研究中所预计的材料需求,结论是鉴于对高温结构件的许多严格要求,需要在结构中仔细地引入成分和微观结构梯度,不但能最全面地利用已有材料去生产所需要的构件,还能避免由于外加应力或温度变化而在不同材料的锐利界面上引起的应力和(或)应变集中。1987年,日本平井敏雄、新野正之和渡边龙三人提出使金属和陶瓷复合材料的组分、结构和性能呈连续性变化的热防护梯度功能材料的概念。同年,日本科技厅制定了有关FGMs的一项庞大计划,主要研究一边处于冷却而另一边处于炙热环境下的部件的特殊要求。1990

氧化铝陶瓷的发展与应用

氧化铝陶瓷的发展与应用 前言 氧化铝陶瓷具有机械强度高,绝缘电阻大,硬度高,耐磨、耐腐蚀及耐高温等一系列优良性能,其广泛应用于陶瓷、纺织、石油、化工、建筑及电子等各个行业,是目前氧化物陶瓷中用途最广、产销量最大的陶瓷新材料。 通常氧化铝陶瓷分为2 大类,一类是高铝瓷,另一类是刚玉瓷。高铝瓷是以Al2O3 和 SiO2 为主要成分的陶瓷,其中Al2O3 的含量在45 %以上,随着Al2O3 含量的增多,高铝瓷的各项性能指标都有所提高。由于瓷坯中主晶相的不同,又分为刚玉瓷、刚玉—莫来石瓷、莫来石瓷等。根据Al2O3 含量的不同,习惯上又称为75瓷、80 瓷、85 瓷、90 瓷、92 瓷、95 瓷、99 瓷等。高铝瓷的用途极为广泛,除了用作电真空器件和装置瓷外,还大量用来制造厚膜、薄膜电路基板,火花塞瓷体,纺织瓷件,晶须及纤维,磨料、磨具及陶瓷刀,高温结构材料等。目前市场上生产、销售和应用最为广泛的氧化铝陶瓷是Al2O3 含量在90 %以上的刚玉瓷。 1 原料 作为陶瓷原料主要成分之一的氧化铝在地壳中含量非常丰富,在岩石中平均含量为15. 34 % ,是自然界中仅次于SiO2 存量的氧化物。一般应用于陶瓷工业的氧化铝主要有2 大类,一类是工业氧化铝,另一类是电熔刚玉。 1. 1 工业氧化铝 工业氧化铝一般是以含铝量高的天然矿物铝土矿(主要矿物组成为铝的氢氧化物, 如一水硬铝石(xAl2O3·H2O> 、一水软铝石、三水铝石等氧化铝的水化物组成> 和高岭土为原料,通过化学法(主要是碱法,多采用拜尔法———碱石灰法> 处理,除去硅、铁、钛等杂质制备出氢氧化铝,再经煅烧而制得,其矿物成分绝大部分是γ- Al2O3 。 工业氧化铝是白色松散的结晶粉末,颗粒是由许多粒径< 0. 1μm 的γ- Al2O3 晶体组成的多孔球形聚集体,其孔隙率约为30 % ,平均粒径为40~70μm。工业氧化铝含量的质量标准见表1。 表1 工业氧化铝含量的质量标准(质量%> 1 级 2 级 3 级 4 级 5 级 Al2O3> 98. 60 ≮98. 50≮98. 40 ≮98. 30 ≮98. 20 SiO2 ≯0. 02 ≯0. 04 ≯0. 06 ≯0. 08 ≯0. 10 Fe2O3 < 0. 03 ≯0. 04 ≯0. 04 ≯0. 04 ≯0. 04 Na2O ≯0. 50 ≯0. 55 ≯0. 60 ≯0. 60 ≯0. 60 灼减< 0. 80 ≯0. 80 ≯0. 80 ≯0. 80 ≯1. 00 工业氧化铝的3 项主要杂质成分中,Na2O 及Fe2O3 将降低氧化铝瓷件的电性能,Na2O 的含量应<0. 5 %~0. 6 % ,Fe2O3 含量应< 0. 04 %。另外,在电真空瓷件中,工业氧化铝

陶瓷_金属梯度热障涂层圆筒的传热与热应力有限差分分析

第26卷 第3期2002年6月 武汉理工大学学报(交通科学 与工程版 ) Journal of Wuhan University of Technolo gy (T r anspo rtat ion Science&Engineer ing) V ol.26 N o.3 June2002 陶瓷/金属梯度热障涂层圆筒的传热 与热应力有限差分分析* 刘 杰 肖金生 覃 峰 崔东周 (武汉理工大学能源与动力工程学院 武汉 430063) 摘要:推导了多层陶瓷梯度涂层圆筒模型的温度和热应力分布,对变物性材料的差分解法进行了 分析,并与实际的工程模型进行了对比计算,有限差分解和有限元解能够很好地吻合. 关键词:热障涂层;功能梯度材料;有限差分;热应力 中图法分类号:U664.12;O241.84 基于提高内燃机的经济性和可靠性的考虑, 近年来陶瓷/金属梯度热障涂层及其在内燃机中 的应用研究受到了广泛的重视[1,2].梯度热障涂层 可充分利用两种材料的优良特性,提高内燃机性 能.但涂层在交变热应力作用下仍易脱落破坏,所 以研究涂层工作条件下不同时刻不同涂层材料的 热应力分布有重要的意义[3],文中着重对热应力 的差分解与解析解、有限元解进行比较研究. 1 陶瓷/金属梯度热障涂层圆筒的 传热分析 1.1 陶瓷/金属梯度热障涂层的多层圆筒模型 图1所示为涂层在内的四层圆筒模型,层1 为纯陶瓷层,层2为陶瓷/金属梯度层,层3为过 渡金属层,层4为基体金属层.采用柱坐标系,r 为径向,z为轴向. 1.2 陶瓷/金属梯度圆筒传热分析的解析解 对图1所示的四层圆筒模型,假设圆筒为无 限长,两端绝热,且处于稳态温度场中.所以圆筒 内各点的温度T与z及时间t无关.由傅里叶热 传导方程写出多层圆筒模型的稳态热传导方程为 d d r [r i(r) d T i(r) d r ]=0 R i-1≤r≤R i,i=1,2,3,4( 1) 图1 陶瓷梯度涂层的多层圆筒模型 将圆筒沿半径方向分成n个薄层,各层厚度 任意,但要求每层内的物性可近似取为常数.假设 内边界的表面传热系数为h a,流体的温度为T f a; 外边界的换热系数为h b,流体的温度为T f b.如果 是第一类边界条件,可将相应的换热系数取为近 似无限大即可.因为每层可以认为是均质的,所以 导热系数在每一层内是常数.设第i层的导热系 数为 i,则由各层界面间的热流连续条件,可导出 圆筒模型内的温度分布为 T(r)=T f a+A(T f b-T f a)( 1 R0h a + ∑s i=1 ln(r i/r i-1) i+ ln(r/r s) s+1)(2)式中 A=[ 1 R0h a+ ∑n i=1 ln(r i/r i-1) i+ 1 R4h b] -1 收稿日期:20020401 刘 杰:男,25岁,硕士,主要研究领域为陶瓷/金属梯度热障涂层、轮机工程仿真与CAD *交通部重点科技项目资助(批准号:95040332)

相关主题
文本预览
相关文档 最新文档