当前位置:文档之家› 谐波电流及抑制

谐波电流及抑制

谐波电流及抑制
谐波电流及抑制

一.谐波电流

一般来说, 理想的交流电源应是纯正弦波形, 但因现实世界中的输出阻抗及非线性负载的原因, 导致电源波形失真。近年来整流性负载的大量使用, 造成大量的谐波电流, 也间接污染了市电, 产生电压的谐波成份. 另外一些市售的发电机或UPS本身输出电压就非纯正弦波, 甚至有方波的情形, 失真情形更严重, 所含谐波成份占了很大的比。

1.谐波的危害

谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。

2.谐波是怎么产生的

一是发电源质量不高产生谐波:

发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。

二是输配电系统产生谐波:

输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流%。

三是用电设备产生的谐波:

晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。

变频装置。变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。

电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。

气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。

家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。

3.谐波抑制

为解决电力电子装置和其他谐波源的谐波污染问题,基本思路有两条:一条是装设谐波补偿装置来补偿谐波,这对各种谐波源都是适用的;另一条是对电力电子装置本身进行改造,使期不产生谐波,且功率因数可控制为1,这当然只适用于作为主要谐波源的电力电子装置。

装设谐波补偿装置的传统方法就是采用LC调谐滤波器。这种方法既可补偿谐波,又可补偿无功功率,而且结构简单,一直被广泛使用。这种方法的主要缺点是补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐振,导致谐波放大,使LC滤波器过载甚至烧毁。此外,它只能补偿固定频率的谐波,补偿效果也不甚理想。

二. 无功补偿

人们对有功功率的理解非常容易,而要深刻认识无功功率却并不是轻而易举的。在正弦电路中,无功功率的概念是清楚的,而在含有谐波时,至今尚无获得公认的无功功率定义。但是,对无功功率这一概念的重要性,对无功补偿重要性的认识,却是一致的。无功补偿应包含对基波无功功补偿和对谐波无功功率的补偿。

无功功率对供电系统和负荷的运行都是十分重要的。电力系统网络元件的阻抗主要是电感性的。因此,粗略地说,为了输送有功功率,就要求送电端和受电端的电压有一相位差,这在相当

宽的范围内可以实现;而为了输送无功功率,则要求两端电压有一幅值差,这只能在很窄的范围内实现。不仅大多数网络元件消耗无功功率,大多数负载也需要消耗无功功率。网络元件和负载所需要的无功功率必须从网络中某个地方获得。显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,通常也是不可能的。合理的方法应是在需要消耗无功功率的地方产生无功功率,这就是无功补偿。

无功补偿的作用主要有以下几点:

(1)提高供用电系统及负载的功率因数,降低设备容量,减少功率损耗。

(2)稳定受电端及电网的,提高供电质量。在长距离输电线中合适的地点设置动态无功补偿装置还可以改善输电系统的稳定性,提高输电能力。

(3)在电气化铁道等三相负载的场合,通过适当的无功裣可以平衡三相的有功及无功负载。

三.谐波和无功功率的产生

在工业和生活用电负载中,阻感负载占有很大的比例。异步电动机、变压器、荧光灯等都是典型的阻感负载。异步电动机和

变压器所消耗的无功功率在电力系统所提供的无功功率中占有很高的比例。电力系统中的电抗器和架空线等也消耗一些无功功率。阻感负载必须吸收无功功率才能正常工作,这是由其本身的性质所决定的。

电力电子装置等非线性装置也要消耗无功功率,特别是各种相控装置。如相控整流器、相控交流功率调整电路和周波变流器,在工作时基波电流滞后于电网电压,要消耗大量的无功功率。另外,这些装置也会产生大量的谐波电流,谐波源都是要消耗无功功率的。二极管整流电路的基波电流相位和电网电压相位大致相同,所以基本不消耗基波无功功率。但是它也产生大量的谐波电流,因此也消耗一定的无功功率。

近30年来,电力电子装置的应用日益广泛,也使得电力电子装置成为最大的谐波源。在各种电力电子装置中,整流装置所占的比例最大。目前,常用的整流电路几乎都采用晶闸管相控整流电路或二极管整流电路,其中以三相桥式和单相桥式整流电路为最多。带阻感负载的整流电路所产生的谐波污染和功率因数滞后已为人们所熟悉。直流侧采用电容滤波的二极管整流电路也是严惩的谐波污染源。这种电路输入电流的基波分量相位与电源电压相位大体相同,因而基波功率因数接近1。但其输入电流的谐波分量却很大,给电网造成严重污染,也使得总的功率因数很低。另外,采用相控方式的交流电力调整电路及周波变流器等电力电子装置也会在输入侧产生大量的谐波电流。

四、无功功率的影响和谐波的危害

1.无功功率的影响

(1)无功功率的增加,会导致电流增大和视在功率增加,从而使发电机、变压器及其他电气设备容量和导线容量增加。

。同时,电力用户的起动及控制设备、测量仪表的尺寸和规格也要加大。

(2)无功功率的增加,使总电流增大,因而使设备及线路的损耗增加,这是显而易见的。

(3)使线路及变压器的电压降增大,如果是冲击性无功功率负载,还会使电压产生剧烈波动,使供电质量严重降低。

2.谐波的危害

理想的公用电网所提供的电压应该是单一而固定的频率以及规定的电压幅值。谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,也对周围的能耐电力电子设备广泛应用以前,人们对谐波及其危害就进行过一些研究,并有一定认识,但那时谐波污染还没有引起足够的重视。近三四十年来,各种电力电子装置的迅速发展使得公用电网的谐波污染日趋严重,由谐波引起的各种故障和事故也不断发生,谐波危害的严重性才引起人们高度的关注。谐波对公用电网和其他系统的危害大致有以下几个方面。

(1)谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3次谐波流过中性线时会使线路过热甚至发生火灾。

(2)谐波影响各种电气设备的正常工作。谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重过热。谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以至损坏。

(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,这就使上述(1)和(2)的危害大大增加,甚至引起严重事故。

(4)谐波会导致继电保护和自动装置的误动作,并会使电气测量仪表计量不准确。

(5)谐波会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量;重者导致住处丢失,使通信系统无法正常工作。

3 谐波知识对该问题的介绍基于以下几个方面:基本原理,主要现象和防止谐波故障的建议。由于功率转换(整流和逆变)而导致配电系统污染的问题早在1960年代初就被许多专家意识到了。直到1980年代初,日益增长的设备故障和配电系统异常现象,使得解决这一问题成为迫在眉睫的事情。今天,许多生产过程中没有电力电子装置是不可想象的。至少以下用电设备在每个工厂都得到了应用:- 照明控制系统(亮度调节)- 开关电源(计算机,电视机)- 电动机调速设备- 自感饱和铁芯- 不间

断电源- 整流器- 电焊设备- 电弧炉- 机床(CNC)- 电子控制机构- EDM机械所有这些非线性用电设备产生谐波,它可导致配电系统本身或联接在该系统上的设备故障。仅考虑导致设备故障的根源就在发生故障现象的用电工厂内可能是错误的。故障也可能是由于相邻工厂产生的谐波影响到公用配电网络而产生的。在您安装一套功率因数补偿系统之前,如下工作是非常重要的:对配电系统进行测试以确定什么样的系统结构对您是合适的。可调谐的滤波电路和组合滤波器已经是众所周知的针对谐波问题的解决方案。另外的方法就是使用动态有源滤波器。本报告将详细讲解各种滤波系统的结构并分析它们的优缺点。 1.基本术语

载波(AF) 是附加在电网电压上的一个高频信号,用于控制路灯、HT/NT 转换系统和夜间储能加热器。载波(AF) 检出电路由一个初级扼流线圈和一个并联谐振电路(次级扼流线圈和电容)并联组成的元件。AF 锁相电路用于检出供电部门加载的AF 信号。电抗在电容器回路串联扼流线圈。电抗系数扼流线圈的电感X L 相对于电容电感X C 的百分比。标准的电抗系数是:例如% 、7% 和14% 。组合滤波器两个不同电抗系数回路并联以检出杂波信号,用于低成本地清洁电网质量。Cos Φ 功率因数代表了电流和电压之间的相位差。电感性的和电容性的

cosΦ 说明了电源的质量特性。用cosΦ 可以表述电网中的无功功率分量。傅立叶分析通过傅立叶分析使得将非正弦函数分解

为它的谐波分量成为可能。在正弦频率ω 0 上的波形已知为基波分量。在频率n ω 0 上的波形被称为谐波分量。

谐波吸收器,调谐的

由一个扼流线圈和一个电容器串联组成的谐振电路并调谐为对谐波电流具有极小的阻抗。该调谐的谐振电路用于精确地清除配电网络中的主要谐波成分。

谐波吸收器,非调谐的

由一个扼流线圈和一个电容器串联组成的谐振电路并调谐为低于最低次谐波的频率以防止谐振。

谐波电流

谐波电流是由设备或系统引入的非正弦特性电流。谐波电流叠加在主电源上。

谐波

其频率为配电系统工作频率倍数的波形。按其倍数称为n 次( 3 、 5 、7 等)谐波分量。

谐波电压

谐波电压是由谐波电流和配电系统上产生的阻抗导致的电压降。

五.阻抗

阻抗是在特定频率下配电系统某一点产生的电阻。阻抗取决于变压器和连在系统上的用电设备,以及所采用导体的截面积和长度。

阻抗系数

阻抗系数是AF (载波)阻抗相对于50Hz (基波)阻抗的比率。

并联谐振频率

网络阻抗达到最大值的频率。在并联谐振电路中,电流分量I L 和I C 大于总电流I 。

六.无功功率

电动机和变压器的磁能部分,以及用于能量交换目的的功率转换器等处需要无功功率Q 。与有功功率不同,无功功率并不做功。计量无功功率的单位是Var 或kvar 。

七.无功功率补偿

供电部门规定一个最小功率因数以避免电能浪费。如果一个工厂的功率因数小于这个最小值,它要为无功功率的部分付费。否则它就应该用电容器提高功率因数,这就必须在用电设备上并联安装电容器。

八.谐振

在配电系统里的设备,与它们存在的电容( 电缆,补偿电容器等) 和电感( 变压器,电抗线圈等) 形成共振电路。后者能够被系统谐波激励而成为谐振。配电系统谐波的一个原因是变压器铁芯非线性磁化的特性。在这种情况下主要的谐波是 3 次的;它在全部导体内与单相分量具有相同的长度,因而在星形点上不能消除。

谐振频率:

每个电感和电容的连接形成一个具有特定共振频率的谐振电路。一个网络有几个电感和电容就有几个谐振频率。

串联谐振谐电路:

由电感(电抗器)和电容( 电容器) 串联的电路。

串联谐振频率:

网络的阻抗水平达到最小的频率。在串联谐振电路内分路电压U L 和U C 大于总电压U 。

分量谐波

频率不是基波分量倍数的正弦曲线波。

2. 谐波是什么

谐波是主电网频率的倍数。术语“电网谐波也被使用。

电网频率 f = 50 赫兹

3 次谐波 f = 150 赫兹

5 次谐波 f = 250 赫兹

7 次谐波 f = 350 赫兹

用傅立叶分析能够把非正弦曲线信号分解成基本部分和它的倍数。

3.谐波分量是如何产生的

由于半导体晶闸管的开关操作和二极管、半导体晶闸管的非线性特性,电力系统的某些设备如功率转换器比较大的背离正弦曲线波形。

谐波电流的产生是与功率转换器的脉冲数相关的。6脉冲设备仅有5、7、11、13、17、19 ….n倍于电网频率。功率变换器的脉冲数越高,最低次的谐波分量的频率的次数就越高。

其他功率消耗装置,例如荧光灯的电子控制调节器产生大强度的3 次谐波( 150 赫兹)。

在供电网络阻抗( 电阻) 下这样的非正弦曲线电流导致一个非正弦曲线的电压降。在供电网络阻抗下产生谐波电压的振幅等于相应谐波电流和对应于该电流频率的供电网络阻抗Z的乘积。次数越高,谐波分量的振幅越低。

4.谐波分量在哪里发生的

只要哪里有谐波源( 参看介绍) 那里就有谐波产生。也有可能,谐波分量通过供电网络到达用户网络。例如,供电网络中一个用户工厂的运转可能被相邻的另一个用户设备产生的谐波所干扰。5.电容器的技术

MKP 和MPP 技术之间的区别在于电力电容器在补偿系统中的连接方式。

MKP( MKK ,MKF) 电容器:

这项技术是在聚丙烯薄膜上直接镀金属。其尺寸小于用MPP 技术的电容器。因为对生产过程较低的要求,其制造和原料成本

比MPP 技术要相对地低很多。MKP 是最普遍的电容器技术,并且由于小型化设计和电介质的能力,它具有更多的优点。

MPP( MKV) 电容器:

MPP 技术是用两面镀金属的纸板作为电极,用聚丙烯薄膜作为介质。这使得它的尺寸大于采用MKP 技术的电容器。生产是非常高精密的,因为必须采用真空干燥技术从电容器绕组中除去全部残余水分而且空腔内必须填注绝缘油。这项技术的主要优势是它对高温的耐受性能。

自愈:

两种类型的电容器都是自愈式的。在自愈的过程中电容器储存的能量在故障穿孔点会产生一个小电弧。电弧会蒸发穿孔点临近位置的细小金属,这样恢复介质的充分隔离。电容器的有效面积在自愈过程中不会有任何实际程度的减少。每只电容都装有一个过压分断装置以保护电气或热过载。测试是符合VDE 560 和IEC 70 以及70A 标准的。

6. 电容器的发展

直到大约1978年,制造电力电容器仍然使用包含PCB的介质注入技术。后来人们发现,PCB 是有毒的,这种有毒的气体在燃烧时会释放出来。这些电容器不再被允许使用并且必须处理,它们必须被送到处理特殊废料的焚化装置里或者深埋到安全的地方。

包含PCB 的电容器有大约30 W/kvar的功率损耗值。电容器本身由镀金属纸板做成。

由于这种电容被禁止使用,一种新的电容技术被开发出来。为了满足节能趋势的要求,发展低功耗电容器成为努力的目标。

新的电容器是用干燥工艺或是用充入少量油( 植物油)的技

术来生产的。现在用镀金属塑料薄膜代替镀金属纸板。因此新电容充分显示出了其环保的特性,并且功耗仅为W/kvar。这表明改进后使功耗降至原来的1/100。这些电容器是根据常规电网条件而开发的。在能源危机的过程中,人们开始相控技术的研究。相位控制的结果是导致电网的污染和许多到现在才搞清楚的故障。

由于前一代电容器存在一个很高的自电感(所以功耗情况很差,达到现在的100倍),高频的电流和电压(谐波) 不能被吸收,而新的电容器则会更多地吸收谐波。

因此存在这种可能,即,新、旧电容器工作在相同的母线上时会表现出运行状况和寿命预期的很大差异,由于上述原因有可能新电容器将在更短的时间内损坏。

我们向市场提供的电力电容器是专门为用于补偿系统中而开发的。电网条件已经发生急剧的变化,选择正确的电容器技术越来越重要。电容器的使用寿命会受到如下因素的影响而缩短:-谐波负载-较高的电网电压-高的环境温度我们配电系统中的

谐波负载在持续增长。在可预知的将来,可能只有组合电抗类型的补偿系统会适合使用。很多供电公司已经规定只能安装带电抗

的补偿系统。其它公司必须遵循他们的规定。如果一个用户决定继续使用无电抗的补偿系统,他起码应该选用更高额定电压的电容器。这种电容器能够耐受较高的谐波负载,但是不能避免谐振事故。

谐波与纹波的比较

谐波简单地说,就是一定频率的电压或电流作用于非线性负载时,会产生不同于原频率的其它频率的正弦电压或电流的现象。

纹波是指在直流电压或中,叠加在直流稳定量上的交流分量。

它们虽然在概念上不是一回事,但它们之间有联系。如电源上附加的纹波在用电器上很容易产生各频率的谐波;电源中各频率谐波的存在无疑导致电源中纹波成分的增加。

除了在电路中我们所需要谐波的情况以外,它主要有以下主要危害:

1、使电网中发生谐振而造成过电流或过电压而引发事故;

2、增加附加损耗,降低发电、输电及用电设备的效率和设备利用率;

3、使电气设备(如旋转电机、电容器、等)运行不正常,加速绝缘老化,从而缩短它们的使用寿命;

4、使继电保护、自动装置、计算机系统及许多用电设备运转不正常或不能正常动作或操作;

5、使测量和计量仪器、仪表不能正确指示或计量;

6、干扰通信系统,降低信号的传输质量,破坏信号的正常传递,甚至损坏通信设备。

纹波的害处:

1、容易在用电器上产生谐波,而谐波会产生较多的危害;

2、降低了电源的效率;

3、较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器;

4、会干扰数字电路的逻辑关系,影响其正常工作;

5、会带来噪音干扰,使图像设备、音响设备不能正常工作。

总之,它们在我们不需要的地方出现都是有害的,需要我们避免的。对于如何抑制和去除谐波和纹波的方式方法有很多,但想完全消除,似乎是很难办到的,我们只有将其控制在一个允许的范围之内,不对环境和设备产生影响就算达到了我们的目的。

近年来, 电力网中非线性负载的逐渐增加是全世界共同的趋势,如变频驱动或晶闸管整流直流驱动设备、计算机、重要负载所用的不间断电源(UPS) 、节能荧光灯系统等,这些非线性负载将导致电网污染,电力品质下降,引起供用电设备故障, 甚至引发严重火灾事故等。

电力污染及电力品质恶化主要表现在以下方面:电压波动、浪涌冲击、谐波、三相不平衡等。

1.电源污染的危害

电源污染会对用电设备造成严重危害,主要有:

干扰通讯设备、计算机系统等电子设备的正常工作,造成数据丢失或死机。

影响无线电发射系统、雷达系统、核磁共振等设备的工作性能, 造成噪声干扰和图像紊乱。

引起电气自动装置误动作,甚至发生严重事故。

使电气设备过热,振动和噪声加大,加速绝缘老化,使用寿命缩短,甚至发生故障或烧毁。

造成灯光亮度的波动(闪变),影响工作效益。

导致供电系统功率损耗增加。

2.电源污染的种类

电压波动及闪变

电压波动是指多个正弦波的峰值,在一段时间内超过(低于)标准电压值,大约从半周波到几百个周波,即从10MS到秒, 包括过压波动和欠压波动。普通避雷器和过电压保护器,完全不能消除过压波动,因为它们是用来消除瞬态脉冲的。普通避雷器在限压动作时有相当大的电阻值,考虑到其额定热容量(焦尔),这些装置很容易被烧毁,而无法提供以后的保护功能。这种情况往往很容易忽视掉,这是导致计算机、控制系统和敏感设备故障或停机的主要原因。

另一个相反的情况是欠压波动,它是指多个正弦波的峰值,在一段时间内低于标准电压值,或如通常所说:晃动或降落。长时间的低电压情况可能是由供电公司造成或由于用户过负载造

成,这种情况可能是事故现象或计划安排。更为严重的是失压,它大多是由于配电网内重负载的分合造成,例如大型电动机、中央空调系统、电弧炉等的启停以及开关电弧、保险丝烧断、断路器跳闸等,这些都是通常导致电压畸变的原因。

大型用电设备的频繁启动导致电压的周期性波动,如电焊机、冲压机、吊机、电梯等,这些设备需要短时冲击功率,主要是无功功率。电压波动导致设备功率不稳,产品质量下降;灯光的闪变引致眼睛疲劳,降低工作效率。

浪涌冲击

浪涌冲击是指系统发生短时过(低)电压,即时间不超过1毫秒的电压瞬时脉冲,这种脉冲可以是正极性或负极性,可以具有连串或振荡性质。它们通常也被叫作:尖峰、缺口、干扰、毛刺或突变。

电网中的浪涌冲击既可由电网内部大型设备(电机、电容器等)的投切或大型晶闸管的开断引起,也可由外部雷电波的侵入造成。浪涌冲击容易引起电子设备部件损坏,引起电气设备绝缘击穿;同时也容易导致计算机等设备数据出错或死机。

谐波

线性负载,例如纯电阻负载,其工作电流的波形与输入电压的正弦波形完全相同,非线性负载,例如斩波直流负载,其工作电流是非正弦波形。传统的线性负载的电流/电压只含有基波

(50Hz),没有或只有极小的谐波成分,而非线性负载会在电力系统中产生可观的谐波。

谐波与电力系统中基波叠加,造成波形的畸变,畸变的程度取决于谐波电流的频率和幅值。非线性负载产生陡峭的脉冲型电流,而不是平滑的正弦波电流,这种脉冲中的谐波电流引起电网电压畸变,形成分量,进而导致与相联的其它负载产生更多的谐波电流。

计算机是此类非线性负载之一,象绝大多数办公室电子设备一样,计算机装有一个二极管/电容型的供电电源,这类供电电源仅在交流正弦波电压的峰值处产生电流,因此产生大量的三次谐波电流(150Hz)。其它产生谐波电流的设备主要有:电动机变频调速器,固态加热器,和其他一些产生非正弦波变化电流的设备。

荧光灯照明系统也是一个重要的谐波源,在普通的电磁整流器灯光电路中,三次谐波的典型值约为基波(50Hz)值的13%-20%。而在电子整流器灯光电路中,谐波分量甚至高达80%。

非线性负载所产生的谐波电流会影响电力系统的多个工作环节,包括变压器,中性线,还有电动机,发电机和电容器等。谐波电流会导致变压器,电动机和备用发电机的运行温度(K参数)

严重升高。中性线上的过电流(由谐波和不平衡引起)不仅会使导线温度升高,造成绝缘损坏,而且会在变压器线圈中产生环流,导致变压器过热。无功补偿电容器会因电网电压谐波畸变而产生过热,谐波将导致严重过流;

UPS供电系统中的谐波及其抑制

供电系统中的谐波及其抑制 一、概述 在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50Hz为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热:使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏:降低继电保护、控制、以及检测装置的工作精度和可靠性等。谐波注入电网后会使无功功率加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。 供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气,电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。 二、谐波产生的原因 在电力的生产,传输、转换和使用的各个环节中都会产生谐波。 在发电环节,当对发电机的结构和接线采取一些措施后,可以认为发电机供给的是具有基波频率的正弦波形的电压。 在其它几个环节中,谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真,此外电网还必须向这类负荷产生的谐波提供额外的电能。 接入低压供电系统的非线性设备产生的谐波电流可分为稳定的谐波和变化的谐波两大类。所谓稳定的谐波电流是指由这种谐波的幅度不随时间变化,如视频显示设备和测试仪表等产生的谐波,这类设备对电网来说表现为恒定的负载。由激光打印机、复印机、微波炉等产生的各次谐波的幅值随时间变化,称之为波动的谐波,这类设备对电网来说是一个随时间

电网谐波监测分析模块建设要求

建立统一的公司级谐波监测分析模块,集成全网电能质量监测数据并开展大数据分析,诊断、预测和评估电能质量干扰源对电网运行的影响,及时发现影响电网安全的隐患,支撑电能质量治理决策,增强电网系统运行可靠性和稳定性。

?谐波监测子模块数据交互方式 (1)总部和省公司谐波监测子模块数据交互应满足“电网谐波监测分析模块纵向接口要求”。 (2)省公司谐波监测子模块与省公司PMS数据交互:获取台帐、鉴权等信息,接口应满足“电网谐波监测分析模块与PMS接口要求”。?谐波分析子模块数据交互 谐波数据分析在总部谐波分析子模块开展,省公司可按权限直接访问总部相关数据。

?总部、省公司主站及其互联 总部谐波模块部署于总部信息内网二级系统域中,省公司谐波模块部署于省公司信息内网二级系统域中。总部谐波模块与省公司谐波模块通过信息内网纵向通道互联,应满足信息内网纵向边界安全防护要求。 ?监测终端接入省公司主站 监测终端通过现有通信通道接入信息内网谐波监测子模块,应满足信息内网终端接入安全防护要求。

1.变电站的重要供电母线及出线: ?跨省计量关口点(必须设置); ?纽变电站高低压母线(可选设置)等。 2. 直流受端落点换流站(必须)及受其影响的变电站高低 压母线(可选)。 3.向干扰源用户供电的母线及出线: ?电气化铁路(必须); ?电弧炉、中频炉、轧机、轨道交通、电动汽车充电站、电焊机、变频调速设备、起重设备、电加热和电解设 备、大型储能电站、大型电梯、变频空调、节能照明、逆变电源、开关试验站等(可选)。

4. 向敏感、重要、高危用户供电的母线及出线: 半导体制造、精密加工,党政机关、医院、交通枢纽、机场、金融、数据中心,危险化学品、易燃易爆品制造等(可选)。 5. 电源接入点: ?10kV及以上风电场、光伏电站等新能源发电专线接 入变电站相关母线及出线(必须), ?其他发电厂(场、站)接入点(可选)。 6. 其他监测点: ?装设FACTS设备(如SVC、STATCOM等)的系统变 电站(换流站)母线及出线(必须)、 ?现场测试中超标较严重或用户投诉较多的变电站母线 及出线等(可选)。

谐波电流及抑制

一.谐波电流 一般来说, 理想的交流电源应是纯正弦波形, 但因现实世界中的输出阻抗及非线性负载的原因, 导致电源波形失真。近年来整流性负载的大量使用, 造成大量的谐波电流, 也间接污染了市电, 产生电压的谐波成份. 另外一些市售的发电机或UPS本身输出电压就非纯正弦波, 甚至有方波的情形, 失真情形更严重, 所含谐波成份占了很大的比。 1.谐波的危害 谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。 2.谐波是怎么产生的 一是发电源质量不高产生谐波: 发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。

二是输配电系统产生谐波: 输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流%。 三是用电设备产生的谐波: 晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。

谐波含量等计算公式

谐拨含量: 借助傅立叶级数分解法求出每周波内各次谐拨含量。 ........ 按公式( 2),计算每周波电压有效值u j。 u j 1 n u i2 n i1 a) 总谐波含量: (u j )2(u j (1) )2 总谐波含量的百分数 =100% ,u j (1)——波形 u j (1) 中的基波含量。 u b)单次谐波含量 = u j ( k)100%,(k 2 ~ 50) j (1) 偏离系数: 求出每周波的基波电压u j (1),并在其周波各采样点上将采样点上,将采样点上采样电压与 其对应点的基波电压进行比较,取其最大偏差值,则偏差系数=u j 100% 。 u j (1) uj ——每周波各采样点上采样电压与其对应点的基波电压之间的最大偏差值 u jp (1)——每周波基波电压的峰值 对数个周波的偏离系数进行比较,取其最大值。 电压调制: 测取稳态时各周波的正负半波连续最大的三点电压采样值,按抛物线插值法求出其峰值,至少采集一秒钟,共采集N 个周波。 按下述规定求取调制参数值: 电压调制参数的测试,应在电压波形的正负半波中进行,取其最大值。 电压调制量为至少一秒钟(N 个周波)同向峰值的最大与最小之差。 电压调制量 = [u jp]max[u jp ] min [ u jp ]max——N周波中同向峰值电压最大值 [ u jp ]min——N周波中同向峰值电压最小值

波峰系数: 每波电压有效值 u ,以同一周波内连续最大的三个电压采样值,按抛物线插值法求出其 ...... 峰值电压 u jp,按公式(6)计算其波峰系数: F u jp , u jp——每周波的峰值电压。u j u 1 m u j2 m j 1 u j 1n u2 n i1i u——平均电压有效值 j ——采样周波数(j 1 ~ m, m100 )u j——每周波电压有效值 i ——每周波采样点数(i 1 ~ n,n50 )u i——每点电压瞬时值

供电系统中的谐波及其抑制

供电系统中的谐波及其抑制 发布者:admin 发布时间:2006-6-27 15:48:56 来自:互联网浏览统计:20 减小字体增大字体一、概述 在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50Hz为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热:使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏:降低继电保护、控制、以及检测装置的工作精度和可靠性等。谐波注入电网后会使无功功率加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。 供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气,电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。 二、谐波产生的原因 在电力的生产,传输、转换和使用的各个环节中都会产生谐波。 在发电环节,当对发电机的结构和接线采取一些措施后,可以认为发电机供给的是具有基波频率的正弦波形的电压。 在其它几个环节中,谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真,此外电网还必须向这类负荷产生的谐波提供额外的电能。

谈IEC 61000系列标准文件对电网谐波国标的指导作用

谈IEC 61000系列标准文件对电网谐波国标的指导作用 作者:佚名文章来源:不详点击数:更新时间:2008-9-24 8:52:52 摘要:国内正在采用IEC 61000系列标准文件,文中针对这套标准文件和电网谐波国标关 系上的一些不同认识和理解,对照EIC 61000-3-6和《电能质量公用电网谐波》(GB/T 14549-1993)进行论述,以期达到提高认识,完善国家标准和正确执行标准的目的。 关键词:电磁兼容谐波国家标准 0概述 从1998年开始,我国发布的电磁兼容(EMC)标准中计有二三十项取自(等同或等效)国 际电工委员会(IEC)近年来颁布的IEC 61000系列标准文件[1]。 众所周知,各种电气设备之间以电磁传导、感应和辐射3种方式彼此关联并相互影响,在一定的条件下会对设备的正常工作和人类造成干扰和危害。20世纪80年代兴起的电磁 兼容学科就是以研究和解决这方面问题为宗旨的。该学科的着眼点是对干扰的产生、传播、接收、抑制机理以及相应的测量、计量技术进行深入的研究,在此基础上,根据经济、技 术最合理的原则,对产生的干扰水平、抗干扰水平,以及抑制措施作出明确的规定,使处 于同一电磁环境的设备都是"兼容"的。也就是说,一个设备(或装置、系统)在其电磁环境 中满意地执行其功能,而又不向该环境中的任何实体引入不能允许的电磁扰动。 EMC的基本任务是协调干扰发射者和承受者之间的关系,使其"兼容"。协调的办法是制定合理且配套的规定值。协调中所涉及的几个参数关系如图1所示。图中横坐标为独立 变量,如频率、电压偏差值、谐波含量、电压波动和闪变值、三相电压不平衡度等。

谐波抑制的方法及其特点

电力系统谐波抑制方法及其特点分析 随着电力电子技术的发展,接入电网的整流、换流设备和其他各种非线性负荷设备日益增加,这些电气设备产生大量的谐波电流注入电网,危及电力设备、用户设备和电力系统的安全运行。必须采取措施,抓紧治理,抑制电力系统谐波,把电网中的谐波含量控制在允许范围之内[1]。 电力系统谐波抑制是改善电能质量、净化电网的一个重要方面。对谐波抑制的方法主要有三种途径:第一种是在谐波源上采取措施,从改进电力电子装置入手,使注入电网的谐波电流减少,也就是最大限度地避免谐波的产生;第二种是在电力电子装置的交流侧利用LC无源滤波器和电力有源滤波器对谐波电流分别提供频域谐波补偿和时域谐波补偿。这类方法属于对已产生的谐波进行有效抑制的方法;第三种就是改善供电环境[2]。 1、降低谐波源的谐波含量 降低谐波源的谐波含量也就是在谐波源上采取措施,最大限度地避免谐波的产生。这种方法比较积极,能够提高电网质量,可大大节省因消除谐波影响而支出的费用,并避免因加装消谐装置而引发的其它负面影响。具体方法有: 1.1 增加换流装置的脉动数 换流装置是电网中的主要谐波源之一,其产生的谐波主要集中在特征谐波,非特征谐波含量通常很少,特征频谱为:n=kp士1,则可知脉动数p增加,n也相应增大,而工n、工l/n,故谐波电流将减少。因此,增加整流脉动数,可平滑波形,减少谐波。例如:当脉动数由6增加到12时,可有效的消除幅值较大的低频项,从而使谐波电流的有效值大大降低。 1.2 利用脉宽调制(PWM)技术 PWM技术,就是在所需的频率周期内,通过半导体器件的导通和关断把直流电压调制成等幅不等宽的系列交流电压脉冲,可达到抑制谐波的目的。若要消除某次特定谐波,可在控制PWM输出波形的各个转换时刻,保证四分之一波形的对称性,根据输出波形的傅里叶级数展开式,使需要消除的谐波幅值为零,基波幅值为给定量,组成非线性超越方程组计算各个开关通断时刻,达到消除指定谐波和控制基波幅值的目的。PwM技术的优点是在载波频率高时,输出中所含低次谐波分量很小,从而提供了功率因数。目前被采用的PWM技术有最优脉宽调制(OPWM)、改进正弦脉宽调制、△调制、跟踪型PWM和自适应PWM控制等。 1.3 三相整流变压器采用Y,d(Y/△)或D,y(△/Y)的接线方式 这种接线方式可抑制3的倍数次的高次谐波,也可作为隔离变压器使用。以△/Y形接线方式为例:当高次谐波电流从晶闸管反串到变压器副边绕组内时,其中3的倍数次高次谐波电流无路可通,所以自然就被抑制而不存在。但将导致铁心内出现3的倍数次高次谐波磁通(三相相位一致),而该磁通将在变压器原边绕组内产生3的倍数次高次谐波电动势,从而产生3的倍数次的高次谐波电流。因为它们相位一致,只能在三角形绕组内产生环流,将能量消耗在绕组的电阻中,故原边绕组端子上不会出现3的倍数次的高次谐波电动势,不致使谐波注入公共电网。作为隔离变压器使用时,可使3N次谐波电流与配电系统相隔离。这种接线形式的优点是可以自然消除3的整数倍次的谐波。 1.4 采用多电平变流技术 也称整流电路的多重化,即将多个方波叠加,以消除次数较低的谐波,从而

谐波电流计算公式是什么

谐波电流计算公式是什么? 谐波含量计算: 测试时最好测出设备较长时期运行时最大的谐波电流,其和产生谐波电流的负载投入有关,若产生谐波电流的负载全部投入,测试的数据是比较准的。 A、咨询现场工程人员,此时产生谐波的负载是否全部满负荷运行,产生谐波的负载就是非线性负载,变频器,整流设备,中频炉等。测试时现场工程人员应该知道同类的非线性负载投入了多少,所以一定问清楚,自己也可以通过配电盘看一下同类的设备投入了多少,最终目的就是能够知道我们此次测试的谐波电流含量是否为其真正的谐波含量,否则按比例推算。譬如我们测试时同类设备只有一半运行,毫无疑问我们的测试报告要对其进行说明,并且推算出其真实的谐波含量应该乘以2。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大谐波含量,如下图: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其THDA (平均畸变率)为9.4%,Arms为1.119KA,那么其计算的谐波含量为105.186A,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大谐波含量,那么选取1台100A的设备即可满足谐波补偿要求。 无功功率补偿计算: A、咨询现场工程人员,或者调用其原始功率因数数据,因为功率因数是考核指标,主要咨询两个问题,一是功率因数长期基本上是多少,二是在此功率因数时长期负载电流I多大,通过公式计算出P的值,然后计算出需要补偿的无功功率,无功功率计算公式为,——对应cosφ前的正切值,——对应cosφ后的正切值。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大无功补偿量,如下图所示: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其平均功率为P=140KW,补偿前功率因数cosφ前=0.554,若补偿后要求功率因数不低于cosφ后=0.90,那么根据公式其计算的无功补偿容量为142.66KVAR,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大无功补偿容量,那么选取3台100A的设备即可满足谐波补偿要求。

电力谐波的产生原因及其抑制方法

电力谐波的产生原因及其抑制方法 随着工业的快速发展,在电力系统中,非线性负荷大量增加。这样的非线性负荷在电网中产生的干扰越来越严重,也越来越复杂化,使得电网的供电质量越来越差,对同一电网的其他用电设备和小型用户的影响越来越大。在电力系统中,谐波污染与电磁干扰、功率因数降低成为了三大公害。 一、谐波产生的原因 谐波是指一个电气量的正弦波分量.其频率为基波频率的整数倍,不同频率的谐波对不同的电气设备会有不同的影响。谐波主要由谐波电流源产生,当正弦波(基波)电压施加到非线性负载上时,负载吸收的电流与其上施加的电压波形不一至,其电流发生了畸变。由于负载与整个网络相连接,这样畸变电流就可以流人到电网中,这样的负载就成了电力系统中的谐波源。 二、谐波源的种类 在电力系统中产生谐波的主要谐波源有两种。 1.含有半导体等非线性电气元件的用电设备。比如工业中常见的各种整流电气装置、大容量变频器、大型交直流变换装置以及其他的电力、电子装置。 2.含有电弧和铁磁材料等的非线性材料的用电设备,比如电弧炉、变压器、发电机组等电气设备。 三、谐波的危害 1.使供电线路和用电设备的热损耗增加。 (1) 谐波对线路的影响 对供电线路来说,由于集肤效应和邻近效应,线路电阻随着频率的增加会很快增加,在线路中会有很大的电能浪费。另外,在电力系统中,由于中性线电流都很小,所以其线径一般都很细,当大量的谐波电流流过中性线时,会在其上产生大量的热量,不仅会破坏绝缘,严重时还会造成短路,甚至引起火灾。 而当谐波频率与网络谐振频率相近或相同时,会在线路中产生很高的谐振电压。严重时会使电力系统或用电设备的绝缘击穿,造成恶性事故。 (2) 对电力变压器的影响 谐波电琏的存在增加了电力变压器的磁滞损耗、涡流损耗及铜损,对带有不对称负荷的变压器来说,会大大增加励磁电流的谐波分量。 (3)对电力电容器的影响 由于电容器对谐波的阻抗很小,谐波电流叠加到基波电流上,会使电力电容器中流过的电流有很大的增加,使电力电容器的温升增高,引起电容器过负荷甚至爆炸。同时,谐波还可能与电容器一起在电网中形成谐振,并又施加到电网中。 (4)对电机的影响 谐波会使电机的附加损耗增加,也会产生机械震动,产生甚至引起谐波过电压.使得电机绝缘损坏。 2.对继电保护和自动装置的影响 对于电磁式继电器来说,电力谐波常会引起继电保护以及自动装置的误动作或拒动,造成整个保护系统的可靠性降低.容易引起系统故障或使系统故障扩大。 3.对通信线路产生干扰。 在电力线路上流过幅度较大的奇次低频谐波电流时,通过电磁耦合,会在邻近电力线路

谐波的基础知识谐波谐波的种类及谐波频率计算

谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 ———谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 本文介绍谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率如何计算,哪些设备或电路容 易产生谐波,谐波的影响是什么 1 谐波的基础知识 2 (1)什么是基波? 3 电力网络中呈周期性变化的电压或电流的频率即为基波(又称一次波),我国电网规定频率是50 Hz 4 基波是50 Hz。 5 (2)什么是谐波? 6 电力网络中除基波(50 Hz)外,任一周期性的电压或电流信号,其频率高于基波(50 Hz)的,称为 7 电网或电路中,电压产生的谐波为电压谐波; 8 电流产生的谐波为电流谐波。 9 (3)谐波有几种? 10 整数谐波:指频率为整数(跃1)倍基波频率的谐波,即2、3、4、5、6、7、8、9、10 等次谐波 11 偶次谐波:指频率为圆、源、6、8、10 等偶数倍基波频率的谐波。 12 奇次谐波:指频率为3、5、7、9、11 等奇数倍基波频率的谐波。 13 正序谐波:谐波次数为3k+1(k 为正整数)即4、7、10等次谐波。 14 负序谐波:谐波次数为3k-1(k 为正整数)即2、5、8等次谐波。 15 零序谐波:指频率为3的整数倍基波频率的谐波,例如3、6、9、12、15 次谐次。 16 高频谐波:指频率为圆耀怨kHz的谐波。 17 (4)谐波频率如何计算? 18 谐波频率越谐波次数伊基波频率例:缘次谐波频率为缘伊缘园Hz越圆缘园Hz,苑次谐波频率为7伊越猿 19 缘园Hz等。 20 (5)哪些设备或电路容易产生谐波? 21 1)非线性负载,例二极管整流电路(AC/DC)。 22 2)三相电压或电流不对称性负载。 23 3)逆变电路(DC/AC)。 24 4)UPS 电源(PC 机用),EPS 电源(大功率动力用),即不间断电源。

电能公式和电能质量计算公式da全

电能公式和电能质量计算公式大全 电能公式 电能公式有W=Pt,W=UIt,(电能=电功率x时间) 有时也可用W=U^2t/R=I^2Rt 1度=1千瓦时=3.6*10^6焦P:电功率 W:电功 U:电压 I:电流 R:电阻 T:时间 电能质量计算公式大全 1.瞬时有效值: 刷新时间1s。

(1)分相电压、电流、频率的有效值 获得电压有效值的基本测量时间窗口应为10周波。 ①电压计算公式: 相电压有效值,式中的是电压离散采样的序列值(为A、B、C相)。 ②电流计算公式: 相电流有效值,式中的是电流离散采样的序列值(为A、B、C相)。 ③频率计算: 测量电网基波频率,每次取1s、3s或10s间隔内计到得整数周期与整数周期累计时间之比(和1s、3s或10s时钟重叠的单个周期应丢弃)。测量时间间隔不能重叠,每1s、3s或10s间隔应在1s、3s或10s时钟开始时计。 (2)有功功率、无功功率、视在功率(分相及合相)

有功功率:功率在一个周期内的平均值叫做有功功率,它是指在电路中电阻部分所消耗的功率,以字母P表示,单位瓦特(W)。 计算公式: 相平均有功功率记为,式中和分别是电压电流离散采样的序列值(为A、B、C相)。 多相电路中的有功功率:各单相电路中有功功率之和。 相视在功率 单相电路的视在功率:电压有效值与电流有效值的乘积,单位伏安(VA)或千伏安(kVA)。 多相电路中的视在功率:各单相电路中视在功率之和。 相功率因数 电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S

电能质量及谐波标准

电能质量及谐波标准 内容提纲 1.电能质量基本概念 2.电能质量的影响 3.电能质量国家标准综述 4.电能质量国家标准摘要 5.电能质量国外标准简介 6.谐波国家标准基本内容 7.国外谐波标准介绍 1 电能质量的基本概念 (1)电力系统概况:结构、有功和无功平衡,各种干扰(2)电能质量——关系到电气设备工作(运行)的供电电压指标。(3)电能质量指标:电压偏差、频率偏差、谐波、电压波动和闪变、三相电压不平衡度、暂时过电压和瞬态过电压、电压暂降、波形缺口、…… (4)电能质量指标特点: a. 空间上、时间上不断变化

b. 需要供、用电双方共同合作维护 (5)电能质量问题的由来 ? 随电力工业诞生而存在的一个传统问题; ? 现代用电负荷结构发生了质的变化。电力电子技术广泛应用,家用电器普及,炼钢电弧炉和轧机的发展等,由于其非线性、冲击性以及不平衡的用电特性引起电能质量的恶化。 ? 计算机的普及、IT产业的发展、微电子控制技术应用导致对电能质量要求越来越高。 例如:一个计算中心失电2s就可能破坏几十个小时数据处理结果,导致几十万美元产值损失; 1~2周波供电电压暂降,就可能破坏半导体生产线,导致上百万美元损失。 据统计美国因电能质量问题造成的损失每年高达260亿美元。 2005年由国际铜业协会(中国)的一次“中国电能质量行业现状与用户行为调研报告”中,调查了32个行业,共92个企业中有49个企业,因电能质量问题,在经济上损失2.5~3.5亿元(人民币),每个企业年经济损失约10万~100万(人民币)(其中有四家年损失1000万元以上)。(6)关于电能质量的定义 Power Quality——电能质量(电源质量、电力质量、电力品质) ? 导致用户设备故障或不能正常工作的电压、电流或频率偏差。

谐波电流抑制

发电厂电气论文 关于谐波的电流和抑制技术 姓名:赵根 学号:2012441952 专业班级:电自12-4 指导老师:张海燕 2015.5.13

谐波电流和抑制技术 摘要:谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。从广义上讲,由于交流电网有效分量为工频单一频率,因此任何与工频频率不同的成分都可以称之为谐波,这时“谐波”这个词的意义已经变得与原意有些不符。正是因为广义的谐波概念,才有了“分数谐波”、“间谐波”、“次谐波”等等说法。谐波产生的原因主要有:由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。主要非线性负载有UPS 、开关电源、整流器、变频器等 关键词:谐波电流 抑制技术 一. 谐波电流产生的原因: 对于阻性负载、感性负载或容性负载以及它们的线性组合而成的网络其电流可用式(1)表示。 )(φω±?=t SIN I i (1) 这类负载的电流波形仍为正弦波,其谐波电流应为零。现在我们正广泛使用的一些具有整流电路的电子产品如彩色电视机、显示器、微机等产品的电流波形却与之不同。这类用电器具的电压和电流之间的关系更为复杂,图 (一)所示是这类电路典型的电压电流波形图。 其电流仅在线电压达到峰值前后的一段时间内不为零,在其它时间则电 流为零。这种电流波形往往符合标准GB17625.1中的D 类波形,由于其是周期与电源周期相同的电流脉冲,因而具有丰富的谐波分量。 电源电路会引起这种电流波形的必要因素有二个:一是要有整流电路,二是整流后有大的滤波电容。整流电路中的二极管起着开关作用,当电源电压大于滤波电容两端的电压时,二极管导通,供电电源对电容充电并提供负载电流,其余时间二极管截止,负载依靠电容的贮能供电,表现在供电电源一侧的电流为零。如图(二)所示为一个简单的能产生D 类波形的电路。峰值电流的大小与滤波电容和负载的大小有关。 实际上,图(二)所示的整流方法使得用电器具仅在电源瞬时电压处于峰值附近,电源瞬时电压超过电容两端电压时才从电网汲取电流,这就形成了在电源电压峰值附近,与电压周期相同的高峰值充电电流脉冲。这种电源电路在电网中引起了较高的电流谐波,并使得功率因数降低。功率因素通常在0.5左右,这样视在功率比实际功率大得多。 图(一):整流电路的电压、电流波形

谐波含量等计算公式

谐拨含量: 借助傅立叶级数分解法........ 求出每周波内各次谐拨含量。 按公式(2),计算每周波电压有效值j u 。 ∑== n i i j u n u 121 a) 总谐波含量: 总谐波含量的百分数= %100)()()1(2)1(2?-j j j u u u ,)1(j u ——波形中的基波含量。 b) 单次谐波含量=)50~2(%,100)1() (=?k u u j k j 偏离系数: 求出每周波的基波电压)1(j u ,并在其周波各采样点上将采样点上,将采样点上采样电压与其对应点的基波电压进行比较,取其最大偏差值,则偏差系数=%100)1(??j j u u 。 uj ?——每周波各采样点上采样电压与其对应点的基波电压之间的最大偏差值 )1(jp u ——每周波基波电压的峰值 对数个周波的偏离系数进行比较,取其最大值。 电压调制: 测取稳态时各周波的正负半波连续最大的三点电压采样值,按抛物线 插值法求出其峰值,至少采集一秒钟,共采集N 个周波。 按下述规定求取调制参数值: 电压调制参数的测试,应在电压波形的正负半波中进行,取其最大值。 电压调制量为至少一秒钟(N 个周波)同向峰值的最大与最小之差。 电压调制量=min max ][][jp jp u u - max ][jp u ——N 周波中同向峰值电压最大值 min ][jp u ——N 周波中同向峰值电压最小值

波峰系数: 每波电压有效值u ,以同一周波内连续最大的三个电压采样值,按抛物线插值法......求出其峰值电压jp u ,按公式(6)计算其波峰系数:j jp u u F = ,jp u ——每周波的峰值电压。 ∑==m j j u m u 1 21 ∑==n i i j u n u 1 21 u ——平均电压有效值 j ——采样周波数(100,~1≥=m m j ) j u ——每周波电压有效值 i ——每周波采样点数(50,~1≥=n n i ) i u ——每点电压瞬时值

公用电网谐波GB/T1454993《电能质量公用电网谐波》

国标GB/T14549-93《电能质量公用电网谐波》简介 谐波国家标准是电力工业部(原能源部)根据国家标准局下达的任务而负责制订的。从1985年起,起草工作组做了大量课题论证工作,同时学习国外的先进经验和联系国内实际,完成了标准的制订,并已于1994年3月起实施。基于谐波对电容器的影响,实施谐波国标对保证电容器的安全运行有重要意义,为使应用部门对标准有进一步的了解,下面对谐波国标的起草及其依据作一介绍。 1 制订谐波国标的目的 随着我国经济的发展,现代工业、交通等行业使用的各种换流设备的数量越来越多、其容量亦越来越大,加上电弧炉、家用电器等非线性用电设备接入电网,将其产生的谐波电流注入电网,使公用电网的电压波形发生畸变。电能质量下降,同时威胁电网和包括电容器在内的各种电气设备的安全经济运行。因此,把公用电网的谐波量控制在允许范围内,以保证电能质量,防止谐波对电网和用户的电气设备、各种用电器具造成危害,保持其安全经济运行,并获得良好的社会效益。乃是制订谐波国标的目的。 2 制订谐波国标的基本原则 2.1 把电网中的电压总谐波畸变率及各次谐波含有率控制在允许的范围内,保证供电质量,使接入电网中用户的各种用电器具免受谐波的危害,保持正常工作。 2.2 限制谐波注入电网的谐波电流及其在电网中产生的谐波电压,防止其对电网发供电设备的干扰,保证电网的安全经济运行。 2.3 在总结现有经验的基础上,结合我国情况,提出有科学依据和向国际先进标准靠拢的规定,有其科学性、实用性和先进性。 3 适用范围 适用于交流频率为50Hz的标称电压110kV及以下公用电网,及其供电的电力用户。对220kV电网及其供电的电力用户,可参照110kV执行。主要原因有: (1)220kV电网的谐波电压直接受330kV或500kV电网谐波电压的影响。目前国内外都还没有经验,也没有明确的规定。 (2)220kV电网的输电线路的充电功率较大(每100km约25MVA),而输电潮流是变化的,控制220kV电网的谐波还没有成熟的经验。在某些情况下,还难以避免对低次谐波(例如3、5次)的放大。 (3)直接用220kV电压供电的用户数很少。 (4)目前许多220kV电网使用的电容式电压互感器(CVT)测量谐波电压的误差很大,在没有适当的频率误差补偿时,用于谐波电压的测量,没有实际意义。 4 制订谐波国标过程中研究和论证的主要课题 制订谐波国标过程中研究和论证的主要课题有: ①研究国外有关限制电网谐波的标准;

三相桥式整流电路中谐波电流的计算新方法

三相桥式整流电路中谐波电流的计算新方法 李槐树李朗如 摘要提出了一种实用的新方法来计算三相桥式整流器所产生的谐波电流。本方法考虑了交流侧电抗及电网中存在的谐波电压,导出了交直流两侧谐波电流的计算公式。计算与实测结果表明,本方法准确实用。 关键词:三相桥式整流器波形畸变谐波电流谐波电压计算 A New Method to Calculate Harmonic Currents in A Three-Phase Bridge Rectifier Li Huaishu Li Langru (Huazhong University of Science and Technology 430074 China) Abstract This paper presents a new method to calculate the harmonic currents on both DC and AC sides in a three-phase bridge rectifier operating under pre-existing voltage distortion.The proposed method,which takes into account the AC side reactances and harmonic voltages already existing in AC network,gives out the calculating equations of DC and AC sides harmonic currents.Some practical rectifier circuits are calculated and carefully tested.The calculated results show that the proposed method is more accurate and more practical. Keywords:Three-phase bridge rectifier Voltage distortion Harmonic current Harmonic voltage Calculation 1 引言 电力系统中三相桥式整流器的使用极为广泛,由此引起的谐波电流也成了人们日益关注的问题。安置滤波器是减小谐波电流的有效措施,然而多数滤波器的设计要求对整流器所产生的谐波电流进行计算。计算结果愈准确,所设计的滤波器的效果也就愈佳。 通过对整流电路的分析而精确地计算谐波电流往往比较困难,时间仿真有时可以获得较为准确的结果,但需要复杂的仿真程序。所以在一定的假设条件下,近似地估算谐波电流成了工程技术人员普遍采用的方法。文献[3]对几种近似方法所产生的误差作了比较性研究,文献[4,5]中所提出的近似方法,提高了计算的准确性,但仅与仿真结果作了比较。而且各种近似方法均假设交流电网中的电压波形为标准正弦的。然而实际电网中,由于非线性负载的大量使用,会含有不可忽视的高次谐波电压。 本文对接入电压波形畸变的电网中的三相桥式整流电路进行了分析,提出了一近似方法来计算其交直流两侧的谐波电流。对实际整流电路在接入电压波形畸变率不同的电网时所产生的谐波电流进行了计算,

UPS输入谐波电流抑制四种方案比较

大功率UPS输入谐波电流抑制四种方案比较 对大功率UPS来说,如果UPS整流装置为三相全控桥6脉整流器,由整流装置产生的谐波占所有谐波的近25-33%,对电网的危害较大,谐波有可造成配电线缆、变压器发热,降低通话质量,空气开关误动作,发电机喘振等不良后果;谐波按电流相序分为+序(3k+1次,k为0和正整数)、-序(3k+2次,k为0和正整数)、0序(3k次,k为正整数),+序电流使损耗加重,-序电流使电机反转、发热,0序电流使中线电流异常增大。 目前大型UPS输入谐波电流抑制共有4种方案 方案1.采用6脉冲UPS+有源谐波滤波器,输入电流谐波<5%(额定负载),输入功率因数0.95。这种配置,虽然输入指标非常好,但是技术仍不成熟,存在误补偿、过补偿等问题,导致主输入开关误跳闸或损坏等现象;THM有源谐波滤波器技术缺陷为: a)、存在"误补偿"问题:由于它的补偿响应时间长达40ms以上,存在"误补偿"隐患。当在输入电源上、执行切除/投入操作 或在UPS的输入上游侧、作大负载的切除/投入操作时,易产生”误补偿”。轻者,造成UPS的输入谐波电流”突变”。严重时,会导致UPS的输入开关"误跳闸"。 b)、可靠性偏低:对于6脉冲+有源滤波器的UPS來说,由于在它的有源滤波器中、使用IGBT管作为它的整流器和变换器的 功率驱动管, 其故障率偏高。相反,对于12脉冲+无源滤波器的UPS來说,在它的滤波器中、使用的是可靠性很高的电感和电容。 c)、降低系统效率,增加运行成本:有源滤波器的系统效率为:93%左右。对于400KVA UPS并机而言,在满载及按33%的 输入谐波电流进行补偿的条件下,如果按毎KW*hr= 0.8元付电费的话,在1年內所需支付的运行费用为: 400KVA*0.07/3=9.3KVA; 一年的耗电量为65407KW.Hr, 需要增加的电费开支为:261398元=5.2万元。

EMC电源谐波整改

LED电源总谐波失真(THD)分析及对策 1.总谐波失真 THD 与功率因数 PF 的关系 市面上很多的 LED 驱动电源,其输入电路采用简单的桥式整流器和电解电容器的整流滤波电路,见图 1. 图1 该电路只有在输入交流电压的峰值附近,整流二极管才出现导通,因此其导通角θ比较小,大约为 60°左右,致使输入电流波形为尖状脉冲,脉宽约为 3ms,是半个周期(10ms)的 1/3.输入电压及电流波形如图 2 所示。由此可见,造成 LED 电源输入电流畸变的根本原因是使用了直流滤波电解电容器的容性负载所致。 图2 对于 LED 驱动电源输入电流产生畸变的非正弦波,须用傅里叶(Fourier)级数描

述。根据傅里叶变换原理,瞬时输入电流可表为: 式中,n 是谐波次数,傅里叶系数 an 和 bn 分别表为: 每一个电流谐波,通常会有一个正弦或余弦周期,n 次谐波电流有效值 In 可用下式计算: 输入总电流有效值 上式根号中,I1 为基波电流有效值,其余的 I2,3,分别代表 2,3,… n 次谐波电流有效值。用基波电流百分比表示的电流总谐波含量叫总谐波失真(THD) ,总谐波含量反映了波形的畸变特性,因此也叫总谐波畸变率。定义为 根据功率因数 PF 的定义,功率因数 PF 是指交流输入的有功功率 P 与输入视在功率 S 之比值,即

其中,为输入电源电压; U cosΦ1 叫相移因数,它反映了基波电流 i1 与电压 u 的相位关系,Φ1 是基波相移角;输入基波电流有效值 I1 与输入总电流有效值Irms 的百分比即 K=I1 / Irms 叫输入电流失真系数。上式表明,在 LED 驱动电源等非线性的开关电源电路中,功率因数 PF 不仅与基波电流 i1 电压 u 之间的相位有关,而且还与输入电流失真系数 K 有关。将式(6)代入式(7) ,则功率因数 PF 与总谐波失真 THD 有如下关系: 上式说明,在相移因数 cosΦ1 不变时,降低总谐波失真 THD,可以提高功率因数 PF;反之也能说明, PF 越高则 THD 越小。例如,通过计算,当相移角Φ1=0 时,THD=30% @ PF=0.9578;THD=10% @ PF=0.9950. 2.谐波测量与分析 为了很好地分析如图 1 所示的 LED 驱动电源的谐波含量,介绍一种使用示波器测量输入电流的方法。先在电源输入回路串接一个 10-20W 或以上的大功率电阻如 R=10 OHM,通电后测量大功率电阻上两端的电压波形,由于纯功率电阻上两端的电压与电流始终是同相位,因此电阻上的脉冲电压波形亦即代表了输入电流的脉冲波形,但数值大小不同。由波形显示可知,其脉冲电流 i(t)与图 2 的电流波形是一致的,见图3. 图3 此电流脉冲波近似于余弦脉冲波,因此可用余弦脉冲函数表为:

电机常用计算公式和说明

电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 极对数与扭矩的关系 n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数 1对极对数电机转速:3000转/分;2对极对数电机转速:60×50/2=1500转/分在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭距。 异步电机的转速n=(60f/p)×(1-s),主要与频率和极数有关。 直流电机的转速与极数无关,他的转速主要与电枢的电压、磁通量、及电机的结构有关。n=(电机电压-电枢电流*电枢电阻)/(电机结构常数*磁通)。 扭矩公式 T=9550*P输出功率/N转速 导线电阻计算公式: 铜线的电阻率ρ=0.0172, R=ρ×L/S (L=导线长度,单位:米,S=导线截面,单位:m㎡) 磁通量的计算公式: B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N × Ae)B=F/IL u磁导率 pi=3.14 B=uI/2R 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 感应电动势 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 磁通量变化率=磁通量变化量/时间磁通量变化量=变化后的磁通量-变化前的磁通量 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

相关主题
文本预览
相关文档 最新文档