当前位置:文档之家› 煤粉特性及自燃爆炸的条件

煤粉特性及自燃爆炸的条件

煤粉特性及自燃爆炸的条件
煤粉特性及自燃爆炸的条件

1煤粉特性及自燃爆炸的条件

煤粉发生自燃和爆炸是由于煤的特性在加工成煤粉后所具有的特性以及煤粉所处的环境条件所决定的。

1.1煤粉的流动性

它的尺寸一般为0~50微米,其中20~50微米的颗粒占多数。干的煤粉能吸附大量的空气,它的流动性很好,就像流体一样很轻易在管道内输送。由于干的煤粉流动性很好,它可以流过很小的空隙。因此,制粉系统的严密性要好。

1.2煤粉的自燃与爆炸

积存的煤粉与空气中的氧长期接触氧化时,会发热使温度升高,而温度的升高又会加剧煤粉的进一步氧化,若散热不良时会使氧化过程不断加剧,最后使温度达到煤的燃点而引起煤粉的自燃。在制粉系统中,煤粉是由输送煤粉的气体和煤粉混合成的云雾状的混合物,它一旦碰到火花就会使火源扩大而产生较大的压力(2~3倍大气压),从而造成煤粉的爆炸。

影响煤粉爆炸的因素很多,如挥发分含量,煤粉细度,气粉混合物的浓度,温度湿度和输送煤粉的气体中氧的成分比例等。

一般说来挥发分含量VR<10%(无烟煤),是没有爆炸危险的。而VR>25%的煤粉(如烟煤等),很轻易自燃,爆炸的可能性也很大。

煤粉越细越轻易自燃和爆炸,粗煤粉爆炸的可能性较小。例如烟煤粒度大于

0.1毫米几乎不会爆炸。因此,挥发分大的煤不能磨得过细。

煤粉浓度是影响煤粉爆炸的重要因素。实践证实,最危险得浓度在

1.2~

2.0kg/m3,大于或小于该浓度时爆炸的可能性都会减小。在实际运行中一般是很难避免危险浓度的。制粉设备中沉积煤粉的自燃性往往是引爆的火源。气

粉混合物温度越高,危险性就越大。煤粉爆炸的实质是一个强烈的燃烧过程,是在

0.01~

0.15s的瞬间大量煤粉忽然燃烧产生大量高温烟气因急速膨胀而形成的压力波以及高速向外传播而产生的很大的冲击力和声音。

潮湿煤粉的爆炸性较小,对于褐煤和烟煤,当煤粉水分稍大于固有水分时一般没有爆炸危险。

2制粉系统爆炸原因分析

引爆点主要在轻易长期积煤或积粉的位置,制粉系统处于封闭状态,引爆的火源主要是磨煤机入口积煤,细粉分离器水平段入口管积粉,粗粉分离器积粉自燃,根据制粉系统的运行工况和爆炸情况分析,主要原因如下。

2.1煤粉细度,风粉浓度及燃煤成分

煤粉爆炸的前期往往是自燃。一定浓度的风粉气流吹向自燃点时。不仅加剧了自燃,而且会引起燃烧,而接触到明火的风粉气流随时都会产生爆炸。造成流动煤粉爆炸的主要原因是风粉气流中的含氧量,煤粉细度,风粉混合物的浓度和温度。

煤粉越细,爆炸的危险性就越大。粗煤粉爆炸的可能性就小些,当煤粉粒度大于

0.1mm时几乎不会爆炸。当煤粉浓度大于3~4kg/m3

(空气)或小于

0.32-

0.47kg/m3

时不轻易引起爆炸。因为煤粉浓度太高,氧浓度太小;而煤粉浓度太低,缺少可燃物。只有煤粉浓度为

1.2~

2.0kg/m3

时最轻易发生爆炸。而佳木斯发电厂制粉浓度在

0.3~

0.6kg/m3

范围内变动,因此发生制粉系统爆炸的可能性较大。

一般挥发份VR>25%,发热量高的煤粉爆炸的可能性就大,而佳木斯发电厂的煤源中,有相当一部分为长焰煤,设计煤种的挥发份为

42.6%,所以轻易发生爆炸。

2.2磨煤机xx积煤自燃

磨煤机处积煤发生在入口上部管道上,热风管道接口处以及空心轴颈斜管上,有的进入入口防爆门处,在此处开有三个孔分别与回粉管,再循环管和防爆门连接。从一侧过来的热风与对应的风粉形成涡流,从给煤机落下来的湿煤就被冲击并被粘在开孔上方管道的内壁上,防爆门处或粘在空心轴斜管上,有时也会落入热风接口管内。运行中人工无法清除此处的积煤,同时从预热器来的一次风温高达300℃以上,在制粉系统停止运行后,由于磨煤机入口风门不严,漏过的热风使磨煤机入口处温度达100℃以上,很轻易将入口处的积煤引燃,燃烧的煤进入磨煤机就会引起爆炸。另外有的磨煤机入口不光滑,有的存在夹层,也轻易积煤着火。

2.3细粉分离器处积粉自燃

细粉分离器中积粉主要发生在入口方形管道下部的水平段,因为水平段正上方有两个防爆门,因而使该处的通流面积增大,风粉气流的流速下降,增大了积粉的可能性。从历来发生的制粉系统爆炸事故中可以看出,半数以上都是由水平段积粉引起的。

2.4热风门内漏

由于近年来四台炉启停调峰过于频繁,制粉系统启停也过于频繁,故热风门磨损较为严重。有时热风门只能关至30~40%,以致大量热风内漏造成磨煤机内存煤自燃,再次启动时引起制粉系统爆炸。

2.5再循环风门处积粉自燃

乏气中较细的煤粉,轻易积存在排粉机出口的再循环风门处。由于此系统不经常使用,在制粉系统停运时,从磨煤机热风门漏过的热风经再循环门流向排粉机会引起该处积粉自燃。燃烧的焦块掉入排粉机或磨煤机内,就会引起爆炸。

2.6粉仓漏风和系统漏风

煤粉仓时钢板焊接的倒方锥体结构。因季节和制粉系统内介质温度变化的影响,粉仓钢板伸缩性大,与厂房混凝土框架的结合面存在漏风问题,致使粉仓经常出现温度高现象(200℃~300℃)。

2.7粗粉分离器内堆积煤粉自燃

粗粉分离器的细粉内锥体下部和固定帽锥之间的环形缝隙有时被杂物堵塞而造成大量的积粉,此类原因引起的制粉系统爆炸也有多次。

2.8防爆门设计不合理

由于老式防爆门面积小,结构设计不合理,当制粉系统爆炸后,不利于爆炸气流的导出,有的开口方向朝向近距离电缆,有时易导致事故扩大或造成设备的严重损坏和人身伤亡。

2.9运行人员操作不当

制粉系统运行过程中运行人员控制磨煤机出口风粉混合物的温度不严,频繁超温。磨煤机的运行过程属于变工况运行,此时若出口温度控制不当,很轻易使温度超过极限而导致煤粉爆炸。

制粉系统运行时残存的煤粉假如没有抽净就会发生缓慢氧化,在启动通风时会使自燃的煤粉疏松和扬起,温度适当时便会引发爆炸。

运行中的磨煤机入口已发生积粉自燃,停止前又没有及时发现,停止给煤机的抽粉过程中回粉管继续抽粉,使煤粉磨得更细,加上温度控制不当,也可以引起爆炸。

运行人员应该针对以上原因采取相应措施,切实引起重视,防患于未然。

生物质燃料的燃烧特性

生物质燃料的燃烧特性 目前,生物质最主要的利用方式就是生物质燃烧。研究生物质燃料的组成成分,了解其燃烧特点,有利于进一步科学、合理地开发利用生物质能。从刘建禹、翟国勋等[20]对生物质燃料特性的研究可以发现,生物质燃料与化石燃料相比存在明显的差异。从化学的角度上看,生物质属于碳氢化合物,含固定碳少。生物质燃料中含碳量最高的也仅50%左右,相当于褐煤中的含碳量。因此,生物质燃料不抗烧,热值较低;若生物质燃料中含氢量变多,挥发分就明显增多。生物质燃料中的碳元素多数和氢元素结合成小分子的碳氢化合物,燃烧需要长时间的干燥,在一定的温度下热分解而析出挥发物。所以,生物质燃料易被引燃,燃烧初期,烟气量较大;生物质燃料含氧量明显地多于煤炭,它使得生物质燃料热值低,但易于引燃;生物质燃料的密度小于煤炭,其质地较疏松,特别是农作物秸杆和一些粪类,因此生物质燃料易于燃烧和燃尽,但其热值较低,发热量小,灰烬中残留的焦碳量少于燃烧煤炭;生物质燃烧排放烟气中硫氧化物和氮氧化物含量较少,故对环境的污染将小于燃烧煤炭等化石燃料,燃烧时无需设置控制气体污染装置,从而降低了成本,这也是生物质优于化石燃料的一方面[22]。生物质燃料的燃烧过程主要分为挥发份的燃烧和残余焦炭的燃。 本文有宇龙机械整理。 4 烧,其主要燃烧过程的特点是[23]: (1)生物质水分含量较多,燃烧需要较长时间的干燥,产生的烟气量较大,排烟造成热损失较高; (2)生物质燃料的密度较小,结构比较疏松,燃烧时受风面积大,较易造成悬浮燃烧,容易产生一些黑絮; (3)由于生物质热值低,发热量小,在锅炉内比较难以稳定的燃 烧; (4) 由于生物质挥发份含量高,燃料着火温度较低,一般在250℃ ~350℃温度下挥发份就大量析出并开始剧烈燃烧,此时若空气供应量不足,将会增大燃料的化学不完全燃烧损失; (5)挥发份析出燃尽后,受到灰烬包裹和空气渗透困难的影响,焦炭颗粒燃烧速度缓慢、燃尽困难,如不采取适当的必要措施,将会导致灰烬中残留较多的余碳,增大机械不完全燃烧损失。 生物质燃烧利用现状 涂装生物质燃烧机第一品牌-淳元将陆续为你带来行业新资讯。 生物质是全球应用最广泛的可再生能源,自从远古时代人类开始使用这种能源。人们主要是将生物质进行燃烧,其产生的热能可以用于做饭,取暖等日常生活;或者将生物质进行厌氧发酵生产沼气,也可以用来替代生物质能源,尤其是在发展中国家[20]。我国是一个发展中的农业大国 ,生物质资源十分丰富,每年农作物秸秆产量达几亿吨。生物质是唯一可转化成可替代常规液态石油燃料和其他化学品的烧,其主要燃过程的特点是[23]:(1)生物质水分含量较多,燃烧需要较长时间的干燥,产生的烟气量较大,排烟造成热损

各种橡胶的性能

各种橡胶的性能 橡胶材质材质说明优缺点经常用途 丁睛胶NBR (Nitrile Rubber)由丙烯睛与丁二烯共聚合而成, 丙烯睛含量由 18%~50% ,丙烯 睛含量愈高,对石化油品碳氢燃 料油之抵抗性愈好,但低温性能 则变差,一般使用温度范围为 -25~100 ℃。丁睛胶为目前油封 及 O 型圈最常用之橡胶之一。 优点: 具良好的抗油、抗水、抗溶剂及 抗高压油的特性。 具良好的压缩歪,抗磨及伸长 力。 缺点: 不适合用于极性溶剂之中,例如 酮类、臭氧、硝基烃, MEK 和 氯仿。 用于制作燃油箱、润滑油箱以及 在石油系液压油、汽油、水、硅 润滑脂、硅油、二酯系润滑油、 甘醇系液压油等流体介质中使 用的橡胶零件,特别是密封零 件。可说是目前用途最广、成本 最低的橡胶密封件。 氢化丁睛胶HNBR (Hydrogenate Nitrile)氢化丁睛胶为丁睛胶中经由氢 化后去除部份双链,经氢化后其 耐温性、耐候性比一般丁睛橡胶 提高很多,耐油性与一般丁睛胶 相近。一般使用温度范围为 -25~150 ℃。 优点: 较丁睛胶拥有较佳的抗磨性 具极佳的抗蚀、抗张、抗撕和压 缩歪的特性 在臭氧、阳光及其它的大气状况 下具良好的抵抗性 一般来说适用于洗衣或洗碗的 清洗剂中 缺点: 不建议使用于醇类,酯类或是芳 香族的溶液之中。 空调制冷业,广泛用于环保冷媒 R134a 系统中的密封件。 汽车发动机系统密封件。 氟橡胶FPM / FKM (Fluoro Carbon Rubber)分子内含氟之橡胶,依氟含量 ( 即单体构造 ) 而有各种类 型。目前广用的六氟化系氟橡胶 最早由杜邦公司以 "Viton" 商 品名上市。耐高温性优于硅橡 胶,有极佳的耐化学性、耐大部 分油及溶剂 ( 酮、酯类除 外 ) 、耐候性及耐臭氧性;耐 寒性则较不良,一般使用温度范 围为 -20~250 ℃。特殊配方可 耐低温至 -40 ℃。 优点: 可抗热至250 ℃ 对于大部份油品及溶剂都具有 抵抗的能力,尤其是所有的酸 类、脂族烃、芳香烃及动植物油 缺点: 不建议使用于酮类,低分子量的 酯类及含硝的混合物。 汽车、机车、柴油发动机及燃料 系统。 化工厂的密封件。 三元乙丙胶EPDM (Ethylene propylene Rubber)由乙烯及丙烯共聚合而成主链 不合双链,因此耐热性、耐老化 优点: 具良好抗候性及抗臭氧性 高温水蒸汽环境之密封件。 卫浴设备密封件或零件。

橡胶材料种类性能表

橡胶材料种类性能表 序 号 橡胶种类主要材料优点劣势适用范围使用温度 1 天然橡胶 (NR)异戊二烯聚合 物 优良的回弹性,拉 伸强度、伸长率、 耐磨性,撕裂和压 缩永久变形性能 不耐油,耐 天候、臭 氧、氧的性 能较差 制作轮胎、减 震零件、缓冲 绳和密封零件 -60~100℃ 2 丁苯橡胶 (SBR)丁二烯与苯乙 烯的共聚物 含10%苯乙烯的 丁苯-10有良好寒 性,含30%苯乙 烯的丁苯-30耐磨 性优良 耐油、耐老 化性能较差 制作轮胎和密 封零件 -60~120℃ 3 丁二烯橡 胶(BR)丁二烯聚合物常用的顺丁二烯橡 胶,耐寒、耐磨及 回弹性能较好 制品不耐 油,不耐老 化 适于制作轮 胎、密封零 件、减震零 件、胶带和胶 管等制品 -70~100℃ 4 氯丁橡胶 (CR)氯丁二烯聚合 物 耐天候,耐臭氧老 化,有自熄性,耐 油性能仅次于丁腈 橡胶,拉伸强度、 伸长率、回弹性优 良,与金属和织物 粘结性很好 制品不耐合 成双酯润滑 油及磷酸酯 液压油 适于制作密封 圈及密封型 材、胶管、涂 层、电线绝缘 层、胶布及配 制胶粘剂等 -35~130℃ 5 丁腈橡胶 (NBR)丁二烯丙烯腈 的共聚物 一般含丙烯腈 18%、26%或 40%,含量愈高, 耐油、耐热、耐磨 性能愈好,但耐寒 性则相反。含羧基 的丁腈橡胶,耐 磨、耐高温、耐油 性能优于丁腈橡胶 制品不耐天 候、不耐臭 氧老化、不 耐磷酸酯液 压油 丁腈橡胶适于 制作各种耐油 密封零件、膜 片、胶管和软 油箱 -55~130℃ 6 乙丙橡胶 (EPM、 EPDM )乙烯、丙烯的 二元共聚物 (EPM)或乙 烯、丙烯、二 烯类烯烃的三 元共聚 (EPDM) 耐天候、耐臭氧老 化,耐蒸汽、磷酸 酯液压油、酸、碱 以及火箭燃料和氧 化剂,电绝缘性能 优良 品不耐石油 基油类 适于制作磷酸 酯液压油系统 的密封零件、 胶管及飞机、 汽车门窗密封 型材、胶布和 电线绝缘层 -60~150℃ 7 丁基橡胶 (IIR)异丁烯和异戊 二烯的共聚物 耐天候、臭氧老 化,耐磷酸酯液压 油,耐酸、碱、火 箭燃料及氧化剂, 制品不耐石 油基油类 适于制作轮胎 内胎,门窗密 封条,磷酸酯 液压油系统的 -60~150℃

各种橡胶基本特性(精)

1.3 、应用范围:主要用于制作耐油橡胶制品,广泛用于制造密封件、垫片、垫圈等模制品和压出制品,各种橡胶胶辊、耐油胶管、工业用品和粘合剂等等。 2. 羧基丁腈橡胶(XNBR 2.1 :基本特性: 2.1.1 硫化速度比丁腈胶快,易焦烧。 2.1.2 纯胶配合显示高的拉伸强度。 2.1.3 硫化胶的耐热性、耐磨性好。 2.1.4 与酚酫树脂相容性好。 2.2 、应用范围:主要用于胶管、密封件、垫圈、油封、各种模型制品和粘合剂等。

3 、丁腈橡胶 - 聚氯乙烯共混胶(NBR/PVC 3.1 、基本特性: 3.1.1 耐臭氧和耐天候老化性能比通常丁腈橡胶显著提高。 3.1.2 比通常丁腈橡胶提高了耐燃性。 3.1.3 耐磨耗、耐油性、耐化学药品等性能比通常丁腈橡胶有所改善。 2.1.4 提高了压出、压延工艺性能。 2.1.5 可任意着色制作艳色制品。 2.1.6 低温特性、弹性降低,压缩变形增大。 2.1.7 比通常的聚氯乙烯改善了低温特性、耐油性、伸长率等。 3.2 应用范围:主要用于电线电缆护套,油管和燃油管外层胶,皮辊和皮圈,汽车模压零件,微孔海绵,发泡绝热层,安全靴和防护涂层等。 4 、氢化丁腈橡胶(HNBR 4.1 、基本特性 4.1.1 氢化丁腈橡胶虽经氢化饱和,但仍然保持原丁腈的特性。具有拉伸结晶性,因而强度较高。 4.1.2 有良好的耐热和耐臭氧、耐天候老化性能以及耐化学酸碱性能。 4.1.3 良好的耐技术液体(包括含腐蚀添加物的油类的溶胀性能。 4.1.4 良好的机械性能,即使在温升条件下仍保持相当水平。 4.1.5 在极有害的条件下,有显著的耐磨耗性能。

生物质燃料燃烧特性

生物质燃料燃烧特性 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

生物质燃料燃烧特性 生物质由C、H、O、N、S等元素组成,是空气中CO2、水和阳光通过光合作用的产物,且有挥发份高,炭活性高、S、N含量低(%%,%--3%,)灰分低(%%)等特点,生物质燃料中可燃部分主要为纤维素、半纤维素、木质素、按质量计量,纤维素占40%--50%,半纤维素20%--40%,木质素占10%--20%。 由于与化石燃料特性不同,生物质燃料的燃料机理、反应速度及燃料产物成分与化石燃料的相比都有较大的差别。生物质燃料的燃烧过程主要分为挥发份的析出,燃烧和残余焦炭的燃烧、燃尽两个独立阶段。其燃烧过程的特点: ①水分含量多,燃料需要较高的干燥温度和较长的干燥时间,产生的烟气体积较大,排烟损失较高。 ②燃料的密度小,结构松散,迎风面积大,易吹起,悬浮段燃 烧份额较大。 ③发热量低,灰熔点低,炉内温度水平低,组织稳定的燃烧比 较困难。 ④由于挥发份高,燃料着火温度较低,一般在250—350℃温度下挥发份便大量析出并开始剧烈燃烧,此时若空气量不足,会增大化学不完全燃烧损失。 ⑤会犯分析出燃尽后,受到灰烬包裹和空气渗透困难的影响,焦炭颗粒燃尽困难,燃烧过度缓慢,如不采取适当的必要措施,将会导致灰烬中残留较多的余碳,增大机械不完全燃烧损失。 ⑥秸秆等部分生物质燃料含氯量较高,因此需要对床层部分结构和运行工况加以特殊考虑,防止其对床层部分的腐蚀。 由此可见,生物质燃烧设备的设计和运行方式的选择应从不同种类生物质燃料特性出发才能保证生物质燃料设备运行的经济性和可靠性,提高生物质开发利用的效率。

九年级:物理教案-燃料及其热值

初中物理新课程标准教材 物理教案( 2019 — 2020学年度第二学期 ) 学校: 年级: 任课教师: 物理教案 / 初中物理 / 九年级物理教案 编订:XX文讯教育机构

物理教案-燃料及其热值 教材简介:本教材主要用途为通过学习物理知识,可以让学生培养自己的逻辑思维能力,对事物的理解认识也会有一定的帮助,本教学设计资料适用于初中九年级物理科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。 教学目标 知识目标 (1)知道在燃烧过程中燃料的化学能转化为内能; (2)知道什么是燃料的燃烧值和单位,会查燃料燃烧值表. 能力目标 会计算某种燃料完全燃烧放出的燃料. 情感目标 结合有效利用燃料的途径,使学生懂得节约和充分利用能源的重要意义. 教学建议 教材分析 本节有两部分,“燃料的热值”从生产和生活的一些现象出发,说明了现代社会中使用的能源主要是内能,且由燃料燃烧得到.又提供了科学资料,列举了几种燃料的热值,并给

出了热值的定义和单位,本处要求学生能做简单的计算. “有效利用燃料”直接联系实际介绍了燃料燃烧利用的情况,并分析现代的大型锅炉,说明了提高利用率的方法,最后结合具体数据介绍了提高燃料的利用率的实际意义.教法建议 引入新课的方法,可以由学生联系生产和生活的实际来举例分析,而知道在现代社会中,使用能量主要还是从燃料燃烧中获得的内能. “燃料的热值”,学生观察和分析教材的或教师提供的科技资料,学习热值的概念,并用简单的数学方法,会进行有关的热值计算. “有效利用燃料”,教师分析,使学生知道燃料实际很难完全燃烧,只有一部分被利用,引出了使用效率问题,可以用画比例图的方法让学生深入理解炉子的效率.接着学生阅读资料(课本上的或教师提供的)得出提高锅炉的效率和燃料的利用率的方法.本部分内容可以学生小组讨论.对于提高燃料利用率,也是采用提供学生学习资料,学生可以课下收集相关内容学习,提高学生信息收集和处理能力.学生从学习中体会到可持续发展的思想.教学设计方案 燃料及其热值 【课题】燃料及其热值

常用橡胶材料的特点与使用范围

常用橡胶材料的特点及使用范围 种类与缩写 化学名称 主要特点 主要应用范围 使用温度 范围℃ 天然胶(NR ) 聚异戊二烯 弹性最佳,耐磨耗,机械性能佳; 耐氧和耐臭氧性差,容易老化变质;耐油和耐溶剂性不好,第抗酸碱的腐蚀能力低;耐热性不高。 胶管、胶带、电线电缆的绝缘层和护套以 及其他通用制品。特 别适用于制造扭振消 除器、发动机减震器、 机器支座、橡胶-金 属悬挂元件、膜片、 模压制品 -60~+ 80 合成天然胶(IR ) 由异戊二烯单体聚合而成的一种顺式结构橡胶 具有天然橡胶的大部分优点,耐老化优于天然橡胶,弹性和强力比天然橡胶稍低,加工性能差 可代替天然橡胶制作轮胎、胶鞋、胶管、 胶带以及其他通用制 品。 -50~+100 苯乙烯橡胶(SBR ) 丁二烯-苯乙烯的共聚物 耐磨耗性比天然橡胶好,抗老化性好; 弹性较低,抗屈挠、抗撕裂性能较差;加工性能差,特别是自粘性差、生胶强度 低。 以代替天然橡胶制作轮胎、胶板、胶管、 胶鞋及其他通用制 品;可用于乙醇及汽 车刹车油密封,不能 用于矿物油中 -50~+100 丁二烯橡胶 (BR ) 聚丁二烯 弹性和耐磨性好,耐老化,耐低温,在动态负荷下发热 量小,易于金属粘合。 缺点是强度较低,抗撕裂性 差,加工性能与自粘性差 与天然橡胶相同 -60~+100 氯丁胶(CR ) 聚氯丁二烯 它具有优良的抗氧、抗臭氧性,不易燃,着火后能自熄,耐油、耐溶剂、耐酸碱以及耐老化、气密性好等优点;其物理机械性能也比天然主要用于制造要求抗臭氧、耐老化性高的电缆护套及各种防护 套、保护罩;耐油、 耐化学腐蚀的胶管、 胶带和化工衬里;耐 -45~+ 100

几种常用橡胶性能比较

几种常用橡胶性能比较 天然橡胶(NR) 天然橡胶由三叶树采集制成的弹性体,机械强度高、耐磨、耐压、伸长率高、弹性高、滞后损失小,能耐多次屈挠弯曲变形,适合纸厂、木业、家具、涂布、输送等胶辊应用。本厂天然橡胶分别使用印度尼西亚、泰国和海南三种产地,硬度可以在邵氏3 0~10 0 ° A调制。 丁腈橡胶(NBR) 首先由德国在30年代研制而成,因含丙烯腈,所以对矿物油、动植物油、液体燃料和脂肪族溶剂有较高的稳定性,耐油性是丁腈橡胶最大的特长。耐热性能好,能耐一般化学品优于通用橡胶。配合法国特种油膏,着墨性能优。广泛用于印刷类胶辊,配合耐酸碱物质、耐热剂,用于浆染、印染、砂辊。因耐磨性能比天然橡胶大30%左右,也是做其它滚轮比较理想的弹性体。采用的丁腈胶台湾南帝(NANCAR)系列、日本合成橡胶公司(JSR)系列,日本瑞翁公司丁腈橡胶,硬度可以在邵氏20~100 ° A调制。 三元乙丙橡胶(EPDM) 三元乙丙橡胶作为半通用合成橡胶,其使用温度范围-55~150℃之间。三元乙丙橡胶具有突出的耐臭氧性、耐侯性、耐水性、耐热性、耐蒸汽、耐化学药品(如氨水、酒精、双氧水、盐、硫酸、烧碱、石灰等)性能。适用于高要求的高速水墨印刷辊及化工、电镀、电子、纺织、染整、丝光和人造革类所用胶辊等使用。 氯丁橡胶(CR) 30年代美国公司生产的氯丁橡胶,改变了人们对橡胶易燃特点的看法,氯丁橡胶作为一种通用型特种橡胶,耐油性次于丁腈橡胶,优于通用橡胶,具有耐燃性、耐臭氧性、耐热老化性优异,耐化学品性能好,透气率小,其弹性与通用橡胶相当。适用于印刷类胶辊、耐碱类浆纱辊、浆染胶辊等使用。 氯磺化聚乙烯/海泊隆(CSM)

橡胶的基本结构与性能

橡胶的基本结构与性能 橡胶的分子特征---构成橡胶弹性体的分子结构有下列特点: ①其分子由重复单元(链节)构成的长链分子。分子链柔软其链段有高度的活动性,玻璃化转变温度(Tg)低于室温; ②其分子间的吸引力(范德华力)较小,在常态(无应力)下是非晶态,分子彼此间易于相对运动; ③其分子之间有一些部位可以通过化学交联或由物理缠结相连接,形成三维网状分子结构,以限制整个大分子链的大幅度的活动性。 从微观上看,组成橡胶的长链分子的原子和链段由于热振动而处于不断运动中,使整个分子呈现极不规则的无规线团形状,分子两末端距离大大小于伸直的长度。一块未拉伸的橡胶象是一团卷曲的线状分子的缠结物。橡胶在不受外力作用时,未变形状态熵值最大。当橡胶受拉伸时,其分子在拉伸方向上以不同程度排列成行。为保持此定向排列需对其作功,因此橡胶是抵制受伸张的。当外力除去时,橡胶将收缩回到熵值最大的状态。故橡胶的弹性主要是源于体系中熵的变化的“熵弹性”。 橡胶的应力-应变性质 应力-应变曲线是一种伸长结晶橡胶的典型曲线,其主要组分是由于体系变得有序而引起的熵变。随着分子被渐渐拉直,使得分子链上支链的隔离作用消失,分子间吸引力变得显著起来,从而有助于抵抗进一步的变形,所以橡胶在被充分拉伸时会呈现较的高抗张强度. 橡胶在恒应变下的应力是温度的函数。随温度的升高橡胶的应力将成比例地增大。 橡胶的应力对温度的这种依赖称为焦耳效应,它可以说明金属弹性和橡胶弹性间的根本差别。在金属中,每个原子都被原子间力保持在严格的晶格中,使金属变形所做的功是用来改变原子间的距离,引起内能的变化。因而其弹性称为“能弹性”。其弹性变形的范围比橡胶中主要由于体系中熵的变化而产生的“熵弹性”的变化范围要小得多。 在一般的使用范围内,橡胶的应力-应变曲线是非线性的,因此橡胶的弹性行为不能简单地以杨氏模量来确定。 橡胶的变形与温度、变形速度和时间的关系 橡胶分子的变形运动不可能在瞬时完成,因为分子间的吸引力必须由原子的振动能来克服,如果温度降低时,这些振动变得较不活泼,不能使分子间吸引力迅速

橡胶制品的基本特性

橡胶制品的基本特性 橡胶制品(rubber product)指以天然及合成橡胶为原料生产各种橡胶制品的活动,还包括利用废橡胶再生产的橡胶制品。 橡胶制品基本特性: 1.橡胶制品成型时,经过大压力压制,其因弹性体所俱备之内聚力无法消除,在成型离模时,往往产生极不稳定的收缩(橡胶的收缩率,因胶种不同而有差异),必需经过一段时间后,才能和缓稳定。所以,当一橡胶制品设计之初,不论配方或模具,都需谨慎计算配合,若否,则容易产生制品尺寸不稳定,造成制品品质低落。 2.橡胶属热溶热固性之弹性体,塑料则属于热溶冷固性。橡胶因硫化物种类主体不同,其成型固化的温度范围,亦有相当的差距,甚至可因气候改变,室内温湿度所影响。因此橡胶制成品的生产条件,需随时做适度的调整,若无,则可能产生制品品质的差异。 橡胶制品胶种的分类: 1.通用橡胶:是指部分或全部代替天然橡胶使用的胶种,如丁苯橡胶、顺丁橡胶、异戊橡胶等,主要用于制造轮胎和一般工业橡胶制品。通用橡胶的需求量大,是合成橡胶的主要品种。 2.丁苯橡胶:丁苯橡胶是由丁二烯和苯乙烯共聚制得的,是产量最大的通用合成橡胶,有乳聚丁苯橡胶、溶聚丁苯橡胶和热塑性橡胶(SBS)。 3.顺丁橡胶:是丁二烯经溶液聚合制得的,顺丁橡胶具有特别优异的耐寒性、耐磨性和弹性,还具有较好的耐老化性能。顺丁橡胶绝大部分用于生产轮胎,少部分用于制造耐寒制品、缓冲材料以及胶带、胶鞋等。顺丁橡胶的缺点是抗撕裂性能交差,抗湿滑性能不好。 4.异戊橡胶:异戊橡胶是聚异戊二烯橡胶的简称,采用溶液聚合法生产。异戊橡胶与天然橡胶一样,具有良好的弹性和耐磨性,优良的耐热性和较好的化学稳定性。异戊橡胶生胶(未加工前)强度显着低于天然橡胶,但质量均一性、加工性能等优于天然橡胶。异戊橡胶可以代替天然橡胶制造载重轮胎和越野轮胎还可以用于生产各种橡胶制品。 5:乙丙橡胶:乙丙橡胶以乙烯和丙烯为主要原料合成,耐老化、电绝缘性能和耐臭氧性能突出。乙丙橡胶可大量充油和填充碳黑,制品价格较低,乙丙橡胶化学稳定性好,耐磨性、弹性、耐油性和丁苯橡胶接近。乙丙橡胶的用途十分广泛,可以作为轮胎胎侧、胶条和内胎以及汽车的零部件,还可作电线、电缆包皮及高压、超高压绝缘材料。还可制造胶鞋、卫生用品等浅色制品。 6.氯丁橡胶:它是以氯丁二烯为主要原料,通过均聚或少量其它单体共聚而成的。如抗张强度高,耐热、耐光、耐老化性能优良,耐油性能均优于天然橡胶、丁苯橡胶、顺丁橡胶。具有较强的耐燃性和优异的抗延燃性,其化学稳定性较高,耐水性良好。氯丁橡胶的缺点是电绝缘性能,耐寒性能较差,生胶在贮存时不稳定。氯丁橡胶用途广泛,如用来制作运输皮带和传动带,电线、电缆的包皮材料,制橡胶加工工艺问答

各种塑料燃烧特性

各种塑胶燃烧特性: 序号非透明塑料比重(G/CM)软化温度燃烧性自熄性火焰颜色燃烧味燃烧时特性 1.ABS 104 很容易非黄火带烟橡胶甜味软化变黑,起泡" 2.HDPE 120 容易非黄顶蓝火腊味溶时有着火漏滴 3.HIPS 75 容易非黄火带黑烟花香味溶化,起泡" 4.LOPE 容易非黄顶蓝火腊味溶时有着火漏滴 5.PA6 220 容易是黄边蓝火烧头发味溶时泡沫 6.PBT 225 容易大都是白光带烟有气味溶时有着火漏滴 7.PTEPC 260 容易是黄火有气味溶时有着火漏滴 8.POM 不容易非淡蓝火刺鼻,引起泪水溶时有着火漏滴" 9.PP 79-113 容易非黄顶蓝火腊昧溶时有着火漏滴 10.PPO 容易非黄火带烟甜花香乌黑残余物 11.PPS 282 因难是无火硫磺味烧黑起泡 12.UPVC 66-92 不很容易是黄火酸味软化变黑 序号透明塑料比重软化温度烧烧性自熄性火焰颜色燃烧味燃烧时特性 "13 GPPS 78-86 容易非黄火带黑烟花香味熔化,起泡" "14 PC 不很容易是黄火带烟电木味软化起泡,炭化" 15 PETPA 230 容易是光黄火甜酸味变黑有着火漏滴 16 PMMA 60-88 容易非黄顶蓝火带烟水果味溶化起泡 17 SAN 66-96 容易非黄火带烟花甜味变黑有泡 其它特性; 序号料名烘料温度(0C)烘料时间(hr)适当模温(0C)可塑化料温(0C)密度(g/cm3)收缩率(%)热变形温度(0C) 1.PVC(S) 60~70 1~2 50~70 140~180 / (~) N-A 2.PVC(H) 60~70 1~2 50~70 150~180 ()() N-A 3.LDPE 70~80 1~2 20~50 160~240 ()(~) 35-50 4.HDPE 70~100 1~2 20~70 200~280 ()(~) 40-75

燃料燃烧及分析

燃料及燃烧 从整个燃烧过程来看,燃料的燃烧是物理学化现象的综合过程,这些物理化学现象之间互相联系和制约,并以其纵使关系决定着燃料燃烧的最终结果。特别是在工业炉的燃烧条件下,由于燃烧空间中燃料与空气的混合过程以及反应物质的浓度与温度的分布都和流体介质的速度分布密切相关,因此,燃烧空间的气体动力场的结构及其热力条件往往是影响整个燃烧过程的主要的、甚至是决定性的因素。 一、煤的种类 根据母体物质炭化程度的不同,可将煤分为四大类: 泥煤、褐煤、烟煤和无烟煤 1、泥煤 泥煤是最年青的煤,也就是由植物刚刚变来的煤。在结构上,它尚保留着植物遗体的痕迹,质地疏松,吸水性强。含天然水份高达40%以上,需要进行露天干燥,风干后的堆积密度为300~450kg/m3。在化学成分上,与其他煤种相比,泥煤含氧量最多,高达28%~38%,含碳较少。在使用性能上,泥煤的挥发分高,可燃性好,反应性强,含硫量低,机械性能很差,灰分熔点很低。在工业上,泥煤的主要用途是用来烧锅炉和做气化原料,也可制作焦炭供小高炉使用。由于以上特点,泥煤的工业价值不大,更不适于远途运输,只可作为地方性燃料在产区附近使用。 2、褐煤 褐煤是泥煤经过进一步变化后所生成的,由于能将热碱水染成褐色而得名。它已完成了植物遗体的炭化过程,在性质上与泥煤有很大的不同。与泥煤相比,它的密度较大,含碳量较高,氢和氧的含量较小,挥发分产率较低,堆积密度750~800kg/m3。褐煤的使用性能是粘结性弱,极易氧化和自燃,吸水性较强。新开釆出来的褐煤机械强度较大,但在空气中极易风化和破碎,因而也不适于远地运输和长期储存,只能作为地方性燃料使用。 3、烟煤 烟煤是一种炭化程度较高的的煤。与褐煤相比,它的挥发分较少,密度较大,吸水性较小,含碳量增加,氢和氧的含量减少。烟煤是冶金工业和动力工业不可缺少的燃料,也是近代化学工业最要原料。烟煤的最大特点是具有粘结性,这是其他固体燃料所没有的,因此它是炼焦的主要原料。应当指出的是,不是所有的烟煤都具有生气同样的粘结性,也不是所有具有粘结性的煤都适于炼焦。为了适应炼焦和造气的工艺要求来合理地使用烟煤,有关部门又根据粘结性的强弱及挥发分产率的大小等物理化学性质,进一步将烟煤分为长焰煤、气煤、肥煤、结焦煤、瘦煤等不同的品种。其中,长焰煤和气煤的挥发分含量高,因而容易燃烧和适于制造煤气。结焦煤具有良好的结焦性,适于生产优质冶金焦炭,但因在自然界储量不多,为了节约使用,通常在不影响焦炭质量的情况下与其他煤种混合使用。 4、无烟煤 无烟煤是矿物化程度最高的煤,也是年龄最老的煤。它的特点是密度大,含碳量高,挥发分极少,组织致密而坚硬,吸水性小,适于长途运输和长期储存。无烟煤的主要缺点是受热时容易爆裂成碎片,可燃性较差,不易着火。但由于其发热量大(约为29260kJ/kg,灰分少,含硫量低,而且分布较广,因此受到重视。据有部门研究,将无烟煤进行热处理后,可以提高抗爆性,称为耐热无烟煤,可以用于气化,或在小高米和化铁炉中代替焦炭使用。 二、煤的化学组成 煤的主要可燃原素是碳,其次是氢,并含有少量的氧、氮、硫,它们与碳和氢一起构成可燃化合物,称为煤的可燃质。除此之外,在煤中还或多或少地含有一些不可燃的矿物质

各种橡胶物性

橡胶配方的设计与运用 最常用的促进剂是D。在天然、合成中作中速促进剂用。硫化临界温度为144度硫化平坦性差,作第二促进剂用时老化性能下降,必须适当加防老剂。不适用于白色和浅色制品。 4.硫化活性剂, 加入后能增加促进剂的活性因而能减少促进剂的用量,或缩短硫化时间。所以称为活性剂1. 设计配方应在多个方面综合考滤,1.确保指定的物性。所谓物性大体是在如下几个方面拉伸强度、撕裂强度、定伸应力、硬度、磨耗、疲劳与疲劳破坏、回弹力、扯断伸长率等。2.胶料加工过程中,性能优良,确保产品高产、省料。 3.成本低价格便宜。 4.所用的原材料很易采购到。 5.生产力高,加工方便,制造过程中能耗少。 6.符合环保及卫生安全要求。 一,.对各种橡胶物性要有充分地了解。 天然胶物性; A. 天然橡胶加热后慢慢软化,到130—140度则完全软化至熔融状态,温度降低至零度时渐变硬,到-70度变成脆性物质。天然胶的回弹率在0-100度内可达50-85%升至130度时仍保持正常的使用性能。伸长率最高可达1000%。天然橡胶是一种结晶性橡胶,自补强性大,具有非常好的机械性能。纯胶的拉伸强度达17—25MPA,补强硫化胶达25—35MPA,曲绕达到20万次以上,这是因为天然胶,滞后损失小,生热低的结果。天橡胶具有较好的汽密性。天然橡胶的老化性能差,不加老防剂的橡胶,在强烈的阳光下曝晒4—7天后即出现龟裂现象。与一定浓度的臭氧在几秒钟内即发生裂口。 天然胶耐碱性好,但不耐强酸。耐极性溶剂,故不耐非极性熔剂,耐油性差。 天然胶的配合,普通硫化体系硫黄用量 2.0-2.4 促进剂用量 1.2-0.5。半有效硫化体系硫黄1.0-1.7 促进剂2.5-1.2,有效硫化体系硫黄0.4-0.8,促进剂5.0-2.0。普通硫黄体系多硫交联健多,而单硫健少。多硫健能低,稳定性差,耐热、耐老化性差。但综合物理机械性能好。普通硫黄硫化体系,硫黄加多时易喷硫,可用不溶性硫黄替代,不容性硫黄可改善硫化胶料半成品的物理机械性能,解决高温下出现的橡胶返原因题。可以改善拉伸、定伸应力、及弹性,胎面胶使用还可以改善磨耗。但有一个缺点,硫速快易焦烧。 有效硫化体系不发生硫化返原现象,一般用于制造要求低蠕变率、高弹性、生热低的优良制品。硫黄加量一般为0.6—0.7份,氧化锌为3.5-5份,载硫体一般采用TMTD及N,N-二硫化二二吗啡啉硫黄给于体。有效硫化体系的老化性能也大大地得到了改善。 半有效硫化体系,有着硫黄硫化体系的机械物理性能,有效硫化体系的低蠕变、弹性、生热低等物性。硫化返原现象在两者之间。可使用秋兰姆类,但有易喷霜、焦烧等缺点。常用硫黄给予体DTDM二硫代二吗啡啉,在硫化中DTDM可完全替代硫黄时,形成有效硫化体系。它的优点是焦烧时间长、不喷霜不污染,硫化胶的物理机械性能良好。在全天然胶配方中,胶料的耐磨性、动态性能、耐老化性、抗返原性。和曲绕性能都明显提高。DTDM在天然胶中的用量是0.5份相当于1份硫黄。在70/30天然/顺丁中相当于0.6-0.8份硫黄。50/50时相当于0.5份硫黄。DTDM的用量不宜超过1份。 天然橡胶可以用有机过氧化物硫化。最常用的是过氧化二异丙苯,DCP具有良好的热稳定性,耐高温老化性、蠕变小、压缩永久变形小、动态性能好,抗返原性好。缺点是硫速慢、易焦烧、撕裂强度低与抗臭氧剂不相容硫化模具易积垢。天然胶的最佳硫化温度是143度,

各种橡胶特性(精)

1 、丁腈橡胶(NBR 基本特性: 1.1、因含有极性腈基,对非极性或弱极性的矿物油、动植物油、液体燃料和溶剂等有较高的稳定性。耐油性是其最大的特长, 丙烯含量愈高耐油性愈好。 1.2 、耐热性优于天然橡胶、丁苯橡胶、氯丁橡胶,可在空气中 120 ℃下长期使用。 1.3 、气密性较好,仅次于丁基橡胶。 1.4 、耐寒性、耐低温性较差,丙烯腈含量愈高,耐寒愈差。 1.5 、因是非结晶性橡胶,生胶强度较低,须配入补强剂,提高结合丙烯腈量有助于增高强度和耐磨性,但弹性下降。 1.6 、丁腈胶的介电性能差一点,属于半导体橡胶。 1.7 、胶料的耐油性和永久变形的平衡,耐油性与电性能的平衡是重要的。 应用范围:主要用于制作耐油橡胶制品,广泛用于制造密封件、垫片、垫圈等模制品和压出制品,各种橡胶胶辊、耐油胶管、工业用品和粘合剂等等。 2 、丁基橡胶(IIR 基本特性 2.1 最大的特性是气体特定过性小,气密性好。 2.2 回弹性小,在较宽温度范围内(-30-+ 50 ℃均不大于 20% ,因而具有吸收振动和冲击能量的特性。 2.3 耐热老化优良,且有良好的耐臭氧老化、耐天候老化和对化学稳定性以及耐电晕性能与电绝缘性好。

2.4 耐水性好、水渗透率极低,因而适于做绝缘材料。 2.5 缺点是:硫化速度慢;粘合性和自粘性差;与金属粘合性不好;与不饱和性橡胶相容性差,不能并用。但可与乙丙橡胶和聚乙烯等共混并用。 应用范围:主要用于制造汽车轮胎内胎、汽车部件,硫化用胶囊、水胎、风胎,胶带、胶管、电线、电缆、包覆胶, 各种机械制品, 振动隔离件, 建筑用防水片材, 密封及填缝材料, 贮罐衬里,蜡添加剂和聚烯烃改性剂等。 3、三元乙丙橡胶(EPDM 基本特性: 3.1 三元乙丙橡胶的相对密度也小(0.85-0.86 ,仍具有二元乙丙橡胶的耐臭氧性、耐候性、耐热性和耐化学稳定性等特性。 3.2 可采用硫磺促进剂硫化体系硫化,也可以用有机过氧化物交联,而制得高强度的制品。 3.3 耐低温性好,电绝缘性能也好。 3.4 配合时有容纳高量填料和油类的承受能力。 3.5 可与不饱和橡胶、低不饱和橡胶和塑料相容并用。 3.6 由于硫化胶表面良好具有高的物性,适于制作发泡制品。 3.7 未硫化橡胶粘合性差。 应用范围:主要用于汽车工业、电线电缆工业、建筑和防水材料、工业橡胶制品、民用制品,与其它橡胶和塑料树脂等并用或共混,以及制作添加剂等等。 4 、硅橡胶(SILICONE 基本特性:

几种常用橡胶性能比较

天然橡胶(NR ) 天然橡胶由三叶树采集制成的弹性体,机械强度高、耐磨、耐压、伸长率高、弹性高、滞后损失小,能耐多次屈挠弯曲变形,适合纸厂、木业、家具、涂布、输送等胶辊应用。本厂天然橡胶分别使用印度尼西亚、泰国和海南三种产地,硬度可以在邵氏3 0 ~10 0 ° A 调制。 丁腈橡胶(NBR ) 首先由德国在30年代研制而成,因含丙烯腈,所以对矿物油、动植物油、液体燃料和脂肪族溶剂有较高的稳定性,耐油性是丁腈橡胶最大的特长。耐热性能好,能耐一般化学品优于通用橡胶。配合法国特种油膏,着墨性能优。广泛用于印刷类胶辊,配合耐酸碱物质、耐热剂,用于浆染、印染、砂辊。因耐磨性能比天然橡胶大30% 左右,也是做其它滚轮比较理想的弹性体。采用的丁腈胶台湾南帝(NANCAR )系列、日本合成橡胶公司(JSR)系列,日本瑞翁公司丁腈橡胶,硬度可以在邵氏20 ~100 ° A 调制。 三元乙丙橡胶(EPDM ) 三元乙丙橡胶作为半通用合成橡胶,其使用温度范围-55 ~150 ℃之间。三元乙丙橡胶具有突出的耐臭氧性、耐侯性、耐水性、耐热性、耐蒸汽、耐化学药品(如氨水、酒精、双氧水、盐、硫酸、烧碱、石灰等)性能。适用于高要求的高速水墨印刷辊及化工、电镀、电子、纺织、染整、丝光和人造革类所用胶辊等使用。 氯丁橡胶(CR ) 30年代美国公司生产的氯丁橡胶,改变了人们对橡胶易燃特点的看法,氯丁橡胶作为一种通用型特种橡胶,耐油性次于丁腈橡胶,优于通用橡胶,具有耐燃性、耐臭氧性、耐热老化性优异,耐化学品性能好,透气率小,其弹性与通用橡胶相当。适用于印刷类胶辊、耐碱类浆纱辊、浆染胶辊等使用。 氯磺化聚乙烯/ 海泊隆(CSM ) 氯磺化聚乙烯作为专用合成橡胶,不变色,耐磨耗、耐侯性、耐臭氧优异,耐热性能好,连续使用温度120 ~140℃,间接温度140 ~160℃,耐燃烧,离开火焰自行熄火,耐油性次于丁腈抗撕裂胶辊,耐油耐生热胶辊。 硅橡胶(Q ) 作为有机硅系列,本企业长期以来使用比较有质量保证的美国“道康宁”、日本“信越”、韩国“海龙”等硅橡胶,其耐寒耐热性能优异,能在-50~300 ℃温度范围内长期使用,具有最佳的热溶胶防粘性、优越的生物相溶性和防静电性能,完全符合国家卫生标准。适用于制作高低温设备输送辊;医疗、卫生、食品、办公机械设备胶辊;压延防粘(热熔胶涂布、制革等)、防静电(薄膜、植绒等)胶辊上使用,通用硬度在40 ~80 ° A 之间为优。 各常用橡胶性能比较Different characters of various kind rubbers

各种橡胶基本知识

各种橡胶基本知识 橡胶基本知识 橡胶是高弹性的高分子材料,由于橡胶具有其他材料所没有的高弹性,因而也称做弹性体,其基本特性如下: 1 有橡胶状弹性。 2 具有粘弹性。 3 有减震缓冲的作用。 4 对温度依赖大 5 具有电绝缘性。 6 有老化现象。 7 必须进行硫化。 8 必须加入配合剂 9 比重小,硬度低,柔软性好,透气性差。 前言 一. 橡胶在制鞋业中的应用: 1.历史可以远溯至1492年哥伦布发现美洲新大陆,早期的探险家发现印地安人使用巴西橡 胶树之胶乳(天然橡胶)来制作"胶鞋",防止脚被蛇虫叮咬,之後18世纪後期至19世纪初期,天然橡胶开始在欧洲用于胶管雨衣,胶鞋,但材料遇热变软发粘,遇冷变硬脆裂,实用价值不大. 2.1839年,美国人固特异(C.Goodyear)发明了橡胶的硫化,硫化後橡胶产生本质的飞跃,性能大幅度提高.此橡胶大底在制鞋业中获得了广泛应用,随著橡胶工业的发展,丁苯橡胶等人工 合成橡胶由于其性能突出,1951年後开始引入制鞋业大量使用. 生胶天然橡胶(NR) 1 来源 1. 野生橡胶:由野生树木植物采制的橡胶。银色橡胶菊,野藤橡胶等也属此类。 2. 栽培橡胶:主要是三叶橡胶树。 3. 橡胶草橡胶。一公顷可收150-200KG。 4. 杜仲胶:由杜仲树的枝叶根茎中提取。常温下无弹性,软化点高,比重大,耐水性好。可做塑料用。 1 天然橡胶制造和分级标准。 1. 烟片胶:消耗量占天然橡胶的80%。 按照质量分为六个等级:RSSIX;RSS1#;RSS2#;RSS3#;RSS4#;RSS5#。质量按顺序降低。 2. 绉胶片: 1)白绉胶==>质量最好 2)褐绉胶==》质量普通 3) 毛绉胶==》质量最差 3. 马来西亚标准胶。 品质稳定,杂质少,纯度高,国际标准. 4.专用天然橡胶 1 恒粘(CV):加入0.15-4%的盐酸氢胺,使橡胶门尼值保持在60+-5度。生热低,耐屈挠性和耐磨性好,为制造高速轮胎重要原料。 2 低粘(LV)橡胶:门尼值为45+-5度,可以不经过素炼直接混炼。 3 轮胎橡胶

常用橡胶的品种、特性和用途

表二常用橡胶的品种、特性和用途 橡胶品种(简写符号)化学组成性能特点主要用途 1.天然橡胶(NR)以橡胶烃(聚异戊二烯)为主,含少量蛋白质、水分、树脂酸、糖类和无机盐等。弹性大,定伸强度高,抗撕裂性和电绝缘性优良,耐磨性和耐旱性良好,加工性佳,易于其它材料粘合,在综合性能方面优于多数合成橡胶。缺点是耐氧和耐臭氧性差,容易老化变质;耐油和耐溶剂性不好,抵抗酸碱的腐蚀能力低;耐热性不高。使用温度范围:约-60℃~+80℃。制作轮胎、胶鞋、胶管、胶带、电线电缆的绝缘层和护套以及其他通用制品。特别适用于制造扭振消除器、发动机减震器、机器支座、橡胶-金属悬挂元件、膜片、模压制品。 2.丁苯橡胶(SBR)丁二烯和苯乙烯的共聚体。性能接近天然橡胶,是目前产量最大的通用合成橡胶,其特点是耐磨性、耐老化和耐热性超过天然橡胶,质地也较天然橡胶均匀。缺点是:弹性较低,抗屈挠、抗撕裂性能较差;加工性能差,特别是自粘性差、生胶强度低。使用温度范围:约-50℃~+100℃。主要用以代替天然橡胶制作轮胎、胶板、胶管、胶鞋及其他通用制品。 3.顺丁橡胶(BR)是由丁二烯聚合而成的顺式结构橡胶。优点是:弹性与耐磨性优良,耐老化性好,耐低温性优异,在动态负荷下发热量小,易于金属粘合。缺点是强度较低,抗撕裂性差,加工性能与自粘性差。使用温度范围:约-60℃~+100℃。一般多和天然橡胶或丁苯橡胶并用,主要制作轮胎胎面、运输带和特殊耐寒制品。 4.异戊橡胶(IR)是由异戊二烯单体聚合而成的一种顺式结构橡胶。化学组成、立体结构与天然橡胶相似,性能也非常接近天然橡胶,故有合成天然橡胶之称。它具有天然橡胶的大部分优点,耐老化优于天然橡胶,弹性和强力比天然橡胶稍低,加工性能差,成本较高。使用温度范围:约-50℃~+100℃可代替天然橡胶制作轮胎、胶鞋、胶管、胶带以及其他通用制品。 5.氯丁橡胶(CR)是由氯丁二烯做单体乳液聚合而成的聚合体。这种橡胶分子中含有氯原子,所以与其他通用橡胶相比:它具有优良的抗氧、抗臭氧性,不易燃,着火后能自熄,耐油、耐溶剂、耐酸碱以及耐老化、气密性好等优点;其物理机械性能也比天然橡胶好,故可用作通用橡胶,也可用作特种橡胶。主要缺点是耐寒性较差,比重较大、相对成本高,电绝缘性不好,加工时易粘滚、易焦烧及易粘模。此外,生胶稳定性差,不易保存。使用温度范围:约-45℃~+100℃。主要用于制造要求抗臭氧、耐老化性高的电缆护套及各种防护套、保护罩;耐油、耐化学腐蚀的胶管、胶带和化工衬里;耐燃的地下采矿用橡胶制品,以及各种模压制品、密封圈、垫、粘结剂等。 6.丁基橡胶(IIR)是异丁烯和少量异戊二烯或丁二烯的共聚体。最大特点是气密性好,耐臭氧、耐老化性能好,耐热性较高,长期工作温度可在130℃以下;能耐无机强酸(如硫酸、硝酸等)和一般有机溶剂,吸振和阻尼特性良好,电绝缘性也非常好。缺点是弹性差,加工性能差,硫化速度慢,粘着性和耐油性差。使用温度范围:约-40℃~+120℃。主要用作内胎、水胎、气球、电线电缆绝缘层、化工设备衬里及防震制品、耐热运输带、耐热老化的胶布制品。 7.丁晴橡胶(NBR)丁二烯和丙烯晴的共聚体。特点是耐汽油和脂肪烃油类的性能特别好,仅次于聚硫橡胶、丙烯酸酯和氟橡胶,而优于其他通用橡胶。耐热性好,气密性、耐磨及耐水性等均较好,粘结力强。缺点是耐寒及耐臭氧性较差,强力及弹性较低,耐酸性差,电绝缘性不好,耐极性溶剂性能也较差。使用温度范围:约-30℃~+100℃。主要用于制造各种耐油制品,如胶管、密封制品等。 8.氢化丁晴橡胶(HNBR)丁二烯和丙烯晴的共聚体。它是通过全部或部分氢化

橡胶的特性和用途资料

2:橡胶材料的特性与用途 橡胶材料的基本特点: 1、具有高弹性橡胶的弹性模量小,一般在1-9.8Mpa。伸长变形大,伸长率可高达100%,仍表现有可恢复的特性,并能在很宽的温度(-50-+150℃)范围内保持有弹性。 2、具有粘弹性橡胶是粘弹性体,由于大分子间作用力的存在,使橡胶受外力作用,产生形变时受时间、温度等条件的影响,表现有明显的应力松弛和蠕变现象,有振动或交变应力等周期作用下,产生滞后损失。 3、具有缓冲减震作用橡胶对声音及振动的传播有缓和作用,可利用这一特点来防除噪音和振动。 4、具有电绝缘性橡胶和塑胶一样是电绝缘材料。例如天然橡胶和丁基橡胶和体积电阻可达到10 5、具有温度依赖性高分子材料一般都受温度影响,橡胶在低温时处于玻璃态变硬变脆,在高温时则发生软化、熔融、热氧化、热分解以至燃烧等。 6、具有老化现象如同金属腐蚀、木材腐朽、岩石风化一样,橡胶也会因环境条件变化而发生老化,使性能变坏,使用寿命缩短。 7、必须进行硫化橡胶必须加入硫磺或其它能使橡胶硫化(或交联)的物质,使橡胶大分子交联成空间网状结构,才能得到具有使用价值的橡胶制品,但是热塑橡胶可不必硫化。

1、天然橡胶(NR)以橡胶烃(聚异戊二烯)为主,含少量蛋白质、水分、树脂酸、糖类和无机盐等,是一种非极性物质,它溶于非极性的溶剂和油中。弹性大,定伸强度高,抗撕裂性和电绝缘性优良,耐磨性和耐旱性良好,加工性佳,易于其它材料粘合,在综合性能方面优于多数合成橡胶。缺点是耐氧和耐臭氧性差,容易老化变质;耐油和耐溶剂性不好,在环己烷、汽油、笨中,硫化前溶解,硫化后溶胀。抵抗酸碱的腐蚀能力低,抗10%的氢氟酸,20%的盐酸,30%的硫酸、50%的氢氧化钠;耐热性不高。使用温度范围:约-60℃~+80℃。制作轮胎、胶鞋、胶管、胶带、电线电缆的绝缘层和护套以及其他通用制品。特别适用于制造扭振消除器、发动机减震器、机器支座、橡胶-金属悬挂元件、膜片、模压制品。 2、丁苯橡胶(SBR)丁二烯和苯乙烯的共聚体。性能接近天然橡胶,是目前产量最大的通用合成橡胶,其特点是耐磨性、耐老化和耐热性超过天然橡胶,质地也较天然橡胶均匀。缺点是:弹性较低,抗屈挠、抗撕裂性能较差,在多次形变下生热量大,耐油、耐热、耐特种介质的性能差;加工性能差,特别是自粘性差、生胶强度低。使用温度范围:约-50℃~+100℃。主要用以代替天然橡胶制作轮胎、胶板、胶管、胶鞋及其他通用制品。 3、顺丁橡胶(BR)是由丁二烯聚合而成的顺式结构橡胶,无需塑炼,属于极性物质。优点是:弹性与耐磨性优良,耐老化性好,耐低温性优异,在动态负荷下发热量小,易于金属粘合,化学稳定型好,能抵抗除强酸外的大部分化学药品的腐蚀。缺点是强度较低,抗撕裂性差,加工性能与自粘性差。使用温度范围:约-60℃~+100℃。一般多和天然橡胶或丁苯橡胶并用,主要制作轮胎胎面、运输带和特殊耐寒制品。 4、异戊橡胶(IR)是由异戊二烯单体聚合而成的一种顺式结构橡胶。化学组成、立体结构与天然橡胶相似,性能也非常接近天然橡胶,故有合成天然橡胶之称。它具有天然橡胶的大部分优点,耐老化由于天然橡胶,弹性和强力比天然橡胶稍低,加工性能差,成本较高。使用温度范围:约-50℃~+100℃ 可代替天然橡胶制作轮胎、胶鞋、胶管、胶带以及其他通用制品。 5、氯丁橡胶(CR)是由氯丁二烯做单体乳液聚合而成的聚合体。这种橡胶分子中含有氯原子,所以与其他通用橡胶相比:它具有优良的抗氧、抗臭氧性,不易燃,着火后能自熄,耐油、耐溶剂、耐酸碱以及耐老化、气密性好等优点;其物理机械性能也比天然橡胶好,故可用作通用橡胶,也可用作特种橡胶。主要缺点是耐寒性较差,比重较大、相对成本高,电绝缘性不好,加工时易粘滚、易焦烧及易粘模。此外,生胶稳定性差,不易保存。使用温度范围:约-45℃~+100℃。主要用于制造要求抗臭氧、耐老化性高的电缆护套及各种防护套、保护罩;耐油、耐化学腐蚀的胶管、胶带和化工衬里;耐燃的地下采矿用橡胶制品,以及各种模压制品、密封圈、垫、粘结剂,如:建筑防水片、建筑密封条、公路填缝材料、桥梁支座垫片、电线包皮等。 6、丁基橡胶(IIR)是异丁烯和少量异戊二烯或丁二烯的共聚体。最大特点是气密性好,耐臭氧、耐老化性能好,耐热性较高,耐气候性好不需家防老剂,长期工作温度可在130℃以下;能耐无机强酸(如硫酸、硝酸等)和一般有机溶剂,吸振和阻尼特性良好,化学稳定性好,电绝缘性也非常好。缺点是弹性最差,加工性能差,硫化速度慢,粘着性和耐油性差。使用温度范围:约-40℃~+120℃。主要用作内胎、水胎、气球、电线电缆绝缘层、化工设备衬里及防震制品、耐热运输带、耐热老化的胶布制品。 7、丁腈橡胶(NBR)丁二烯和丙烯晴的共聚体。特点是耐汽油和脂肪烃油类的性能特别好,仅次于聚硫橡胶、丙烯酸酯和氟橡胶,而优于其他通用橡胶。耐热性好,气密性、耐磨及耐水性等均较好,粘结力强。缺点是耐寒及耐臭氧性较差,强力及弹性较低,耐酸性差,电绝缘性不好,耐极性溶剂性能也较差。使用温度范围:约-30℃~+100℃。主要用于制造各种耐油制品,如胶管、密封制品等。 8、氢化丁腈橡胶(HNBR)丁二烯和丙烯晴的共聚体。它是通过全部或部分氢化NBR

相关主题
文本预览
相关文档 最新文档