当前位置:文档之家› 数字化语音存储与回放系统

数字化语音存储与回放系统

数字化语音存储与回放系统
数字化语音存储与回放系统

目录

摘要 (1)

1 绪言 (2)

1.1课题背景 (2)

1.2课题研究的目的和意义 (2)

1.3国内外概况 (3)

2方案比较与论证 (3)

2.1方案一 (3)

2.1.1器件操作方式的选择 (3)

2.1.2 A/D、D/A及存储芯片的选择 (4)

2.2方案二 (5)

2.2.1控制方式 (5)

2.2.2放大器及A/D、D/A芯片的选择 (5)

2.3方案三 (5)

3系统总体结构 (6)

4 电路设计 (7)

4.1拾音器 (7)

4.2放大器的设计 (8)

4.3有源带通滤波器设计 (10)

4.4可调稳压电源的设计 (12)

4.5 51/52系列单片机 (13)

4.6 D/A、A/D转换器 (24)

4.6.1 D/A转换器DAC0832介绍 (24)

4.6.2 A/D转换器ADC0809介绍 (28)

4.6.3 存储器的选取 (30)

4.6.4 ZLG7289介绍 (31)

4.6.5 串口通信电路介绍 (32)

4.6.6 ISP下载电路 (33)

5 软件设计 (33)

6 总结与展望 (36)

7 致谢 (36)

附录 (36)

摘要

传统的磁带语音录放系统因其体积大、使用不便,在电子与信息处理的使用中受到许多限制。本文提出的体积小巧,功耗低的数字化语音存储与回放系统将完全可以替代它。数字化语音存储与回放系统的基本原理是对语音的录音与放音的数字化控制。其中,关键技术在于,为了增加语音存储时间,提高存储器的利用率,采用了非失真压缩算法对语音信号进行压缩后再存储,而在回放时再进行解压缩,同时,对输入语音信号进行数字滤波以抑制杂音和干扰,从而确保了语音回放的可靠质量。

本系统能够对语音信号分别进行数据的采集直存直取,欠抽样采样和自相似增量调制等三种方法,完成了对语音信号的存储与回放。前置放大、滤波以及电平移位电路将语音信号控制在A/D转换器采样控制范围内以保证话音信号采样不失真。带通滤波器合理的通带范围有效的滤除了带外噪声,减小了混叠失真。后置带通滤波器用于滤除D/A转换产生的高频噪声以保证回放时音质清晰,无明显失真。

本系统设计共分为七大模块:声音采集模块、带通滤波模块、A/D转换模块、数据存储模块、D/A转换模块、按键选择模块、放大器模块。声音采集模块用于外部语音信号,带通滤波模块作用是将声音转换后的电信号进行滤波(本系统含有两个带通滤波模块,前一个对输入电信号进行滤波,后一个对D/A转换后的电信号进行滤波),数据存储模块用于存储数字化处理后声音信号的数据,D/A转换模块将数字信号转换为模拟信号输出,音频放大模块则是将采集的信号最终进行回放以检验系统整体性能,按键选择模块则是对录、放音、数据分段存取等功能进行选择。

1绪言

本结题报告主要是用于阐述数字化语音存储与回放系统的研究背景、现状及发展方向,并且指出了传统的语音存储与回放系统的缺陷和面临的问题,以及数字化语音存储与回放系统的优点和发展前景。

1.1课题背景

数字化语音存储与回放系统,以微处理芯片为核心,具有语音可控、回

放灵活、无磨损、可靠简单等特点。因而在各类公共设施、智能仪表、家用电子产品等领域有着广泛的应用。语音存储与回放系统的实现具有多种方式,一种是利用单片集成的语音存储与回放芯片,如美国ISD公司的ISD1420等;另一种是以微控制器为核心,辅以A/D转换,D/A转换以及大容量的存储器。而单片集成

的语音存储与回放芯片,一般智能性较差,不容易解决音量的问题,同时存放录制的时间有限,不能灵活的变化。因此,在多数需要语音的存储与回放的场合,采用了基于微控制器的语音存储与回放系统。

1.2课题研究的目的和意义

目前,广为流传的语音存储手段为磁带记录(现已逐渐转为数字化存储),其体积大、使用不便,在电子与信息处理的使用中受到许多限制。所以数字化存储方式是未来发展的趋势。我们在这里将语音信号的存储建立在数字化的基础上,同时为了降低噪声提高语音质量和音量的稳定性采用了带通滤波器和自动增益控制电路。

1.3国内外概况

自从爱迪生1877年发明留声机以来,音响技术已有百余年的发展历史,在这期间,记录存储各种声音的载体,传输与播放语音技术的发展可谓日新月异。该系统采用单片机对录音、放音、快进、暂停等功能实现控制,用DSP技术对语音信息进行处理,用SRAM存储器进行存储,提高了语音的回放质量和延长了存储时间,与盒式磁带录音机相比避免了机械传动噪音,音质好,功耗低,具有时钟功能,而且人机界面友好,又用中断方式控制录音、放音的过程,实现了语音存储与回放的数字化。

2方案比较与论证

2.1方案一

2.1.1器件操作方式的选择

由于要实现语音的存储与回放,而且要由相关的按键操控以及人机接口,所以与单片机连接的外围器件很多,对器件的组织和读写操作是实现简单操作的关键。经典51内核的单片机对外裸露总线(通常意义的“三总线”——数据总线、控制总线、地址总线),其内部硬件会产生总线控制时序,因此充分利用单片机的片内资源将会使系统软件的设计变得简单。如果采用纯软件的方法模拟器件操作时序来对器件操作,那么系统的软件设计将会很复杂并且实时性不高,而且单片机的片内资源没有得到充分的利用。鉴于51单片机对外裸露总线的特点,设计系统时宜采用总线控制的方式。

2.1.2 A/D 、D/A 及存储芯片的选择

要实现语音信号的采集,就需要A/D 转换芯片;而语音得生成过程则可以看成是语音采集过程的逆过程,但又不是原封不动地恢复原来的语音,而是对原来语音的可控制、可重组的实时恢复。在放音时,只要依原先的采样直经D/ A 接口处理,便可使原信号重现。

(1)A/D 转换芯片的选择 根据题目要求采样频率fs=8KHz ,字长为8位,可选择转换时间不超过125μs 的八位A/D 转换芯片。目前常用的A/D 转换实现的方法有多种,鉴于转换速度的要求,我们采用目前较为通用的A/D 转换芯片ADC0809。该芯片是中低速8位逐次比较型A/D 转换器,典型转换时间为100us ,最大外接时钟振荡频率fm=1280KHz ;具有外围扩展元件元件少、功耗低、精度高等特点。

(2)D/A 转换芯片的选择 D/A 转换芯片的作用是将存储的数字语音信号转换为模拟语音信号,由于一般的模拟转换器都能达到1μs 的转换速率,足够满足题目的要求,故我们在此选用了通用D/A 转换器DAC0832。

(3)数据存储器的选择 当采样频率fs=8KHz ,字长为8位时,一秒钟的语音信号需要占用8K 字节的存储空间,要存储10s 的语音信号则存储器至少需要有80KB 的容量。在这里我们利用8片UT62256构成存储器阵列,借助单片机的P1、P2端口参与地址选择,采用译码器分页存储模式,可将系统的数据存储空间扩展至128kB ,以128kB 空间存储原始语音信号和DPCM 码,语音回放时间可达16s 和32s ,达到题目要求。

2.2方案二

系统采用MCS-51系列单片机,扩展128kB 的外部SRAM 数据存储区,同样采用DPCM 方式对采集的数据进行编码压缩,另外采用了两只立体声话筒作输入,有效抑制背景噪声。经差分放大,用性能良好、低漂移运放构成的有源带通滤波器进行滤波,以及()()s s f f f f /sin //ππ校正电路进行信号补偿。

2.2.1控制方式

控制器采用单片机实现,单片机人机界面好,并且具有一定的可编程能力 对于语音信号(最高频率约为3.4kHz ,8kHz 采样频率),12MHz 晶振频率的51单片机以足以胜任(每个采样周期125us ,相当于125/2=62个机器周期,平均执行31条指令)。

2.2.2放大器及A/D 、D/A 芯片的选择

为减少系统噪音电平,增加系统动态范围,防止阻塞失真等,本放大器中设置自动增益控制电路。其有模拟和数字两种实现方式。数字式精度高,控制范围大但比模拟试复杂,因此本方案采用传统的模拟试AGC 来实现。采用TDA2030A 作为功率放大可驱动喇叭发声,并具有一定的功率余量[7]。

A/D,D/A 及存储芯片的选择:由于题目要求语音信号的最高频率为4kHz ,根据奈圭斯特采样定理,采样频率取s f =8kHz (周期S T =125s μ),即可无失真的恢复原语音。在无特殊要求下,字长选取八位即可,但考虑到系统的可扩展性所以采用了转换时间为此4.5s μ的AD7819。根据同样的分析,变换频率选取8kHz ,采用DAC0832。存储器采用128KB 的SRAM ——IS62C1024实现。

2.3方案三

该方案以单片机STC89C52为核心器件,以128kB SRAM 阵列为数据存储器。STC89C52的典型时钟为12MHz 指令周期为1us 可以在要求的125us 采样间隔执行系统工作还可同时对A/D 转换器输出的数字语音信号进行增量调制()M ?或差分脉码调制(DPCM ),M ?和DPCM 是两种语音压缩编码技术,可分别将语音速率由64kb/s 压缩到8kb/s 和32kb/s 。另外,为加长录音与回放时间,我们利用ATMEL 的闪速存储芯片AT45DB161(2MB )存储数据;该芯片具有容量大、读写速度快、占用I/O 端口资源少、操作简单等优点,单片可存储录音256s ,如果再将采样的数据进行DPCM 压缩,则存储时间可达512s ,大大超出题目要求。

以上三种方案均有其可取和不足之处,考虑到其易行性、简便性等多种因素决定采取第一种方案。

3系统总体结构

数字化语音存储与回放系统的基本设计思想是通过拾音器将声音信号转化成电信号,再经过放大器放大,然后通过带通滤波器滤波,模拟语音信号通过模数转换(A/D )转换成数字信号并存放于存储介质中,再通过单片机控制将数据从存储器中读出,然后通过数模转换(D/A )转换成模拟信号,经放大再扬声器或耳机上输出。

整个系统框架图如图3.1所示:

图3.1 系统总体框图

系统总体组成如上图所示,由输入通道、STC89C52单片机和输出通道三部分组成。输入通道部分由拾音器、前置放大电路、带通滤波器、电平移位电路组成;输出通道由带通滤波器、后级放大电路组成。拾音器输出的毫伏级信号实测其范围约为10~20mV ,此电信号太小不能够进行采样,后级A/D 转换输入信号的动态范围为0~5V ,语音信号的范围与采样范围的比较得出放大器的放大倍数应为200倍左右,此处将信号通过一增益为46dB 可调的放大器,将其放大到伏特量级,以满足采样条件。输出级放大电路则采用了美国国家半导体公司的音频功率放大器LM386对转换后的信号进行播放。考虑到语音信号的固有特点,将低于300Hz 和高于3.4kHz 的分量滤掉后语音质量仍然良好。此处将其通过一增益为46dB 的放大器,因此,将带通滤波器设计为典型的300Hz~3.4kHz,输出级带通滤波器亦为300Hz~3.4kHz,这样既可滤掉低频分量又可滤掉D/A 转换带来的高频分量,很好的滤除掉噪声。根据奈奎斯特抽样定理知欲使采样信号无失真,抽样频 STC89C52单片机 ZLG7289

按键与

显示 LED 录放指示 4片UT62256存

储阵列 DAC0832模块

(I/V 变换)

带通滤波器(BPF)

音频功放

(LM386)

扬声器/耳机 拾音器(话筒) 前置放大器 带通滤波

器(BPF)

ADC0809

转换模块

率最低为6.8kHZ ,考虑到留有一定的裕量采用8KHz 的采样率,这样就足够保证语音质量。经量化后,微处理器将数据存到处理器,需要时再将其回放,存入与放出由开关通过微处理器来控制实现。存储器的容量选择视所存语音信号的时间长短而定。为了使A/D 的输入信号稳定在其动态范围内,在输入级加入了电平移位电路,将负电平部分的信号全部上移为正信号。

4 电路设计

4.1拾音器

拾音器是一种声电传感器,即将外界声场中的声信号转换成电信号的传感器。它在通讯、噪声控制、环境检测、音质评价、文化娱乐、超声检测、水下探测和生物医学工程及医学方面有广泛的应用。它的种类很多,按其特点和频率等,将它划分为超声传感器、声压传感器和声表面波传感器等。

目前应用广泛的一类是驻极体话筒(内部原理图如图4.1.1),其关键元件是驻极体振动膜,它是一片极薄的塑料膜片,在其中一面蒸发上一层纯金薄膜。然后再经过高压电场驻极后,两面分别驻有异性电荷。膜片的蒸金面向外,与金属外壳相连通。膜片的另一面与金属极板之间用薄的绝缘衬圈隔离开。这样,蒸金膜与金属极板之间就形成一个电容。当驻极体膜片遇到声波振动时,引起电容两端的电场发生变化,从而产生了随声波变化而变化的交变电压。驻极体膜片与金属极板之间的电容量比较小,一般为几十pF 。因而它的输出阻抗值很高(Xc =fc

21),约几十兆欧以上。这样高的阻抗是不能直接与音频放大器相匹配的。所以在话筒内接入一只结型场效应管来进行阻抗变换。场效应管的特点是输入阻抗极高、噪声系数低。普通场效应管有源极(S)、栅极(G)和漏极(D)三个极。这里使用的是在内部源极和栅极间再复合一只二极管的专用场效应管。接二极管的目的是在场效应管受强信号冲击时起保护作用。场效应管的栅极接金属极板。这样,驻极体话筒的输出线便有三根。即源极S ,一般用蓝色塑线,漏极D ,一般用红色塑料线和连接金属外壳的编织屏蔽线。

驻极体话筒与电路的接法有两种:源极输出与漏极输出。源极输出类似晶体三极管的射极输出。需用三根引出线。漏极D 接电源正极。源极S 与地之间接一电阻Rs 来提供源极电压,信号由源极经电容C 输出。编织线接地起屏蔽作用。源极输出的输出阻抗小于2k ,电路比较稳定,动态范围大。但输出信号比漏极输出小。漏极输出类似晶体三极管的共发射极放入。只需两根引出线。漏极D 与电源正极间接一漏极电阻RD ,信号由漏极D 经电容C 输出。源极S 与编织线

一起接地。漏极输出有电压增益,因而话筒灵敏度比源极输出时要高,但电路动态范围略小。

图4.1 驻极体话筒内部原理图

4.2放大器的设计

(1)增益放大器 拾音器输出的信号实测其范围约为10~20mv 左右, 此电信号太小不能够进行采样,后级A/D 转换输入信号的动态范围为0~5V ,语音信号的范围与采样范围的比较得出放大器的放大倍数应为200倍左右,此处将信号通过一最大增益为46dB 的可调放大器,将其放大到伏特量级。放大电路如图4.2.1所示,放大倍数按下式计算:

39421R R A +=

图4.2.1 前置放大器

(2)输出放大器经带通滤波器输出的声音回放信号,其幅度为0~5V,足以用耳机来接收听,可不接任何放大器。但考虑到实际中经常回用到喇叭作外放,故在本系统中增加外放功能,前端放大器采用通用型音频功率放大器LM386来完成。电路如图4.2.2所示。该电路增益为50~200连续可调,最大不失真功率为320mW。输出端接C10、R11串联电路,以校正喇叭的频率特性,防止高频自激.脚7接22pF去偶电容,以消除低频自激。

图4.2.2 输出放大器

4.3有源带通滤波器设计

滤波器是一种能使有用频率信号通过同时抑制(或大为衰减)无用频率信号的电子装置。工程上常用它来作信号处理、数据传输和抑制干扰等。这里主要讨论模拟滤波器。以往这种滤波电路主要采用无源元件R 、L 和C 组成,60年代以来,集成运放获得了迅速发展,由它和R 、C 组成的有源滤波电路,具有不用电感、体积小、重量轻、选择性好等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗又底,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但是,集成运放的带宽有限,所以目前有源滤波电路的工作频率难以作的很高,这是它的不足之处。

对于幅频响应,通常把能够通过的信号频率范围定义为通带,而把受阻和衰减的信号频率范围定义为阻带,理想滤波电路在通带内应具有零衰减的幅频响应和线形的相位响应,而在阻带内应具有无限大的幅度衰减(()0=ωj A )。按照通带和阻带的相互位置不同,滤波器可分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器。

由于滤波器相关知识比较重要,经此课题对有源滤波器的认识和设计有了更进一步的认识,下面就将本人在这方面的一点认识详细道来。

图4.3.1 二阶有源LPF

上图为典型二阶有源LPF ,其传递函数表达式如下:

()2220n n n S Q S A s H ωωω+???

? ??+= Q 0和A 分别为放大倍数和品质因数

一般设计时常取:C C C R R R 2121====, 则滤波器的参数为:RC 1n =ω 031A Q -=

由上式可知:为了保证滤波器稳定工作,要求0>Q ,则30

对于低通滤波器分析方法是一样的,这里就不再赘述。

声音信号经拾音器转有源滤波器换成电压信号,通过前级放大,在对其进行数据采集之前,有必要经过带通滤波器除带外杂波,选定该滤波器的通带范围为300Hz~3.4KHz.其作用是:

1.保证300~3400Hz 的语音信号不失真的通过滤波器;

2.滤除带外的低频信号,以减少带外功频等分量的干扰,大大减少噪声影

响,该下限频率可下延到270Hz 左右;

3.便于滤除带外的高次谐波,以减少因8kHz 采样率而引起的混叠失真,

根据实际情况,该上限频率可在2700Hz 左右,带通滤波器按品质因数

Q 的大小为窄带滤波器(Q>10)和宽带滤波器(Q<10)两种,本题

中,上限频率fh=3400Hz,通带滤波器中心频率f0与品质因数Q分别为

0f =L H f f =3003400?=1010Hz Q=

326.000=-=L H f f f BW f 显然,Q <10,故该带通滤波器为宽带带通滤波器。有滤波器设计理论可知宽带带通(或带阻)滤波器是不能由一级实现的,所以采用高通和低通滤波器级联构成,鉴于Butterworth 滤波器带内平坦的响应特性,我们选用二阶Butterworth 带通滤波器,电路如图4.3.2所示.实验证明,该滤波器能有效的滤除低频分量,大大减少噪声干扰,与之同时也滤除了多余的高频分量,消除了高频失真,性能足以满足要求。

图4.3.2 二阶带通滤波器

4.4可调稳压电源的设计

为了让系统正常稳定的工作,需要为系统提供电源。系统供电需要三种不同电压的电源,分别是+12V、-12V、+5V。这里介绍的稳压电源,采用三端可调稳压集成电路LM7805、LM7812、LM7912共同构成,外围电路十简单,便于制作。

电路如图4.4所示:220V交流电经变压器降压,得到±12V交流电,再经D3整流桥堆2W10整流得到振荡的直流电,由C3、C11滤波后得到较平稳的直流电压。然后分别经集成电路LM7805、LM7812、LM7912后得稳压输出。图中C12用以消除寄生振荡,C1、C5、C7、C9的作用是抑制纹波,C2、C6、C8、C10则用以改善稳压电源的的暂态响应,D2、D4、D5、D6构成短路保护电路。D1为本电源的工作指示灯,电阻R2是限制流经D1的电流,R2、R3限制流经稳压元件的电流,防止其静态功耗过大。若是要直观的指示输出电压值便于观察,可以在输出端接上万用表或电压表。各元件具体参数如图标示。

图4.4 稳压源电路

4.5 51/52系列单片机

单片机是本系统的核心控制器件,主要负责录音、回放中对外部命令的响应,同时对数据进行简单编码压缩以及存储器的读写等操作。本系统采用52系列单片机,负责控制与协调其他各个模块的工作。在整个系统中单片机是系统的控制中心,其工作效率的高低关系到系统效率的高低以及系统运行的稳定性。之所以选用52系列单片机,是因为该系列单片机技术成熟,可利用、可参考的资料丰富,开发简便。单片机虽小,但其功能强大,应用千变万化全靠个人的发挥水平。为了更进一步巩固单片机知识,有必要在这里详细讲述单片机的相关知识,就当是复习吧!

单片微型计算机(Sing-Chip Microcomputer)简称单片机。它是在一块芯片上集成中央微处理器(Central Processing Unit, CPU)、随机存取存储器(Random Access Memory, RAM)、只读存储器(Read Only Memory, ROM)、定时/计数器及I/O(Input/Output)接口电路等部件,构成一个完整的微型计算机。它的特点是:高性能、高速度、体积小、价格低廉、稳定可靠,广泛应用于各类微控制系

统当中。

正是由于单片机具有上述显著的特点,使单片机的应用范围日益扩大。单片机的应用打破了人们传统设计思想,原来很多用模拟电路、脉冲数字电路和逻辑部件来实现的功能,现在均可以使用单片机配备一些软件来实现。使用单片机具有体积小、可靠性高、性价比高和容易产品化等优点。

4.5.189s52简介

89s52是一种带8K字节片内程序存储器,高性能CMOS 8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,并且对外裸露系统总线,使得89s52单片机成为一款高效的微控制器,为很多嵌入式控制系统提供了一种灵活性高且廉价的解决方案。

图4.5.1 89C51引脚图

89s52有40个引脚,4个8位并行输入/输出(I/O)端口:P0、P1、P2、P3,其中,P1是完整的8位准双向I/O口,两个外中断,2个16位可编程定时/计数器,两个全双向串行通信口,一个模拟比较放大器。此外,89s52的时钟频率可为零,即具备可用软件设置的睡眠省电功能,系统的唤醒方式有RAM、定时/计数器、串行口和外中断口,系统唤醒后即进入工作状态,省电模式中,片内RAM 将被冻结,时钟停止震荡,所有功能停止工作,直至系统被硬件系统复位方可继续工作。

2. 引脚介绍

Vcc:接+5V电源正端

GND:接地。

P0口:P0口为一个8位漏极开路双向I/O口,每脚可吸收8个TTL门电流。当P0口的管脚第一次写1时,被定义为高阻输入,这一点是很重要的;我在编写AD转换程序时,就因为没有写P0=0xff这一条语句,结果怎么调都读不了P0口的数据,找这个错误花了我整整两天的时间。谁也不会想到这样一条语句竟然有如此大的作用,当然这也只有自己亲自动手才会体会到的,书本上是学不到的,说句实话单片机确实是“玩”出来的。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FLASH编程时,P0 口作为原码输入口,当FLASH进行校验时,P0输出原码,此时P0外部必须被拉高。还有一点必须说明:做通用I/O口使用时,必须外接上拉电阻,否则读写的逻辑电平会餐生错误。

P1口:P1口是一个内带上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL 门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口还具有第二功能,如具体功能如下表4.1所示:

表4.1 P3口管脚的特殊功能引脚第二功能

P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7 RXD (串行输入口)

TXD (串行输出口)

INTO (外部中断0请求输入端)

INT1 (外部中断1请求输入端)

T0 (定时器/计数器0记数脉冲输入端) T1 (定时器/计数器1记数脉冲输入端) WR (片外数据存储器写选通信号输出端) RD (片外数据存储器读选通信号输出端)

RST:复位输入当振荡器复位器件时,至少要保持RST脚两个机器周期的高电平时间。

ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的,在本系统中就用到了这个时钟源,用74HC74对其四分频后为ADC0809提供系统时钟。然而需要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。由于我在设计时系统扩展SRAM电路时并没有用ALE引脚来访问外部存储器,而是用软件模拟读写时许,因此也不用考虑跳过脉冲的问题。

PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效;但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。此引脚在本系统中没用到。

EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP),对于国产STC89C52能串行编程,此引脚也基本不用。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

3. 主要性能指标

a.与MCS-51兼容

b.8K字节可编程闪烁存储器

c.寿命:1000写/擦循环数据保留时间:10年

d.全静态工作:0Hz-40MHz

e.三级程序存储器锁定

f.256*8位内部RAM

g.32个可编程I/O口

h.两个16位可编成定时器/计数器

i.8个中断源

j.可编程串行通道

k.低功耗的闲置和掉电模式

l.片内振荡器和时钟电路,时钟频率1.2—12MHz;可有时钟输出

m.有强的位寻址\位处理能力

4. 89s51单片机的主要组成部分

(1) CPU

CPU是单片机的核心部分,他的作用是读入和分析每条指令,根据每条指令的功能要求,控制各个部件执行相应的操作。89s51单片机内部有一个8位的CPU,它是由运算器和控制器组成。

运算器运算器主要包括算术、逻辑运算部件ALU、累加器ACC、寄存器B、暂存器YMP1、YMP2、程序状态寄存器PSW、布尔处理器及十进制调整电路等。运算器主要用来实现数据的传送、数据的算术运算、逻辑运算和位变量处理等。

控制器控制器包括时钟发生器、定时控制逻辑、指令寄存器指令译码器、程序计数器PC、程序地址寄存器、数据指针寄存器DPTR和堆栈指针SP等。控制器是用来统一指挥和控制计算机进行工作的部件。它的功能是从程序存储器中提取指令,送到指令寄存器,再进入指令译码器进行译码,并通过定时和控制电路,在规定的时刻发出各种操作所需要的全部内部控制信息及CPU外部所需要的控制信号,如ALE、PSEN、RD、WR等,使各部分协调工作,完成指令所规定的各种操作。

(2)存储器

程序存储器程序存储器用于存放编好的程序、表格和常数。程序存储器的寻址范围可以有64KB与此相应, 程序存储器的编址自0000H开始,最大可至FFFFH。程序存储器的编址规律为;先片内、后片外,片内、片外连续,两者一

般不作重叠。对于片内有程序存储器的芯片,CPU的控制器专门提供一个控制信号EA来区分,当EA为高电平时,复位后单片机先执行片内有程序存储器中程序,当程序计数器的内容超过OFFFH时,将自动转去执行片外程序存储器的程序而当指令,当EA为低电平时,将强行执行片外程序存储器中的程序。此时多在片外程序存储器中存放调试程序,使计算机工作在调试状态。这里应该注意的是,片外程序存储器存放调试程序的部分,其编址与片内程序存储器的编址是可以重叠的,就借EA的换接可实现分别访问。

在程序存储器中,有7个单元具有特殊用途。

0000H—0002H:是所有执行程序的入口地址,89C51单片机复位后,CPU总是从0000H单元开始执行程序。16位单片机、ARM等微控制器一般也是如此。

0003H:外部中断0入口。

000BH:定时/计数器0溢出中断入口。

0013H:外部中断1入口。

001BH:定时/计数器1溢出中断入口。

0023H:串行口中断入口。

002BH:定时器/计数器2溢出或T2EX端负跳变。

使用时,通常在这些入口地址处存放一条绝对跳转指令,使程序跳转到用户安排的中断程序起始地址,或者从0000H起始地址跳转到用户设计的初始程序上。

数据存储器片内数据存储器有16位,寻址范围也可达64KB。故片外数据存储器的容量可大到与程序存储器一样,其编址自0000H开始,最大可至FFFFH。89s52单片机数据存储器有片内数据存储器RAM和特殊功能寄存器SFR:前者有128个字节,其编址为00H—FFH,可以读、写任何数据;后者也占128个字节,其编址位80H—FFH;两者连续而不重叠。片内数据存储器的容量很小,常需扩展片外数据存储器。如扩展少量片外数据存储器,容量不超过256个单元,则也可按8位二进制数编址,自00H开始,最大可至FFH。

表4.2 不同存储器与所用指令及其寻址方式的对应关系

存储

访问性质所用指令及寻址方式

ROM 依次取指执行程序根据PC值自动访问程序转移程序转移类指令

用户访问MOVC指令

片内RAM 访问整

个字节

主要为MOV指令,借工作寄存器间接寻址

访问20H~2FH单元中的某位位操作类指令,借位地址寻址

SFR 访问整个字节主要为MOV类指令,直能借直接寻址字节寻址

访问SFR中的可寻址

位位操作类指令,借位地址寻址

片外RAM 如容量不大于256单

MONX指令,借工作寄存器间接寻址如容量大于256单元MONX指令,借数据指针寄存器间接寻址

片内数据存储器又可分为工作寄存区、位寻址区、数据缓冲器区三个区域。

①工作寄存器区

在低128B的内部RAM中,前32个单元(地址为00H—1FH)为通用工作寄存器区,共分为四组(寄存器0组、1组、2组、3组),每组8个工作寄存器由R0—R7组成,共占32个单元。选用哪一组由程序状态字PSW中的RS1、RS0这两位的设置决定,若程序并不需要四个4组工作寄存器,那么剩下的工作寄存器可作一般的存储器来使用。

②位寻址区

20H—2FH的16个单元为位寻址区,该区的每个单元都被赋予了一个位地址,每个单元8位,共128位。其位寻址范围为00H—7FH。位寻址区的每一位都可当作软件触发器,由程序直接进行处理。程序中通常把各种程序状态标志、位控变量设在位寻址区。同样,位寻址区的RAM单元也可作为一般的数据存储器按字节单元使用。

③数据缓冲区

30H~7FH是数据缓冲区,用户RAM区,共80个单元。

(3)特殊功能寄存器

累加器A 累加器A是一个最常用的8位特殊功能寄存器,它既可用于存放操作数,也可用于存放运算的中间结果。大部分单操作数指令的操作数就取自累加器。用ACC表示A的符号地址。

寄存器B 寄存器B是一个8位寄存器,主要用于乘法和除法的运算。乘法运算时,B中存放乘法,乘法操作后,乘积的高8位又存于B中;除法运算时,B中存放除数,出发操作后,B中又存放余数。在其他指令中,寄存器B可作为一般的寄存器使用,用于暂存数据。

5. 定时器/计数器

错误!未找到引用源。主要特性

a.89s52单片机有3个可编程的定时器/计数器——定时器/计数器0、定时器/计数

器1和定时/计数器2,可有程序选择作为定时器用或作为计数器用,定时时间或记数值也可由程序设定。

b.每一个定时器/计数器具有4种工作方式,可用程序选择。

c.任一定时器/计数器在定时时间到或记数值到时,可有程序安排产生中断请求信号或不产生中断请求信号。

②定时/计数器0和1的控制和状态寄存器

特殊功能寄存器TMOD 和TCON 分别是定时/计数器0和1的控制和状态寄存器,用于控制和确定各定时/计数器的功能和工作模式。

③模式控制寄存器TMOD

TMOD 用于控制T0和T1的工作方式和4种工作模式。其中低4位用于控制T0,高4位用于控制T1。其值可用程序决定,其格式如下: GATE T C / M1 M0 GATE T C /

M1 M0 GATE 位:门控位。

当GATE=1时,只有INTO 或1INT 引脚为高电平且TR0或TR1置1时,相应的定时/计数器才被选通工作;当GATE=0,则只要TR0和TR1置1,定时/计数器就被选通,而不管0INT 或1INT 的电平是高还是低

位:计数/定时功能选择位。 =0,设置为定时器方式,计数器的输入是内部时钟脉冲,其周期等

于机器周期。

=1,设置为计数器方式,计数器的输入来自T0(P3.4)或T1(P3.5)端的外部脉冲。

M1、M0位:工作模式选择位。2位可形成4种编码,对应4种工作模式,见下表:

表4.3 M1、M0工作模式 M1 M0

功 能 描 述 00

方式0:13位定时器/计数器 01

方式1:16位定时器/计数器 10

方式2:具有自动重装初值的8位定时器/计数器 11 方式3:定时/计数器0分为两个8位定时/计数器,定时/计数器1在此方式无实用意义 ④控制寄存器TCON

TCON 用来控制T0和T1的启、停,并给出相应的控制状态,高4位用于控制定时器0、1的运行;低4位用于控制外部中断。格式如下:

基于dsp的语音信号采集与回放系统的设计--开题报告

HEFEI UNIVERSITY 课程设计开题报告 题目:《基于DSP系统的语音采集与回放系统》 专业:11 级电子信息工程 姓名:章健吴广岭何志刚 学号:1105011029 1105011030 1105011044 指导老师:汪济洲老师 完成时间:2014年12月1日

一、开题报告题目 基于DSP系统的语音采集与回放系统。 二、研究背景与意义 语音处理是数字信号处理最活跃的研究方向之一,它是信息高速公路、多媒体技术、办公自动化、现代通信及职能系统等新兴领域应用的核心技术之一。用数字化的方法进行语音的传送、存储、分析、识别、合成、增强等是整个数字化通信网中的最重要、最基本的组成部分之一。一个完备的语音信号处理系统不但要具有语音信号的采集和回放功能, 还要能够进行复杂的语音信号分析和处理。通常这些信号处理算法的运算量很大, 而且又要满足实时的快速高效处理要求, 随着DSP 技术的发展, 以DSP 为内核的 设备越来越多。为语音信号的处理提供了优质可靠的平台. 软件编程的灵活性给很多设备增加不同的功能提供了方便, 利用软件在已有的硬件平台上实现不同的功能已成为 一种趋势。近年来,随着DSP的功能日益增强,性能价格比不断上升,开发手段不断改进,DSP在数据采集系统的应用也在不断完善。 三、主要内容与目标 随着计算机多媒体技术,网络通信技术和DSP(Digital Signal Processor)技术的飞速发展,语音的数字通信得到越来越多的应用,语音信号的数字化一直是通信发展的主要方向之一,语音的数字通信和模拟通信相比,无疑有着更大的优越性,这主要体现在以下几个方面:数字语音比模拟语音具有更好的话音质量;具有更强的干扰性,并易于加密;可节省带宽,能更有效的利用网络资源;更加易于存储和处理。最简单的数字化就是直接对原始语音信号进行A/D 转换,但这样得到的语音的数据量非常大。为了减少语音信号所占用的带宽或存储空间,就必须对数字语音信号进行压缩编码。语音编码的目的就在于在保证语音音质和可懂度的条件下,采用尽可能少的比特数来表示语音,即尽可能的降低编码比特率,以便在有限的传输带宽内让出更多的信道来传输图像和其他数据流,从而达到传输资源的有效利用和网络容量的提高。在通信越来越发达的当今世界,尤其最近几十年,语音压缩编码技术在移动通信、IP 电话通信、保密通信、卫星通信以及语音存储等很多方面得到了广泛的应用。 语音信号处理在手持设备、移动设备和无线个人设备中的应用正在不断增加。今天的个人手持设备语音大多时候仅仅局限于语音拨号,但是已经出现了适用于更广泛开发语音识别和文本到语音应用的技术。语音功能为用户提供自然的输入和输出方式,它比其他形式的I/O更安全,尤其是当用户在开车期间。在大多数应用中,语音都是键盘和显示器的理想补充。其他潜在的语音应用包括如下几个方面。 (1)语音电子邮件。包括浏览邮箱、利用语音输入写电子邮件以及收听电子邮件的读出。 (2)信息检索。股票价格、标题新闻、航班信息、天气预报等都可以通过语音从互联网收听。例如,用户不用先进入某个网址并输入股票名字或者浏览预定义列表,可以通过语音命令实现。 (3)个人信息管理。允许用户通过语音指定预约、查看日历、添加联络信息等等。 (4)语音浏览。利用语音程序菜单,用户可以在网上冲浪、添加语音收藏夹并收听网页内容的读出。 (5)语音导航。在自动和人眼不够用的条件下获取导航的完全语音输入/输出驾驶

单片机 PCF8591 波形采集存储与回放

单片机课程设计报告题目: 设计者1:负责任务: 专业班级/学号: 设计者2:负责任务: 专业班级/学号: 指导教师1:指导教师2: 答辩时间:

目录 一、设计题目、设计目的 (2) 1.1、说明选题的来源、意义和目的 (2) 1.2、课题承担人员及分工说明 (2) 二、课题总体设计说明 (2) 2.1、说明总体开发计划和课题所达到的功能目标和技术指标 (2) 2.2、课题总体设计方案,比较几个备选方案,确定最终方案 (3) 三、硬件设计说明 (4) 3.1、硬件总体设计方案 (4) 3.2、硬件设计的总电路原理图、PCB图及原件清单 (7) 四、软件设计说明 (9) 4.1、软件总体设计方案 (9) 4.2、软件功能模块划分 (9) 五、硬件调试说明 (12) 5.1、硬件性能测试 (12) 5.2、实验测得的数据 (12) 5.3、软件性能测试 (13) 六、附件 (13) 附件1、波形回放信号图 (13) 附件2、硬件外观图 (15) 附件3、PROTUES仿真效果图 (17) 1

一、设计题目、设计目的 1.1、说明选题的来源、意义和目的 选题来源:本次课题设计根据2011全国大学生电子大赛—H题波形采集、存储与回放系统基本要求设计的, 意义和目的:制作一个波形采集、存储与回放系统,示意图如图1 所示。该系统能同时采集两路周期信号波形,要求系统断电恢复后,能连续回放已采集的信号,显示在示波器上。 图1-1 总设计框架图 1.2、课题承担人员及分工说明。 这次报告以及我们的硬件软件都是一起共同努力完成的,硬件也是一起做的,最后调试成功,我们的合作很愉快。 二、课题总体设计说明 2.1、说明总体开发计划和课题所达到的功能目标和技术指标 2.11、达到的功能目标 1、能完成对A 通道单极性信号(高电平约4V、低电平接近0V)、频率约1kHz 信号的采集、存储与连续回放。要求系统输入阻抗不小于10 kΩ,输出阻抗不大于1kΩ。 2、采集、回放时能测量并显示信号的高电平、低电平和信号的周期。原信号与回放信号电平之差的绝对值≤50 mV,周期之差的绝对值≤5%。 3、本系统处理的正弦波信号频率范围限定在10Hz~10kHz,三角波信号频率范围限定在10Hz ~2kHz,方波信号频率范围限定在10Hz ~1kHz。 4、预留电源电流的测试点。 2

数字化语音存储与回放系统【毕业作品】

BI YE SHE JI ( 届) 数字化语音存储与回放系统 (英文) Digital voice storage and playback System 所在学院电子信息学院 专业班级电子信息工程 学生姓名学号 指导教师职称 完成日期年月日

摘要 数字化语音存储与回放系统英文全称为“Digital voice storage and playback system”,由于传统的磁带语音录放系统,体积大,音质差,存储时间短,存储量小已不能满足人们的需求,随着计算机技术和数字电子的发展,人们发明了音质更好、体积小、容量大的数字化语音存储与回放系统。 本系统由语音信号经放大滤波后,送入A/D进行模数转换。转换后的数字化语音信号,通过单片机的控制写入片外数据存储器,完成语音数字化存储,本系统能达到的最大存储时间为10S。回放时,单片机从数据存储器中将数据读出,送人并行D/A转换器,进行数模转换,转换后的模拟信号经滤波、功率放大后,实现语音回放。 关键词:单片机;数字化;语音处理;A/D

Abstract The Digital voice storage and playback system full title in English is"Digital voice storage and playback system",As traditional tape voice recording system is large volume,poor Sound quality ,Short storage time and Small amount of storage,so it can not meet people's needs.With the development of computer technology and digital electronics,people invented a better sound quality, small size, large capacity digital voice storage and playback system. The system consists of a voice signal after amplifying and filtering into the A / D analog to digital conversion.The converted digital voice signal through the control of the microcontroller is written to the chip data memory, complete digital voice storage,Maximum storage time of 10 s.During playback, the data is read out from the data memory by Microcontroller and filtering into the D/A digital to analog conversion,The converted analog signal can achieve voice playback by filtering, power amplifier. . Key Words: SCM;Digital;Voice Processing;A/D

基于单片机的语音存储与回放系统设计

本科生毕业设计(申请学士学位) 论文题目基于单片机的语音存储与回放 系统设计 作者姓名 所学专业名称电子信息工程 指导教师

2017年 5 月

学生:(签字)学号: 答辩日期:2017 年 5 月20 日指导教师:(签字)

目录 摘要 (5) 1绪论 (6) 1.1课题研究背景 (6) 1.2课题研究的发展前景 (6) 1.3课题研究的意义及目的 (6) 2 语音系统的设计方案 (7) 2.1方案设计 (7) 2.2方案分析和选择 (8) 3 材料选取 (8) 3.1 控制芯片STC90C516RD+ (8) 3.2 语音芯片ISD4004 (9) 3.3功放芯片TDA2822M (11) 4 电路设计 (11) 4.1时钟电路 (11) 4.2复位电路 (12) 4.3显示电路 (12) 4.4 3.3V电源电路 (13) 4.5按键模块 (13) 4.6 ISD4004音频处理模块 (14) 4.7 TDA2822M功放电路 (14) 4.8总电路设计图 (15) 5 程序设计 (16) 5.1主程序流程图 (16) 5.2录音程序流程图 (17) 5.3放音序流程图 (17) 6实物调试 (17) 6.1程序编译和下载 (17) 6.2 实物调试最终结果展示 (19) 6.3 实物调试过程及故障解决方法 (19) 结论 (21) 参考文献 (21) 附录 (22) 附录1元件清单 (22) 附录2程序 (23) 致谢 (33)

基于单片机的语音存储与回放系统设计 摘要:本设计是基于单片设计的一个能实现语音存储和回放功能的系统,利用宏晶公司生产的STC90系列单片机作为主控制器,使用具有录音和放音功能的ISD4004语音芯片,能够显示32个字符的LCD1602显示器件和能对音频进行无失真的放大的TDA2822M差分放大器设计而成的。首先我们利用STC90C516RD+单片机的优越的控制性能来控制ISD4004语音芯片,通过单片机向语音芯片发送指令来完成ISD4004芯片的录音和放功能,用LCD1602来显示单片机对ISD4004的操作状态,使用TDA2822M将ISD4004芯片输出的音频进行无失真的放大的思路来进行语音存储和回放系统设计的,用Circuit Design Suite 10.0(Multisim)软件来绘制该系统的电路,用Keil uVision5软件来编写硬件程序。电路图和程序都完成后使用万用洞洞板依据电路图来焊接实物电路,实物完成后载入芯片程序直接进行实物调试,使用实物调试更容易找出问题和系统设计的缺陷,出现问题时可以通过模块化思想轻松查找到故障原因,并进行修复故障。ISD4004芯片录音时基于多电平存储技术实现的没有传统的数字录音过程中A/D转换带来的量化噪音和变色的金属音色。该系统录取的声音播放出来后和原音的音色、音调保持一致不失真。 关键词:STC90C516RD+;Keil uVision5;ISD4004;Multisim;语音录放

基于MATLAB的语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号: 指导老师:

一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,

是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。 FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H (z)在处收敛,极点全部在z = 0处(因果系统),因而只能

数字音频技术_MP3_的压缩编码原理与制作方法

第4卷第2期2004年6月 长沙航空职业技术学院学报 CHAN GSHA AERONAU TICAL VOCA TIONAL AND TECHN ICAL COLL EGE JOURNAL Vol.4No.2 J un.2004 收稿日期:2004-03-20 作者简介:张晓婷(1964-),女,上海市人,讲师,主要从事计算机教学与研究。 数字音频技术(MP3)的压缩编码原理与制作方法 张晓婷 (珠海市工业学校,广东珠海 519015) 摘要:本文从音频压缩理论的角度,阐述MP3音频格式、压缩编码原理,同时介绍专业制作 MP3的方法。 关键词:MP3音频格式;压缩编码原理;制作经验与技巧中图分类号:TN919.3+11 文献标识码:A 文章编号:1671-9654(2004)02-051-06 Compression Coding Principle and F acture of Digital Audio Frequency T echnique (MP 3) ZHAN G Xiao 2ting (Zhuhai Indust ry School ,Zhuhai Guangdong 519015) Abstract : From the perspective of Audio Compression Theory ,the paper discusses format of audio Frequency tech 2 nique (MP3)and compression coding principle and also introduces the facture of audio Frequency technique (MP3). K ey w ords : Fomat of audio Frequency technique (MP3);compression coding principle ;facture 一、引言 数字技术的出现与应用为人类带来了深远的影响,特别是互联网的普及,使数字音频技术得到更为广泛的应用,并具有良好的市场前景。与之相关的数字音频压缩技术也得到了充分的发展,一些著名的研究机构和公司都致力于开发专利技术和产品。其中,MP3便是目前为止开发得最为成功的数字音频压缩技术之一。 二、MP3简介 (一)数字音频MP3的格式 MP3音频格式诞生于20世纪80年代,全名MPEG Audio layer 3,是MPEG (Moving PicturesEx 2pert Group 运动图像专家组)当初和影像压缩格式同时开发的音频压缩格式,是MPEG 21标准中的第三个层次,是综合了MPEG Audio layer 2和ASPEC 优点的混合压缩技术,音频质量好,主要用于MP3音频压缩,典型的码流为每通道64Kbit/s 。 (二)数字音频MP3压缩的优点 使用数字音频MP3压缩方式的处理,能增加更多的存储空间。由于MP3的压缩比约在十到十二倍之间,一分钟的CD 音乐经MP3压缩后,只需要一兆左右的存储空间,即一张光盘可以存储六百五十分钟到七百五十分钟的音乐;MP3典型的码流是每通道64Kbit/s ,只有CD 音乐每通道大约十分之一的码流,非常适合网上传输。更重要的是,即使压缩比如此惊人,音乐的品质依然较好,这主要是利用了人类听觉掩蔽效应(Masking Effect )的缘故。MP3具有容量小、数码化、制作简单、传输方便、成本低廉等特点,虽历经14余年,仍然是网上最流行的音乐格式之一。 三、MP3压缩编码原理在MPEG 21的音频压缩中,采样频率可分为32、44.1和48KHz ,可支持的声道有单声道(mono 2phonic )、双—单声道(dual 2monophonic )、立体声模式 ? 15?

语音信号采集与回放系统设计

语音采集与回放系统设计
l 竞赛真题 l 总体方案选择 l 具体方案设计 l 设计阶段划分
一、竞赛真题
1999 年第四届 E 题 数字化语音存储与回放系统 一、题目:数字化语音存储与回放系统 二、任务 设计并制作一个数字化语音存储与回放系统,其示意图如下:
三、要求 1.基本要求 (1)放大器 1 的增益为 46dB,放大器 2 的增益为 40dB,增益均可调; (2)带通滤波器:通带为 300Hz~3.4kHz ; (3)ADC:采样频率 fs= 8kHz,字长= 8 位; (4)语音存储时间≥10 秒; (5)DAC:变换频率 fc= 8kHz,字长= 8 位; (6)回放语音质量良好。 2.发挥部分 在保证语音质量的前提下: (1)减少系统噪声电平,增加自动音量控制功能; (2)语音存储时间增加至 20 秒以上; (3)提高存储器的利用率(在原有存储容量不变的前提下,提高语音存储时间) ;

(4)其它(例如: 四、评分意见
校正等) 。


满 分 50 50 15 5 15 15
基 设计与总结报告: 方案设计与论证, 理论分析与计算, 电路图, 本 测试方法与数据,对测试结果的分析 要 实际制作完成情况 求 完成第一项 发 挥 完成第二项 部 完成第三项 分 完成第四项 五、说明 不能使用单片语音专用芯片实现本系统。
训练侧重点 l 题目中给出一些提示性设计参数,设计中应予以重点理解
1. 放大器 1 的增益,放大器 1 的增益为 46dB 2. 带通滤波器的频率范围通带为 300Hz~3.4kHz(方便测试) 3. AD 采样的字长和采样频率(保证公平竞争)
l
题目中部分非技术性指标在培训中可以适当简化
1. 语音存储与回放时间≥10 秒 2. 语音存储时间增加至 20 秒以上;
二、总体方案选择
1. 控制平台选择 2. 前级放大模块 3. 带通滤波器 4. 模数、数模转换部分 5. 存储器 6. 编码方案
1. 控制平台选择
供选平台: A. B. 单片机平台 FPGA 开发平台

语音信号采集与回放系统

电子与信息工程学院 综合实验课程报告 课题名称 语音采集及回放系统设计 专 业 电子信息工程 班 级 07电子2班 学生姓名 Y Y Y 学 号 07002 指导教师 X X X 2010年 7月 5日

1 总体设计方案介绍: 1.1语音编码方案: 人耳能听到的声音是一种频率范围为20 Hz~20000 Hz ,而一般语音频率最高为3400 Hz。语音的采集是指语音声波信号经麦克风和高频放大器转换成有一定幅度的模拟量电信号,然后再转换成数字量的全过程。根据“奈奎斯特采样定理”, 采样频率必须大于模拟信号最高频率的两倍,由于语音信号频率为300~3 400 Hz ,所以把语音采集的采样频率定为8 kHz。从语音的存储与压缩率来考虑,模型参数表示法明显优于信号波形表示法[4]。但要将之运用于单片机,显然信号波形表示法相对简单易实现。基于这种思路的算法,除了传统的一些脉冲编码调制外,目前已使用的有VQ技术及一些变换编码和神经网络技术,但是算法复杂,目前的单片机速度底,难以实现。结合实际情况,提出以下几种可实现的方案。 (1)短时平均跨零记数法该方案通过确定信号跨零数,将语音信号编码为数字信号,常用于语音识别中。但对于单片机,由于处理数据能力底,该方法不易实现。 (2)实时副值采样法采样过程如图2.1所示。 图2.1 采样过程 具体实现包括直存取法、欠抽样采样法、自相似增量调制法等三种基本方法。其中第三种实现方法最具特色,该方法可使数据压1:4.5,既有M ?调制的优点,又同时兼有PCM编码误差较小的优点,编码误差不向后扩散。 1.2 A/D、D/A及存储芯片的选择 单片机语音生成过程,可以看成是语音采集过程的逆过程,但又不是原封不动地恢复原来的语音,而是对原来语音的可控制、可重组的实时恢复。在放音时,只要依原先的采样直经D/ A 接口处理,便可使原音重现。 (1)A/D转换芯片的选择根据题目要求采样频率f s=8K H Z,字长=8位, 可选择转换时间不超过125s的八位A/D转换芯片。目前常用的A/D转换实现的

音频、视频压缩有哪些技术标准

音频、视频压缩有哪些技术标准? 视频压缩技术有:MPEG-4、H263、H263+、H264等 MPEG-4视频编码技术介绍 MPEG是“Moving Picture Experts Group”的简称,在它之前的标准叫做JPEG,即“Joint Photographic Experts Group”。当人们用到常见的“.jpg”格式时,实际上正在使用JPEG的标准。JPEG规范了现代视频压缩的基础,而MPEG把JPEG 标准扩展到了运动图象。 MPEG-4视频编码标准支持MPEG-1、MPEG-2中的大多数功能,它包含了H.263的核心设计,并增加了优先特性和各种各样创造性的新特性。它提供不同的视频标准源格式、码率、帧频下矩形图像的有效编码,同时也支持基于内容的图像编码。采纳了基于对象(Object-Based)的编码、基于模型(Model-based)的编码等第二代编码技术是MPEG-4标准的主要特征。 MPEG4与MPEG1、MPEG2的比较 从上表可以看出,MPEG1和MPEG2主要应用于固定媒体,比如 VCD 和 DVD ,而对于网络传输,MPEG4具有无可比拟的优势。 H.263/H.263+/H.264视频编码技术介绍 1.H.263视频编码标准 1.H.263是最早用于低码率视频编码的ITU-T标准,随后出现的第二 版(H.263+)及H.263++增加了许多选项,使其具有更广泛的适用性。 H.263是ITU-T为低于64kb/s的窄带通信信道制定的视频编码标准。 它是在H.261基础上发展起来的,其标准输入图像格式可以是

S-QCIF、QCIF、CIF、4CIF或者16CIF的彩色4∶2∶0亚取样图像。 H.263与H.261相比采用了半象素的运动补偿,并增加了4种有效的 压缩编码模式。 2.H.263+视频压缩标准 1.ITU-T在H.263发布后又修订发布了H.263标准的版本2,非正式 地命名为H.263+标准。它在保证原H.263标准核心句法和语义不变 的基础上,增加了若干选项以提高压缩效率或改善某方面的功能。原 H.263标准限制了其应用的图像输入格式,仅允许5种视频源格式。 H.263+标准允许更大范围的图像输入格式,自定义图像的尺寸,从而 拓宽了标准使用的范围,使之可以处理基于视窗的计算机图像、更高 帧频的图像序列及宽屏图像。为提高压缩效率,H.263+采用先进的帧 内编码模式;增强的PB-帧模式改进了H.263的不足,增强了帧间预 测的效果;去块效应滤波器不仅提高了压缩效率,而且提供重建图像 的主观质量。为适应网络传输,H.263+增加了时间分级、信噪比和空 间分级,对在噪声信道和存在大量包丢失的网络中传送视频信号很有 意义;另外,片结构模式、参考帧选择模式增强了视频传输的抗误码 能力。 3.H.264视频压缩标准 1.H.264是由ISO/IEC与ITU-T组成的联合视频组(JVT)制定的新一 代视频压缩编码标准。对信道时延的适应性较强,既可工作于低时延 模式以满足实时业务,如会议电视等;又可工作于无时延限制的场合, 如视频存储等。 2.提高网络适应性,采用“网络友好”的结构和语法,加强对误码和 丢包的处理,提高解码器的差错恢复能力。 3.在编/解码器中采用复杂度可分级设计,在图像质量和编码处理之 间可分级,以适应不同复杂度的应用。 4.相对于先期的视频压缩标准,H.264引入了很多先进的技术,包括 4×4整数变换、空域内的帧内预测、1/4象素精度的运动估计、多参 考帧与多种大小块的帧间预测技术等。新技术带来了较高的压缩比, 同时大大提高了算法的复杂度。 G.7xx系列典型语音压缩标准介绍 G.7xx 是一组 ITU-T 标准,用于视频压缩和解压过程。它主要用于电话方面。在电话学中,有两个主要的算法,分别定义在 mu-law 算法(美国使用)和 a-law 算法(欧洲及世界其他国家使用),两者都是对数关系,但对于计算机的处理来说,后者的设计更为简单。 国际电信联盟G系列典型语音压缩标准的参数比较:

操作系统储存管理程序

#include #include #include #include #include #define n 10 /*假定系统允许的最大作业数为n,假定模拟实验中n值为10*/ #define m 10 /*假定系统允许的空闲区表最大为m,假定模拟实验中m值为10*/ #define minisize 100 /*空闲分区被分配时,如果分配后剩余的空间小于minisize,则将该空闲分区全部分配,若大于minisize,则切割分配*/文档收集自网络,仅用于个人学习 struct { float address; /*已分配分区起始地址*/ float length; /*已分配分区长度,单位为字节*/ int flag; /*已分配区表登记栏标志,用"0"表示空栏目*/ }used_table[n]; /*已分配区表*/ struct { float address; /*空闲区起始地址*/ float length; /*空闲区长度,单位为字节*/ int flag; /*空闲区表登记栏标志,用"0"表示空栏目,用"1"表示未分配*/ }free_table[m]; /*空闲区表*/ void allocate(char J,float xk) /*给J作业,采用最佳分配算法分配xk大小的空间*/ 文档收集自网络,仅用于个人学习 { int i,k; float ad; k=-1; for(i=0;i=xk&&free_table[i].flag==1) 文档收集自网络,仅用于个人学习 if(k==-1||free_table[i].length

海康4200客户端电脑端实现开机存储和远程回放功能图文教程

海康4200客户端电脑端实现开机存储和远程回放功能图文 教程 现在在外安装监控的时候,很多客户会提出使用家庭电脑来进行监控录像,以此来节约一个NVR或DVR的价钱。若是放在几年前,实现这种方法无非是给电脑增加一个视频采集卡来实现,但现在,只需海康的4200客户端就能搞定(此教程适合海康网络像机使用,模拟像机还需使用采集卡或DVR)。 海康4200客户端实现监控与存储有两种方法,下面为各位介绍详细教程: 1.准备工作 海康网络像机,电脑,网络视频监控iVMS-4200(下载地址.hikvision./cn/download_more_390.html) PS:若是多个监控点,需增加交换机(若是POE供电的网络像机,加一个POE交换机最好,此为废话) 2.电脑配置 网络像机存储的视频占用空间比较大,因此需对电脑硬盘进行重新分区处理(电脑没有重要资料的话,分两个区:系统+录像两个盘符即可) 3.软件安装 软件安装的步骤就不作教程了,大家应该都会安装,只需要注意下面这点就行了 勾上存储服务器(后面会讲到此功能),完成安装后电脑桌面会出现这两个图标

4.软件录像配置 方法一: 打开软件后,在设备管理中添加网络像机

添加完成后在主预览界面的监控点位置双击就可以看到 鼠标移动到画面位置,会弹出如下界面

此按键为手 动录像,点 击后,标识 出现R图 标,表示正 在录像 录像模式可以在存储计划中进行设置,可以设置成全天模式,也可以设置成移动侦测录像,根据需要选择

录像存储路径设置: 点击软件右上角:工具→系统配置→文件,进行配置 录像回放: 在上一步的录像存储路径中,可以找到存储的录像资料,录像的格式是MP4格式,用播放器或者软件自带的播放器都可打开录像进行回放 以上所述录像方式,操作比较简单,但每次录像都需要手动点录像才能录,不点的话是不会自动录像的。所以对于有些客户,电脑监控办公两用的话,会经常性的录不了像,因此在这推荐第二种方法!

数字化语音存储与回放系统

南京理工大学 毕业设计说明书(论文) 作者: 仝香保准考证号:014910253064 教学点: 南京信息职业技术学院 专业: 电子工程 题目: 数字化语音存储与回放系统 李玲副教授/高工 指导者: (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 2012年4月

毕业设计说明书(论文)中文摘要

毕业设计说明书(论文)外文摘要

目录 1 引言 (1) 2 总体方案设计 (2) 3 各模块硬件设计 (5) 3.1 话筒前置放大电路 (5) 3.2 带通滤波器设计 (6) 3.3 AT89S52单片机基本电路 (7) 3.4 模数转换模块 (13) 3.5 数模转换模块 (15) 3.6 外部存储模块 (17) 3.7 功放电路设计 (19) 3.8 按键与显示模块 (21) 3.8.1 ZLG7289B1芯片介绍 (21) 3.8.2 ZLG7289B与其它部分连接图 (23) 3.9 供电电路模块 (24) 3 软件设计 (26) 结论 (28) 致谢 (29) 参考文献 (30) 附录 (31) 附录一程序源代码 (31) 附录二原理图及实物图 (44)

1 引言 传统的磁带语音录放系统因其体积大、使用不便,在电子与信息处理的使用中受到许多限制。本文提出的体积小巧,功耗低的数字化语音存储与回放系统将完全可以替代它。数字化语音存储与回放系统的基本原理是对语音的录音与放音的数字化控制。其中,关键技术在于,为了增加语音存储时间,提高存储器的利用率,采用了非失真压缩算法对语音信号进行压缩后再存储,而在回放时再进行解压缩,同时,对输入语音信号进行数字滤波以抑制杂音和干扰,从而确保了语音回放的可靠质量。 本系统能够对语音信号分别进行数据的采集直存直取,欠抽样采样和自相似增量调制等三种方法,完成了对语音信号的存储与回放。前置放大、滤波以及电平移位电路将语音信号控制在A/D转换器采样控制范围内以保证话音信号采样不失真。带通滤波器合理的通带范围有效的滤除了带外噪声,减小了混叠失真。后置带通滤波器用于滤除D/A转换产生的高频噪声以保证回放时音质清晰,无明显失真。 本系统设计主要分为以下几个模块:声音采集模块、带通滤波模块、A/D转换模块、数据存储模块、D/A转换模块、按键选择模块、放大器模块。声音采集模块用于外部语音信号,带通滤波模块作用是将声音转换后的电信号进行滤波,数据存储模块用于存储数字化处理后声音信号的数据,D/A转换模块将数字信号转换为模拟信号输出,音频放大模块则是将采集的信号最终进行回放以检验系统整体性能,按键选择模块则是对录、放音、数据分段存取等功能进行选择。

操作系统概论存储管理同步练习及答案

操作系统概论存储管理同步练习及答案 一、单项选择题 1.要保证一个程序在主存中被改变了存放位置后仍能正确执行,则对主存空间应采用()技术。 A.动态重定位B.静态重定位 C.动态分配D.静态分配 2.固定分区存储管理把主存储器划分成若干个连续区,每个连续区称一个分区。经划分后分区的个数是固定的,各个分区的大小()。 A.是一致的 B.都不相同 C.可以相同,也可以不相同,但根据作业长度固定 D.在划分时确定且长度保持不变 3.采用固定分区方式管理主存储器的最大缺点是()。 A.不利于存储保护B.主存空间利用率不高 C.要有硬件的地址转换机构D.分配算法复杂 4.采用可变分区方式管理主存储器时,若采用最优适应分配算法,宜将空闲区按()次序登记在空闲区表中。 A.地址递增B.地址递减C.长度递增D.长度递减 5.在可变分区存储管理中,某作业完成后要收回其主存空间,该空间可能要与相邻空闲区合并。在修改未分配区表时,使空闲区个数不变且空闲区始址不变的情况是()空闲区。A.无上邻也无下邻B.无上邻但有下邻 C.有上邻也有下邻D.有上邻但无下邻 6.在可变分区存储管理中,采用移动技术可以()。 A.汇集主存中的空闲区B.增加主存容量 C.缩短访问周期D.加速地址转换 7.页式存储管理中的页表是由()建立的。 A.操作员B.系统程序员C.用户D.操作系统 8.采用页式存储管理时,重定位的工作是由()完成的。 A.操作系统B.用户C.地址转换机构D.主存空间分配程序 9.采用段式存储管理时,一个程序如何分段是在()决定的。 A.分配主存时B.用户编程时C.装人作业时D.程序执行时 10.采用段式存储管理时,一个程序可以被分成若干段,每一段的最大长度是由()限定的。 A.主存空闲区的长度B.硬件的地址结构C.用户编程时D.分配主存空间时 11.实现虚拟存储器的目的是()。 A.扩充主存容量B.扩充辅存容量C.实现存储保护D.加快存取速度 12.LRU页面调度算法是选择()的页面先调出。 A.最近才使用B.最久未被使用C.驻留时间最长D.驻留时间最短 13.若进程执行到某条指令时发生了缺页中断,经操作系统处理后,当该进程再次占用处理器时,应从()指令继续执行。 A.被中断的前一条B.被中断的后一条C.被中断的D.开始时的第一条 14.下面的存储管理方案中,()方式可以采用静态重定位。 A.固定分区B.可变分区C.页式D.段式

数字信号处理在语音信号分析中的应用

《数字信号处理》 课程设计报告 数字信号处理在语音信号分析中的应用 专业班级: 姓名: 学号:

目录 摘要 (3) 1、绪论 (3) 2、课程设计的具体容 (4) 2.1.1、读取语音信号的任务 (4) 2.1.2、任务分析和解决方案 (5) 2.1.4、运行结果和相应的分析 (5) 2.2、IIR滤波器设计和滤波处理 (6) 2.2.1、设计任务 (6) 2.2.2、任务分析和解决方案 (7) 2.2.3、编程得到的MATLAB代码 (7) 2.2.4、运行结果和相应的分析 (7) 2.3、FIR滤波器设计和滤波处理 (9) 2.3.1、设计任务 (9) 2.3.2、任务分析和解决方案 (9) 2.3.3、编程得到的MATLAB代码 (9) 2.3.4、运行结果和相应的分析 (11) 3、总结 (13) 4、存在的不足及建议 (13) 5、参考文献 (13)

数字信号处理设计任务书 摘要 语音信号滤波处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前 发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。本设计通过录制一段语音,对其进行了时域分析,频谱分析,分析语音信号的特性。并应用matlab平台对语音信号进行加噪然后再除去噪声,进一步设计两种种滤波器即高通滤波器、带通滤波器,基于这两种滤波器设计原理,对含加噪的语音信号进行滤波处理。最后对比滤波前后的语音信号的时域和频域特性,回放含噪语音信号和去噪语音信号。论文从理论和实践上比较了不同数字滤波器的滤波效果。 1.绪论 通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。语言是人类持有的功能,声音是人类常用的工具,是相互传递信息的最主要的手段。因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。 随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人们越来越迫切要求摆脱键盘的束缚而代之以语音输人这样便于使用的、自然的、人性化的输人方式。作为高科鼓应用领域的研究热点,语音信号采集与分析从理论的研究到产品的开发已经走过了几十个春秋并且取得了长足的进步。它正在直接与办公、交通、金融、公安、商业、旅游等行业的语音咨询与管理.工业生产部门的语声控制,、电信系统的自动拨号、辅助控制与查询以及医疗卫生和福利事业的生活支援系统等各种实际应用领域相接轨,并且有望成为下一代操作系统和应用程序的用户界面。可见,语音信号采集与分析的研究将是一项极具市场价值和挑战性的工作。我们今天进行这一领域的研究与开拓就是要让语音信号处理技术走人人们的日常生活当中,并不断朝更高目标而努力。数字滤波器是数字信号处理的基础,用来对信号

基于单片机的数字化语音存储与回放系统[附源码和中英文翻译]

摘要 当今,计算机技术带来了科研和生产的许多重大飞跃,微型计算机的应用已经渗透到生产、生活的各个方面。单片微型计算机简称单片微机或单片机,又称为微控制器。它体积小、价廉、功能强,适用范围越来越宽。单片机在工业控制、自动检测、智能仪器、家用电器等领域的应用尤其突出。 本课题以凌阳SPCE061A单片机为主体,实现了语音的数字化存储与回放,整个系统分为录音、停止、和放音三种状态,状态的改变用按键K1\K2\K3控制。存储器采用SPR4096,放大器采用NE5532,使用SPCE061A单片机自带的LineIN输入,性能良好的数字滤波器滤去音频信号(300~3400)频段以外的信号,经AD转换将音频信号转换为电信号,采用SACM-A2000的压缩算法,将压缩后的数据存储在SPR4096存储器中。放音时再从SPR4096读取数据,利用凌阳SACM库提供的DVR函数进行录放,数模转换后经过放大驱动喇叭。在8kHz的采样频率时,语音存储时间可以达到10s 以上,回放时语音失真小,音质良好。软硬件的结合使该系统有合理的结构,性能指标基本达到要求。 关键词:SPCE061A SPR4096 数字滤波压缩编码语音

ABSTRACT Nowadays, computer science has brought about a lot of achievements in scientific research and in industry. The application of microcomputer has penetrated to all aspects of life and industry. Microcomputer is called singlechip for shot, or controller. Because of its small bulk, low price, strong function, the microcomputer is used more and more, especially in the industrial control, automatic detect, intelligent instrument, apparatus and so on. This task is based on the microcomputer SPCE061A of Sunplus. Digital memorization of voice and playback of voice are all realized in this system. All the system is composed of three states: record, playback and halt. The keys K1\K2\K3 are in charge of the change of the states. SPR4096 is used as the data memorizer. The microcomputer SPCE061A offers micin input. Digital filter which performance is all right is used to wipe off the noise. Audio frequency single is switched to the electric single via the conversion of AD. After amplified, it drives the trumpet. Voice memorization time can reach more than 10s at 8kHz sampling frequency. Quality of the playback voice is fine and distortion is low. Both software and hardware were combined together so that the system can work well. The tested data shows that the system is reliable and the performance of the system up to the design requirements. Key words: SPCE061A ; SPR4096; digital filter;

相关主题
文本预览
相关文档 最新文档