当前位置:文档之家› 圆锥曲线高考题汇编(带详细解析)

圆锥曲线高考题汇编(带详细解析)

圆锥曲线高考题汇编(带详细解析)
圆锥曲线高考题汇编(带详细解析)

第八章 圆锥曲线方程

●考点阐释

圆锥曲线是解析几何的重点内容,这部分内容的特点是:

(1)曲线与方程的基础知识要求很高,要求熟练掌握并能灵活应用.

(2)综合性强.在解题中几乎处处涉及函数与方程、不等式、三角及直线等内容,体现了对各种能力的综合要求.

(3)计算量大.要求学生有较高的计算水平和较强的计算能力. ●试题类编 一、选择题

1.(2003京春文9,理5)在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( )

2.(2003京春理,7)椭圆??

?=+=?

?

sin 3cos 54y x (?为参数)的焦点坐标为( )

A.(0,0),(0,-8)

B.(0,0),(-8,0)

C.(0,0),(0,8)

D.(0,0),(8,0)

3.(2002京皖春,3)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )

A.圆

B.椭圆

C.双曲线的一支

D.抛物线

4.(2002全国文,7)椭圆5x 2+ky 2

=5的一个焦点是(0,2),那么k 等于( )

A.-1

B.1

C.

5

D. -

5

5.(2002全国文,11)设θ∈(0,4

π),则二次曲线x 2cot θ-y 2tan θ=1的离心率的取值范围为

( )

A.(0,2

1) B.(

2

2

,21) C.(

2,2

2

D.(

2,+∞)

6.(2002北京文,10)已知椭圆222253n y m x +和双曲线22

2

232n

y m x -=1有公共的焦点,那么双曲线的渐近线方程是( )

A.x =±

y 215

B.y =±

x 215 C.x =±y 4

3

D.y =±x 4

3

7.(2002天津理,1)曲线???==θ

θ

sin cos y x (θ为参数)上的点到两坐标轴的距离之和的最大值是( )

A.21

B.22

C.1

D.2

8.(2002全国理,6)点P (1,0)到曲线???==t

y t x 22

(其中参数t ∈R )上的点的最短距离为( )

A.0

B.1

C.2

D.2

9.(2001全国,7)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为( ) A.

4

3

B.

3

2 C.

2

1 D.

4

1 10.(2001广东、河南,10)对于抛物线y 2=4x 上任意一点Q ,点P (a ,0)都满足|PQ |≥|a |,则a 的取值范围是( )

A.(-∞,0)

B.(-∞,2]

C.[0,2]

D.(0,2)

11.(2000京皖春,9)椭圆短轴长是2,长轴是短轴的2倍,则椭圆中心到其准线距离是( )

A.

4

3

B.

55

4

C.

35

8 D.

33

4 12.(2000全国,11)过抛物线y =ax 2(a >0)的焦点F 用一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则

q

p 1

1+等于( ) A.2a B.a 21 C.4a D.a 4

13.(2000京皖春,3)双曲线22

22a

y b x -=1的两条渐近线互相垂直,那么该双曲线的离心率是( )

A.2

B.3

C.2

D.2

3

14.(2000上海春,13)抛物线y =-x 2的焦点坐标为( ) A.(0,4

1

) B.(0,-4

1

C.(

41

,0)

D.(-

4

1

,0) 15.(2000上海春,14)x =

231y -表示的曲线是( )

A.双曲线

B.椭圆

C.双曲线的一部分

D.椭圆的一部分

16.(1999上海理,14)下列以t 为参数的参数方程所表示的曲线中,与xy =1所表示的曲线完全一致的是( )

A.??

???

==-21

21

t y t x

B.??

???==||1||t y t x

C.??

?==t

y t

x sec cos

D.???==t

y t x cot tan 17.(1998全国理,2)椭圆3

122

2y x +

=1的焦点为F 1和F 2,点P 在椭圆上.如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的( )

A.7倍

B.5倍

C.4倍

D.3倍

18.(1998全国文,12)椭圆3

1222y x +

=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是( )

A.±

4

3 B.±

2

3 C.±

2

2 D.±

4

3 19.(1997全国,11)椭圆C 与椭圆4

)2(9)3(2

2-+-y x ,关于直线x +y =0对称,椭圆C 的方程是( )

A.

19)3(4)2(2

2=+++y x B.

19)3(4)2(2

2=++-y x C.

14

)3(9)2(2

2=+++y x D.

19)3(4)2(2

2=-+-y x 20.(1997全国理,9)曲线的参数方程是??

?

??-=-=2111t y t x (t 是参数,t ≠0),它的普通方程是( )

A.(x -1)2(y -1)=1

B.y =2

)

1()

2(x x x -- C.y =1)

1(12

--x D.y =21x x

-+1 21.(1997上海)设θ∈(4

3

π,π),则关于x 、y 的方程x 2csc θ-y 2sec θ=1所表示的曲线是( )

A.实轴在y 轴上的双曲线

B.实轴在x 轴上的双曲线

C.长轴在y 轴上的椭圆

D.长轴在x 轴上的椭圆

22.(1997上海)设k >1,则关于x 、y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( ) A.长轴在y 轴上的椭圆 B.长轴在x 轴上的椭圆 C.实轴在y 轴上的双曲线 D.实轴在x 轴上的双曲线 23.(1996全国文,9)中心在原点,准线方程为x =±4,离心率为

21

的椭圆方程是( ) A.3422y x +=1 B.4

322y x +=1 C.4

2x +y 2=1

D.x 2+4

2y

=1

24.(1996上海,5)将椭圆9

25

2

2

y x +

=1绕其左焦点按逆时针方向旋转90°,所得椭圆方程是( ) A.

19)4(25)4(2

2=-++y x B.

19)4(25)4(2

2=+++y x C.

125)4(9)4(2

2=-++y x D.

125

)4(9)4(2

2=+++y x 25.(1996上海理,6)若函数f (x )、g (x )的定义域和值域都为R ,则f (x )>g (x )(x ∈R )成立

的充要条件是( )

A.有一个x ∈R ,使f (x )>g (x )

B.有无穷多个x ∈R ,使得f (x )>g (x )

C.对R 中任意的x ,都有f (x )>g (x )+1

D.R 中不存在x ,使得f (x )≤g (x )

26.(1996全国理,7)椭圆??

?+-=+=?

?

sin 51cos 33y x 的两个焦点坐标是( )

A.(-3,5),(-3,-3)

B.(3,3),(3,-5)

C.(1,1),(-7,1)

D.(7,-1),(-1,-1)

27.(1996全国文,11)椭圆25x 2-150x +9y 2+18y +9=0的两个焦点坐标是( ) A.(-3,5),(-3,3) B.(3,3),(3,-5) C.(1,1),(-7,1) D.(7,-1),(-1,-1)

28.(1996全国)设双曲线22

22b y a x -=1(0<a <b )的半焦距为c ,直线l 过(a ,0),(0,b )两点.已

知原点到直线l 的距离为4

3

c ,则双曲线的离心率为( )

A.2

B.3

C.2

D.33

2 29.(1996上海理,7)若θ∈[0,2

π

],则椭圆x 2+2y 2-22x cos θ+4y sin θ=0的中心的轨迹是

( )

30.(1995全国文6,理8)双曲线3x 2-y 2=3的渐近线方程是( ) A.y =±3x

B.y =±

3

1x C.y =±

3x

D.y =±

x 3

3 31.(1994全国,2)如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1)

32.(1994全国,8)设F 1和F 2为双曲线-4

2x y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=

90°,则△F 1PF 2的面积是( )

A.1

B.

2

5 C.2 D.

5

33.(1994上海,17)设a 、b 是平面α外任意两条线段,则“a 、b 的长相等”是a 、b

在平面α内的射影长相等的( ) A.非充分也非必要条件 B.充要条件 C.必要非充分条件 D.充分非必要条件

34.(1994上海,19)在直角坐标系xOy 中,曲线C 的方程是y =cos x ,现在平移坐标系,把原点移到O ′(

2

π,-

2

π),则在坐标系x ′O ′y ′中,曲线C 的方程是( )

A.y ′=sin x ′+2π

B.y ′=-sin x ′+2

π

C.y ′=sin x ′-2

π

D.y ′=-sin x ′-

2

π

二、填空题

35.(2003京春,16)如图8—1,F 1、F 2分别为椭圆22

22b

y a x +=1的左、右焦点,

点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是_____.

36.(2003上海春,4)直线y =x -1被抛物线y 2=4x 截得线段的中点坐标是_____.

37.(2002上海春,2)若椭圆的两个焦点坐标为F 1(-1,0),F 2(5,0),长轴的长为10,则椭圆的方程为 .

38.(2002京皖春,13)若双曲线m

y x 2

24-

=1的渐近线方程为y =±23x ,则双曲线的焦点坐标是 .

39.(2002全国文,16)对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上;

③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5;

⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).

能使这抛物线方程为y 2=10x 的条件是 .(要求填写合适条件的序号) 40.(2002上海文,8)抛物线(y -1)2=4(x -1)的焦点坐标是 .

41.(2002天津理,14)椭圆5x 2-ky 2=5的一个焦点是(0,2),那么k = .

42.(2002上海理,8)曲线?

??+=-=121

2t y t x (t 为参数)的焦点坐标是_____.

43.(2001京皖春,14)椭圆x 2+4y 2=4长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等

腰直角三角形,该三角形的面积是 .

44.(2001上海,3)设P 为双曲线-4

2x y 2

=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是 .

45.(2001上海,5)抛物线x 2-4y -3=0的焦点坐标为 .

46.(2001全国,14)双曲线16

92

2y x -

=1的两个焦点为F 1、F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到x 轴的距离为 .

47.(2001上海春,5)若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程为_____.

48.(2001上海理,10)直线y =2x -21

与曲线???==?

?2cos sin y x (?为参数)的交点坐标是_____.

49.(2000全国,14)椭圆4

92

2y x +

=1的焦点为F 1、F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,点P 横坐标的取值范围是_____.

50.(2000上海文,3)圆锥曲线916)1(2

2y x --=1的焦点坐标是_____. 51.(2000上海理,3)圆锥曲线???=+=θ

θtan 31

sec 4y x 的焦点坐标是_____.

52.(1999全国,15)设椭圆22

22b

y a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1且垂直于x

轴的弦的长等于点F 1到l 1的距离,则椭圆的离心率是 .

53.(1999上海5)若平移坐标系,将曲线方程y 2+4x -4y -4=0化为标准方程,则坐标原点应移到点O ′ ( ) .

54.(1998全国,16)设圆过双曲线16

92

2y x -

=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是 .

55.(1997全国文,17)已知直线x -y =2与抛物线y 2=4x 交于A 、B 两点,那么线段AB 的中点坐标是_____.

56.(1997上海)二次曲线??

?==θ

θ

sin 3cos 5y x (θ为参数)的左焦点坐标是_____.

57.(1996上海,16)平移坐标轴将抛物线4x 2-8x +y +5=0化为标准方程x ′2=ay ′(a ≠0),则新坐标系的原点在原坐标系中的坐标是 .

58.(1996全国文,16)已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p =_____. 59.(1996全国理,16)已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =_____.

60.(1995全国理,19)直线L 过抛物线y 2=a (x +1)(a >0)的焦点,并且与x 轴垂直,若L 被抛物线截得的线段长为4,则a = .

61.(1995全国文,19)若直线L 过抛物线y 2=4(x +1)的焦点,并且与x 轴垂直,则L 被抛物线截得的线段长为 .

62.(1995上海,15)把参数方程???+==1cos sin αα

y x (α是参数)化为普通方程,结果是 .

63.(1995上海,10)双曲线9

822

2y x -

=8的渐近线方程是 . 64.(1995上海,14)到点A (-1,0)和直线x =3距离相等的点的轨迹方程是 .

65.(1994全国,17)抛物线y 2=8-4x 的准线方程是 ,圆心在该抛物线的顶点且与其准线相切的圆的方程是 .

66.(1994上海,7)双曲线2

2

y -x 2=1的两个焦点的坐标是 .

三、解答题

67.(2003上海春,21)设F 1、F 2分别为椭圆C :22

228b

y a x + =1(a >b >0)的左、右两个焦点.

(1)若椭圆C 上的点A (1,2

3

)到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标;

(2)设点K 是(1)中所得椭圆上的动点,求线段F 1K 的中点的轨迹方程;

(3)已知椭圆具有性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN 之积是与点P 位置无关的定值.试对双曲线

12

2

22=-b y a x 写出具有类似特性的性质,并加以证明. 68.(2002上海春,18)如图8—2,已知F 1、F 2为双曲线122

22=-b

y a x (a >0,b >

0)的焦点,过F 2作垂直于x 轴的直线交双曲线于点P ,且∠PF 1F 2=30°.求双曲线的

渐近线方程.

69.(2002京皖文,理,22)已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点

F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10.椭圆上不同的两点

A (x 1,y 1)、C (x 2,y 2)满足条件:|F 2A |、|F 2

B |、|F 2

C |成等差数列.

(Ⅰ)求该椭圆的方程;

(Ⅱ)求弦AC 中点的横坐标;

(Ⅲ)设弦AC 的垂直平分线的方程为y =kx +m ,求m 的取值范围.

70.(2002全国理,19)设点P 到点M (-1,0)、N (1,0)距离之差为2m ,到x 轴、y 轴距离之比为2.求m 的取值范围.

71.(2002北京,21)已知O (0,0),B (1,0),C (b ,c )是△OBC 的三个顶点.如图8—3.

(Ⅰ)写出△OBC 的重心G ,外心F ,垂心H 的坐标,并证明G 、F 、H 三点共线;

(Ⅱ)当直线FH 与OB 平行时,求顶点C 的轨迹.

72.(2002江苏,20)设A 、B 是双曲线x 222

y -=1上的两点,点N (1,2)是线

段AB 的中点.

图8—2 图8—3

(Ⅰ)求直线AB 的方程;

(Ⅱ)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?

73.(2002上海,18)已知点A (3-,0)和B (3,0),动点C 到A 、B 两点的距离之差的绝对值为2,点C 的轨迹与直线y =x -2交于D 、E 两点,求线段DE 的长.

74.(2001京皖春,22)已知抛物线y 2=2px (p >0).过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,|AB |≤2p .

(Ⅰ)求a 的取值范围;

(Ⅱ)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值.

75.(2001上海文,理,18)设F 1、F 2为椭圆4

92

2y x +

=1的两个焦点,P 为椭圆上的一点.已知P 、F 1、F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求|

||

|21PF PF 的值.

76.(2001全国文20,理19)设抛物线y 2=2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O .

77.(2001上海春,21)已知椭圆C 的方程为x 2+22y =1,点P (a ,b )的坐标满足a 2+2

2b

≤1,过点P

的直线l 与椭圆交于A 、B 两点,点Q 为线段AB 的中点,求:

(1)点Q 的轨迹方程;

(2)点Q 的轨迹与坐标轴的交点的个数.

78.(2001广东河南21)已知椭圆2

2x +y 2

=1的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭

圆相交于A 、B 两点,点C 在右准线l 上,且BC ∥x 轴.

求证:直线AC 经过线段EF 的中点.

79.(2000上海春,22)如图8—4所示,A 、F 分别是椭圆12

)1(16)1(2

2-++x y =1的一个顶点与一个焦点,位于x 轴的正半轴上的动点T (t ,0)与F 的连线交射影OA

于Q .求:

(1)点A 、F 的坐标及直线TQ 的方程;

(2)△OTQ 的面积S 与t 的函数关系式S =f (t )及其函数的最小值;

(3)写出S =f (t )的单调递增区间,并证明之.

80.(2000京皖春,23)如图8—5,设点A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.

81.(2000全国理,22)如图8—6,已知梯形ABCD 中,|AB |=2|C D|,点E 分有向线段AC 所成的比为

λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点.当

32≤λ≤4

3

时,求双曲线离心率e 的取值范围.

图8—5 图8—6 图8—7

82.(2000全国文,22)如图8—7,已知梯形ABCD 中|AB |=2|CD |,点E 分有向线段AC 所成的比为

11

8

,双曲线过C 、D 、E 三点,且以A 、B 为焦点.求双曲线离心率. 83.(2000上海,17)已知椭圆C 的焦点分别为F 1(22-,0)

和F 2(22,0),长轴长为6,设直线y =x +2交椭圆C 于A 、B 两点,求线段AB 的

中点坐标.

84.(1999全国,24)如图8—8,给出定点A (a ,0)(a >0)和

直线l :x =-1.B

图8—4

是直线l 上的动点,∠BOA 的角平分线交AB 于点C.求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.

注:文科题设还有条件a ≠1

85.(1999上海,22)设椭圆C 1的方程为22

22b

y a x +=1(a >b >0),曲线C 2的方程为y =x 1,且C 1与

C 2在第一象限内只有一个公共点P .

(Ⅰ)试用a 表示点P 的坐标.

(Ⅱ)设A 、B 是椭圆C 1的两个焦点,当a 变化时,求△ABP 的面积函数S (a )的值域;

(Ⅲ)设min {y 1,y 2,…,y n }为y 1,y 2,…,y n 中最小的一个.设g (a )是以椭圆C 1的半焦距为边长的正方形的面积,求函数f (a )=min {g (a ),S (a )}的表达式.

86.(1998全国理,24)设曲线C 的方程是y =x 3-x ,将C 沿x 轴、y 轴正向分别平行移动t 、s 单位长度后得曲线C 1.

(Ⅰ)写出曲线C 1的方程;

(Ⅱ)证明曲线C 与C 1关于点A (

2

,2s

t )对称; (Ⅲ)如果曲线C 与C 1有且仅有一个公共点,证明s =4

3

t -t 且t ≠0.

87.(1998全国文22,理21)如图8—9,直线l 1和l 2相交于点M ,l 1⊥l 2,点N ∈l 1.以A 、B 为端点的曲线段C 上的任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM |=17,|AN |=3,且|BN |=6.建立适当的坐标系,求曲线段

C 的方程.

88.(1998上海理,20)(1)动直线y =a 与抛物线y 2=

2

1

(x -2)相交于A 点,动点B 的坐标是(0,3a ),求线段AB 中点M 的轨迹C 的方程;

(2)过点D (2,0)的直线l 交上述轨迹C 于P 、Q 两点,E 点坐标是(1,0),若△EPQ 的面积为4,求直线l 的倾斜角α的值.

89.(1997上海)抛物线方程为y 2=p (x +1)(p >0),直线x +y =m 与x 轴的交点在抛物线的准线的右边. (1)求证:直线与抛物线总有两个交点;

(2)设直线与抛物线的交点为Q 、R ,OQ ⊥OR ,求p 关于m 的函数f (m )的表达式;

(3)(文)在(2)的条件下,若抛物线焦点F 到直线x +y =m 的距离为22

,求此直线的方程; (理)在(2)的条件下,若m 变化,使得原点O 到直线QR 的距离不大于2

2

,求p 的值的范围.

90.(1996全国理,24)已知l 1、l 2是过点P (-2,0)的两条互相垂直的直线,且l 1、l 2与双曲线y 2

-x 2=1各有两个交点,分别为A 1、B 1和A 2、B 2.

(Ⅰ)求l 1的斜率k 1的取值范围;

(Ⅱ)(理)若|A 1B 1|=5|A 2B 2|,求l 1、l 2的方程. (文)若A 1恰是双曲线的一个顶点,求|A 2B 2|的值.

91.(1996上海,23)已知双曲线S 的两条渐近线过坐标原点,且与以点A (2,0)为圆心,1为半径的圆相切,双曲线S 的一个顶点A ′与点A 关于直线y =x 对称.设直线l 过点A ,斜率为k .

(1)求双曲线S 的方程;

(2)当k =1时,在双曲线S 的上支上求点B ,使其与直线l 的距离为2;

(3)当0≤k <1时,若双曲线S 的上支上有且只有一个点B 到直线l 的距离为

2,求斜率k 的值及相应的点B 的坐标,如图8—10.

92.(1995全国理,26)已知椭圆如图8—11,16

242

2y x +=1,直线L :812y x +

=1,P 是L 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且满足|OQ |·|OP |=

图8—9

图8—10

|OR |2.当点P 在L 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线.

93.(1995上海,24)设椭圆的方程为22

22n

y m x +=1(m ,n >0),过原点且倾角为θ和π-θ(0<θ

2

π

=的两条直线分别交椭圆于A 、C 和B 、D 两点, (Ⅰ)用θ、m 、n 表示四边形ABCD 的面积S ; (Ⅱ)若m 、n 为定值,当θ在(0,4

π]上变化时,求S 的最小值u ;

(Ⅲ)如果μ>mn ,求

n

m

的取值范围. 94.(1995全国文,26)已知椭圆16

242

2y x +=1,直线l :x =12.P 是直线l 上一点,射线OP 交椭圆于点R .

又点Q 在OP 上且满足|OQ |·|OP |=|OR |2.当点P 在直线l 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线.

95.(1994全国理,24)已知直线L 过坐标原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上,若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程.

96.(1994上海,24)设椭圆的中心为原点O ,一个焦点为F (0,1),长轴和短轴的长度之比为t . (1)求椭圆的方程;

(2)设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q 、点P 在该直线上,且

1|

||

|2-=t t OQ OP ,当t 变化时,求点P 的轨迹方程,并说明轨迹是什么图形. 答案解析

1.答案:D

解析一:将方程a 2x 2+b 2y 2=1与ax +by 2=0转化为标准方程:x b a y b y a x -==+2

2

222,111.因为a >b >0,

因此,a

b 1

1>>0,所以有:椭圆的焦点在y 轴,抛物线的开口向左,得D 选项.

解析二:将方程ax +by 2=0中的y 换成-y ,其结果不变,即说明:ax +by 2=0的图形关于x 轴对称,排除B 、C ,又椭圆的焦点在y 轴.故选D.

评述:本题考查椭圆与抛物线的基础知识,即标准方程与图形的基本关系.同时,考查了代数式的恒等变形及简单的逻辑推理能力.

2.答案:D

解析:利用三角函数中的平方和关系消参,得9

25)4(2

2y x +-=1,∴c 2=16,x -4=±4,而焦点在x 轴上,所以焦点坐标为:(8,0),(0,0),选D.如果画出9

25)4(2

2y x +-=1的图形,则可以直接“找”出正确选项.

评述:本题考查将参数方程化为普通方程的思想和方法,以及利用平移变换公式进行逻辑推理,同时也考查了数形结合的思想方法.

3.答案:A

解析:由第一定义得,|PF 1|+|PF 2|为定值 ∵|PQ |=|PF 2|,

∴|PF 1|+|PQ |为定值,即|F 1Q |为定值. 4.答案:B

解析:椭圆方程可化为:x 2+k

y

52=1

∵焦点(0,2)在y 轴上,∴a 2=k

5

,b 2=1, 又∵c 2=a 2-b 2=4,∴k =1 5.答案:D 解析:∵θ∈(0,

4

π),∴sin θ∈(0,

2

2

), ∴a 2=tan θ,b 2=c ot θ ∴c 2=a 2+b 2=tan θ+c ot θ,

∴e 2=θθθθ222

sin 1

tan cot tan =+=a c ,∴e =θsin 1,

∴e ∈(2,+∞)

6.答案:D

解析:由双曲线方程判断出公共焦点在x 轴上 ∴椭圆焦点(2

2

53n m -,0),双曲线焦点(2

232n m +,0)

∴3m 2-5n 2=2m 2+3n 2 ∴m 2=8n 2

又∵双曲线渐近线为y =±

|

|2|

|6m n ?·x

∴代入m 2=8n 2,|m |=2

2|n |,得y =±

4

3x 7.答案:D

解析:设曲线上的点到两坐标轴的距离之和为d ∴d =|x |+|y |=|co s θ|+|sin θ| 设θ∈[0,

2

π]

∴d =sin θ+cos θ=

2sin (θ+

4

π)

∴d max =2. 8.答案:B

解法一:将曲线方程化为一般式:y 2=4x ∴点P (1,0)为该抛物线的焦点

由定义,得:曲线上到P 点,距离最小的点为抛物线的顶点. 解法二:设点P 到曲线上的点的距离为d ∴由两点间距离公式,得

d 2=(x -1)2+y 2=(t 2-1)2+4t 2=(t 2+1)2 ∵t ∈R ∴d min 2=1 ∴d min =1 9.答案:C

解析:由F 1、F 2的坐标得2c =3-1,c =1, 又∵椭圆过原点a -c =1,a =1+c =2, 又∵e =

2

1

=a c ,∴选C. 10.答案:B

解析:设点Q 的坐标为(42

0y

,y 0),

由 |PQ |≥|a |,得y 02+(4

20y

-a )2≥a 2.

整理,得:y 02(y 02+16-8a )≥0, ∵y 02≥0,∴y 02+16-8a ≥0.

图8—12

即a ≤2+820y 恒成立.而2+8

2

0y

的最小值为2.

∴a ≤2.选B.

11.答案:D

解析:由题意知a =2,b =1,c =3,准线方程为x =±c

a 2

∴椭圆中心到准线距离为3

3

4.

12.答案:C

解析:抛物线y =ax 2的标准式为x 2=a

1y , ∴焦点F (0,

a

41). 取特殊情况,即直线PQ 平行x 轴,则p =q . 如图8—13,∵PF =PM ,∴p =

a

21, 故a p

p p q p 42

1111==+

=+. 13.答案:C

解析:渐近线方程为y =±b a x ,由b a ·(-b

a

)=-1,得a 2=b 2, ∴c =2a ,e =2.

14.答案:B

解析:y =-x 2的标准式为x 2=-y ,∴p =21,焦点坐标F (0,-4

1

). 15.答案:D 解析:x =

231y -化为x 2+3y 2=1(x >0).

16.答案:D

解析:由已知xy =1可知x 、y 同号且不为零,而A 、B 、C 选项中尽管都满足xy =1,但x 、y 的取值范围与已知不同.

17.答案:A

解析:不妨设F 1(-3,0),F 2(3,0)由条件得P (3,±

23),即|PF 2|=23,|PF 1|=2

147,因此|PF 1|=7|PF 2|,故选A.

评述:本题主要考查椭圆的定义及数形结合思想,具有较强的思辨性,是高考命题的方向. 18.答案:A

解析:由条件可得F 1(-3,0),PF 1的中点在y 轴上,∴P 坐标(3,y 0),又P 在3

122

2y x +

=1的椭圆上得y 0=±2

3

∴M 的坐标(0,±4

3

),故选A.

评述:本题考查了椭圆的标准方程及几何性质,中点坐标公式以及运算能力. 19.答案:A

解析:将已知椭圆中的x 换成-y ,y 换成-x 便得椭圆C 的方程为9

)3(4)2(2

2+++y x =1,所以选A. 图8—13

评述:本题考查了椭圆的方程及点关于直线的对称问题. 20.答案:B 解法一:由已知得t =

x

-11

,代入y =1-t 2中消去t ,得y =12

2)1()2()1(1x x x x --=--,故选B. 解法二:令t =1,得曲线过(0,0),分别代入验证,只有B 适合,故选B.

评述:本题重点考查参数方程与普通方程的互化,考查等价转化的能力. 21.答案:C

解析:由已知得方程为θ

θcos sin 2

2y x -=1 由于θ∈(4

,π),因此sin θ>0,cos θ<0,且|sin θ|<|cos θ|

∴原方程表示长轴在y 轴上的椭圆. 22.答案:C

解析:原方程化为1

12

22+--k x k y =1

由于k >1,因此它表示实轴在y 轴上的双曲线. 23.答案:A

解析:由已知有????????==2

1

42

a c c

a a =2,c =1,

b 2=3,于是椭圆方程为3422y x +=1,故选A.

评述:本题考查了椭圆的方程及其几何性质,以及待定系数法和运算能力.

24.答案:C

解析:如图8—14,原点O 逆时针方向旋转90°到O ′,则O ′(-4,4)为旋

转后椭圆的中心,故旋转后所得椭圆方程为25

)4(9)4(2

2-++y x =1.所以选C. 25.答案:D

解析:R 中不存在x ,使得f (x )≤g (x ),即是R 中的任意x 都有f (x )>g (x ),

故选D.

26.答案:B

解析:可得a =3,b =5,c =4,椭圆在新坐标系中的焦点坐标为(0,±4),在原坐标系中的焦点坐标为(3,3),(3,-5),故选B.

评述:本题重点考查椭圆的参数方程、坐标轴的平移等基本知识点,考查数形结合的能力. 27.答案:B

解析:把已知方程化为25

)1(9)3(2

2++-y x =1,∴a =5,b =3,c =4 ∵椭圆的中心是(3,-1),

∴焦点坐标是(3,3)和(3,-5). 28.答案:A

解析:由已知,直线l 的方程为ay +bx -ab =0,原点到直线l 的距离为

4

3

c ,则有c b a ab 4

32

2=

+, 又c 2=a 2+b 2,∴4ab =3c 2,两边平方,得

16a 2(c 2-a 2)=3c 4,两边同除以a 4,并整理,得3e 4-

16e 2+16=0

∴e 2=4或e 2=

3

4. 图8—14

2019年高考试题汇编理科数学--圆锥曲线

(2019全国1)10.已知椭圆C 的焦点为)0,1(1-F ,)0,1(2F ,过2F 的直线与C 交于A ,B 两点.若||2||22B F AF =, ||||1BF AB =,则C 的方程为( ) A.1222=+y x B. 12322=+y x C.13422=+y x D.14 522=+y x 答案: B 解答: 由椭圆C 的焦点为)0,1(1-F ,)0,1(2F 可知1=c ,又Θ||2||22B F AF =,||||1BF AB =,可设m BF =||2,则 m AF 2||2=,m AB BF 3||||1==,根据椭圆的定义可知a m m BF BF 23||||21=+=+,得a m 2 1 = ,所以a BF 21||2=,a AF =||2,可知),0(b A -,根据相似可得)21,23(b B 代入椭圆的标准方程122 22=+b y a x ,得32=a , 22 22=-=c a b ,∴椭圆C 的方程为12 32 2=+ y x . (2019全国1)16.已知双曲线C:22 221(0,0)x y a b a b -=>>的左、右焦点分别为12,F F ,过1F 的直线与C 的 两条渐近线分别交于,A B 两点.若112,0F A AB F B F B =?=u u u r u u u r u u u r u u u r ,则C 的离心率为 . 答案: 2 解答: 由112,0F A AB F B F B =?=u u u r u u u r u u u r u u u r 知A 是1BF 的中点,12F B F B ⊥uuu r uuu r ,又O 是12,F F 的中点,所以OA 为中位线且1OA BF ⊥,所以1OB OF =,因此1FOA BOA ∠=∠,又根据两渐近线对称,12FOA F OB ∠=∠,所以260F OB ∠=?,221()1tan 602b e a =+=+?=.

历年圆锥曲线高考题附答案

数学圆锥曲线高考题选讲 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2b 2 =1的一条渐近线方程为y =4 3x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 2 3+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点 在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2 y x =-上的点到直线4380x y +-=距离的最小值是( ) A . 43 B .7 5 C .85 D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) A.2 B. 22 3 C. 2 D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006辽宁卷)曲线 22 1(6)106x y m m m +=<--与曲线221(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006安徽高考卷)若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006辽宁卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(3,0)F -,右顶点为(2,0)D ,设点11, 2A ?? ??? ,则求该椭圆的标准方程为 。 11. (20XX 年高考全国新课标卷理科14) 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上, 离心率为 2 2 。过l 的直线 交于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

2013高考试题分类汇编(理科):圆锥曲线

2013年全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .引直线l 与曲线y =A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线l 的斜率等于( ) A . 3 B .3 - C .3 ± D .2 .双曲线2 214 x y -=的顶点到其渐近线的距离等于( ) A . 25 B . 45 C D 3 .已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程是( ) A .22 14x = B .22145x y - = C . 22 125 x y -= D .22 12x -= 4 .已知双曲线C :22221x y a b -=(0,0a b >>) ,则C 的渐近线方程为( ) A .14 y x =± B .13 y x =± C .12 y x =± D .y x =± 5 .已知04π θ<<,则双曲线22122:1cos sin x y C θθ-=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等 6 .抛物线2 4y x =的焦点到双曲线2 2 13 y x -=的渐近线的距离是( ) A .12 B C .1 D 7 .如图,21,F F 是椭圆14 :22 1=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( ) A .2 B .3 C . 2 3 D . 2 6 8 .已知双曲线22 221(0,0)x y a b a b -=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 则p =( ) A .1 B . 3 2 C .2 D .3 9 .椭圆22 :143 x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是( ) A .1324 ?????? , B .3384 ?????? , C .112?? ???? , D .314?? ???? , 10.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若 0MA MB =uuu r uuu r g ,则k =( ) A . 12 B C D .2 11.若双曲线22 221x y a b -= 则其渐近线方程为( ) A .y =±2x B .y = C .12 y x =± D .2 y x =±

圆锥曲线历年高考题附答案解析

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2 b 2 =1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆 x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( ) A .43 B .75 C .85 D .3 4.(2006高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006卷)曲线221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006高考卷)若抛物线2 2y px =的焦点与椭圆22 162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,设

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22221x y a b -=(a>0,b>0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于 ( C ) (A)3 (B)2 (C)5 (D )6 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D ). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A.2 B.3 C.5 D .10 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线 AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A . 3 B .22 C.13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D.直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 2 5 D.5 2

圆锥曲线高考题汇编[带详细解析]

第八章 圆锥曲线方程 ●考点阐释 圆锥曲线是解析几何的重点容,这部分容的特点是: (1)曲线与方程的基础知识要求很高,要求熟练掌握并能灵活应用. (2)综合性强.在解题中几乎处处涉及函数与方程、不等式、三角及直线等容,体现了对各种能力的综合要求. (3)计算量大.要求学生有较高的计算水平和较强的计算能力. ●试题类编 一、选择题 1.(2003京春文9,理5)在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( ) 2.(2003京春理,7)椭圆?? ?=+=? ? sin 3cos 54y x (?为参数)的焦点坐标为( ) A.(0,0),(0,-8) B.(0,0),(-8,0) C.(0,0),(0,8) D.(0,0),(8,0) 3.(2002京皖春,3)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线的一支 D.抛物线 4.(2002全国文,7)椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 等于( ) A.-1 B.1 C.5 D. - 5 5.(2002全国文,11)设θ∈(0, 4 π ),则二次曲线x 2cot θ-y 2tan θ=1的离心率的取值围为( ) A.(0, 2 1 ) B.( 22 ,21) C.( 2,2 2 ) D.( 2,+∞) 6.(2002文,10)已知椭圆222253n y m x +和双曲线22 2 232n y m x -=1有公共的焦点,那么双曲线的渐近线方程是( ) A.x =± y 2 15 B.y =± x 2 15

圆锥曲线高考题汇编(带详细解析)

第八章 圆锥曲线方程 ●考点阐释 圆锥曲线是解析几何的重点内容,这部分内容的特点是: (1)曲线与方程的基础知识要求很高,要求熟练掌握并能灵活应用. (2)综合性强.在解题中几乎处处涉及函数与方程、不等式、三角及直线等内容,体现了对各种能力的综合要求. (3)计算量大.要求学生有较高的计算水平和较强的计算能力. ●试题类编 一、选择题 1.(2003京春文9,理5)在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( ) 2.(2003京春理,7)椭圆?? ?=+=? ? sin 3cos 54y x (?为参数)的焦点坐标为( ) A.(0,0),(0,-8) B.(0,0),(-8,0) C.(0,0),(0,8) D.(0,0),(8,0) 3.(2002京皖春,3)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线的一支 D.抛物线 4.(2002全国文,7)椭圆5x 2+ky 2 =5的一个焦点是(0,2),那么k 等于( ) A.-1 B.1 C. 5 D. - 5 5.(2002全国文,11)设θ∈(0,4 π),则二次曲线x 2cot θ-y 2tan θ=1的离心率的取值范围为 ( ) A.(0,2 1) B.( 2 2 ,21) C.( 2,2 2 ) D.( 2,+∞) 6.(2002北京文,10)已知椭圆222253n y m x +和双曲线22 2 232n y m x -=1有公共的焦点,那么双曲线的渐近线方程是( ) A.x =± y 215 B.y =± x 215 C.x =±y 4 3 D.y =±x 4 3 7.(2002天津理,1)曲线???==θ θ sin cos y x (θ为参数)上的点到两坐标轴的距离之和的最大值是( ) A.21 B.22 C.1 D.2

2020年高考圆锥曲线部分大题解析

1.【2018浙江21】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线 2:4C y x =上存在不同的两点,A B 满足,PA PB 的中点均在C 上。 (1) 设AB 中点为M ,证明:PM 垂直于y 轴; (2) 若P 是半椭圆2 2 1(0)4 y x x +=<上的动点,求PAB ?面积的取值范围。 解析:(1)设2200112211(,),(,),(,)44 P x y A y y B y y AP 中点满足:2 2 102014( )4()22 y x y y ++= BP 中点满足:2 2 202024:( )4()22 y x y y BP ++= 所以12,y y 是方程2 2 0204()4()22 y x y y ++=即22000 280y y y x y -+-=的两个根,所以 12 02 y y y +=,故PM 垂直于y 轴。 (2)由(1)可知212012002,8y y y y y x y +=?=- 所以222 1200013||()384 PM y y x y x =+-= - ,12||y y -= 因此,3 2212001||||4)24 PAB S PM y y y x ?=?-=- 因为2 2 0001(0)4 y x x +=<,所以2200004444[4,5]y x x x -=--+∈ 因此,PAB ? 面积的取值范围是

1. 距离型问题 2.【2018全国3 理20】已知斜率为k 的直线l 与椭圆22 :143 x y C +=交于,A B 两点,线段AB 的中点为(1,)(0)M m m > (1)证明:1 2 k <- ; (2)设F 为C 的右焦点,P 为C 上一点且0FP FA FB ++=,证明:,,FP FA FB 为等差数列,并求出该数列的公差。 解析:(1)由中点弦公式22OM b k k a ?=-,解得34k m =- 又因为点M 在椭圆内,故302m << ,故1 2 k <- (2)由题意知2,2FA FB FM FP FM +==-,故(1,2)P m - 因为点P 在椭圆上,代入可得3,14m k = =-,即3||2 FP = 根据第二定义可知,1211||2,||222 FA x FB x =- =- 联立22 212121114371402,4287 4 x y x x x x x x y x ?+=???-+=?+==? ?=-+?? 即121 ||||4()32 FA FB x x +=- += 故满足2||||||FP FA FB =+,所以,,FP FA FB 为等差数列 设其公差为d ,因为,A B 的位置不确定,则有

高考数学圆锥曲线历年高考真题

浙江省高考数学圆锥曲线真题 22 04. 若椭圆 x 2 y 2 ab 1(a > b > 0)的左、右焦点分别为 F 1、F 2, 线段 F 1F 2被抛物线 y 2=2 bx 的焦点 分成 5∶ 3的两 段 , 则此椭圆的离心率为 16 (A) 1167 05.过双曲线 2 x 2 a 4 17 (B) 17 2 b y 2 1(a b 4 (C)45 (D) 255 5 0,b 0) 的左焦点且垂直于 x 轴的直线与双曲线相交于 M 、 N 两点 , 以 MN 为直径的圆恰好过双曲线的右顶点 则双曲线的离心率等于 07. 已知双曲线 2 x 2 a 2 y 2 1(a 0,b b 2 0) 的左、右焦点分别为 F 1,F 2, P 是准线上一点 , PF 1 PF 2,|PF 1| |PF 2| 4ab , 则双曲线的离心率是 B ) 3 (C ) 2 (D ) 3 △ ABP 的面积为定 则动点 P 的轨迹是A . 圆 B . 椭圆 C . 一条直线 D . 两条平行直线 09. 2 x 过双曲线 2 a 2 y b 2 1(a 0,b 0) 的右顶 点 条渐近线的交点分别为 B,C uuur .若 AB 1 uuur BC , 2 A . 2 B .3 C 08.如图 , AB 是平面 的斜.线.段. ) B A P 第 10 题) A 作斜率为 1的直线 , 该直线与双曲线的两 则双曲线的离心率 是 ( ) .5 D . 10 A 为斜足 , 若点 P 在平面 内运动 , 使得 点 A (0,2) 。若线段 FA 的中点 B 在抛物线上 2 10. (13)设抛物线 y 2 2px (p 0) 的焦点为 F, 则 B 到该抛物线准线的距离为 近线与以 C 1 的长轴为直径的圆相交于 A, B 两点 ( ) 13 2 B . a 2= 13 1 D . A .a 2= C .b 2= b 2=2 2 2 2 11. 设 F 1, F 2分别为椭圆 x 2 3 y 2 1的 左、 右焦点 22 x y 2 11. 已知椭圆 C 1: 2 2 =1 (a > b > 0)与双曲线 C 2: x 2 ab 则点 A 的坐标是 _______ 2 y 1有公共的焦点 , C 2 的一条渐 4 若 C 1 恰好将线段 AB 三等分 , 则 uuur uuuur 点 A, B 在椭圆上. 若 F 1A 5F 2B ,

(完整版)圆锥曲线高考真题

(1)求M 的方程 (2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 的面积最大值. 2.设1F ,2F 分别是椭圆()222210y x a b a b +=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N. (1)若直线MN 的斜率为34 ,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b . 3.已知椭圆C :,直线不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (1) 证明:直线OM 的斜率与的斜率的乘积为定值; (2)若过点(),延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边行?若能,求此时的斜率,若不能,说明理由. 4.已知抛物线C :22y x = 的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点. (1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ; (2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 5.已知抛物线C :y 2 =2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上; (2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 6.已知斜率为k 的直线l 与椭圆22 143 x y C +=:交于A ,B 两点,线段AB 的中点为 ()()10M m m >,. (1)证明:1 2 k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r .证明:FA u u u r ,FP u u u r ,FB u u u r 成 等差数列,并求该数列的公差.

高考数学真题分类汇编专题圆锥曲线理科及答案

专题九 圆锥曲线 1.【2015高考福建,理3】若双曲线22 :1916 x y E -= 的左、右焦点分别为12,F F ,点P 在双 曲线E 上,且13PF =,则2PF 等于( ) A .11 B .9 C .5 D .3 【答案】B 【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B . 【考点定位】双曲线的标准方程和定义. 【名师点睛】本题考查了双曲线的定义和标准方程,利用双曲线的定义列方程求解,属于基础题,注意运算的准确性. 2.【2015高考四川,理5】过双曲线22 13 y x -=的右焦点且与x 轴垂直的直线,交该双曲线 的两条渐近线于A ,B 两点,则AB =( ) (C)6 (D )【答案】D 【解析】 双曲线的右焦点为(2,0)F ,过F 与x 轴垂直的直线为2x =,渐近线方程为2 2 03 y x -=,将 2x =代入2 2 03 y x -=得:212,||y y AB ==±∴=.选D. 【考点定位】双曲线. 【名师点睛】双曲线22221x y a b -=的渐近线方程为22 220x y a b -=,将直线2x =代入这个渐近线 方程,便可得交点A 、B 的纵坐标,从而快速得出||AB 的值. 3.【2015高考广东,理7】已知双曲线C :12222=-b y a x 的离心率5 4 e =,且其右焦点()25,0F , 则双曲线C 的方程为( ) A .13422=-y x B. 191622=-y x C. 116922=-y x D. 14 32 2=-y x

【答案】B . 【解析】因为所求双曲线的右焦点为()25,0F 且离心率为5 4 c e a = =,所以5c =,4a =,2 2 2 9b c a =-=所以所求双曲线方程为22 1169 x y - =,故选B . 【考点定位】双曲线的标准方程及其简单几何性质. 【名师点睛】本题主要考查学生利用双曲线的简单几何性质求双曲线的标准方程和运算求解能力,由离心率和其右焦点易得a ,c 值,再结合双曲线222b c a =-可求,此题学生易忽略右焦点信息而做错,属于容易题. 4.【2015高考新课标1,理5】已知M (00,x y )是双曲线C :2 212 x y -=上的一点,12,F F 是 C 上的两个焦点,若120MF MF ?<,则0y 的取值范围是( ) (A )(- 33,3 3 ) (B )(- 36,3 6 ) (C )(223-,223) (D )(233-,23 3 ) 【答案】A 【考点定位】双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法. 【名师点睛】本题考查利用向量数量积的坐标形式将12MF MF ?表示为关于点M 坐标的函数,利用点M 在双曲线上,消去x 0,根据题意化为关于0y 的不等式,即可解出0y 的范围,是基础题,将12MF MF ?表示为0y 的函数是解本题的关键. 5.【2015高考湖北,理8】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e < D .当a b >时,12e e <;当a b <时,12e e > 【答案】D 【解析】依题意,2 221)(1a b a b a e +=+=,2222)(1)()(m a m b m a m b m a e +++=++++=,

高考数学试题分类大全理科圆锥曲线

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. ( 4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点 1 2c 第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于 它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

江苏历年高考数学试题及答案汇编十圆锥曲线

江苏历年高考理科数学试题及答案汇编十圆锥曲线 (2008-2018)试题 1、9.(5分)(2008江苏)如图,在平面直角坐标系xoy中,设三角形ABC的顶点分别为A (0,a),B(b,0),C(c,0),点P(0,p)在线段AO上的一点(异于端点),这里a,b,c,p均为非零实数,设直线BP,CP分别与边AC,AB交于点E,F,某同学已正确求得直线 OE的方程为,请你完成直线OF的方程:. 2、12.(5分)(2008江苏)在平面直角坐标系xOy中,椭圆的焦距为2c,以O为圆心,a为半径作圆M,若过作圆M的两条切线相互垂直,则椭圆的离心率为. 3、13.(5分)(2009江苏)如图,在平面直角坐标系xoy中,A1,A2,B1,B2为椭圆 的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为.

4、6.(5分)(2010江苏)在平面直角坐标系xOy 中,双曲线上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是 . 5、8.(5分)(2010江苏)函数y=x 2(x >0)的图象在点(a k ,a k 2 )处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5= . 6、9.(5分)(2010江苏)在平面直角坐标系xOy 中,已知圆x 2+y 2 =4上有且仅有四个点到直线12x ﹣5y+c=0的距离为1,则实数c 的取值范围是 . 7、14.(5分)(2011江苏)设集合 222{(,)| (2),,},{(,)|221,,} 2 m A x y x y m x y B x y m x y m x y =-+∈=++∈R R 若,A B ≠? 则实数m 的取值范围是______________. 8、8.(5分)(2012江苏)在平面直角坐标系xOy 中,若双曲线 的离心率为 ,则m 的值为 . 9、12.(5分)(2012江苏)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2 ﹣8x+15=0,若直线y=kx ﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 . 10、3.(5分)(2013江苏)双曲线 的两条渐近线方程为 . 11、12.(5分)(2013江苏)在平面直角坐标系xOy 中,椭圆C 的标准方程为(a >b >0),右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为d 1,F 到l 的距离为d 2,若d 2= ,则椭圆C 的离心率为 . 12、9.(5分)(2014江苏)在平面直角坐标系xOy 中,直线x+2y ﹣3=0被圆(x ﹣2)2 +(y+1)2 =4截得的弦长为 . 13、10.(5分)(2015江苏)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx ﹣y ﹣2m ﹣1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为 . 14、12.(5分)(2015江苏)在平面直角坐标系xOy 中,P 为双曲线x 2﹣y 2 =1右支上的一个动点,若点P 到直线x ﹣y+1=0的距离大于c 恒成立,则实数c 的最大值为 . 15、3.(5分)(2016江苏)在平面直角坐标系xOy 中,双曲线 ﹣ =1的焦距是 . 16、10.(5分)(2016江苏)如图,在平面直角坐标系xOy 中,F 是椭圆+=1(a >b >0)的右焦点,直线y=与椭圆交于B ,C 两点,且∠BFC=90°,则该椭圆的离心率是 .

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上 (B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23 = e ,已知点)3,0(P 到这个椭圆 上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若MP AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

圆锥曲线高考压轴题(精心整理)

A. 2: B B. 1: 2 C. 1: D. 1: 3 园锥曲线单元检测卷 迭様题(共10小陋) 1. 椭圆ax2+by2=l 与直线y=l-x 交于A 、B 两点,过原点与銭段AB 中点的直线的斜率为车,则?的值为< ) 2 b A.更 B.生 C.距 D.生 2 3 2 27 2. 点F 为椭圆W-J=l (a>b>0)的一个焦点,若棉圆上存在点A 使△AOF 为正三角形,那么棉圆的离心率为( ) A.亭 B.学 C.早 0. JJ-1 1 2 3. 已知P 是以F|, F2为焦点的棉圖(?>b>0)上的一点,若PFilPFj, tanZPF,F 24,则此神圖的码心率为( ) a l 戸 2 A. - B. - C. - D.亞 2 3 3 3 4. 设F2是戏曲线力>°)的左、右两个焦点,若双曲线右支上存在一点P ,使(乔十折)?和=。(0为坐 a 1 标原点),且1戶尸11 = 51”2|,则双曲线的离心率为( ) A.罕 B.「+l C.擊 D.网 5. 如圍所示,A, B, C 是双曲线打土=1 <*>0, b>0>上的三个点,AB 经过原点0, AC 经过右焦点F,若 \ [ / BF 丄AC 目|BF| = |CF|,则该双曲线的高心率是< ) \ m A.罗 B. J10 C. I D. 3 6. 已知点F“ F2分别是双曲线W~4=l(a>0, d>0)的左、右焦点,ilFifi 垂直于x 轴的宜线与双曲线交于A, B 两点,若 a 2 b 2 F2是锐角三角形,则该戏曲线高心率的取值范围是( ) A. (1, JI) 7.设双曲线日-4=1仏>0, 6>0) 的右焦点为F (c, 0),方程?x 2-bx-c=0的两支根分别为x“ x 2,则P (x o x 2 A 2 b 2 A.必在Sx 2-y 2=2内 C.必在Sx 2-y 2=Z± 8.已知点A (2, 0),抛物线C: x 2=4y 的焦点为F,射銭FA 与抛物銭C 相交于点II,与其准线相交于点N,则|FM|: |MN| 9. 已知点A (-1, 0) , B (1, 0)及抛物线円2x,若抛物銭上点P 淆足iPAdlPBl,则m 的最大値为( ) A. 3 B. 2 C. D. J2 B.(卩,2j) D. (1,1+41) B.必在圖x2+y2=2外 D.以上三种情况都有可能

全国高考圆锥曲线试题及解析

全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .(2013年高考江西卷(理) )过点引直线l 与曲线y =A,B 两点,O 为坐标原点, 当?AOB 的面积取最大值时,直线l 的斜率等于 ( ) A .y E B B C C D =+ +3 B .3 - C .3 ± D .【答案】B 2 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))双曲线2 214 x y -=的顶点到 其渐近线的距离等于 ( ) A . 25 B . 45 C D 【答案】C 3 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知中心在原点的双曲线C 的 右焦点为()3,0F ,离心率等于3 2,在双曲线C 的方程是 ( ) A .2214x = B .22 145x y -= C .22 125x y -= D .22 12x = 【答案】B 4 .(2013年高考新课标1(理))已知双曲线C :22221x y a b -=(0,0a b >>) ,则C 的渐近 线方程为 ( ) A .1 4y x =± B .13 y x =± C .12 y x =± D .y x =± 【答案】C 5 .(2013年高考湖北卷(理))已知04 π θ<<,则双曲线22 12 2:1cos sin x y C θθ-=与22 2222:1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等 【答案】D 6 .(2013年高考四川卷(理))抛物线2 4y x =的焦点到双曲线2 2 13 y x -=的渐近线的距离是 ( )

(完整版)圆锥曲线历年高考题ti

一、选择题: 1.(2007安徽文)椭圆1422=+y x 的离心率为( ) (A ) 23 (B )43 (C )22 (D )32 2.(2008上海文)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( ) A .4 B .5 C .8 D .10 3.(2005广东)若焦点在x 轴上的椭圆1 22 2=+m y x 的离心率为21,则m=( ) A .3 B .23 C .38 D .32 4.(2006全国Ⅱ卷文、理)已知△ABC 的顶点 B 、 C 在椭圆x 23 +y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12

5.(2003北京文)如图,直线022:=+-y x l 过椭圆的左焦点F 1和 一个顶点B ,该椭圆的离心率为( ) A .51 B .52 C .55 D .552 6.(2002春招北京文、理)已知椭圆的焦点是 F 1、F 2、P 是椭圆上的一个动点.如果延 长F 1P 到Q ,使得|PQ|=|PF 2|,那么动点Q 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线 7.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( ) (A )32 (B ) 33 (C )22 (D )23 8.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为( )

高考数学试题分类汇编——圆锥曲线选择doc

2010年高考数学试题分类汇编——圆锥曲线 一、选择题 1、(2010湖南文数)5. 设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是 A. 4 B. 6 C. 8 D. 12 解析:抛物线的准线为:x=-2,点P 到准线距离为4+2=6,所以它到焦点的距离为6。. 2、(2010全国卷2理数)(12)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,过右焦点F 且斜率为 (0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k = (A )1 (B (C (D )2 【答案】B 【命题意图】本试题主要考察椭圆的性质与第二定义. 【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过 B 作BE 垂直于AA 1与E ,由第二定义得, ,由,得, ∴ 即k= ,故选B. 3、(2010陕西文数)9.已知抛物线y 2 =2px (p >0)的准线与圆(x -3)2 +y 2 =16相切,则p 的值为 [C] (A ) 1 2 (B )1 (C )2 (D )4 解析:本题考查抛物线的相关几何性质及直线与圆的位置关系 法一:抛物线y 2 =2px (p >0)的准线方程为2 p x -=,因为抛物线y 2=2px (p >0)的准线与圆(x -3)2 +y 2 =16相切,所以2,42 3==+ p p 法二:作图可知,抛物线y 2 =2px (p >0)的准线与圆(x -3)2 +y 2 =16相切与点(-1,0) 所以2,12 =-=- p p 4、(2010辽宁文数)(9)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一 条渐近线垂直,那么此双曲线的离心率为

相关主题
文本预览
相关文档 最新文档