当前位置:文档之家› 掺硼金刚石薄膜电极在水处理中应用的研究进展_方宁

掺硼金刚石薄膜电极在水处理中应用的研究进展_方宁

掺硼金刚石薄膜电极在水处理中应用的研究进展_方宁
掺硼金刚石薄膜电极在水处理中应用的研究进展_方宁

类金刚石薄膜界面结合力的改善技术

类金刚石薄膜界面结合力的改善技术 赵洋1 (1.西南大学材料科学与工程学院,重庆400715) [摘要] 本文对当前国内外改善DLC薄膜界面结合力的技术进行了综述,包括改善沉积工艺、掺杂、过渡层设计等,为改善DLC薄膜结合力提供依据。 [关键词]类金刚石薄膜;内应力;结合力 technology of improving the interfacial adhesion of DLC films Zhao Yang1 (1.School of Materials Science and Engineering,Southwest University,Chongqing 400715,China;) [Abstract] Current domestic and international technology of improving the interfacial adhesion of DLC films are summarized in this paper in order to supply the accordance of improving the adhesion,which includes the changing of deposition parameters, doping, interlayers, and so on. [Key words] DLC films; intrinsic force;adhesion 1 引言 类金刚石薄膜(DLC),具有类似于天然金刚石的性质,是一种新型的硬质润滑功能薄膜材料[1],薄膜中的碳原子部分处于sp2杂化状态,部分处于sp3杂化状态,同时也有极少数处于sp1杂化状态[2]。由于具有优良的光、电和力学特性, 在工业上具有广泛的应用前景[3~4], 近年来DLC膜在许多方面已得到了工业化应用, 如在切削刀具, 自动化机械零部件等的表面涂层处理上。 然而,DLC膜的一个致命弱点是内部应力很高, 有些DLC膜应力高达10G Pa,使得薄膜的结合力特性较差、不易厚膜化,从而极大地限制了它的应用范围。这主要是由于DLC薄膜在沉积过程中,离子对基体表面的轰击和注入,使得膜基之间存在较大的应力,再加上本身具有的化学惰性, 难以与基体形成化学健合, 使得其与一些常用的衬底材料难于形成强固的粘合层。为改善DLC薄膜的特性,尤其是界面结合力,许多科研工作人员从多方面进行了探索和研究。目前,国内外改善DLC薄膜界面结合强度主要是从本征应力和界面应力的控制两方面来着手。其中,通过改变工艺参数、掺杂第三元素[5]、引入中间过渡层或进行退火后处理[6]等方式来改善DLC膜结合力是目前技术研究的热点。 2 DLC结合力改善技术

硼掺杂类金刚石薄膜电极的设备制作方法与相关技术

图片简介: 本技术提供了一种硼掺杂类金刚石薄膜电极的制备方法。该方法选用硼作为掺杂元素,将线性离子源沉积技术与磁控溅射沉积技术相结合,以硼靶为溅射靶,再通入含碳气源,利用线性离子源沉积碳膜的同时溅射沉积硼元素,得到硼掺杂类金刚石薄膜,然后连接导线,得到硼掺杂类金刚石薄膜电极。与现有技术相比,该方法绿色环保,工艺简单,成本低,制得的电极具有良好的电化学性能,因此具有良好的应用前景。 技术要求 1.一种硼掺杂类金刚石薄膜电极的制备方法,其特征是:采用线性离子源 沉积技术与磁控溅射沉积技术相结合的方法制备,具体制备过程如下: 步骤1、将基体清洗后进行表面刻蚀处理; 步骤2、设定线性离子源电流为0.1A~0.3A,通入含碳气源;溅射靶为硼靶, 调整溅射靶的工作电流为0.2A~1.5A,通入氩气进行溅射;设定基片偏压为 -50V~-250V;打开线性离子源、溅射靶电源和偏压,在基体前表面进行薄膜沉 积,得到硼掺杂类金刚石薄膜; 步骤3:将步骤2处理后的基体与导线连接,然后将其四周和背表面用环氧 树脂包覆,未包覆的薄膜作为电极表面,得到硼掺杂类金刚石薄膜电极。

2.根据权利要求1所述的硼掺杂类金刚石薄膜电极的制备方法,其特征是: 所述的步骤1中,基体为导体。 3.根据权利要求1所述的硼掺杂类金刚石薄膜电极的制备方法,其特征是: 所述的步骤1中,基体的表面刻蚀为离子刻蚀,具体过程为:将基体放入腔体,对腔体抽真空处理,然后通入惰性气体,打开线性离子源和偏压,利用惰性气体离子束对基体进行刻蚀。 4.根据权利要求3所述的硼掺杂类金刚石薄膜电极的制备方法,其特征是: 所述的步骤1中,基片偏压为-50V~-200V,线性离子源电流0.1A~0.3A,刻蚀时间为5min-40min。 5.根据权利要求1所述的硼掺杂类金刚石薄膜电极的制备方法,其特征是: 所述的步骤2中,含碳气源包括甲烷与乙炔。 6.根据权利要求1所述的硼掺杂类金刚石薄膜电极的制备方法,其特征是: 所述的步骤2中,基体偏压为-100V,线性离子源电流为0.2A,沉积时间20~30 min。 7.根据权利要求1所述的硼掺杂类金刚石薄膜电极的制备方法,其特征是: 所述的步骤3中,首先在硼掺杂类金刚石薄膜表面镀金属微电极,然后在该金属微电极表面连接导线。 8.根据权利要求1所述的硼掺杂类金刚石薄膜电极的制备方法,其特征是: 所述的步骤3中,导线连接在基体背表面。 说明书 一种硼掺杂类金刚石薄膜电极的制备方法 技术领域 本技术涉及类金刚石薄膜电极技术领域,具体涉及一种硼掺杂类金刚石薄膜 电极的制备方法

金刚石材料的功能特性研究与应用

陶瓷专题 金刚石材料的功能特性研究与应用 高 凯,李志宏 (天津大学材料科学与工程学院,天津 300072) Study and Application on Functional Properties of Diamond Materials GAO Kai,LI Zhi hong (S chool of M ater ial S cience and Engineer ing,T ianj in Univer sity,T ianj in300072,China) Abstract:Functional properties of diamo nd mater ials and its study and application recent years on w ide bandg ap semiconducto rs,ultraviolet detectors,sing le pho to n source for quantum computer,so nic surface diffusion and electronic encapsulatio n w ere reviewed in this paper,and other po tential application on func tional proper ties of the diamond materials w ere expected. Key words:Diamo nd,Functional proper ty,Study,Application 摘要:本文综述了金刚石的功能特性及其近年来在宽禁带半导体、紫外探测器、量子计算机用单光子源、声波材料和电子封装等方面的研究与应用进展,并对金刚石材料在其它功能特性方面的开发与应用前景提出了展望。 关键词:金刚石;功能特性;研究;应用 中图分类号:TB33 文献标识码:A 文章编号:1002-8935(2010)04-0009-05 金刚石是目前工业化生产的最硬材料,其前通常利用其硬度特性广泛地作为加工、研磨材料。但它除了具有高硬度之外,其许多优异特性被逐渐发现和挖掘,如室温下高热导率、极低的热膨胀系数、低的摩擦系数、良好的化学稳定性、大的禁带宽度(5 5eV)、高的声传播速度、掺杂诱导的半导体特性以及高的光学透过率,使其在机械加工、微电子器件、光学窗口及表面涂层等许多领域有着广阔的应用前景。因此,金刚石材料的功能特性研究与应用引起了人们极大的兴趣,并在很多领域取得了突破和进展。 1 在宽禁带半导体方面的研究与应用 金刚石作为一种宽禁带半导体,在光电子学中的应用前景无疑是最引人注目的。但是由于n型金刚石半导体掺杂存在着一定的困难,使制备同质结的困难加大,目前领先的依然是麻省理工学院有关于金刚石薄膜p n结的研究[1],2001年麻省理工学院的Koizumi等第一次制备了金刚石薄膜p n结,在金刚石单晶的(111)面上以同质外延生长的方法制备了两层金刚石薄膜,p型半导体使用B元素掺杂金刚石薄膜而成,n型半导体则以P元素掺杂制备,然后他们对这个装置进行了改进,在施加20V 偏压电路的情况下,装置被激发出了紫外光,并且指出,该装置可以在高温下运作。Alexo v A等[2]则在掺杂B元素后的金刚石薄膜上用同质外延法制备了一层掺杂N元素的金刚石薄膜,但是并没有详细报道此p n结的电致发光等特性。之后有关同质结的报道很不常见,估计主要是还是因为金刚石n型半导体掺杂的可重复性存在着一定的困难所致,目前报道都集中于金刚石半导体异质结上,比如,已在Si晶片上生长含B金刚石薄膜[3],或者是制备肖特基二极管(Schottky diodes)和场效应晶体管(Field effect transisto rs,FET)。 1987年化学气相沉积(CVD)法制备含B金刚石薄膜的方法并不完善,所以Geis等[4]用合成含B 金刚石单晶的方法制备了由W元素接触的首个金刚石肖特基二极管,并在700下考察了样品的性能,确定了样品具有很高的击穿场强。同一课题组的相关人员进一步考察了不同金属元素接触对金刚石肖特基二极管性能的影响[5],大量的工作表明,使用Al,Au,H g元素作为含B金刚石的表面接触元

类金刚石薄膜制备和应用

类金刚石膜调研 类金刚石薄膜发展史: 金刚石、类金刚石薄膜技术,是指利用各种光学薄膜制作技术制作接近天然金刚石和人造单晶金刚石特性(如在较宽光谱内均具有很高的光透过率--在2~15μm(微米)范围光的吸收率低到1%;具有很高的硬度、良好的导热性、耐腐蚀性以及化学稳定性高--1000℃(摄氏度)以上仍保持其化学稳定性等)的人造多晶金刚石薄膜、类金刚石薄膜(又称为硬碳膜、离子碳膜、或透明碳膜)的一种技术。 光学应用金刚石、类金刚石薄膜主要采用低压化学汽相沉积(CVD)技术制备。低压CVD 技术包括热丝CVD法、等离子体CVD法、离子束蒸镀法、光/激光CVD法附加活性氢激光CVD 法等。 目前,CVD法制作金刚石薄膜已取得丰硕成果,但作为红外光学薄膜应用还需进一步解决金刚石薄膜对红外光学材料的粘着性和光散射的问题。CVD法制作的金刚石薄膜与硅基片的粘着性是不错的,但是与其他材料(如锗、硫化锌等)基片的粘着性就甚差,或是根本就粘着不到一起去。对于光散射的问题,则是要求如何更好地控制金刚石薄膜表面形态和晶粒结构。理想的CVD法制造的红外光学应用的金刚石薄膜或许是一种单晶结构的膜,但是,目前使用CVD法还不能制造单晶结构的金刚石薄膜。此外,大面积薄膜的制作、膜的光洁度等技术课题以及金刚石薄膜的制作成本问题,都有待于继续研究解决。 1.1金刚石、类金刚石薄膜研究进展 自1963年在一次偶然的机会出现了不寻常的硬度和化学性能好的化学汽相沉积(CVD)碳形式的薄膜后,国外有不少研究单位开始研究金刚石薄膜的沉积工艺.1971年,艾森伯格(Aisenberg)和沙博(Chabot)等人,利用离子束蒸镀法,以石墨作薄膜材料,通过氩气弧光放电使石墨分解电离产生碳离子。碳离子经磁场聚焦成束,在比较高的真空条件下,在低压沉积室内的室温下的基片上沉积出了硬碳膜。这种硬碳膜具有近似于金刚石的一些特性-如透明度高、电阻抗大、硬度高等。当时,这种膜被人们称作i形碳。直到1976年,斯潘塞(Spencer)等人对这种应碳膜的结构进行了探讨,结果确认膜中有金刚石等数种碳系结晶,后才被人们称之为类金刚石膜。就在这一年,德贾吉恩(Derjaguin)等人利用化学转变法合成出了金刚石薄膜。从此之后,低压CVD金刚石薄膜工艺引起了人们的注意。70年代中期,前苏联

用掺硼金刚石(BDD)电极的电化学氧化协同作用和臭氧(O3)的工业废水处理

Synergy of electrochemical oxidation using boron-doped diamond (BDD)electrodes and ozone (O 3)in industrial wastewater treatment M.A.García-Morales a ,G.Roa-Morales a ,?,Carlos Barrera-Díaz a ,Bryan Bilyeu b ,M.A.Rodrigo c a Centro Conjunto de Investigación en Química Sustentable,UAEM-UNAM,Carretera Toluca-Atlacomulco,Km 14.5,Campus San Cayetano,C.P.50200,Toluca Estado de México,Mexico b Department of Chemistry,Xavier University of Louisiana,New Orleans 70125,LA,USA c Department of Chemical Engineering,Facultad de Ciencias Químicas,Universidad de Castilla-La Mancha,Campus Universitario s/n 13071Ciudad Real,Spain a b s t r a c t a r t i c l e i n f o Article history: Received 9October 2012 Received in revised form 22October 2012Accepted 23October 2012 Available online 27October 2012Keywords: Electrooxidation Ozone BDD Wastewater COD O 3-BDD coupled process This work evaluates the coupling of electrochemical oxidation and ozonation to reduce the high organic load of industrial wastewater quickly and effectively.Ozonation alone is shown to only reduce the COD of waste-water by about 45%.Electrochemical oxidation using boron-doped diamond electrodes reduces the COD by 99.9%,but requires over 2h per 0.7L batch.However,when the two processes are coupled,the COD is re-duced by 99.9%along with most color and turbidity in about an hour.The coupled process practically elimi-nates the COD,color,and turbidity without the addition of chemical reagents or changing the pH and doesn't generate any sludge,so it is both effective and environmentally friendly. ?2012Elsevier B.V.All rights reserved. 1.Introduction Industrial ef ?uents are dif ?cult to treat using traditional biological systems due to the high variations in their compositions.Unlike munic-ipal wastewater,industrial sources have higher organic load,color,and pH which ?uctuate [1,2].While traditional biological reactors are very effective in digesting the organic matter in municipal wastewater into carbon dioxide and water,the effectiveness drops considerably when treating industrial wastewater.Biological reactors typically only reduce 50%of the biochemical oxygen demand (BOD 5)and 35%of the chemical oxygen demand (COD)[3,4]. Due to the limitations of biological reactors,industrial wastewater is typically pretreated using physical –chemical processes such as co-agulation –?occulation.However,these processes generate large quantities of sludge and usually require pH adjustments and chemical reagents,all of which create their own environmental issues [5,6].Co-agulation –?occulation is not ef ?cient in the removal of dissolved (persistent)chemical pollutants. In recent works we have shown that combining electrocoagulation and ozone produces synergistic effects in wastewater treatment [7,8].However,the use of electrooxidation with boron-doped diamond (BDD)electrodes in conjunction with ozone for treating industrial ef ?u-ents has not yet been reported. Both electrooxidation and ozonation are advanced oxidative pro-cesses based on the generation of hydroxyl radicals (OH ?),which have high oxidation potential and degrade of a wide range of contam-inants.In particular,BDD electrodes have high anodic stability,a wide working potential window,and low stable voltammetric background current in aqueous media [9,10].Therefore,the electrochemical be-havior of BDD electrodes have been investigated with the goal of de-veloping applications for wastewater treatment [11,12].On the other hand,ozonation is an ef ?cient and powerful oxidizing process well known for its degradation of organic compounds.The limitations to these processes are the time required for electrooxidation and the ef-fectiveness of ozonation,so neither alone is truly industrially practical. Thus,this study evaluates the synergy of the two processes com-pared to the ef ?ciency and effectiveness of the individual ones.The effectiveness is evaluated in terms of color,turbidity and chemical ox-ygen demand (COD)reduction.The in ?uence of operating parame-ters such as time of treatment,current density,and initial pH is also evaluated. 2.Materials and methods 2.1.Wastewater samples Wastewater samples were collected from the treatment plant of an industrial park,which receives the discharge of 144different facil-ities.Therefore,the chemical composition of this ef ?uent is rather Electrochemistry Communications 27(2013)34–37 ?Corresponding author.Tel.:+527222173890;fax:+527222175109.E-mail address:groam@uaemex.mx (G. Roa-Morales).1388-2481/$–see front matter ?2012Elsevier B.V.All rights reserved. https://www.doczj.com/doc/148113115.html,/10.1016/j.elecom.2012.10.028 Contents lists available at SciVerse ScienceDirect Electrochemistry Communications j o ur n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /e l e c o m

硼硫共掺杂金刚石薄膜的研究

硼硫共掺杂金刚石薄膜的研究! 李荣斌!胡晓君!沈荷生!何贤昶 !上海交通大学金属基复合材料国家重点实验室"上海$’’’%’# 摘"要!"利用微波等离子体化学气相沉积")C._S#技术!以丙酮为碳源!用二甲基二硫和三氧化二硼作掺杂源!在硅衬底上制备了硼与硫共掺杂的金刚石薄膜$用俄歇谱分析金刚石薄膜中硫的含量!用傅里叶红外光谱"O]M X#分析了薄膜表面键结构!用扫描电子显微镜"!^)#观测薄膜的表面形貌!j射线衍射"j X S#和喇曼"X4@4,#光谱表征膜层的结构$结果表明%微量硼的加入促进硫在金刚石中的固溶度!使硫在金刚石中的掺杂率提高了近=’Y&随着薄膜中硫含量的增加!薄膜的导电性增加!当薄膜中硫含量达到’A&=Y"原子分数#时其导电激活能为’A%:*_$ 关键词!"共掺杂"化学气相沉积"金刚石薄膜 中图分类号!"#;T;A&"#((""""文献标识码!2 文章编号!&’’&1:(%&#$’’;$’&1’’;:1’% &"引"言 化学气相沉积!._S#法制备的金刚石薄膜具有很多优异的物理和力学性能$&%"在电子器件的应用得到人们的广泛关注& ._S方法可以得到硼掺杂的L型半导体金刚石薄膜$$%"并已成功地应用于f_探测器以及极端条件下的电化学电极!比如高酸溶液#&然而制备高质量的,型金刚石薄膜还存在困难"主要是未能找到较合适的施主杂质原子&C’#及2+的原子半径比.原子半径大得多"不易进入金刚石晶体中(氮虽然可以在._S生长过程中掺入金刚石薄膜"但由于其较深的施主能级!&A(*_#及低的载流子浓度而不适宜于作电子器件(C掺杂的金刚石薄膜表现为,型半导体特征$%%"但由于这种薄膜的低导电性也不适合作电子器件$T%& 采用离子注入工艺将施主元素!5"’\4’C等#注入金刚石来获得,型半导体的方法也未取得成功$;%&D4+*K4[4等人$=%将硫离子注入到._S同质外延!&’’#金刚石薄膜后"D477效应测量表明其具有,型导电性"以及Q4-6*-和‘4-6-/,K$9%采用热丝化学气相沉积法!D O._S#"用氢气稀释.! $ 成功地制得了金刚石薄膜"但是没有进行电学性能的测量&他们的工作激发了人们以硫为掺杂剂来制备,型._S半导体金刚石薄膜的兴趣&近年来"已有关于硫掺杂得到,型金刚石的报道$(%"但是测量结果表明该样品中含有其它杂质而表现为L型$T%&事实上"由于尺寸较大的硫原子进入金刚石晶体后会产生晶格畸变"限制了杂质在金刚石中的掺杂浓度和载流子浓度&合适的共掺杂可以降低因杂质原子和基体原子半径之间的差别而引起的晶格畸变"提高杂质在基体的溶解度"共掺杂原子之间由于库仑作用而复合进入晶格改变了杂质能级在禁带中的位置"从而降低了电 离的活化能&基于这些理论"已成功得到了难以单独进行L型掺杂的N4\’d,#等材料&理论计算认为$:%在金刚石中Q1!是较合适的共掺杂原子对& 本文采用微波等离子体化学气相沉积法!)C._S#将少量的比碳原子半径小的受主杂质原子Q与比碳原子半径大的施主杂质原子!同时掺入金刚石&用扫描电子显微镜!!^)#’俄歇谱仪!2^!#’喇曼光谱!X4@4,#’傅里叶红外谱!O]M X#以及j 射线衍射仪!j X S#分析共掺杂金刚石薄膜的表面形貌和组织结构& $"实验方法 共掺杂在)C._S系统中进行"见图&&D $ 为载体"丙酮 !.D %.#.D% #为碳源"将二甲基二硫!. $D9!$ #单独以及与三氧 化二硼!Q $#% #同时溶于丙酮溶液"二甲基二硫浓度约为=Z &’W%"Q)!原子的比率为’A$"Q).为’A’’&&衬底为’A=@@厚,型抛光!&’’#!"片"为了提高._S金刚石薄膜的形核率"衬底在沉积前用’A=%@的金刚砂研磨&=@","然后在丙酮溶液中用超声波清洗$’@",&反应室本底真空度为’A=Z&’W$C4"不同气源的生长条件相同如表& & 图&")C._S系统 O"K&)"8-/[4G*L74+@414++"+F*33*L/+"F"/,+H+F*@ 表&"硼硫共掺杂金刚石薄膜的生长条件 ]467*&]0*K-/[F08/,3"F"/,/E3"4@/,3E"7@+ 反应气体 .D%.#.D%’.$D9!$’D$或 .D%.#.D%’.$D9!$’Q$#%’D$ 碳源浓度’A=G/7Y .$D9!$浓度=Z&’W% 气流速度:’+88@ 反应室压力$=’’C4 微波功率:’’U 衬底温度=;’i 生长时间&$0 ""用!^)!D M]2.D M"!1=$’#观察金刚石薄膜的表面形貌"用j射线衍射仪!X"K4><1S)@4R1-.".

含硼金刚石单晶制备的研究进展

含硼金刚石单晶制备的研究进展1 李和胜1,2, 李木森1,2,周贵德2 1山东大学材料科学与工程学院,济南,250061 2山东超硬材料工程技术研究中心,邹城,273500 摘要:本文主要总结了目前国内生产含硼金刚石单晶的六种方法,分析了他们各自的优缺点,指出了下一步含硼金刚石单晶制备工艺的研究方向和研究重点。 关键词:含硼金刚石;金刚石单晶;制备工艺 1. 引言 自从上世纪五十年代人类首次合成出金刚石以来,人造金刚石工业经历了五十年的蓬勃发展[1,2]。人造金刚石一经产生就在机械、地质、石油、建材等领域得到了广泛的应用。随着人造金刚石理论研究的深入,人造金刚石的应用领域不断扩大,品种越来越多,其性能也越来越优异[3,4]。近来,掺杂金刚石所具有的半导体特性日益成为人造金刚石工业研究的热点[5~9]。 金刚石的禁带很宽,热导率极高,击穿电场强,很适于制造高温、高压、大功率和强辐射条件下工作的半导体材料与器件。并且它从紫外到远红外很宽的波长范围内具有很高的光谱透射性能,是大功率红外激光器和探测器的理想材料。同时它又具有抗酸、抗碱、抗各种腐蚀性介质侵蚀的性能,是优良的耐蚀材料。它集力学、电学、热学、声学、光学、耐蚀等优异性能于一身,是目前最有发展前途的半导体材料之一,在微电子、光电子、生物医学、机械、航空航天、核能等高新技术领域中可望有极佳的应用前景[5]。 在已知的半导体材料中,掺杂金刚石具有最高的硬度,热导率和传声速度,小的介电常数,高的介电强度,既是电的绝缘体,又是热的良导体。同时,金刚石空穴迁移率很高,掺杂后即可成为优良的p型半导体或者n 型半导体(目前n 型金刚石半导体的低温低压合成工艺已经取得一定进展,但用来做半导体器件仍存在一些需研究解决的问题),并且,对可见光和红外辐射透明。所有这一切使半导体金刚石成为目前最有发展前途的电子材料。 金刚石在晶体结构和能带结构上与常见半导体材料十分相似,但其原子半径和晶格常数较小,禁带宽度大,因此许多杂质原子在金刚石中溶解度很低,这给金刚石的掺杂带来很大困难。由于硼原子半径较小,所以含硼金刚石半导体的研究取得了较大进展[6]。如何采用较为低廉的原料以及较为简便的方法合成出优质的含硼金刚石,并进一步对其半导体特性进行 1 本课题得到教育部博士点专项科研基金(编号:20020422035)和国家自然科学基金(编号:50372035和50371048)的资助。 - 1 -

化学气相沉积金刚石薄膜及其应用进展

化学气相沉积金刚石薄膜及其应用进展 摘要:化学气相淀积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。本文简单综述了化学气相淀积金刚石薄膜,又简单介绍了金刚石薄膜在各工业领域内的应用进展情况,并对其发展前景作了展望。 关键词:金刚石薄膜热灯丝CVD法微波等离子体CVD法 前言金刚石在所有已知物质中具有最高的硬度,室温下有最高的热导率,对光线而言从远红外区到深紫外区完全透明,有最低的可压缩性,极佳的化学惰性,其生物兼容性超过了钛合金等等。然而由于天然金刚石数量稀少,价格昂贵,尺寸有限等因素,人们很难利用金刚石的上述优异的性能。根据天然金刚石存在的事实以及热力学数据,人们一直想通过碳的另一同素异形体——石墨来合成金刚石。但由于金刚石与石墨之间存在着巨大的能量势垒,要将石墨转化为金刚石,必须使用高温高压技术来人工合成,使得人工高温高压合成的金刚石价格昂贵。 20世纪80年代初开发的化学气相沉积(CVD)制备的金刚石薄膜,不仅成本低,质量高,而又可大面积制备,使人们大规模应用金刚石优异性质的愿望,通过CVD法合成金刚石薄膜得以实现。金刚石膜具有极其优异的物理和化学性质,如高硬度、低磨擦系数、高弹性模量、高热导、高绝缘、宽能隙和载流子的高迁移率以及这些优异性质的组合和良好的化学稳定性等,因此金刚石薄膜在各个工业领域有极其广泛的应用前景。 1金刚石薄膜制备 在低温低压下利用化学气相沉积CVD技术生长金刚石膜;含碳化合物和氢气是最主要的原料,前者提供碳源,后者提供原子态的氢,促使更多的碳转变为sp3的金刚石结构,除去未转变为金刚石的其它形态碳(sp2石墨碳或非晶碳、sp1碳)。 金刚石薄膜制备的主要CVD方法:(1)热灯丝CVD(HFCVD);(2)微波等离子体CVD(MWPCVD);(3)直流等离子体CVD(DC-CVD);(4)直流电弧等离子体射流CVD(DC-JET);(5)电子增强CVD(EACVD);(6)磁微波等离子体

电极的制备及其特研究

电极的制备及其特研究

BDD电极的制备及其特性的研究 摘要 本篇论文使用了热丝化学气相沉积法(HFCVD)制备掺硼金刚石(BDD)膜电极,接着对掺硼金刚石薄膜的生长特性进行深入的研究和仔细的分析。然后我们对制备获取的掺硼金刚石电极,采用SEM、Raman光谱、XRD等手段表征了掺硼金刚石的微观形貌及其结构,并对BDD电极的Hall效应分析、BDD电极的充放电性能分析、 BDD电极的阻抗分析、BDD电极的动力学分析和用循环伏安法对BDD电极的电势窗口分析。 通过实验表明:这次实验制成了质量较好的掺硼金刚石膜电极。然后对其进行电化学性能的测试发现其的比电容比较大,可用来做优良的电极材料。 关键词:掺硼金刚石 HFCVD 电化学 Hall效应 Synthesis and Properties of Boron-doped Diamond Film ABSTRACT This paper uses a hot filament chemical vapor deposition (HFCVD) Preparation of boron-doped diamond (BDD) film electrode, then on boron-doped diamond thin film growth characteristics of in-depth research and careful analysis. Then boron-doped diamond electrode preparation we get, using SEM, Raman spectroscopy, XRD and other means to characterize the microstructure of boron-doped diamond of its structure, and studied the Hall effect analysis BDD electrode sheet resistance BDD Electrodes, BDD electrode impedance analysis, dynamic analysis BDD electrodes and electrode potential window analyzed by cyclic voltammetry. Experiments show: the experiment is made of good quality boron-doped diamond film electrodes. And then found its specific capacity is relatively large,

化学气相沉积法制备掺硼金刚石膜的

化学气相沉积法制备掺硼金刚石膜的研究 姓名:许杰学号:0802030222 1.化学气相沉积法制备掺硼金刚石薄膜的提出及研究意义 金刚石薄膜是迄今为止已知材料中硬度最大、透光范围最宽、声速最大、室温下热导率最高的材料,除此之外,它还具有带隙宽、载流子迁移率高和极佳的化学稳定性,它在电学、光学、声学、热学、机械以及军事领域中有着广泛的应用前景。而由于金刚石薄膜是一种宽禁带半导体材料,所以其导电性不佳,在超纳米金刚石薄膜的应用上有一定的局限。为改变其导电性能从而想到运用掺杂的方法改变其导电性能。但是由于金刚石的晶格常数与碳原子半径较小,杂质原子在金刚石中的溶解度一般较小,除了硼和氮以外的元素很难进入晶格中的间隙位置。由于氮是深能级杂质,因此在室温下氮掺杂的金刚石仍然为绝缘体,所以为改变金刚石薄膜的导电性能,目前为止最好的方法就是掺入硼。 现在有一种采用掺硼的金刚石薄膜电极作为工作电极来检测抗坏血酸的方法,它继承了金刚石薄膜耐腐蚀、抗辐射、耐高温、稳定性高等特点,且具有宽的电势窗口、低背景电流、化学和电化学的稳定性高的特点,这些就决定了它比其他电极有更长的寿命、重现性更好、使用简单便捷。 另外还有一种用掺硼金刚石薄膜制成的涂层刀具。金刚石薄膜涂层的硬质合金刀具是加工有色金属、硅铝合金、纤维增强塑料、陶瓷及金属基复合材料等非铁材料的首选刀具。然而,由于硬质合金刀具中粘接相钴的催石墨化作用,使得金刚石薄膜与刀具基体之间的附着力较低,从而阻碍了金刚石薄膜涂层刀具的产业化。在刀具基体表面渗硼,使硼元素与刀具表层的钴元素发生反应生成稳定的化合物是一种提高膜基附着力的新型预处理方法。然而如果掺入的硼量过大会是薄膜的结合率降低而影响薄膜的性能! 硼掺杂是改变金刚石薄膜电学性能的一种途径,掺硼后金刚石薄膜的空穴浓度会被提高,形成P型金刚石薄膜,少量的硼掺杂可以使薄膜电阻率降低到10- 3Ω·cm级别,接近导体范围。硼原子掺入金刚石薄膜中一部分进入金刚石结构取代碳原子,有三个价电子的硼原子和周围四个碳原子形成共价键时还缺少一个电子,必须从别处的碳原子中夺取一个价电子,于是在金刚石晶体中的共价键中产生了一个空穴,因此掺硼金刚石薄膜的导电模式主要是空穴导电。同时少量的硼也会是金刚石薄膜的晶粒尺寸变小,因而可以细化晶粒,改善薄膜的质量。但大量的硼掺杂,会使晶型逐渐变的不完整,晶体缺陷明显增多。通常的掺硼技术有化学气相沉积和离子注入等。化学气相沉积金刚石薄膜质量高,硼掺杂工艺简单。一般只需在反应室中引入含硼物质即可实现硼掺杂。因此研究用化学气相沉积的方法制备掺硼金刚石薄膜具有广阔的应用前景。 2.化学气相沉积法制备掺硼金刚石薄膜的分析及其相关文献总结 化学气相沉积是利用气相之间的反应,在各种材料或制品表面沉积一层薄膜,赋予材料表面一些特殊的性能。它可以提高材料抵御环境作用的能力,如提高材料表面的硬度、耐磨性和耐腐蚀性;它还可以赋予材料某些功能特性,包括光、电、磁、热、声等各种物理和化学性能。因此,化学气相沉积制膜技术被广泛应用于机械制造工业、冶金工业、光学工业、半导体工业等领域。 硼掺杂可提高薄膜中空穴浓度, 形成p 型金刚石薄膜。少量的硼掺杂可以使

类金刚石薄膜的性能与应用

学科前沿知识讲座论文

类金刚石薄膜的性能与应用 摘要: 类金刚石膜(Diamond-like Carbon)简称DLC,是一类性质类似于金刚石如具有高硬度、高电阻率、耐腐蚀、良好的光学性能等,同时其又具有自身独特摩擦学特性的非晶碳膜。作为功能薄膜和保护薄膜,其广泛应用于机械、电子、光学、医学、航天等领域中。类金刚石膜制备方法比较简单,易实现工业化,具有广泛的应用前景。 关键词:超硬材料类金刚石薄膜制备气象沉积表面工程技术引言 磨损是工程界材料功能失效的主要形式之一,由此造成的资源、能源的浪费和经济损失可用“巨大”来表示。然而,磨损是发生于机械设备零部件表面的材料流失过程,虽然不可避免,但若采取得力措施,可以提高机件的耐磨性。材料表面工程主要是利用各种表面改性技术,赋予基体材料本身所不具备的特殊的力学、物理或化学性能,如高硬度、低摩擦系数、良好的化学及高温稳定性、理想的综合机械性能及优异的摩擦学性能,从而使零部件表面体系在技术指标、可靠性、寿命和经济性等方面获得最佳效果。硬质薄膜涂层因能减少工件的摩擦和磨损,有效提高表面硬度、韧性、耐磨性和高温稳定性,大幅度提高涂层产品的使用寿命,而广泛应用于机械制造、汽车工业、纺织工业、地质钻探、模具工业、航空航天等领域。

一、超硬薄膜材料 随着材料科学和现代涂层技术的发展,应用超硬材料涂层技术改善零部件表面的机械性能和摩擦学性能是21世纪表面工程领域重要的研究方向之一。超硬薄膜是指维氏硬度在40GPa以上的硬质薄膜。到目前为止,主要有以下几种超硬薄膜: 1 金刚石薄膜 金刚石薄膜的硬度为50~100GPa(与晶体取向有关),从20世纪80年代初开始,一直受到世界各国的广泛重视,并曾于20世纪80年代中叶至90年代末形成了一个全球范围的研究热潮。金刚石膜所具有的最高硬度、最高热导率、极低摩擦系数、很高的机械强度和良好化学稳定性的优异性能组合使其成为最理想的工具和工具涂层材料。金刚石薄膜在摩擦学领域应用的突出问题,就是在载荷条件下薄膜与基体之间的粘附强度以及薄膜本身的粗糙度问题,目前,己经有针对性地开展了大量的研究工作。随着研究工作的不断深入,金刚石薄膜将会为整个人类社会带来巨大的经济效益。 2 立方氮化硼(c-BN)薄膜 立方氮化硼(c-BN)薄膜的硬度为50~80GPa,它具有与金刚石相类似的晶体结构,其物理性能也与金刚石十分相似。与金刚石相比,c-BN的显著优点是具有良好的热稳定性和化学稳定性,适用于作为超硬刀具涂层,特别是用于加工铁基合金的刀具涂层。 3 碳氮膜 碳氮膜是新近开发的超硬薄膜材料,理论预测它具有达到和

掺硼金刚石电极(BDD)行业发展现状调研及投资前景分析报告(2020版本)

掺硼金刚石电极(BDD)行业发展现状调研及投资前景分析报告(2020版本) 恒州博智(QYResearch) 2020年

Neocoat是全球最大的掺硼金刚石电极制造商,2018年的收入市场份额为21%,其次分别为 Condias, SP3 Diamond Technologies, IKA, Pro Aqua, Metrohm。世界前六大生产厂商的市场份额占67.78%。北美是全球最大的掺硼金刚石电极生产地,市场份额占32.8%。 2019年全球掺硼金刚石电极(BDD)市场总值达到了0.4亿元,预计2026年可以增长到0.6亿元,年复合增长率(CAGR)为7.2%。 本报告研究全球与中国掺硼金刚石电极(BDD)的发展现状及未来发展趋势,分别从生产和消费的角度分析掺硼金刚石电极(BDD)的主要生产地区、主要消费地区以及主要的生产商。重点分析全球与中国的主要厂商产品特点、产品产品类型、不同产品类型产品的价格、产量、产值及全球和中国主要生产商的市场份额。 主要生产商包括: Neocoat Condias SP3 Diamond Technologies IKA Pro Aqua Metrohm 按照不同产品类型,包括如下几个类别: 非金属基板掺硼金刚石电极

金属基板掺硼金刚石电极 按照不同应用,主要包括如下几个方面: 水处理 电分析 机电合成 重点关注如下几个地区: 北美 欧洲 中国 日本 韩国 完整报告请参考恒州博智最新发表《2020-2026全球及中国掺硼金刚石电极(BDD)行业发展现状调研及投资前景分析报告》,详细内容可联系发布者(L&D)。著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。更多细分行业信息可关注QYResearch。 重要声明 本报告仅供本公司的客户使用,不对外公开发布。本公司不会仅因接收人收到本报告而视其为客户。 恒州博智拥有自己的研究方法和信息渠道,研究报告保持独立性。图表中

相关主题
文本预览
相关文档 最新文档