当前位置:文档之家› 江苏省高中数学竞赛校本教材[全套](共30讲,含详细答案)-苏教版

江苏省高中数学竞赛校本教材[全套](共30讲,含详细答案)-苏教版

江苏省高中数学竞赛校本教材[全套](共30讲,含详细答案)-苏教版
江苏省高中数学竞赛校本教材[全套](共30讲,含详细答案)-苏教版

江苏省高中数学竞赛校本教材[全套]

(共30讲,含详细答案)-苏教版

目录

§1数学方法选讲(1) (1)

§2数学方法选讲(2) (11)

§3集合 (22)

§4函数的性质 (30)

§5二次函数(1) (41)

§6二次函数(2) (55)

§7指、对数函数,幂函数 (63)

§8函数方程 (73)

§9三角恒等式与三角不等式 (76)

§10向量与向量方法 (85)

§11数列 (95)

§12递推数列 (102)

§13数学归纳法 (105)

§14不等式的证明 (111)

§15不等式的应用 (122)

§16排列,组合 (130)

§17二项式定理与多项式 (134)

§18直线和圆,圆锥曲线 (143)

§19立体图形,空间向量 (161)

§20平面几何证明 (173)

§21平面几何名定理 (180)

§22几何变换 (186)

§23抽屉原理 (194)

§24容斥原理 (205)

§25奇数偶数 (214)

§26整除 (222)

§27同余 (230)

§28高斯函数 (238)

§29覆盖 (245)

§29涂色问题 (256)

§30组合数学选讲 (265)

§1数学方法选讲(1)

同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。

例题讲解

一、从简单情况考虑

华罗庚先生曾经指出:善于―退‖,足够的―退‖,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。从简单情况考虑,就是一种以退为进的一种解题策略。

1. 两人坐在一张长方形桌子旁,相继轮流在桌子上放入同样大小的硬币。条件是硬币一定要平放在桌子上,后放的硬币不能压在先放的硬币上,直到桌子上再也放不下一枚硬币为止。谁放入了最后一枚硬币谁获胜。问:先放的人有没有必定取胜的策略?

2.线段AB上有1998个点(包括A,B两点),将点A染成红色,点B染成蓝色,其余各点染成红色或蓝色。这时,图中共有1997条互不重叠的线段。

问:两个端点颜色相异的小线段的条数是奇数还是偶数?为什么?

3.1000个学生坐成一圈,依次编号为1,2,3,…,1000。现在进行1,2报数:1号学生报1后立即离开,2号学生报2并留下,3号学生报1后立即离开,4号学生报2并留下……学生们依次交替报1或2,凡报1的学生立即离开,报2的学生留下,如此进行下去,直到最后还剩下一个人。问:这个学生的编号是几号?

4.在6×6的正方形网格中,把部分小方格涂成红色。然后任意划掉3行和3列,使得剩下的小方格中至少有1个是红色的。那么,总共至少要涂红多少小方格?

二、从极端情况考虑

从问题的极端情况考虑,对于数值问题来说,就是指取它的最大或最小值;对于一个动点来说,指的是线段的端点,三角形的顶点等等。极端化的假设实际上也为题目增加了一个条件,求解也就会变得容易得多。

5.新上任的宿舍管理员拿着20把钥匙去开20个房间的门,他知道每把钥匙只能打开其中的一个门,但不知道哪一把钥匙开哪一个门,现在要打开所有关闭的20个门,他最多要开多少次?

6.有n名(n≥3)选手参加的一次乒乓球循环赛中,没有一个全胜的。问:是否能够找到三名选手A,B,C,使得A胜B,B胜C,C胜A?

7.n(n≥3)名乒乓球选手单打比赛若干场后,任意两个选手已赛过的对手恰好都不完全相同。

试证明,总可以从中去掉一名选手,而使余下的选手中,任意两个选手已赛过的对手仍然都不完全相同。

8.在一个8×8的方格棋盘的方格中,填入从1到64这64个数。问:是否一定能够找到两个相邻的方格,它们中所填数的差大于4?

三、从整体考虑

从整体上来考察研究的对象,不纠缠于问题的各项具体的细节,从而能够拓宽思路,抓住主要矛盾,一举解决问题。

9.右图是一个4×4的表格,每个方格中填入了数字0或1。按下列规则进行―操

作‖:每次可以同时改变某一行的数字:1变成0,0变成1。

问:能否通过若干次―操作‖使得每一格中的数都变成1?

10.有三堆石子,每堆分别有1998,998,98粒。现在对这三堆石子进行如下的―操作‖:每次允许从每堆中各拿掉一个或相同个数的石子,或从任一堆中取出一些石子放入另一堆中。

按上述方式进行―操作‖,能否把这三堆石子都取光?如行,请设计一种取石子的方案;如不行,请说明理由。

11.我们将若干个数x,y,z,…的最大值和最小值分别记为max(x,y,z,…)和min(x,y,z,…)。已知a+b+c+d+e+f+g=1,求min[max(a+b+c,b+c+d,c+d+e,d+e+f,e+f+g)]

课后练习

1.方程x1+x2+x3+…+x n-1+x n=x1x2x3…x n-1x n一定有一个自然数解吗?为什么?

2.连续自然数1,2,3,…,8899排成一列。从1开始,留1划掉2和3,留4划掉5和6……这么转圈划下去,最后留下的是哪个数?

3.给出一个自然数n,n的约数的个数用一个记号A(n)来表示。例如当n=6时,因为6的约数有1,2,3,6四个,所以A(6)=4。已知a1,a2,…,a10是10个互不相同的质数,又x 为a1,a2,…,a10的积,求A(x)。

4.平面上有100个点,无三点共线。将某些点用线段连结起来,但线段不能相交,直到不能再连结时为止。问:是否存在一个以这些点中的三个点为顶点的三角形,它的内部没有其余97个点中的任何一个点?

5.在一块平地上站着5个小朋友,每两个小朋友之间的距离都不相同,每个小朋友手上都拿着一把水枪。当发出射击的命令后,每人用枪射击距离他最近的人。问:射击后有没有一个小朋友身上是干的?为什么?

6.把1600粒花生分给100只猴子,请你说明不管怎样分,至少有4只猴子分的花生一样多。

7.有两只桶和一只空杯子。甲桶装的是牛奶,乙桶装的是酒精(未满)。现在从甲桶取一满杯奶倒入乙桶,然后从乙桶取一满杯混合液倒入甲桶,这时,是甲桶中的酒精多,还是乙桶中的牛奶多?为什么?

8.在黑板上写上1,2,3,…,1998。按下列规定进行―操作‖:每次擦去其中的任意两个数a 和b,然后写上它们的差(大减小),直到黑板上剩下一个数为止。

问:黑板上剩下的数是奇数还是偶数?为什么?

课后练习答案

1.有。

解:当n=2时,方程x1+x2=x1x2有一个自然数解:x1=2,x2=2;

当n=3时,方程x1+x2+x3=x1x2x3有一个自然数解:x1=1,x2=2,x3=3;

当n=4时,方程x1+x2+x3+x4=x1x2x3x4有一个自然数解:x1=1,x2=1,x3=2,x4=4。

一般地,方程

x1+x2+x3+…+x n-1+x n=x1x2x3…x n-1x n有一个自然数解:x1=1,x2=1,…,x n-2=1,x n-1=2,x n=n。

2.3508。

解:仿例3。当有3n个数时,留下的数是1号。

小于8899的形如3n的数是38=6561,故从1号开始按规则划数,划了8899-6561=2338(个)数后,还剩下6561个数。下一个要划掉的数是2388÷2×3+1=3507,故最后留下的就是3508。

3.1024。

解:质数a1有2个约数:1和a,从而A(a1)=2;

2个质数a1,a2的积有4个约数:1,a1,a2,a1a2,从而

A(a1×a2)=4=22;

3个质数a1,a2,a3的积有8个约数:

1,a1,a2,a3,a1a2,a2a3,a3a1,a1a2a3,

从而A(a1×a2×a3)=8=23;

……

于是,10个质数a1,a2,…,a10的积的约数个数为

A(x)=210=1024。

4.存在。

提示:如果一个三角形内还有别的点,那么这个点与三角形的三个顶点还能连结,与已―不能再连结‖矛盾。

5.有。

解:设A和B两人是距离最近的两个小朋友,显然他们应该互射。此时如果有其他的小朋友射向他们中的一个,即A,B中有一人挨了两枪,那么其他三人中必然有一人身上是干的。如果没有其他的小朋友射向A或B,那么我们再考虑剩下的三个人D,E,F:若D,E的距离是三人中最近的,则D,E互射,而F必然射向他们之间的一个,此时F身上是干的。

6.假设没有4只猴子分的花生一样多,那么至多3只猴子分的花生一样多。我们从所需花生最少情况出发考虑:

得1粒、2粒、3粒……32粒的猴子各有3只,得33粒花生的猴子有1只,于是100只猴子最少需要分得花生

3×(0+1+2+…+32)+33=1617(粒),

现在只有1600粒花生,无法使得至多3只猴子分的花生一样多,故至少有4只猴子分的花生一样多。

7.一样多。

提示:从整体看,甲、乙两桶所装的液体的体积没有发生变化。甲桶里有多少酒精,就必然倒出了同样体积的牛奶入乙桶。所以,甲桶中的酒精和乙桶中的牛奶一样多。

8.奇数。

解:黑板上开始时所有数的和为

S=1+2+3+…+1998=1997001,

是一个奇数,而每一次―操作‖,将(a+b)变成了(a-b),实际上减少了2b,即减少了一个偶数。因为从整体上看,总和减少了一个偶数,其奇偶性不变,所以最后黑板上剩下一个奇数。

例题答案:

1.分析与解:如果桌子大小只能容纳一枚硬币,那么先放的人当然能够取胜。然后设想桌面变大,注意到长方形有一个对称中心,先放者将第一枚硬币放在桌子的中心,继而把硬币放在后放者所放位置的对称位置上,这样进行下去,必然轮到先放者放最后一枚硬币。

2.分析:从最简单的情况考虑:如果中间的1996个点全部染成红色,这时异色线段只有1条,是一个奇数。然后我们对这种染色方式进行调整:将某些红点改成蓝点并注意到颜色调整时,异色线段的条数随之有哪些变化。由于颜色的调整是任意的,因此与条件中染色的任意性就一致了。

解:如果中间的1996个点全部染成红色,这时异色线段仅有1条,是一个奇数。将任意一个红点染成蓝色时,这个改变颜色的点的左右两侧相邻的两个点若同色,则异色小线段的条数或者增加2条(相邻的两个点同为红色),或者减少2条(相邻的两个点同为蓝色);这个改变颜色的点的左右两侧相邻的两个点若异色,则异色小线段的条数不变。

综上所述,改变任意个点的颜色,异色线段的条数的改变总是一个偶数,从而异色线段的条数是一个奇数。

3.分析:这个问题与上一讲练习中的第8题非常相似,只不过本例是报1的离开报2的留下,而上讲练习中相当于报1的留下报2的离开,由上讲练习的结果可以推出本例的答案。本例中编号为1的学生离开后还剩999人,此时,如果原来报2的全部改报1并留下,原来报1的全部改报2并离开,那么,问题就与上讲练习第8题完全一样了。因为剩下999人时,第1人是2号,所以最后剩下的人的号码应比上讲练习中的大1,是

975+1=976(号)。

为了加深理解,我们重新解这道题。

解:如果有2n个人,那么报完第1圈后,剩下的是2的倍数号;报完第2圈后,剩下的是22的倍数号……报完第n圈后,剩下的是2n的倍数号,此时,只剩下一人,是2n号。

如果有(2n+d)(1≤d<2n)人,那么当有d人退出圈子后还剩下2n人。因为下一个该退出去的是(2d+1)号,所以此时的第(2d+1)号相当于2n人时的第1号,而2d号相当于2n人时的第2n号,所以最后剩下的是第2d号。

由1000=29+488知,最后剩下的学生的编号是

488×2=976(号)。

4.分析与解:先考虑每行每列都有一格涂红,比较方便的涂法是在一条对角线上涂6格红色的,如图1。

任意划掉3行3列,可以设想划行划列的原则是:每次划掉红格的个数越多越好。对于图1,划掉3行去掉3个红格,还有3个红格恰在3列中,再划掉3列就不存在红格了。

所以,必然有一些行有一些列要涂2个红格,为了尽可能地少涂红格,那么每涂一格红色的,一定要使多出一行同时也多出一列有两格红色的。

先考虑有3行中有2格涂红,如图2。显然,同时也必然有3个列中也有2格涂红。这时,我们可以先划掉有2格红色的3行,还剩下3行,每行上只有一格涂红,每列上也只有一格涂红,那么在划掉带红格的3列就没有红格了。

为了使得至少余下一个红格,只要再涂一格。此红格要使图中再增加一行和一列有两个红格的,如图3。

结论是:至少需要涂红10个方格。

5. 解:从最不利的极端情况考虑:打开第一个房间要20次,打开第二个房间需要19次……共计最多要开

20+19+18+…+1=210(次)。

6. 解:从极端情况观察入手,设B是胜的次数最多的一个选手,但因B没获全胜,故必有选手A 胜B。在败给B的选手中,一定有一个胜A的选手C,否则,A胜的次数就比B多一次了,这与B是胜的次数最多的矛盾。

所以,一定能够找到三名选手A,B,C,使得A胜B,B胜C,C胜A。

7. 证明:如果去掉选手H,能使余下的选手中,任意两个选手已赛过的对手仍然都不完全相同,那么我们称H为可去选手。我们的问题就是要证明存在可去选手。

设A是已赛过对手最多的选手。

若不存在可去选手,则A不是可去选手,故存在选手B和C,使当去掉A时,与B赛过的选手和与C赛过的选手相同。从而B和C不可能赛过,并且B和C中一定有一个(不妨设为B)与A赛过,而另一个(即C)未与A赛过。

又因C不是可去选手,故存在选手D,E,其中D和C赛过,而E和C未赛过。

显然,D不是A,也不是B,因为D与C赛过,所以D也与B赛过。又因为B和D赛过,所以B也与E赛过,但E未与C赛过,因而选手E只能是选手A。

于是,与A赛过的对手数就是与E赛过的对手数,他比与D赛过的对手数少1,这与假设A 是已赛过对手最多的选手矛盾。

故一定存在可去选手。

8. 解:考虑这个方格棋盘的左上角、右上角及右下角内的数A,B,S。

设存在一个填数方案,使任意相邻两格中的数的差不大于4,考虑最大和最小的两个数1和

64的填法,为了使相邻数的差不大于4,最小数1和最大数的―距离‖越

大越好,即把它们填在对角的位置上(A=1,S=64)。

然后,我们沿最上行和最右行来观察:因为相邻数不大于4,从

A→B→S共经过14格,所以S≤1+4×14=57(每次都增加最大数4),与

S=64矛盾。因而,1和64不能填在―最远‖的位置上。显然,1和64如果填在其他任意位置,那么从1到64之间的距离更近了,更要导致如上的矛盾。因此,不存在相邻数之差都不大于4的情况,即不论怎样填数必有相邻两数的差大于4。

9. 解:我们考察表格中填入的所有数的和的奇偶性:第一次―操作‖之前,它等于9,是一个奇数,

每一次―操作‖,要改变一行或一列四个方格的奇偶性,显然整个16格中所有数的和的奇偶性不变。

但当每一格中所有数字都变成1时,整个16格中所有数的和是16,为一偶数。故不能通过若干次―操作‖使得每一格中的数都变成1。

10. 解:要把三堆石子都取光是不可能的。

按―操作‖规则,每次拿掉的石子数的总和是3的倍数,即不改变石子总数被3除时的余数。而1998+998+98=3094,被3除余1,三堆石子被取光时总和被3除余0。所以,三堆石子都被取光是办不到的。

11. 解:设M=max(a+b+c,b+c+d,c+d+e,d+e+f,e+f+g)。

因为a+b+c,c+d+e,e+f+g都不大于M,所以

§2数学方法选讲(2)

四、从反面考虑

解数学题,需要正确的思路。对于很多数学问题,通常采用正面求解的思路,即从条件出发,求得结论。但是,如果直接从正面不易找到解题思路时,则可改变思维的方向,即从结论入手或从条件及结论的反面进行思考,从而使问题得到解决。

1.某次数学测验一共出了10道题,评分方法如下:

每答对一题得4分,不答题得0分,答错一题倒扣1分,每个考生预先给10分作为基础分。问:此次测验至多有多少种不同的分数?

2.一支队伍的人数是5的倍数,且超过1000人。若按每排4人编队,则最后差3人;若按每排3人编队,则最后差2人;若按每排2人编队,则最后差1人。问:这支队伍至少有多少人?

3.在八边形的8个顶点上是否可以分别记上数1,2,…,8,使得任意三个相邻的顶点上的数的和大于13?

4.有一个1000位的数,它由888个1和112个0组成,这个数是否可能是一个平方数?

五、从特殊情况考虑

对于一个一般性的问题,如果觉得难以入手,那么我们可以

先考虑它的某些特殊情况,从而获得解决的途径,使问题得以―突破‖,这种方法称为特殊化。

对问题的特殊情况进行研究,一方面是因为研究特殊情况比研究一般情况较为容易;另一方面是因为特殊的情况含有一般性,所以对特殊情况的研究常能揭示问题的结论或启发解决问题的思路,它是探索问题的一种重要方法。

运用特殊化方法进行探索的过程有两个步骤,即先由一般到特殊,再由特殊到一般。通过第一步骤得到的信息,还要回到一般情况予以解答。

5.如下图,四边形ABCD和EFGH都是正方形,且边长均为2cm。又E点是正方形ABCD的中心,求两个正方形公共部分(图中阴影部分)的面积S。

6.是否在平面上存在这样的40条直线,它们共有365个交点?

7.如右图,正方体的8个顶点处标注的数字为a,b,c,d,e,

求(a+b+c+d)-(e+f+g+h)的值。

8.将n2个互不相等的数排成下表:

a11a12a13 (1)

a21a22a23 (2)

a n1a n2a n3…a nn

先取每行的最大数,得到n个数,其中最小数为x;再取每列的最小数,也得到n个数,其中最大数为y。试比较x和y的大小。

六、有序化

当我们研究的对象是一些数的时候,我们常常将这些数排一个次序,即将它们有序化。有序化的假设,实际上是给题目增加了一个可供使用的条件。

9.将10到40之间的质数填入下图的圆圈中,使得3组由―→‖所连的4个数的和相等,如果把和数相等的填法看做同一类填法,请说明一共有多少类填法?并画图表示你的填法。

10.有四个互不相等的数,取其中两个数相加,可以得到六个和:24,28,30,32,34,38。求此四数。

11.互不相等的12个自然数,它们均小于36。有人说,在这些自然数两两相减(大减小)所得到的差中,至少有3个相等。你认为这种说法对吗?为什么?

12.有8个重量各不相同的物品,每个物品的重量都是整克数且都不超过15克。小平想以最少的次数用天平称出其中最重的物品。他用了如下的测定法:

(1)把8个物品分成2组,每组4个,比较这2组的轻重;

(2)把以上2组中较重的4个再分成2组,即每组2个,再比较它们的轻重;

(3)把以上2组中较重的分成各1个,取出较重的1个。

小平称了3次天平都没有平衡,最后便得到一个物品。

可是实际上得到的是这8个物品当中从重到轻排在第5的物品。

问:小平找出的这个物品有多重?并求出第二轻的物品重多少克?

课后练习

1.育才小学40名学生参加一次数学竞赛,用15分记分制(即分数为0,1,2,…,15)。全班总分为209分,且相同分数的学生不超过5人。试说明得分超过12分的学生至多有9人。

2.今有一角纸币、二角纸币、五角纸币各1张,一元币4张,五元币2张,用这些纸币任意付款,一共可以付出多少种不同数额的款项?

3.求在8和98之间(不包括8和98),分母为3的所有最简分数的和。

4.如右图,四边形ABCD的面积为3,E,F为边AB的三等分点,M,N是CD边上的三等分点。求四边形EFNM的面积。

5.直线上分布着1998个点,我们标出以这些点为端点的一切可能线段的中点。问:至少可以得到多少个互不重合的中点?

6.假定100个人中的每一个人都知道一个消息,而且这100个消息都不相同。为了使所有的人都知道一切消息,他们一共至少要打多少个电话?

7.有4个互不相等的自然数,将它们两两相加,可以得到6个不同的和,其中较小的4个和是64,66,68,70。求这4个数。

8.有五个砝码,其中任何四个砝码都可以分成重量相等的两组。问:这五个砝码的重量相等吗?为什么?

课后练习答案

1.若得分超过12分的学生至少有10人,则全班的总分至少有

5×(12+13)+5×(0+1+2+3+4+5)=210(分),

大于条件209分,产生了矛盾,故得分超过12分的学生至多有9人。

2.119种。

解:从最低币值1角到最高币值14元8角,共148个不同的币值。再从中剔除那些不能由这些纸币构成的币值。

经计算,应该剔除的币值为(i+0.4)元(i=0,1,2,…,14)及(j+0.9)元(j=1,2,3,…,13),一共29种币值。所以,一共可以付出148-29=119(种)不同的币值。

3.9540。

=2×(8+9+…+97)+(97-8+1)=9540。

4.1。

解:先考虑ABCD是长方形的特殊情况,显然此时EFNM的面积是1。下面就一般情况求解。

连结AC,AM,FM,CF,则

5.3993个。

解:为了使计算互不重复,我们取距离最远的两点A,B。先计算以A为左端点的所有线段,除B外有1996条,这些线段的中点有1996个,它们互不重合,且到点A的距离小于AB长度的一半。

同样,以B为右端点的所有线段,除A外有1996条,这些线段的中点有1996个,它们互不重合,且到点A的距离小于AB长度的一半。

这两类中点不会重合,加上AB的中点共有1996+1996+1=3993(个),即互不重合的中点不少于3993个。

另一方面,当这1998个点中每两个相邻点的间隔都相等时,不重合的中点数恰为3993。

这说明,互不重合的中点数至少为3993个。

6.198个。

解:考虑一种特殊的通话过程:先由99人每人打一个电话给A,A再给99人每人打一个电话,这样一共打了198个电话,而且每人都知道了所有的消息。

下面我们说明这是次数最少的。考虑一种能使所有人知道一切消息的通话过程中的关键性的一次通话,这次通话后,有一个接话人A知道了所有的消息,而在此之前还没有人知道所有的消息。

除了A以外的99人每人在这个关键性的通话前,必须打出电话一次,否则A不可能知道所有的消息;又这99人每人在这个关键性的通话后,又至少收到一个电话,否则它们不可能知道所有的消息。

7.30,34,36,38或31,33,35,39。

解:设4个数为a,b,c,d,且a<b<c<d,则6个和为a+b,a+c,a+d,b+c,b+d,c+d。于是有

a+b<a+c<a+d<b+d<c+d

和a+b<a+c<b+c<b+d<c+d。

分别解这两个方程组,得

8.相等。

解:设这五个砝码的重量依次为a≤b≤c≤d≤e。

去掉e,则有a+d=b+c;①

去掉d,则有a+e=b+c。②

比较①②,得d=e。

去掉a,则有b+e=c+b;③

高中数学竞赛讲义_复数

1 复数 一、基础知识 1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除 等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=2 2b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有: (1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2121z z z z =???? ??;(5)||||||2121z z z z ?=?;(6)|||||| 2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z z 1=。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2),.)(2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n πθπθ+++=,k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

高中数学竞赛校本课程

高中数学竞赛校本课程 一、课程目标 数学是研究空间形式和数量关系的学科,也是研究模式与秩序的一门学科。数学本身的特点决定了它作为科学基础的地位,中学数学的内容与其中蕴含的数学思想方法,尤其是通过数学学习培养的思考问题、解决问题的数学能力将在更深一层次的科学研究中大有作为。 1、夯实学生数学基础,使学生熟练掌握各种数学基本技能;全面提高学生演绎推理、直觉猜想、归纳抽象、体系构建、算法设计等诸多方面的能力,并在此基础上培养学生学习新的数学知识的能力,数学地提出、分析、解决问题的能力,数学表达与交流的能力;发展学生数学应用意识与数学创新意识。 2、努力扩展学生的数学视野,全面渗透研究性学习,激发学生学习数学的兴趣,使学生能欣赏数学的美学魅力,认识数学的价值,崇尚数学的思考,培养从事科学研究的精神与方法。 3、多角度衔接高等教育,大胆引入现代数学基本理念,为学生继续从事高深科学领域的学习奠定所必需的数学基础。 二、课程设计理念与课程内容特色 本课程始终围绕学生群体设计,从他们的学习与发展的实际学情为基本出发点。课程的内容的选择是严格的,它具有鲜明的针对性,能体现数学教学的特点。本课程设计向要突现以下几点: 1、注重发展学生的数学综合能力 “学以致用”,数学知识的学习必须进入运用的层次,接受实践的考验。20世纪下半叶以来,数学的最大发展是应用,这也对数学教学产生了深刻的影响。本课程在数学知识的理论应用与实践运用上大大加强,数学的融会贯通与“数学建模”成为主体;加强了数学各分支间的结合,以重要的数学思想方法来贯穿数学学习。 2、重视数学思想与数学方法养成的创新学习理念 传授数学知识不是数学教学的重点,‘授人以鱼,不若授之以渔’。引导学生掌握解决问题的科学的数学思想与数学方法是本课程的核心。课程不完全以知识系统为主线,很多例题与练习是为了凸现其中的蕴含的数学思想方法而设计。本课程试图通过数学思想方法的养成为学生形成正确的,积极主动的学习方式创造有利条件,为学生提供“提出问题,探索研究,实践应用”的空间,帮助学生形成独立思考、自主钻研的习惯,培养学生的自主能力,提高理性的数学思维,养成勇于创新的科学理念。 3、拓展数学视野,形成开放体系,努力增强时代感 由于本课程的学习对象为具备教好的数学基础与学习能力的学生,因此在内容上必须有一定的深度与广度,要能够印发学生的思考,要有新的知识内容与视角,传统的 数学课程内容长期以来已经模式化,可选择性不强,本课程大胆突破高考限制,引入“向量几何”、“矩阵理论”、“概率统计”、“线性规划”、“微积分初步”等现代数学内容,摆脱以往数学课程内容的被动与滞后,是本课程力图突破的一点。此外,本课程通过每个章节设置的“本章阅读”介绍著名数学家、数学趣题、数学发展史以及最新数学进展来拓展学生的视野,提高学习数学兴趣。 三、课程内容与数学计划 高一上学期 第一章.集合与命题 第二章.函数 第三章.不等式 第四章.三角函数

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

高中数学竞赛标准教材讲义函数教案

第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射. 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射. 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射. 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆 映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1 : A →B . 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数.A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y 则y 叫做x 的象,x 叫y 的原象.集合{f (x )|x ∈A }叫函数的值域.通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1 : A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域.例如:函数y = x -11的反函数是y =1-x 1 (x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称. 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数. 定义7 函数的性质. (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有 f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间. (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期. 定义8 如果实数a a }记作开区间(a , +∞集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域.通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对 称;(5)与函数y =-f (-x )的图象关于原点成中心对称;(6)与函数y =f -1 (x )的图象关于直线y =x 对称;(7)与函数y =-f (x )的图象关于x 轴对称. 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”.例如y = x -21 , u=2-x 在(-∞,2)上是减函数,y = u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数. 注:复合函数单调性的判断方法为同增异减.这里不做严格论证,求导之后是显然的. 二、方法与例题

高中数学竞赛教案讲义(7)解三角形

第七章 解三角形 一、基础知识 在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长,2 c b a p ++=为半周长。 1.正弦定理:C c B b A a sin sin sin ===2R (R 为△ABC 外接圆半径)。 推论1:△ABC 的面积为S △ABC =.sin 2 1sin 21sin 21B ca A bc C ab == 推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足) sin(sin a b a a -=θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC =C ab sin 2 1;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理B b A a sin sin =,所以)sin()sin(sin sin A a A a --=θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]= 2 1-[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。 2.余弦定理:a 2=b 2+c 2-2bccosA bc a c b A 2cos 2 22-+=?,下面用余弦定理证明几个常用的结论。 (1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq q p q c p b -++ (1) 【证明】 因为c 2=AB 2=AD 2+BD 2 -2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π, 所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得 qc 2+pb 2=(p+q)AD 2+pq(p+q),即AD 2=.22pq q p q c p b -++ 注:在(1)式中,若p=q ,则为中线长公式.2 222 22a c b AD -+=

高中数学竞赛 函数【讲义】

高中数学竞赛标准教材 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。集合{f (x )|x ∈A }叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。例如:函数y =x -11的反函数是y =1-x 1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。 定义7 函数的性质。 (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。 (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期。 定义8 如果实数a a }记作开区间(a , +∞),集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域。通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对称;(5)与函数y =-f (-x ) 的图象关于原点成中心对称;(6)与函数y =f -1(x )的图象关于直线y =x 对称;(7)与函数y =-f (x ) 的图象关于x 轴对称。 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”。例如y = x -21, u=2-x 在(-∞,2)上是减函数,y =u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数。 注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。 二、方法与例题 1.数形结合法。 例1 求方程|x -1|=x 1的正根的个数 .

2020-2021学年第一学期高中数学新教材必修第一册苏教版(2019)第四章第4章 章末复习(一)

第4章 章末复习(一) 一、要点回顾 1. 当n 为奇数时,正数的n 次方根是一个 ,负数的n 次方根是一个 .这时,a 的n 次方根用符号 表示. 当n 为偶数时,正数的n 次方根有两个,这两个数 . 当n 为奇数时,√a n n = ; 当n 为偶数时,√a n n =|a|= { , a ≥0, , a <0. 2. 正数的正分数指数幂的意义是a m n = (a>0, m , n ∈N *,且n>1); 正数的负分数指数幂的意义是a - m n = (a>0, m , n ∈N *,且n>1). 3. 有理数指数幂的运算性质 a r a s = , (a r )s = ,(a b )r = ,其中a>0, b>0, r , s ∈Q . 4. 对数的概念(对数与指数的互化):如果a b =N (a>0且a ≠1),那么b 叫作以a 为底N 的对数,记作b= ,其中a 叫作对数的 ,N 叫作 . 5. 对数的性质:① log a 1= ; ② log a a= ; ③ a log a N = . 6. 对数的运算性质:如果a>0且a ≠1, M>0, N>0, n ∈R,那么 log a (MN )= , log a M N = , log a M n = . 7. 换底公式及其推论:① log a b= log c b log c a (a , c 均大于0且不等于1, b>0); ② log a b ·log b a=1,即log a b=1log b a ; ③ lo g a m b n =n m log a b. 二、考点聚焦 考点一 指数式与对数式的互化(a b =N ?log a N=b ,其中a>0且a ≠1) 【例1】 (1) 若log x √y 7=z ,则 ( ) A. y 7=x z B. y=x 7z C. y=7x D. y=z 7x (2) 已知log a 2=m , log a 3=n ,则a 2m+n = .

江苏省高中数学竞赛校本教材[全套](共30讲,含详细答案)-苏教版

江苏省高中数学竞赛校本教材[全套] (共30讲,含详细答案)-苏教版 目录 §1数学方法选讲(1) (1) §2数学方法选讲(2) (11) §3集合 (22) §4函数的性质 (30) §5二次函数(1) (41) §6二次函数(2) (55) §7指、对数函数,幂函数 (63) §8函数方程 (73) §9三角恒等式与三角不等式 (76) §10向量与向量方法 (85) §11数列 (95) §12递推数列 (102) §13数学归纳法 (105) §14不等式的证明 (111) §15不等式的应用 (122) §16排列,组合 (130) §17二项式定理与多项式 (134) §18直线和圆,圆锥曲线 (143)

§19立体图形,空间向量 (161) §20平面几何证明 (173) §21平面几何名定理 (180) §22几何变换 (186) §23抽屉原理 (194) §24容斥原理 (205) §25奇数偶数 (214) §26整除 (222) §27同余 (230) §28高斯函数 (238) §29覆盖 (245) §29涂色问题 (256) §30组合数学选讲 (265) §1数学方法选讲(1) 同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。 例题讲解 一、从简单情况考虑 华罗庚先生曾经指出:善于―退‖,足够的―退‖,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。从简单情况考虑,就是一种以退为进的一种解题策略。 1. 两人坐在一张长方形桌子旁,相继轮流在桌子上放入同样大小的硬币。条件是硬币一定要平放在桌子上,后放的硬币不能压在先放的硬币上,直到桌子上再也放不下一枚硬币为止。谁放入了最后一枚硬币谁获胜。问:先放的人有没有必定取胜的策略?

高中数学竞赛讲义(15)复数

高中数学竞赛讲义(十五) ──复数 一、基础知识 1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i 与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。 2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z). z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ<2π,则θ称为z的辐角主值,记作θ=Arg(z). r称为z的模,也记作|z|,由勾股定理知|z|=.如果用e iθ表示cosθ+isin θ,则z=re iθ,称为复数的指数形式。 3.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z的共轭复数。模与共轭的性质有:(1);(2);

(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8) |z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1), z2=r2(cosθ2+isinθ2), 则z1??z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θθ2)+isin(θ1-θ2)],用指数形式记为z1z2=r1r2e i(θ1+θ1- 2), 5.棣莫弗定理:[r(cosθ+isinθ)]n=r n(cosnθ+isinnθ). 6.开方:若r(cosθ+isinθ),则 ,k=0,1,2,…,n-1。 7.单位根:若w n=1,则称w为1的一个n次单位根,简称单位根,记Z1=,则全部单位根可表示为1,,.单位根的基本性质有(这里记,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Z nq+r=Z r;(2)对任意整数m,当n≥2时,有=特别1+Z1+Z2+…+Z n-1=0;(3)x n-1+x n-2+…+x+1=(x-Z1)(x-Z2)…(x-Z n-1)=(x-Z1)(x-)…(x-).

不等式高中数学竞赛标准教材

第九章不等式(高中数学竞赛标准教材) 第九章不等式 一、基础知识不等式的基本性质:(1)a>b a-b>0;(2)a>b, b>c a>c;(3)a>b a+c>b+c;(4)a>b, c>0 ac>bc;(5)a>b, c<0 acb>0, c>d>0 ac>bd; (7)a>b>0, n∈N+ an>bn; (8)a>b>0, n∈N+ ; (9)a>0, |x|a x>a或x<-a; (10)a, b∈R,则|a|-|b|≤|a+b|≤|a|+|b|; (11)a, b∈R,则(a-b)2≥0 a2+b2≥2ab; (12)x, y, z∈R+,则x+y≥2 , x+y+z 前五条是显然的,以下从第六条开始给出证明。(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd,所以ac>bd;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若,由性质(7)得,即a≤b,与a>b 矛盾,所以假设不成立,所以;由绝对值的意义知(9)成立; -|a|≤a≤|a|, -|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为 |a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-2 ≥0,所以x+y≥ ,当且仅当x=y时,等号成立,再证另一不等式,令,因为x3+b3+c3-3abc =(a+b)3+c3-3a2b-3ab2-3abc =(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)= (a+b+c)(a2+b2+c2-ab-bc-ca)= (a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a3+b3+c3≥3abc,即x+y+z≥ ,等号当且仅当x=y=z时成立。二、方法与例题 1.不等式证明的基本方法。(1)比较法,在证明A>B或A0)与1比较大小,最后得出结论。例1 设a, b, c∈R+,试证:对任意实数x, y, z, 有x2+y2+z2 【证明】左边-右边= x2+y2+z2 所以左边≥右边,不等式成立。例2 若alog(1-x)(1-x)=1(因为0<1-x2<1,所以 >1-x>0, 0<1-x<1). 所以 |loga(1+x)|>|loga(1-x)|. (2)分析法,即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,

高中体育校本教材《篮球》

高中体育校本教材 (篮球) 体育组

高中篮球校本教材课程纲要 第一章高中篮球教材概述 (1) 第二章高中篮球教学的目标、内容与要求 (2) 第三章高中篮球教学内容与教法建议 (5) 第四章篮球竞赛规、裁判法及记录台 (16) 第五章篮球教与学的评价 (26)

中学篮球校本教材课程内容 第一章:高中篮球教材概述 一、篮球运动的概念 篮球是中学生最喜爱的运动项目之一,锻炼身体的综合效果好,能培养学生团结合作,积极进取的拼搏精神,是初中体育教学的内容之一。 篮球运动作为一个竞技运动项目,是以投篮为中心,以得分多少决定胜负而进行的攻守交替、集体对抗的球类项目。 二、篮球运动的起源与发展 篮球运动是1891年由美国马萨诸塞州斯普林菲尔德市基督教青年会,学校体育教师詹姆士·奈史密斯(James.Naismith) 发明的。因篮球运动本身特有的魅力,深受人们喜爱,所以很快在全世界传播开来。1895年传入我国天津,1932年成立了国际业余篮球联合会(简称国际篮联)。1936年男子篮球运动成为奥运会正式比赛项目,1976年第21届奥运会增加了女子篮球项目。1992年第25届奥运会向职业篮球球员敞开了大门。篮球运动在中国广为普及,深受广大青少年喜爱。 三、篮球运动的教学功能 对于体育教学中的篮球运动来讲,它就是一项集体对抗的球类游戏项目。它的特点是集体性、对抗性、趣味性。除了具有一般运动项目的锻炼价值外,篮球运动复杂多变的比赛过程,能提高神经系统的灵活性,进而提高大脑的分析综合能力和应变能力。竞争对抗的游戏形式,能提高学生参与的兴趣,培养学生的体育情感,以及学生的顽强拼搏精神,提高学生的自信心和心理自我调控能力。比赛中的集体配合,可以培养学生的团队精神,提高学生正确处理人际关系的能力。篮球技能的掌握可以增加人的运动经验积累,能为今后学习其它运动项目提供一定帮助。

高中数学竞赛讲义_平面向量

平面向量 一、基础知识 定义 1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。 定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。 定理 1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。 定理2 非零向量a, b 共线的充要条件是存在实数≠λ0,使得a=.b λ f 定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。 定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。 定义4 向量的数量积,若非零向量a, b 的夹角为θ,则a, b 的数量积记作a ·b=|a|·|b|cos θ=|a|·|b|cos,也称内积,其中|b|cos θ叫做b 在a 上的投影(注:投影可能为负值)。 定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2), 1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2), 2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c , 3.a ·b=x 1x 2+y 1y 2, cos(a, b)= 22 22 21 21 2121y x y x y y x x +?++(a, b ≠0), 4. a//b ?x 1y 2=x 2y 1, a ⊥b ?x1x2+y 1y 2=0. 定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使21PP P P λ=,λ叫P 分2 1P P 所成的比,若O 为平面内任意一点,则λ λ++= 12 1OP OP 。由此可得若P 1,P ,P 2的坐标分别为(x 1, y 1), (x, y), (x 2, y 2),则..1121212 121y y y y x x x x y y y x x x --=--=??? ????++=++=λλλλλ 定义6 设F 是坐标平面内的一个图形,将F 上所有的点按照向量a=(h, k)的方向,平移|a|=2 2k h +个单位得到图形'F ,这一过程叫做平移。设p(x, y)是F 上任意一点,平移到'F 上对应的点为)','('y x p ,则? ??+=+=k y y h x x ''称为平移公式。 定理5 对于任意向量a=(x 1, y 1), b=(x 2, y 2), |a ·b|≤|a|·|b|,并且|a+b|≤|a|+|b|. 【证明】 因为|a|2·|b|2-|a ·b|2=))((2 222212 1 y x y x ++-(x 1x 2+y 1y 2)2=(x 1y 2-x 2y 1)2≥0, 又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ),b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|,化简即为柯西不等式:≥++++++))((2 22212222 1 n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2≥0, 又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ), b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|,化简即为柯西不等式:≥++++++))((2 22212222 1 n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2。 2)对于任意n 个向量,a 1, a 2, …,a n ,有| a 1, a 2, …,a n |≤| a 1|+|a 2|+…+|a n |。 二、方向与例题 1.向量定义和运算法则的运用。

精选最新高中数学竞赛活动方案

高中数学竞赛活动方案1 一、活动目的 为激发学生学习数学的兴趣,增强学生学数学,用数学的动力,丰富学生的课余生活,促进数学教学质量的提高。通过竞赛奖励数学能力突出,表现优异的学生。拟于12月2日(第十四周星期二)举行高中数学竞赛。 二、比赛时间:12月2日晚6:20---8:20 三、比赛地点:学校阶梯教室(或高二级两个活动室) 四、活动对象: 高一、高二年级学生(各级参赛选手分别60人) 五、活动方式: 以年级备课组为单位,各年级分别命题,同时开展数学竞赛 六、题型及评分标准:(总分100分) 1、填空题共15题,每题4分,共60分 2、解答题共05题,每题8分,共40分 七、奖项设置: 分级设奖,每级设一等奖3名、二等奖4名、三等奖8名。获奖学生颁发奖品,一等奖的指导教师颁发荣誉证书。 八、命题人: 高一级:邓华贵 高二级:杨水源 九、工作人员: 总负责:刘青青 协调:杨汉林、杨福生、(横幅、摄影) 监考:高一级:周丽群、邓华贵

高二级:胡芫祯丁敏 评卷人员:高一级:谢大钰、邓华贵、肖珍、周丽群 高二级:钟水兵、杨水源、胡芫祯、丁敏 备注:因活动时间为晚上,所以工作人员按晚自习蹲班发放加班费。 高中数学竞赛活动方案2 一、竞赛目的 为了激发学生学习数学的兴趣和营造你追我赶的学习氛围,特组织本次活动。 二、竞赛内容:根据我校实际情况,以年级为单位,以本为本,适当拓展,力求难易适中。限时120分钟。 三、参赛对象:各年级学生报名与老师推荐相结合 参赛时间:20xx年12月21日 星期天,晚上8点30分 参赛人数:高一、高二、高三 四、评奖设置: 个人奖,年级各多少名,按分数高低评出一、二、三等奖若干名。 五、试卷拟定人:高一、高二、高三 参赛场地:(教研室定) 监考老师(兼司铃员):高一、高二、高三 试卷批改:高一、高二、高三 六、活动总结 竞赛活动结束后试卷批改教师开始批改试卷,试卷批改结束,将参赛成绩统计交到教研处,由教研室进行成绩审核和奖励确定。

高中数学教研组工作计划大全

高中数学教研组工作计划大全 高中数学是整个数学体系里比较难教的内容,教师应该从思想方法,系统教学等方面来启发学生,那么,高中数学教研组的工作计划怎样制定?下面给大家分享高中数学教研组的工作计划,欢迎借鉴! 高中数学教研组工作计划1 一.指导思想 在校长室与教务处的领导下,“减负增效,进一步改变和约束我们的教学行为”。立足课堂教学研究,抓好学科课程建设,通过对新课标的学习,更新教育观念,提升教师队伍的整体教学能力。以创建南京市先进教研组为契机,进一步推进两组与学科建设工作。 二.工作措施: (一)教研活动: 1.安排好教研组研究课和讲座的开设,本学期以三种课型(概念课,讲评课,复习课)研究为主题开展好教研活动 2.按学校要求,与中心组成员对各年级进行教学视导及教学检查,并及时反馈; 3、提醒组内老师积极参加市、区教研室组织的各种教研活动并做好服务工作; 4、督促各备课组及时制订计划与总结,开展好备课组教研活动并及时上传材料; (二)学科建设 1、关注各年级的教学安排与统测,了解各年级发展情况,为各备课

组提供服务,做好统筹安排; 2、出1-2期数学学习报,力求更加数学化,更能贴近师生。 3、做好南京市先进教研组评比的后续工作 4、做好江宁高中特色发展班――数学竞赛班及C9班的数学教学安排,并做好数学竞赛的报名组织等工作; 5、学科基地建设与名师工作室的建设的动员与准备 6、数学学科“两组与学科建设“三年发展规划书的研制 7、做好数学组校园网站的建设 (三)教师队伍: 1、做好青年教师参加南京市基本功比赛的准备工作; 2、做好教学督导专家陈光立老师对组内教师的定期指导,做好教研室严必友主任与我校部分教师的师徒结对活动安排 3、新一届江宁区学科教学带头人及优秀青年教师的宣传与动员工作三.每月主要工作安排 二月份 1、参加区教研组长会议 2、学校两组组长会议 3、“两组”新学期教学计划制定 4、高三期初调研考试区统测 三月份: 1、教研活动:概念课教学研究 2、南京市高三二模考试

高中数学竞赛讲义(五)──数列

高中数学竞赛讲义(五) ──数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,…. 数列分有穷数列和无穷数列两种,数列{a n}的一般形式通常记作a1, a2, a3,…,a n或a1, a2, a3,…,a n…。其中a1 叫做数列的首项,a n是关于n的具体表达式,称为数列的通项。 定理1 若S n表示{a n}的前n项和,则S1=a1, 当n>1时,a n=S n-S n-1. 定义2 等差数列,如果对任意的正整数n,都有a n+1-a n=d(常数),则{a n}称为等差数列,d叫做公差。若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d. 定理2 等差数列的性质:1)通项公式a n=a1+(n-1)d;2)前n项和公式: S n=;3)a n-a m=(n-m)d,其中n, m为正整数;4)若n+m=p+q,则a n+a m=a p+a q;5)对任意正整数p, q,恒有a p-a q=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{a n}是等差数列的充要条件是S n=An2+Bn. 定义3 等比数列,若对任意的正整数n,都有,则{a n}称为等比数列,q叫做公比。 定理3 等比数列的性质:1)a n=a1q n-1;2)前n项和S n,当q1时,S n=; 当q=1时,S n=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则a m a n=a p a q。 定义4 极限,给定数列{a n}和实数A,若对任意的>0,存在M,对任意的n>M(n∈ N),都有|a n-A|<,则称A为n→+∞时数列{a n}的极限,记作 定义5 无穷递缩等比数列,若等比数列{a n}的公比q满足|q|<1,则称之为无穷递增等 比数列,其前n项和S n的极限(即其所有项的和)为(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切n ≤k的自然数n都成立时(k≥n0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。 定理5 对于齐次二阶线性递归数列x n=ax n-1+bx n-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则x n=c1a n-1+c2βn-1,其中c1, c2由初始条件x1, x2的值确定;(2)若α=β,则x n=(c1n+c2) αn-1,其中c1, c2的值由x1, x2的值确定。 二、方法与例题 1.不完全归纳法。

相关主题
文本预览
相关文档 最新文档