当前位置:文档之家› 解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略
解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略陈硕罡吴国建(浙江

省东阳中学 322100)解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30 分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。

一、用函数(变量)的观点来解决问题函数是描

述客观世界中变量间依赖关系的重要数学模型。抓住问题

中引起变化的主变量,并用一个具体的量(斜率或点的坐

标等)来表示它,同时把问题中的的因变量用主变量表示

出来,从而变成一个函数的问题,这就是解决问题的函

数观点。在解析几何问题中,经常会碰到由于某个量

(很多时候是线或点)的变化,而引起图形中其它量(面

积或长度等)的变化的情况,所以函数观点成为了解决解

析几何的一种重要方法。

【例1】(2010全国高中数学联赛试题)已知抛物线y2 6x上的

两个动点和B(X2,y2),其中人x?且人x? 4.线段AB的垂直平分线与x轴交于点C ,求厶ABC面积的最大值.

【分析】通过对题目的分析可以发现线段AB中点的横坐标已经是定值,只有纵坐标在变化,可以把AB中点的纵坐标作为主变量,这样只要把ABC 的面积表示成以AB中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。

【解析】设线段AB的中点M坐标为((2, y o),贝I」则直线AB的斜率:k 7 42 —-

X i X2 、亘y y2 y o

6 6

线段AB的中垂线方程:八。鲁(X 2),易知线段

AB的中垂线与x轴的交点为定点C(5,0)直线AB的方程:y

y o 2(x 2),联立抛物线方程消

y o

去x可得:y2 2y o y 2y2 12 0 ( 1 ),

由题意,y1,y2是方程(1 )的两个实根,且y1 y2,所以4y; 4(2 y2 12) o 2.3 y 2 3

弦长|AB| ..1 (;)2|% y2| (1 ?)[(% y2)2 4^2〕21(9 S)(12 y;)

点C(5,o)到直线AB的距离:h |CM|十

1 1 (9 y o 9 y o 24 2y。)3 14 -

3 \ 2( 3 3

当且仅当9 y^ 24 2y f, 即y .5 ,点

..7)冃打^5小

A(^__35, 5 . 7), B(^—^5, .,5 ,7)时等号成立,所以ABC 面

3 3

积的最大值为14。

3

【评析】在解答过程中用韦达定理代入消元转化,蕴含了“设而不求”的解题策略,把面积S表示为中点坐标y o的函数,同时注意y o的取值范围,体现了函数问题首先关注定义域,在对函数求最值的过程中运用了基本不等式,其实也可设9 y0 t,t [9,21),转化为一个t的三次函数,利用导数求最值也是一种常用技巧。

【例2】(2009全国高中数学联赛试题)设直线l:y kx m (其中k,m为整数)与椭圆話器1交于不同

2 2

两点A,B,与双曲线亍誇1交于不同两点C,D,问是否存在直线I,使得向量AC BD 0,若存在,指出这样的直线有多少条?若不存在,请说明理由.

【分析】通过分析可以看出本题的根本变量是直线方程中的k,m,所以其余各量均可用k,m,所以我们这里可用一个二兀函数f(k,m)来表示AC BD,本题就转化为解二元方程f (k,m) 0.

,1

.

于是满足条件的直线共有9条.

【评析】如果题目中的主变量需要用两个变量来 表示时,可先把这个因变量表示为一个两元函数, 如题设中有其他条件能找到这两个变量间的关 系,那只需用一个两来表示另一个量,这时就可 转化为一元函数,这也体现了解析几何中“设而 不求”的思想;如题设条件不能直接给出两变量 者之间的关系,我们可直接对二元函数进行处理

二、用平面几何的知识来解决问题 解析几何是用坐标法把几何问题代数化,用 代数的方法来解决几何问题,

【解析】由 y kX m

2

2

1 _L 16 12

去y 化简整理

得:3 4k 设 , y

i

X 2

2

8kmx 4m 48 0

B X 2,y 2

,贝X

1

X 2

8km 3 4k

2

2 2

1 8km 4 3 4k

2 4m 2

48 0

y kx 2 X m 2

y. 1 4 12

消去y 化简整理得:

3 k 2 X 2 2kmX m 2

12 0

2 k m

2

, 2

3 k ’ 设C

X

3 ,

y

4

D

X

4

, y

4

,贝 U

X

3 X

4

因为AC BU 0,所以

8km 2km

田为£ X

3 X 4

得厂亦厂十

所以2km 0或占+ ?由上式解得k 0或m 0 .

3 4k 3 k

当k 0时,由①和②得2 3 m 2 3 .因m 是整数,所以m 的值为 3,

2 , 1 , 0 , 1 , 2 ,

3 .

当m 0,由①和②得3 k 3 .因k 是整数,所以k 1 , 2 2

2

2km 4 3 k 2

m 2

12

X 4 X 2

X 3 X i 0

,此时

y 4 y 2 y 3 y i 0

X 2 X 3 X 4

但说到底解析几何

等量天糸。

【解析】由抛物线的定义及梯形的中位线定理得 旦

严.在AFB 中,由余弦定理得

■ 一 2

MN 2

|BF| 2 AF BF

(|AF | |BF )2 S J AF ^BF I 、2

|AB

AF cos (AF |BF )2 3AF ||BF 3

)2 e AF T

BF )2 MN 2

.

时等号成立?故牆的最大值为1. 【评析】一些解析几何客观题,往往需要借助圆 锥曲线的定义和平面几何的一些性质进行解题。 【例4】(2005全国高中数学联赛试

题)过抛物线y=x 2

一点A(1,1)作抛

D ,交y 轴于B ,

当且仅当

AF

BF 还是几何。在解决某些解析几何问题的时候,如 果其平面几何背景非常明显的时候,我们往往可 以借助平面几何知识来快速准确解决问题。

【例3】(2012全国高中数学联赛试题

)抛物线

y 2

2px(p 0)的焦点为

F ,准线为I ,A 、B 是抛物线上 的两个动

点,且满足AFB -.设线段AE 的中点M 3

在i 上的投影为N ,则屠的最大值是 _________________ 【分析】根据梯形的中位线定理和抛物线的定义, |MN=|AF|+|BF|,结合AFB 3

,可用余弦定理得出

C 在抛物线上,E 在线段AC 上,EC 1

, F 在线段

EC

BC 上,BCF 2

,且肝冶1,线段CD 与EF 交于P , 当C 在抛物

线上移动时,求P 的轨迹方程。

【分析】通过初略计算可知 D 为AB 的中点,而 题设中有很多的线段比例关系,可考虑用三角形 的面积之比来解决问题。

【解析】AB 的方程为y 2x 1,B (O, 1),D&O ),故D 是AB 的 中占

I 八\、? 令

CD

,t 1 CA

1 CP CE

t CB

1

1,t2 CF 1

2

,则 t 1 t 2 3.

因为CD 为ABC

的中线,

S

CAB

2S

CAD

2S

CBD

.

1

CE CF S CEF S

CEP

S

CFP

1 1 1

2(t 1 t 2 )

t 1 t 2 3 3 t

1t

2

CA CB

S CAB

2S

CAD 2S

CBD

2t 1t 2 2t 1t 2 ' 2'

P 是ABC 的重心.

p

(x

,y ),C

(x o ,x (2),因点

C 异于A,则X 。1,故重心P 的坐标 为

故所求轨迹方程为y 1(3x 1)2

(x 3).

3

3

【评析】从函数的观点进行分析,易发现点

C 的

横坐标X o

为主变量,P 点的横坐标和纵坐标均表示 成X o

的函数,在消去参数X o

就得到点P 的轨迹方程,

0 1 X 。

3

1 X o 3

2

争消去x o

,得y

*3x 1)2. 3

思路虽然简单,但由于本题所含字母较多,进行 代数运算时运算量大且容易出错。如果我们能够 分析其平面几何背景,运用平面几何的知识,就 能比较快速准确的解决问题当解析几何题目。

三、用极坐标知识来解决解析几何问题 解析几何中的坐标法是指建立直角坐标系, 用这个点在两坐标轴上的射影x,y 来确定。而极坐 标是用角度和距离(很多时候就是长度)这两个 量来确定一个点的位置,其几何意义很明显,如 果在题目中涉及到的量能用角度和距离非常方便 的表示出来,那么建立一个极坐标系进行运算, 会比我们在直角坐标系下运算快速有效的多。

1上的两个动点,满足

AOB 90,而|OA|,|OB|能用距离(长度)

直接给表示出来,这里的问题都可以用角度和距 离来表示,可以考虑建立极坐标系来解决。 【解析】(1)如图以原点为极点,

【例5】(2008江苏省数竞赛试题)

A 、

B 是椭圆 x 轴正半轴为极

(1)求证:

O

uuu umr OA OB 0 盘由为定值; 段AB 上,满足OP 在定圆上。

uuu uuu

【分析】由OA OB

轴建立极坐标系

设 |0A| a,|OB| b, AOx ,则点 A(acos ,asin ),

点A 、B 在椭圆上,把点坐标带入椭圆方程可得:

就9136为定值。

J 1 为定值,所以P 在以O 为圆心,半径鳥

a 2

b 2

的定圆上。

【评析】本题也可利用OA OB ,设他们的斜率分别 为k, 1,以k 为主变量进行运算,但|OA|,|OB|用k 来表 示比较麻烦。如能观察到用角度和距离两个量非 常简洁的表示|OA|,|OB|,选用极坐标系,则解题可事 半功倍。

同理可得:

2 2

1

co

4

,两式相加可得:

b 9

4

7

a

2(

cos

~9 .2

sin

4)1

1 ~~2

a

2

cos 9

.2

sin 4

贝V 点 B(bcos( 2)‘bsin( -))(bsin ,bcos )

uuu uuu 由

OP AB 知 OP AB

|OP| |AB| |OA| |OB|

|OP|

|OA||OB|

|AB|

ab ,-a 2

b 2

坐标系xOy中,且OB OD 6 . 菱形

【例6] (2012全国高中数学联赛试题)在平面直角定值;(2)当点A在半圆(x 2)2 y2 4 ( 2 x 4)上运动时,求点C的轨迹.

【分析】根据图中的菱形和等腰三角形的性质可知0、A、C三点共线,结合菱形的对角线垂直可知边长关系,第(1)小题用平面几何方法可快速求解,由点0、A、C三点共线知三点的角度是一样的,只有长度不一样,加上(1)的结论可知,|A0|与|0CI的长度之积为定值20,第(1)小题可以用极坐标(,)求解。

【解析】(1)因为OB |0D,|AB |AD| |BC |CD

所以0,A,C三点共线,如图,连结BD,则BD垂直平分线段AC,设垂足为K,于是有

0A 0C (OK AK)(0K AK) 0K2 AK 2

(OB2 |BK2)(AB2 |BK2) |0B2 |AB2 62 42 20(定值)

(2)以原点为极点,x轴正半轴为极轴建立极坐标系,设A(1, ),C(2,)(--),则由(1)的结论可得:1 2 20

4cos (

4

4)

所以 1

4cos , 带入(* )可得:

5 cos

(* )

而点A 所在的半圆的极坐标方程为: 故点C 的轨迹为线段

x 5( 5 y 5)

高中数学竞赛中的解析几何题的解题策略多 种多样,还有很多方法和技巧,比如说用直线的 参数方程来求解某些有关定点到动点距离的问题 会比较方便,用曲线的参数方程在化两元为一元 的问题上有很多的优势等,我们只有掌握一些常 用的技巧和方法,在做题的时候根据题设和结论 的背景和特征,选择合适的方法,才能快速准确 的解决解析几何问题。

【同步练习】

2 2

1、已知椭圆方程:务占1(a b 0),过椭圆左焦点F

a b

的一条动弦AB ,其斜率k 【4自,并且

4 3

3a 2

4b 2

0澤器,求的取值范围。

【解析】由3a 2

4b 2

0知a 2c,b 3c ,所以椭圆方程可 化为:3x 2

4y 2 12c 2

设直线AB : x my c ,联立椭圆方程消去x 可得:

(

4

2 2 2

(3m 4)y 6mcy 9c 0

结合:

2

6mc

9c

y y

,w y

消去%小得:

设 A(X i

,y i

),B(X 2

,y 2

),则由 AF BF 得

71 y 2

再解关于的不等式组可得:罗7

或弓

7

2 2

2、如图,已知A 、B 分别为椭圆笃舊1(a b 0)的左

7

a b

右顶点,Q 为椭圆的右准线与x 轴的交点,过Q 的 直线与椭圆交于点C 、D ( C 在Q ,D 之间),直 线AD 与BC 相交于点P ,求点P 的轨迹方程。

【解析】记椭圆的右焦点为F ,连接CF 、DF 、PF , 其中DF 交椭圆与点G ,PF 交DQ 与E 根据椭圆的第二定 义:CQ CL ( 1)

DQ DF '

'

FQ 为 DFC 中 DFC 的外角平分线,则

CFQ QFG DFA ( 2)

而 AF a c AQ

4

FB a c QB ?

所以A 、F 、B 、Q 为 调和点列。

而D 、E 、C 、Q 四点共线, 所以D 、E 、C 、Q 也是调和点列。

所以PF 为DFC 中DFC 的角平分线,DFP PFC ,

(1 )2 4m 2

4

3m 2

4 I__4

3

2

4 3 4k 2

36 16

DE DQ EC QC ‘

由(1)式得:

DE DF EC FC

B

G

O F

结合⑵式得:PF x轴

2 而P点在椭圆外,所以点P的轨迹方程为:X c(y 2

a

2 2

3、过椭圆笃爲1(a b 0)右焦点F( 1,0)的直线(长 a b

轴除外)与椭圆交于M、N两点,自M、N向右准线l:x 4做垂线,垂足分别为M i,N i ,记

FMM i, FM i N i, FNN i 的面积分别为S,S2,S,是否存在,使得M SS3恒成立?若存在求出的值,若不存在,说明理由。

【解析】以右焦点F为极点,以x轴正半轴为极轴建立极坐标系,则椭圆的极坐标方程为:

ep

1 ecos

设|FM | 1,| FN | 2,MFx ,

则M( 1, ),N( 2,)

易知椭圆的离心率e 1,由椭圆的第二定义可知

IMMj 2 1,| NNj 2 2,

S *|MF ||MM 2

|sin M1MF 1 sin

S3 ^|NF ||NN1 |sin N1NF 2

2

sin ,

2

S

1S

3

9( 1

2

) 9

2 2 —

S 2 4 -! 2

4 值。

所以存在实数

4使得g 4SS 3恒成立

[ ep ep

]2 ecos 1 ecos( )

(eP

)2( eP

)2

1 ecos 1 ecos( )

禽4

为定

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略 陈硕罡 吴国建(浙江省东阳中学322100) 解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。 一、用函数(变量)的观点来解决问题 函数是描述客观世界中变量间依赖关系的重要数学模型。抓住问题中引起变化的主变量,并用一个具体的量(斜率或点的坐标等)来表示它,同时把问题中的的因变量用主变量表示出来,从而变成一个函数的问题, 这就是解决问题的函数观点。在解析几何问题中,经常会碰到由于某个量(很多时候是线或点)的变化,而引起图形中其它量(面积或长度等)的变化的情况,所以函数观点成为了解决解析几何的一种重要方法。 【例1】(2010全国高中数学联赛试题)已知抛物线2 6y x =上的两个动点11(,)A x y 和 22(,)B x y ,其中12x x ≠且124x x +=.线段AB 的垂直平分线与x 轴交于点C ,求△ ABC 面积的最大值. 【分析】通过对题目的分析可以发现线段AB 中点的横坐标已经是定值,只有纵坐标在变化,可以把AB 中点的纵坐标作为主变量,这样只要把?ABC 的面积表示成以AB 中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。 【解析】设线段AB 的中点M 坐标为(0(2,)y ,则 则直线AB 的斜率:121222 1212120 63 66 --= ===-+-y y y y k y y x x y y y 线段AB 的中垂线方程:0 0(2)3 -=- -y y y x ,易知线段AB 的中垂线与x 轴的交点为定点(5,0)C 直线AB 的方程:00 3(2)-=-y y x y ,联立抛物线方程消去x 可得:22 00 22120-+-=y y y y (1), 由题意, 12,y y 是方程(1)的两个实根,且12≠y y ,所 以 22 00044(212)0?=-->?-<

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

数学竞赛《解析几何》专题训练(答案)

《解析几何》专题训练 一、选择题 1、(04福建)在平面直角坐标系中,方程 1(,22x y x y a b a b +-+ =为相异正数),所表示的曲线 是 A,三角形 B,正方形 C,非正方形的长方形 D,非正方形的菱形 1,D 令y x =,得y x a ==±,令y x =-得x y b =-=±,由此可见,曲线必过四个点:(,)a a , (,)a a --,(,)b b ,(,)b b --,从结构特征看,方程表示的曲线是以这四点为顶点的四边形,易知 它是非正方形的菱形. 2、若椭圆22 13620 x y +=上一点P 到左焦点的距离等于它到右焦点距离的2倍,则P 点坐标为 A, B,(- C,(3, D,(3,- C 设00(,)P x y ,又椭圆的右准线为9x =,而122PF PF =,且1212PF PF +=, 得24PF =,又 20 2 93 PF e x == -,得03x =, 代入椭圆方程得0y =3、设双曲线22 221x y a b -= 的离心率 e 2?∈??? ,则双曲线的两条渐近线夹角α的取值范围是 ( ) C A. ,63ππ?????? B .,62ππ?????? C .,32ππ?????? D .2,33ππ?? ???? 4、已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有 条。 ( C ) (A )1 (B )2 (C )3 (D )4 解: 由,5= AB 分别以A ,B 为圆心,2,5为半径作两个圆,则两圆外切,有三条 共切线。正确答案为C 。 5、双曲线122 22=-b y a x 的一个焦点为F 1,顶点为A 1、A 2,P 是双曲线上任意一点.则分别 以线段PF 1、A 1A 2为直径的两圆一定(B ) (A )相交 (B )相切 (C )相离 (D )以上情况均有可能

数学竞赛专题讲座 十二、多面体与旋转体

十二、多面体与旋转体 知识、方法、技能 多面体与旋转体的概念和性质是解决其计算与证明的基础,因此对概念的深刻,对性质、公式和定理要熟练掌握. I .柱体 柱体包括梭往和圆柱. 1.柱体侧面积和体积 侧面积公式:S cl =(c 为直截面周长,l 为侧棱长) 体积公式: V Sh =(S 为底面积,h 为高). 2.四梭柱 四棱柱 ?????→?底面是平行四边形平行六面体????→?侧棱垂直于底面 直平行六面体 ???→ ?底面是矩形 长方体 ????→?底面是正方形正四棱柱???→?棱长都相等 正方体. (l)长方体的性质 ①长方体的四条对角线长度相等,它们交于一点且在该点互相平分. ②长方体一条对角线长的平方等于一个顶点上三条棱长的平方和. ③长方体的一条对角线与一个顶点上的三条棱所成的角分别是,,αβγ,则 1cos cos cos 2 2 2 =++γβα. ④长方体的一条对角线与过一个顶点的三个面所成的角分别是123,,θθθ,则 12 2 2 23cos cos cos 1θθθ++=. (2)正方体的性质 ①正方体的对角线和与它不相交的面对角线垂直. ②正方体过同一条对角线的三个对角面两两所成的小于90 的二面角都等于60 . II .锥体(锥体包括棱锥和圆锥) 1.锥体的侧面积和体积 正棱锥的侧面积公式:' 12 S ch =(c 是底面周长,' h 是斜高; 圆锥的侧面积公式:12S cl =(c 是底面周长,l 是母线长); 锥体的体积公式:13V Sh = (S 为底面积,h 为高). 2.四面体 四面体是立体几何中最基本的,也是最重要的几何体,它相当于平面几何中三角形所处的地位.四面体与三角形有着相类似的性质. 四面体的性质: ①连接四面体对棱中点的线段交于一点,且这点平分这些线段. ②连接四面体任一顶点与它对面重心的线段交于一点G ,且这点将所在线段分成的比为3:1,G 称为四面体重心. ③四面体的二面角的平分面粉对棱所成的比等于形成这个二面角的两个侧面的面积之比. ④每个四面体都有内切球,球心I 是四面体的各个二面角的平分面的交点,此点到各面的距离等于球半径. 设四面体四个面的面积分别为1234,,,S S S S , V 表示它的体积,r 表示内切球的半径, 1234,,,h h h h 分别表示各顶点到对面所作的高,有 1234 3V r S S S S = +++, 1 2 3 4 11111r h h h h = + + + .

【竞赛】解析几何3——曲线系

高二数学竞赛——曲线系 曲线系是具有某种性质的曲线集合,利用曲线系解题体现了参数变换的数学思想,整体处理的钥匙策略,以及“基本量”和“待定系数”等重要的解题方法. 曲线系:如果两条曲线方程是 f 1(x ,y )=0和 f 2(x ,y )=0, 它们的交点是P (x 0,y 0),则方程 f 1(x ,y )+ f 2(x ,y )=0的曲线也经过点P (x 0,y 0) (是任意常数). 证明:由方程?? ?f 1(x ,y )=0·······①f 2(x ,y )=0·······② 得到 f 1(x ,y )+ f 2(x ,y )=0·······③ 只须 将(x 0, y 0)代入证明. ◆ 设圆C 1∶x 2 +y 2 +D 1x +E 1y +F 1=0和圆C 2∶x 2 +y 2 +D 2x +E 2y +F 2=0.若两圆相交,则过交点的圆系 方程为x 2+y 2+D 1x +E 1y +F 1+ (x 2+y 2 +D 2x +E 2y +F 2)=0 ( 为参数,圆系中不包括圆C 2, =-1为两圆的公共弦所在直线方程). ◆ 设圆C ∶x 2 +y 2+Dx +Ey +F =0与直线l :Ax +By +C =0,若直线与圆相交,则过交点的圆系方程为 x 2+y 2+Dx +Ey +F + (Ax +By +C )=0( 为参数). 曲线系方程③不能包含过两曲线公共点的所有曲线,那么使用时怎么知道所求方程在不在方程③中呢? ——m ·f 1(x ,y )+n ·f 2(x ,y )=0 由直线生成的二次曲线系: 设f i =A i x +B i y +C i (i =1,2,3,···) (1)若三角形三边的方程为:f i =0(i =1,2,3),则经过三角形三个顶点的二次曲线系为: f 1·f 2+ f 2·f 3+ f 3·f 1=0( 、 为参数) (2)若四边形四条边的方程为:f i =0(i =1,2,3,4),则经过四边形四个顶点的二次曲线系为: f 1·f 3+ f 2·f 4=0( 为参数), 其中f 1=0与f 3=0、f 2=0与f 4=0分别为四边形的对边所在直线方程. (3)与两条直线f 1=0、f 2=0分别相切于M 1、M 2的二次曲线系为: f 1·f 2+ f 3·f 3=0( 为参数), 其中f 3=0是过M 1、M 2的直线方程. (3)过直线f 1=0、f 2=0与一个二次曲线F (x ,y )=0的4个交点的二次曲线系为: F (x ,y )+ f 1·f 2=0( 为参数). 【例题选讲】 例1. 求经过两圆x 2+y 2+6x -4=0和x 2+y 2 +6y -28=0的交点,并且圆心在直线x -y -4=0上的圆 的方程. 解: 构造方程 x 2+y 2+6x -4+ (x 2+y 2 +6y -28)=0 即:(1+ )x 2 +(1+ )y 2 +6x +6 y -(4+28 )=0 此方程的曲线是过已知两圆交点的圆,且圆心为(-3 1+ ,-3 1+ ) 当该圆心在直线x -y -4=0上时,即 -3 1+ +3 1+ -4=0,解得: =-7. ∴ 所求圆方程为 x 2 +y 2 -x +7y -32=0 例2. 求与圆x 2 +y 2 -4x -2y -20=0切于A (―1,―3),且过B (2,0)的圆的方程. 解法一:视A (―1,―3)为圆(x +1)2+(y +1)2=r 2,当r →0时,极限圆(x +1)2+(y +3)2 =0 构造圆系:(x 2+y 2-4x -2y -20)+ [(x +1)2+(y +3)2 ]=0

解析几何专题讲座

解析几何专题讲座 题型一 圆锥曲线的概念及性质 【例1】椭圆x 2 a 2+y 2 b 2=1(a >b >0)的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( ) A.? ? ? ?0,22 B.????0,12 C .[2-1,1) D.????12,1 又e =c a ,∴2e 2+e ≥1,∴2e 2+e -1≥0,即(2e -1)(e +1)≥0,又0b >0),|PF 1|=m ,|PF 2|=n . 在△PF 1F 2中,由余弦定理可知,4c 2=m 2+n 2-2mn cos 60°. ∵m +n =2a ,∴m 2+n 2=(m +n )2-2mn =4a 2-2mn , ∴4c 2=4a 2-3mn ,即3mn =4a 2-4c 2.又mn ≤????m +n 22=a 2(当且仅当m =n 时取等号), ∴4a 2-4c 2≤3a 2,∴c 2 a 2≥14,即e ≥12,∴e 的取值范围是????1 2,1. (2)证明:由(1)知mn =43b 2,∴S △PF 1F 2=12sin 60°=33b 2, 即△PF 1F 2的面积只与短轴长有关. 题型二 圆锥曲线的方程 【例2】设椭圆C : 222 2 1(0),l ,x y a b F F C A B a b + =>>的右焦点为过的直线与椭圆相交于两点 60,2l AF FB = 直线的倾斜角为 (1)求椭圆C 的离心率; (2)如果|AB |=15 4 ,求椭圆C 的方程. 解:设A (x 1,y 1),B (x 2,y 2),由题意知y 1<0,y 2>0. (1)直线l 的方程为y =3(x -c ),其中c =a 2-b 2. 联立????? y =3(x -c ),x 2a 2+y 2b 2=1 得(3a 2+b 2)y 2+23b 2cy -3b 4 =0. 解得y 1=-3b 2(c +2a )3a 2+b 2,y 2=-3b 2(c -2a )3a 2+b 2 . 因为FA →=2FB → ,所以-y 1=2y 2. 即3b 2 (c +2a )3a 2+b 2=2·-3b 2 (c -2a )3a 2+b 2 得离心率e =c a =23. (2)因为|AB |= 1+13|y 2-y 1|,所以23 ·43ab 23a 2+b 2=15 4. 由c a =23得b =53a ,所以54a =15 4,得a =3,b = 5. 椭圆C 的方程为x 29+y 2 5 =1. 拓展提升——开阔思路 提炼方法 求圆锥曲线的方程常利用圆锥曲线的定义或待定系数法求解,但要注意焦点所在坐标轴,避免漏解. 题型三 热点交汇

高中数学竞赛专题讲座(解析几何)

高中数学竞赛专题讲座(解析几何) 一、基础知识 1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF 1|+|PF 2|=2a (2a>|F 1F 2|=2c). 第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0), 参数方程为? ? ?==θθ sin cos b y a x (θ为参数)。 若焦点在y 轴上,列标准方程为 12 2 22=+b y a y (a>b>0)。 3.椭圆中的相关概念,对于中心在原点,焦点在x 轴上的椭圆 122 22=+b y a x , a 称半长轴长,b 称半短轴长,c 称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(±a, 0), (0, ±b), (±c, 0);与左焦点对应的准线(即第二定义中的定直线)为 c a x 2-=,与右焦点对应的准线为c a x 2=;定义中的比e 称为离心率,且a c e =,由c 2+b 2=a 2 知0b>0), F 1(-c, 0), F 2(c, 0)是它的两焦点。 若P(x, y)是椭圆上的任意一点,则|PF 1|=a+ex, |PF 2|=a-ex. 5.几个常用结论:1)过椭圆上一点P(x 0, y 0)的切线方程为 12020=+b y y a x x ; 2)斜率为k 的切线方程为222b k a kx y +±=;

平面解析几何测试题带答案

1.(本小题满分12分)已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0. (1)当a为何值时,直线l与圆C相切; (2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程. 2.设椭圆ax2+by2=1与直线x+y-1=0相交于A、B两点,点C是AB的中点,若|AB|=22,OC的斜 率为 2 2 ,求椭圆的方程. 3.(本小题满分12分)(2010·南通模拟)已知动圆过定点F(0,2),且与定直线l:y=-2相切. (1)求动圆圆心的轨迹C的方程; (2)若AB是轨迹C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q, 证明:AQ⊥BQ . 4.已知圆(x-2)2+(y-1)2=20 3 ,椭圆b2x2+a2y2=a2b2(a>b>0)的离心率为 2 2 ,若圆与椭圆相交于A、B, 且线段AB是圆的直径,求椭圆的方程.

5.已知m 是非零实数,抛物线)0(2:2 >=p px y C 的焦点F 在直线2 :02 m l x my --=上. (I )若m=2,求抛物线C 的方程 (II )设直线l 与抛物线C 交于A 、B 两点,F AA 1?,F BB 1?的重心分别为G,H. 求证:对任意非零实数m,抛物线C 的准线与x 轴的焦点在以线段GH 为直径的圆外。 6. (本小题满分14分)(2010·东北四市模拟)已知O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB | =8,动点P 满足AP u u u r =35 PB u u u r ,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM 交曲线C 于另外一 点Q . (1)求曲线C 的方程; (2)求△OPQ 面积的最大值. 7.(文)有一个装有进出水管的容器,每单位时间进出的水量各自都是一定的,设从某时刻开始10分钟内只进水、不出水,在随后的30分钟内既进水又出水,得到时间x(分)与水量y(升)之间的关系如图所示,若40分钟后只放水不进水,求y 与x 的函数关系.

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略陈硕罡吴国建(浙江 省东阳中学 322100)解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30 分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。 一、用函数(变量)的观点来解决问题函数是描 述客观世界中变量间依赖关系的重要数学模型。抓住问题 中引起变化的主变量,并用一个具体的量(斜率或点的坐 标等)来表示它,同时把问题中的的因变量用主变量表示 出来,从而变成一个函数的问题,这就是解决问题的函 数观点。在解析几何问题中,经常会碰到由于某个量 (很多时候是线或点)的变化,而引起图形中其它量(面 积或长度等)的变化的情况,所以函数观点成为了解决解 析几何的一种重要方法。 【例1】(2010全国高中数学联赛试题)已知抛物线y2 6x上的

两个动点和B(X2,y2),其中人x?且人x? 4.线段AB的垂直平分线与x轴交于点C ,求厶ABC面积的最大值. 【分析】通过对题目的分析可以发现线段AB中点的横坐标已经是定值,只有纵坐标在变化,可以把AB中点的纵坐标作为主变量,这样只要把ABC 的面积表示成以AB中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。 【解析】设线段AB的中点M坐标为((2, y o),贝I」则直线AB的斜率:k 7 42 —- X i X2 、亘y y2 y o 6 6 线段AB的中垂线方程:八。鲁(X 2),易知线段 AB的中垂线与x轴的交点为定点C(5,0)直线AB的方程:y y o 2(x 2),联立抛物线方程消 y o 去x可得:y2 2y o y 2y2 12 0 ( 1 ), 由题意,y1,y2是方程(1 )的两个实根,且y1 y2,所以4y; 4(2 y2 12) o 2.3 y 2 3 弦长|AB| ..1 (;)2|% y2| (1 ?)[(% y2)2 4^2〕21(9 S)(12 y;) 点C(5,o)到直线AB的距离:h |CM|十

高中数学竞赛专题讲座:三角函数与向量

高中数学竞赛专题讲座:三角函数与向量 一、三角函数部分 1.(集训试题)在△ABC 中,角A 、B 、C 的对边分别记为a 、b 、c(b ≠1),且 A C , A B sin sin 都是方程log b x=log b (4x-4)的根,则△ABC (B ) A .是等腰三角形,但不是直角三角形 B .是直角三角形,但不是等腰三角形 C .是等腰直角三角形 D .不是等腰三角形,也不是直角三角形 解:由log b x=log b (4x-4)得:x 2-4x+4=0,所以x 1=x 2=2,故C=2A ,sinB=2sinA , 因A+B+C=180°,所以3A+B=180°,因此sinB=sin3A ,∴3sinA-4sin 3A=2sinA , ∵sinA(1-4sin 2A)=0,又sinA ≠0,所以sin 2A= 41,而sinA>0,∴sinA=2 1. 因此A=30°,B=90°,C=60°。故选B 。 2.(2006吉林预赛)已知函数y=sinx+acosx 的图象关于x=5π/3对称,则函数y=asinx+cosx 的图象的一条对称轴是(C ) A .x=π/3 B .x=2π/3 C .x=11π/6 D .x=π 3.2006年南昌市)若三角形的三条高线长分别为12,15,20,则此三角形的形状为( B ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .形状不确定 4.(2006年南昌市)若sin tan a θθ=+,cos cot b θθ=+,则以下诸式中错误的是( B ) A .sin θ= 11+-b ab B .cos θ=1 1+-a ab C .tan cot θθ+=) 1)(1(21)1(2++-+++b a ab b a D .tan cot θθ-=)1)(1()2)((++++-b a b a b a 5.(2006安徽初赛)已知△ABC 为等腰直角三角形,∠C = 90°,D 、E 为AB 边上的两个点,且点D 在AE 之间, ∠DCE = 45°,则以AD 、DE 、EB 为边长构成的三角形的最大角是 ( ) A .锐角 B .钝角 C .直角 D .不能确定 6.(2006陕西赛区预赛)若3 3sin cos cos sin ,02θθθθθπ-≥-≤<,则角θ的取值范围是(C) A .[0, ]4 π B .[,]4 ππ C .5[, ]4 4ππ D .3[,)42 ππ 7.(2006年江苏)在△ABC 中,1tan 2A =,310 cos 10 B =.若△AB C 的最长边为1,则最短边的长为 ( D ) A .455 B .355 C .255 D .5 5 8.(2005年浙江)设2)(1=x f ,x x x f 2cos sin )(2+=,x x x f 2cos 2 sin )(3+=,24sin )(x x f =,上述函数中,周期函数的个数是( B ) A .1 B .2 C .3 D .4 【解】: 2)(1= x f 是以任何正实数为周期的周期函数;)(2x f 不是周期函数。 因为x sin 是以π21=T 为周期 的周期函数, x 2cos 是以222π =T 为周期的周期函数, 而1T 与2T 之比不是有理数,故)(2x f 不是周期函数。 )(3x f 不是周期函数。 因为2sin x 是以π221=T 为周期的周期函数, x 2cos 是以2 22π =T 为周期的周期函数,

解析几何测试题

解析几何测试题 一、选择题 1.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( ) A .4 B C D 2.若直线1:10l ax y +-=与2:3(2)10l x a y +++=平行,则a 的值为( ) A 、-3 B 、1 C 、0或- 2 3 D 、1或-3 3.直线经过点A (2,1),B (1,m 2 )两点(m ∈R ),那么直线l 的倾斜角取值范围是 ( ) A .),0[π B .),2(]4, 0[πππ ? C .]4 ,0[π D .),2 ()2,4[ ππ π π? 4. 过点A(1,2)且与原点距离最大的直线方程是( ) A 、052=-+y x B 、042=--y x C 、073=-+y x D 、0 53=-+y x 5.若直线42y kx k =++ k 的取值范围是 A .[1,+∞) B . [-1,-. .(-∞,-1] 6.椭圆1322=+ky x 的一个焦点坐标为)10(,, 则其离心率等于 ( ) A. 2 B. 2 1 C. 332 D. 23 7.一动圆与圆O :x 2 +y 2 =1外切,与圆C :x 2 +y 2 -6x +8=0内切,那么动圆的圆心的 轨迹是( ) (A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线 8.如右图双曲线122 22=-b y a x 焦点1F ,2F , 过点1F 作垂直于x 轴的直线交双曲线于P 点,且2130PF F ∠=?,则双曲线的渐近线是( ) A x y ±= B x y 2±= C x y 2±= D x y 4±= 9.设抛物线 x y 82 =的焦点为F ,过点F 作直线l 交抛物线于A 、B 两点,若线段AB 的

解析几何竞赛题求解的几种常见策略

陈硕罡 吴国建(浙江省东阳中学322100) 解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。 一、用函数(变量)的观点来解决问题 函数是描述客观世界中变量间依赖关系的重要数学模型。抓住问题中引起变化的主变量,并用一个具体的量(斜率或点的坐标等)来表示它,同时把问题中的的因变量用主变量表示出来,从而变成一个函数的问题, 这就是解决问题的函数观点。在解析几何问题中,经常会碰到由于某个量(很多时候是线或点)的变化,而引起图形中其它量(面积或长度等)的变化的情况,所以函数观点成为了解决解析几何的一种重要方法。 【例1】(2010全国高中数学联赛试题)已知抛物线2 6y x =上的两个动点11(,)A x y 和22(,)B x y ,其中12x x ≠且 124x x +=.线段AB 的垂直平分线与x 轴交于点C ,求△ABC 面积的最大值. 【分析】通过对题目的分析可以发现线段AB 中点的横坐标已经是定值,只有纵坐标在变化,可以把AB 中点的纵坐标作为主变量,这样只要把?ABC 的面积表示成以AB 中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。 【解析】设线段AB 的中点M 坐标为(0(2,)y ,则 则直线AB 的斜率:121222 1212120 63 66 --= ===-+-y y y y k y y x x y y y 线段AB 的中垂线方程:0 0(2)3 -=--y y y x ,易知线段AB 的中垂线与x 轴的交点为定点(5,0)C 直线AB 的方程:00 3(2)-= -y y x y ,联立抛物线方程消去x 可得:22 0022120-+-=y y y y (1), 由题意,12,y y 是方程(1)的两个实根,且12≠y y ,所以22 00044(212)0?=-->?-<

解析几何-2009-2017全国高中数学联赛分类汇编

2009-2017全国高中数学联赛分类汇编第08讲:解析几何 1、(2009一试2)已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ?中,45BAC ∠=?,AB 过圆心M ,则点A 横坐标范围为. 【答案】[]36, 【解析】设()9A a a -, ,则圆心M 到直线AC 的距离sin 45d AM =?,由直线AC 与圆M 相交,得 d 36a ≤≤. 2、(2009一试5)椭圆22 221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ?的最小值为. 【答案】22 222a b a b + 【解析】设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ??????±± ? ? ?????? ?,. 由P ,Q 在椭圆上,有 222221 cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得222211 11a b OP OQ +=+.于是当OP OQ =OP OQ 达到最小值22 222a b a b +. 3、(2010一试3)双曲线12 2=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是. 【答案】9800 4、(2011一试7)直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,?=∠90ACB ,则点C 的坐标为. 【答案】)2,1(-或)6,9(- 即0)(24)(21212212214=?++-+?++-y y t y y t x x t x x t ,

大学生数学竞赛空间解析几何练习题

试题1:如果平面:0Ax By D π++=与曲面261z xy +=的交线是圆,求实数,A B 的比值。 解:不妨设0B ≠以平面π为新的''X Y 平面,以(0,/,0)D B -为原点,以 '223(,,0)/e A B A B =+,'22'''1231(,,0)/,(0,0,1)e B A A B e e e =-+=?=为基本向量 建立一个新的坐标系''''O X Y Z ,则坐标变换公式为 '' 2222 ''2222'/B A x x z A B A B A B y D B x z A B A B z y ?=+?++? ?=-- +?++? ?=?? 在新的坐标系中,平面的方程为:'0z =, 而曲线的方程为: '2'''' 22 22 2 2 2 2 6( )(/)1 B A A B y x z D B x z A B A B A B A B ++ -- + =+++ + 所以交线的方程为: '2' '''22 22 22 22 '6()(/)1 B A A B y x z D B x z A B A B A B A B z ?++--+ =?++++? ?=? 化简得: '2' '22 22 '6()(/)1 0B A y x D B x A B A B z ?+--=?++? ?=? 因为交线是圆,所以 226AB A B -=+ 解得 322A B =-.

试题2:求过点)0,1,0(P 并且和两条直线 ? ? ?=+=+++?? ?=+=++020 13:,0201:21y x z y x l y x y x l 均相交的直线的方程。 解:把直线的方程化为点向式方程为: ,1 11 2 :,1 20 1:21-+==-=+=-z y x l z y x l 设所求的直线为,l 记l 和i l 所确定的平面为,1,2i i π=,那么12l ππ=, 试题3:在二次曲面2222360x y z xy xz z +-++-=上,求过点(1,4,1)-的所有直线的方程. 解:设所求的直线的方程为:141x lt y mt z nt =+??=-+??=+? ,又因为所求的直线在二次曲 面上,所以对任意的,t 有 2222(1 )(4)(1) 3(1)( 4)(1)(1 )6(1) l t m t n t l t m t l t n t n t ++--+++-+++-+=, 化简得; 2222(23)(757)0t l m n ml nl l m n t +-++-++= 由于上式对任意的,t 都成了,所以 222230 (1)7570l m n ml nl l m n ?+-++=? ++=? 由于n m l ,,可相差一个公共的非零常数倍,所以可分两种情况讨论 (1):,0=l 代入方程组(1)得 220 (1)570 m n m n ?-=? +=?

解析几何测试题

解析几何测试题(椭圆、双曲线、抛物线) 姓名 一. 选择题:(本大题共12小题,每小题5分,共60分) 1. 抛物线x y 42 =的焦点坐标是( ) A .(1,0) B .(0,1) C .(0,2) D .(2,0) 2. 若椭圆长轴长为8,且焦点为F 1(-2,0),F 2(2,0),则这个椭圆的离心率等于( ) A.22 B. 13 C. 12 D.4 1 3. 已知方程01 22 2=+-+m y m x 表示双曲线,则m 的取值范围是( ) A .m<-2 B .m>-1 C .-2-1 4. 以双曲线13 2 2 =-x y 的一个焦点为圆心,离心率为半径的圆的方程是 A .4)2(22=+-y x B .2)2(22=-+y x C .2)2(22=+-y x D .4)2(22=-+y x 5. 如果点M (x,y )在运动过程中,总满足关系式10)3()3(2 222=-++++y x y x 则点M 的轨迹方程为( ) A.19162 2=+y x B. 191622=+x y C. 1162522=+y x D. 116 2522=+x y 6.已知双曲线C :x 2a -y 2 b =1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( ) A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 2 80 =1 7. 抛物线)0(242 >=a ax y 上有一点M ,它的横坐标为3,它到焦点的距离是5,则抛物线的方程为 ( ) A.x y 82= B. x y 122= C. x y 162= D. x y 202 = 8.已知F 1、F 2为双曲线C :x 2-y 2 =2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则 cos ∠F 1PF 2= ( ) A.14 B.35 C.34 D.4 5 9. 等轴双曲线C 的中心在原点,焦点在x 轴上,双曲线c 与抛物线x y 162 =的准线交于B A 、两点,AB =34, 则双曲线C 的实轴长为 ( ) A. 2 B. 22 C. 4 D. 8 10 .已知定点A (3,4),点P 为抛物线 y 2 =4x 上一动点,点P 到直线x =-1的距离为d ,则|PA|+d 的最小值为( ) A ..2 C . . 11. 设椭圆)0(122 22>>=+b a b y a x 的离心率21=e ,右焦点F (c ,0),方程02=-+c bx ax 的两个根分别为 x 1,x 2,则点P (x 1,x 2)在 ( ) A .圆222=+y x 内 B. 圆222=+y x 上 C .圆22 2=+y x 外 D. 以上三种情况都有可能 12.过双曲线22221(0,0)y x a b a b -=>>的左焦点F ,作圆222a y x =+的切线交双曲线右支于点P ,切点为T ,PF 的中点M 在第一象限,则以下正 确的是( ) A .||||b a MO MT -<- B .||||MT MO a b -=- C .||||MT MO a b ->- D .||||MT MO a b --与大小不定 二.填空题:(本大题共4小题,每小题4分,共16分) 13.双曲线22 221x y a b -=的两条渐近线互相垂直,那么双曲线的离心率为 14. 已知B ,C 是两个定点,坐标分别为(3,0),(-3,0),若顶点A 的轨迹方程为 )0(116 252 2≠=+y y x ,则 △ABC 的周长为 15.过抛物线)0(22 >=p px y 的焦点作一条直线交抛物线于A(x 1,y 1),B(x 2,y 2),则 2 12 1x x y y 的值为 16.方程12 42 2=-+-t y t x 所表示的曲线为C ,有下列命题:①若曲线C 为椭圆,则24或t<2;③曲线C 不可能为圆; ④若曲线C 表示焦点在y 轴上的双曲线, 则t>4, 则以上命题正确的是 三. 解答题:(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.求双曲线1441692 2 =-x y 的实轴长,虚轴长,顶点和焦点的坐标,离心率,渐近线方程。 18. (1)已知椭圆的中心在原点,一个焦点为F(32-,0),且长轴长是短轴长的2倍,求该椭圆的标准方程; (2)求与椭圆 120 562 2=+x y 有共同焦点,且经过点(2,-5)的双曲线的标准方程。

全国大学生数学竞赛大纲(数学专业组)

中国大学生数学竞赛竞赛大纲(数学专业组) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 一、集合与函数 1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 2 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2 上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)n n e n →∞+=及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式 性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin 10lim 1,lim(1)x x x x x x e →→∞ =+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学 1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性. 2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 公式(Peano 余项与Lagrange 余项). 3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、

相关主题
文本预览
相关文档 最新文档