当前位置:文档之家› 经典功率谱和Burg法的功率谱估计

经典功率谱和Burg法的功率谱估计

经典功率谱和Burg法的功率谱估计
经典功率谱和Burg法的功率谱估计

现代信号处理作业

实验题目:

设信号)()8.0cos(25.0)47.0cos()35.0cos()(321n v n n n n x ++++++=θπθπθπ,其中321,,θθθ是[]ππ,-内的独立随机变量,v(n)是单位高斯白噪声。

1.利用周期图法对序列进行功率谱估计。数据窗采用汉明窗。

2.利用BT 法对序列进行功率谱估计,自相关函数的最大相关长度为M=64,128,256,512采用BARTLETT 窗。

3.利用Welch 法对序列进行功率谱估计,50%重叠,采用汉明窗,L=256,128,64。

4.利用Burg 法对序列进行AR 模型功率谱估计,阶数分别为10,13.

要求每个实验都取1024个点,fft 作为谱估计,取50个样本序列的算术平均,画出平均的功率谱图。 实验原理:

1)。周期图法:

又称间接法,它把随机信号的N 个观察值x N (n)直接进行傅里叶变换,得到X N (e jw ),然后取其幅值的平方,再除以N ,作为对x (n )真实功率谱的估计。

2^

)(1)(jw e X N

w P N per =

, 其中∑-=-=1

)()(N n jwn N jw

N e n x e X 2)。BT 法:

对于N 个观察值x(0),x(1),。。。,x(N-1),令x N (n)=a(n)x(n)。计算r x (m )为

∑--=-≤+=

m

N n N N

x N m m n x n x

N m r 10

1),()(1

)(,计算其傅里叶变换

∑-=--≤=

M

M

m jwm x

BT N M e m r

m v w P 1 ,)()()(^

^

,作为观察值的功率谱的估计。

其中v(m)是平滑窗。 3)。Welch 法:

假定观察数据是x(n),n=0,1,2...,N-1,现将其分段,每段长度为M,段与段之间的重叠为M-K,第i 个数据段经加窗后可表示为 1,...,1,0 )()()(-=+=M i iK n x n a n x i M

其中K 为一整数,L 为分段数,该数据段的周期图为

2)(1)(^w X MU w P i M i

per =,其中∑-=-=1

0)()(M n j w n i

M i M e n x w X 。由此得到平均周期图为

∑-==10

^_

)(1)(L i i

per w P L w P 。其中归一化U 取∑-==

10

2

)(1M n n a

M U 。

4)。Burg 法:

在约束条件下,使得)(2

1^^^

b

f ρρρ+=极小化,其中,约束条件是它所得到的

各阶模型解要求满足Levison 递归关系。 仿真结果:

1.周期图法

2.1)BT 法,平滑窗采用BARTLETT窗,长度为64;

2.3)BT 法,平滑窗采用BARTLETT窗,长度为256;

3.1 L=256

3.2 L=128

3.1 L=64

4.1。Burg 法,阶数为10;

4.1。Burg 法,阶数为13;

仿真分析:

1. 周期图法得到的功率谱,特点是离散性大,曲线粗糙,方差较大,但是分辨率较高;

2. 从图中可以看出间接法估计的偏差大于周期图法。这是因为BT 法在)(^

m r x 上施加了一个较短的平滑窗v(m)。但是BT 法得到的功率谱的方差,从图中可以看出,要小于周期图法得到的方差,所以

其分辨率要比周期图法差。

从理论上,BT 法和周期图法的方差之比为∑-==

ΛM

M

n n v

N

)(1

2

,一般

来说,v(m)是以m=0对称递减的,又M<

BT 法中对于延迟窗取不同的长度,从图中可以看出,长度越长,方差越大,分辨率越高。因为BT 法的方差和∑-=M

M

n n v

)(2

成正比关系,当

长度越长时,

∑-=M

M

n n v

)(2

越大,所以得到的功率谱的方差越大。

(BT 法中要求平滑窗的长度为2M+1,即为奇数,关于m=0处对称。本实验中,给出的平滑窗为偶数,与自相关函数关于m=0对称,且r (0)最大这一特性是否十分吻合,值得商榷)。

3. Welch 法是将N 点观察值分为L 个数据段,用以改善功率谱图的方差特性。从图中看出,对比周期图法,Welch 法作出的功率谱图的方差特性的确得到大大的改善。但是在给每段序列用适当的窗口函数加权后,在得到平滑的估计结果同时,使得功率谱额主瓣变宽,因此分辨率有所下降。

从图中可以看出,Welch 法中,随着分的段数增加,得到的功率谱的方差变得更好,这是因为Welch 法中方差与分的段数大约成反比关系。而分辨率则随着段数增加而下降。

4. burg 法从图中可以看出,随着阶数的增高,分辨率提升。本实验中,由于阶数比较小,得到的功率谱图并不理想。现代谱估计的一些隐含着数据和自相关函数的外推, 使其可能的长度超过给定的

长度, 不象经典谱估计那样受窗函数的影响。因而现代谱的分别率比较高, 而且现代谱线要平滑得多。

基于Burg算法的AR模型功率谱估计简介

基于Burg 算法的AR 模型功率谱估计简介 摘要:在对随机信号的分析中,功率谱估计是一类重要的参数研究,功率谱估计的方法分为经典谱法和参数模型方法。参数模型方法是利用型号的先验知识,确定信号的模型,然后估计出模型的参数,以实现对信号的功率谱估计。根据wold 定理,AR 模型是比较常用的模型,根据Burg 算法等多种方法可以确定其参数。 关键词:功率谱估计;AR 模型;Burg 算法 随机信号的功率谱反映它的频率成分以及各成分的相对强弱, 能从频域上揭示信号的节律, 是随机信号的重要特征。因此, 用数字信号处理手段来估计随机信号的功率谱也是统计信号处理的基本手段之一。在信号处理的许多应用中, 常常需要进行谱估计的测量。例如, 在雷达系统中, 为了得到目标速度的信息需要进行谱测量; 在声纳系统中, 为了寻找水面舰艇或潜艇也要对混有噪声的信号进行分析。总之, 在许多应用领域中, 例如, 雷达、声纳、通讯声学、语言等领域, 都需要对信号的基本参数进行分析和估计, 以得到有用的信息, 其中, 谱分析就是一类最重要的参数研究。 1 功率谱估计简介 一个宽平稳随机过程的功率谱是其自相关序列的傅里叶变换,因此功率谱估计就等效于自相关估计。对于自相关各态遍历的过程,应有: )()()(121lim *k r n x k n x N N x N N n =? ?????++∞→∑-= 如果所有的)(n x 都是已知的,理论上功率谱估计就很简单了,只需要对其自相关序列取傅里叶变换就可以了。但是,这种方法有两个个很大的问题:一是不是所有的信号都是平稳信号,而且有用的数据量可能只有很少的一部分;二是数据中通常都会有噪声或群其它干扰信号。因此,谱估计就是用有限个含有噪声的观测值来估计)(jw x e P 。 谱估计的方法一般分为两类。第一类称为经典方法或参数方法,它首先由给定的数据估 计自相关序列)(k r x ,然后对估计出的)(?k r x 进行傅里叶变换获得功率谱估计。第二类称为非经典法,或参数模型法,是基于信号的一个随机模型来估计功率谱。非参数谱估计的缺陷是其频率分辨率低,估计的方差特性不好, 而且估计值沿频率轴的起伏甚烈,数据越长, 这一现象越严重。 为了改善谱分辨率,研究学者对基于模型的参数方法进行了大量研究。参数方法的第一步是对信号选择一个合适的模型,这种选择可能是基于有关信号如何产生的先验知识,也可能是多次试验后获得的结果。通常采用的模型包括AR 、MA 、ARMA 模型和谐波模型(噪声中含有复指数)。一旦模型选择好后,下一步就是计算模型的参数。最后将计算得到的参数带

经典功率谱和Burg法的功率谱估计

现代信号处理作业 实验题目: 设信号)()8.0cos(25.0)47.0cos()35.0cos()(321n v n n n n x ++++++=θπθπθπ,其中321,,θθθ是[]ππ,-内的独立随机变量,v(n)是单位高斯白噪声。 1.利用周期图法对序列进行功率谱估计。数据窗采用汉明窗。 2.利用BT 法对序列进行功率谱估计,自相关函数的最大相关长度为M=64,128,256,512采用BARTLETT 窗。 3.利用Welch 法对序列进行功率谱估计,50%重叠,采用汉明窗,L=256,128,64。 4.利用Burg 法对序列进行AR 模型功率谱估计,阶数分别为10,13. 要求每个实验都取1024个点,fft 作为谱估计,取50个样本序列的算术平均,画出平均的功率谱图。 实验原理: 1)。周期图法: 又称间接法,它把随机信号的N 个观察值x N (n)直接进行傅里叶变换,得到X N (e jw ),然后取其幅值的平方,再除以N ,作为对x (n )真实功率谱的估计。 2^ )(1)(jw e X N w P N per = , 其中∑-=-=1 )()(N n jwn N jw N e n x e X 2)。BT 法: 对于N 个观察值x(0),x(1),。。。,x(N-1),令x N (n)=a(n)x(n)。计算r x (m )为

∑--=-≤+= m N n N N x N m m n x n x N m r 10 1),()(1 )(,计算其傅里叶变换 ∑-=--≤= M M m jwm x BT N M e m r m v w P 1 ,)()()(^ ^ ,作为观察值的功率谱的估计。 其中v(m)是平滑窗。 3)。Welch 法: 假定观察数据是x(n),n=0,1,2...,N-1,现将其分段,每段长度为M,段与段之间的重叠为M-K,第i 个数据段经加窗后可表示为 1,...,1,0 )()()(-=+=M i iK n x n a n x i M 其中K 为一整数,L 为分段数,该数据段的周期图为 2)(1)(^w X MU w P i M i per =,其中∑-=-=1 0)()(M n j w n i M i M e n x w X 。由此得到平均周期图为 ∑-==10 ^_ )(1)(L i i per w P L w P 。其中归一化U 取∑-== 10 2 )(1M n n a M U 。 4)。Burg 法: 在约束条件下,使得)(2 1^^^ b f ρρρ+=极小化,其中,约束条件是它所得到的 各阶模型解要求满足Levison 递归关系。 仿真结果: 1.周期图法

功率谱估计方法的比较

功率谱估计方法的比较 摘要: 本文归纳了信号处理中关键的一种分析方法, 即谱估计方法。概述了频谱估计中的周期图法、修正的协方差法和伯格递推法的原理,并且对此三种方法通过仿真做出了对比。 关键词:功率谱估计;AR 模型;参数 引言: 谱估计是指用已观测到的一定数量的样本数据估计一个平稳随机信号的谱。由于谱中包含了信号的很多频率信息,所以分析谱、对谱进行估计是信号处理的重要容。谱估计技术发展 渊源很长,它的应用领域十分广泛,遍及雷达、声纳、通信、地质勘探、天文、生物医学工程等众多领域,其容、方法都在不断更新,是一个具有强大生命力的研究领域。谱估计的理论和方法是伴随着随机信号统计量及其谱的发展而发展起来的,最早的谱估计方法是建 立在基于二阶统计量, 即自相关函数的功率谱估计的方法上。功率谱估计的方法经历了经典谱估计法和现代谱估计法两个研究历程,在过去及现在相当长一段时间里,功率谱估计一直占据着谱估计理论里的核心位置。经典谱估计也成为线性谱估计,包括BT 法、周期图法。现代谱估计法也称为非线性普估计,包括自相关法、修正的协方差法、伯格(Burg )递推法、特征分解法等等。 原理: 经典谱估计方法计算简单,其主要特点是谱估计与任何模型参数无关,是一类非参数化的方法。它的主要问题是:由于假定信号的自相关函数在数据的观测区间以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。在一般情况下,经典法的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。现代谱估计方法使用参数化的模型,他们统称为参数化功率谱估计,由于这类方法能够给出比经典法高得多的频率分辨率,故又称为高分辨率方法。下面分别介绍周期图法、修正的协方差法和伯格递推法。修正的协方差法和伯格递推法采用的模型均为AR 模型。 (1)周期图法 周期图法是先估计自相关函数, 然后进行傅里叶变换得到功率谱。假设随机信号x(n)只观测到一段样本数据,n=0, 1, 2, …, N-1。根据这一段样本数据估计自相关函数,如公式(1) 对(1)式进行傅里叶变换得到(2)式。 ∑--=+=1||0 *) ()(1 )(?m N n xx m n x n x N m r

功率谱估计

功率谱估计及其MATLAB仿真 詹红艳 (201121070630控制理论与控制工程) 摘要:从介绍功率谱的估计原理入手分析了经典谱估计和现代谱估计两类估计方法的原理、各自特点及在Matlab中的实现方法。 关键词:功率谱估计;周期图法;AR参数法;Matlab Power Spectrum Density Estimation and the simulation in Matlab Zhan Hongyan (201121070630Control theory and control engineering) Abstract:Mainly introduces the principles of classical PSD estimation and modern PSD estimation,discusses the characteristics of the methods of realization in Matlab.Moreover,It gives an example of each part in realization using Matlab functions. Keywords:PSDPstimation,Periodogram method,AR Parameter method,Matlab 1引言 现代信号分析中,对于常见的具有各态历经的平稳随机信号,不可能用清楚的数学关系式来描述,但可以利用给定的N个样本数据估计一个平稳随机信号的功率谱密度叫做功率谱估计(PSD)。它是数字信号处理的重要研究内容之一。功率谱估计可以分为经典功率谱估计(非参数估计)和现代功率谱估计(参数估计)。 功率谱估计在实际工程中有重要应用价值,如在语音信号识别、雷达杂波分析、波达方向估计、地震勘探信号处理、水声信号处理、系统辨识中非线性系统识别、物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周期研究等许多领域,发挥了重要作用。 Matlab是MathWorks公司于1982年推出的一套高性能的数值计算和可视化软件,人称矩 阵实验室,它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,成为目前极为流行的工程数学分析软件。也为数字信号处理进行理论学习、工程设计分析提供了相当便捷的途径。本文的仿真实验中,全部在Matlab6.5环境下调试通过;随机序列由频率不同的正弦信号加高斯白噪声组成。 2经典功率谱估计 经典功率谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗。经典功率谱估计方法分为:相关函数法(BT法)、周期图法以及两种改进的周期图估计法即平均周期图法和平滑平均周期图法,其中周期图法应用较多,具有代表性。 1.1相关函数法(BT法) 该方法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。当延迟与数据长度相比很小时,可以有良好的估计精度。 Matlab代码示例1: Fs=500;%采样频率 n=0:1/Fs:1;

经典功率谱估计方法实现问题的研究

1 随机信号的经典谱估计方法 估计功率谱密度的平滑周期图是一种计算简单的经典方法。它的主要特点是与任 何模型参数无关,是一类非参数化方法[4]。它的主要问题是:由于假定信号的自相关函数在数据观测区以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。在一般情况下,周期图的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。本章主要介绍了周期图法、相关法谱估计(BT )、巴特利特(Bartlett)平均周期图的方法和Welch 法这四种方法。 2.1 周期图法 周期图法又称直接法。它是从随机信号x(n)中截取N 长的一段,把它视为能量有限x(n)真实功率谱)(jw x e S 的估计)(jw x e S 的抽样. 周期图这一概念早在1899年就提出了,但由于点数N一般比较大,该方法的计算量过大而在当时无法使用。只是1965年FFT 出现后,此法才变成谱估计的一个常用方法。周期图法[5]包含了下列两条假设: 1.认为随机序列是广义平稳且各态遍历的,可以用其一个样本x(n)中的一段 )(n x N 来估计该随机序列的功率谱。这当然必然带来误差。 2.由于对)(n x N 采用DFT ,就默认)(n x N 在时域是周期的,以及)(k x N 在频域是周期的。这种方法把随机序列样本x(n)看成是截得一段)(n x N 的周期延拓,这也就是周期图法这个名字的来历。与相关法相比,相关法在求相关函数)(m R x 时将 )(n x N 以外是数据全都看成零,因此相关法认为除)(n x N 外 x(n)是全零序列,这种处 理方法显然与周期图法不一样。 但是,当相关法被引入基于FFT 的快速相关后,相关法和周期图法开始融合。通过比较我们发现:如果相关法中M=N ,不加延迟窗,那么就和补充(N-1)个零的周期图法一样了。简单地可以这样说:周期图法是M=N 时相关法的特例。因此相关法和周期图法可结合使用。 2.2 相关法谱估计(BT )法

利用经典谱估计法估计信号的功率谱(随机信号)

随机信号 利用经典谱估计法估计信号的功率谱

作业综述: 给出一段信号“asd.wav”,利用经典谱估计法的原理,通过不同的谱估计方法,求出信号的功率谱密度函数。采用MATLAB语言,利用MATLAB语言强大的数据处理和数据可视化能力,通过GUI的对话框模板,使操作更为简便!在一个GUI界面中,同时呈现出不同方法产生出的功率谱。 这里给出了几种不同的方法:BT法,周期图法,平均法以及Welch法。把几种不同方法所得到的功率谱都呈现在一个界面中,便于对几种不同方法得到的功率谱作对比。 一.题目要求 给出一段信号及采样率,利用经典谱估计法估计出信号的功率谱。 二.基本原理及方法 经典谱估计的方法,实质上依赖于传统的傅里叶变换法。它是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有BT法,周期图法,平均法以及Welch法。 1. BT法(Blackman-Tukey) ●理论基础: (1)随机序列的维纳-辛钦定理 由于随机序列{X(n)}的自相关函数Rx(m)=E[X(n)X(n+m)]定义在离散点m上,设取样间隔为,则可将随机序列的自相关函数用连续时间函数表示为 等式两边取傅里叶变换,则随机序列的功率谱密度 (2)谱估计 BT法是先估计自相关函数Rx(m)(|m|=0,1,2…,N-1),然后再经过离散傅里叶变换求的功率谱密度的估值。即 其中可有式得到。 2. 周期图法 ●理论基础: 周期图法是根据各态历经随机过程功率谱的定义来进行谱估计的。在前面我们已知,各态历经的连续随机过程的功率谱密度满足

式中 是连续随机过程第i 个样本的截取函数 的频谱。对应在随机序列中则有 由于随机序列中观测数据 仅在 的点上存在,则 的N 点离散傅里叶变换为: 因此有随机信号的观测数据 的功率谱估计值(称“周期图”)如下: 由于上式中的离散傅里叶变换可以用快速傅里叶变换计算,因此就可以估计出功率 谱。 3.平均法: 理论基础: 平均法可视为周期图法的改进。周期图经过平均后会使它的方差减少,达到一致估计的目的,有一个定理:如果 , , , 是不相关的随机变量,且都有个均值 及其方差 ,则可以证明它们的算术平均的均值为 ,方差为 。 由定理可见:具有 个独立同分布随机变量平均的方差,是单个随机变量方差的 , 当 时,方差 ,可以达到一致估计的目的。因此,将 个独立的估计量经过算术 平均后得到的估计量的方差也是原估计量方差的 。 平均图法即是将数据 , , 分段求周期图法后再平均。例如,给定N=1000个数据样本(平均法适用于数据量大的场合),则可以将它分成10个长度为100的小段,分别计算每一段的周期图 ()()2 1001100,100(1) 1 ,1,2,```,10100 l j l n l G w X e l ω-=-= =∑ 然后将这10个周期图加以平均得谱估计值: ()() 10 100100,1 110l l G w G w ==∑ 由于这10小段的周期图取决于同一个过程,因而其均值相同。若这10个小段的周期图是统计独立的,则这10个小段平均之后的方差却是单段方差的 。

参数法功率谱估计

参数法功率谱估计 一、信号的产生 (一)信号组成 在本实验中,需要事先产生待估计的信号,为了使实验结果较为明显,我产生了由两个不同频率的正弦信号(频率差相对较大)和加性高斯白噪声组成的信号。 (二)程序 N=1024;n=0:N-1; xn=2*cos(2*pi*0.2*n)+ cos(2*pi*0.213*n)+randn(1,1024); 这样就产生了加有白噪声的两个正弦信号 其波形如下

0100200300400500600 -8-6 -4 -2 2 4 6 8 10 (a) 两个正弦信号与白噪声叠加的时域波形 二、参数模型法功率谱估计 (一)算法原理简介 1.参数模型法是现代谱估计的主要内容,思路如下: ① 假定所研究的过程)(n x 是由一个白噪声序列)(n 激励一个因果稳定的可逆线性系统)(z H 的输出; ② 由已知的)(n x ,或其自相关函数)(m r x 估计)(z H 的参数; ③ 由)(z H 的参数来估计)(n x 的功率谱。 2.自回归模型,简称AR 模型,它是一个全极点的模型。“自回归”的含义是:该模型现在的输出是现在的输入和过去p 个输出的加权和。此模型可以表现

为以下三式:

① ∑=+--=p k k n u k n x a n x 1 )()()(; ② ∑=-+==p k k k z a z A z H 111)(1)(; ③ 212 1)(∑=-+=p k jwk k jw x e a e P σ。 3.AR 模型的正则方程建立了参数k a 和)(n x 的自相关函数的关系,公式如下: =)(m r x ∑=--p k x k k m r a 1)( 1≥m 时,=)(m r x 21)(σ+-∑=k r a p k x k 0=m 时。 (二)两种AR 模型阶次的算法 1.Yule-Walker 算法(自相关法) (1)算法主要思想 Yule-Walker 算法通过解Yule-Walker 方程获得AR 模型参数。从低阶开始递推,直到阶次p ,给出了在每一个阶次时的所有参数。公式如下: ① 11 11/])()()([--=-∑+--=m m k x x m m m r k m r k a k ρ; ② )()()(11k m a k k a k a m m m m -+=--;

(完整版)功率谱估计性能分析及Matlab仿真

功率谱估计性能分析及Matlab 仿真 1 引言 随机信号在时域上是无限长的,在测量样本上也是无穷多的,因此随机信号的能量是无限的,应该用功率信号来描述。然而,功率信号不满足傅里叶变换的狄里克雷绝对可积的条件,因此严格意义上随机信号的傅里叶变换是不存在的。因此,要实现随机信号的频域分析,不能简单从频谱的概念出发进行研究,而是功率谱[1]。 信号的功率谱密度描述随机信号的功率在频域随频率的分布。利用给定的 N 个样本数据估计一个平稳随机信号的功率谱密度叫做谱估计。谱估计方法分为两大类:经典谱估计和现代谱估计。经典功率谱估计如周期图法、自相关法等,其主要缺陷是描述功率谱波动的数字特征方差性能较差,频率分辨率低。方差性能差的原因是无法获得按功率谱密度定义中求均值和求极限的运算[2]。分辨率低的原因是在周期图法中,假定延迟窗以外的自相关函数全为0。这是不符合实际情况的,因而产生了较差的频率分辨率。而现代谱估计的目标都是旨在改善谱估计的分辨率,如自相关法和Burg 法等。 2 经典功率谱估计 经典功率谱估计是截取较长的数据链中的一段作为工作区,而工作区之外的数据假设为0,这样就相当将数据加一窗函数,根据截取的N 个样本数据估计出其功率谱[1]。 周期图法( Periodogram ) Schuster 首先提出周期图法。周期图法是根据各态历经的随机过程功率谱的定义进行的谱估计。 取平稳随机信号()x n 的有限个观察值(0),(1),...,(1)x x x n -,求出其傅里叶变换 1 ()()N j j n N n X e x n e ω ω---==∑ 然后进行谱估计

参数法功率谱估计

参数法功率谱估计 一、 信号的产生 (一)信号组成 在本实验中,需要事先产生待估计的信号,为了使实验结果较为明显,我产生了由两个不同频率的正弦信号(频率差相对较大)和加性高斯白噪声组成的信号。 (二)程序 N=1024;n=0:N-1; xn=2*cos(2*pi*0.2*n)+ cos(2*pi*0.213*n)+randn(1,1024); 这样就产生了加有白噪声的两个正弦信号 其波形如下 0100200300400500600 -8 -6-4-202468 10(a) 两个正弦信号与白噪声叠加的时域波形

二、参数模型法功率谱估计 (一)算法原理简介 1.参数模型法是现代谱估计的主要内容,思路如下: ① 假定所研究的过程)(n x 是由一个白噪声序列)(n ω激励一个因果稳定的可逆线性系统)(z H 的输出; ② 由已知的)(n x ,或其自相关函数)(m r x 估计)(z H 的参数; ③ 由)(z H 的参数来估计)(n x 的功率谱。 2.自回归模型,简称AR 模型,它是一个全极点的模型。“自回归”的含义是:该模型现在的输出是现在的输入和过去p 个输出的加权和。此模型可以表现为以下三式: ① ∑=+--=p k k n u k n x a n x 1)()()(; ② ∑=-+== p k k k z a z A z H 111) (1 )(; ③ 2 12 1)(∑=-+= p k jwk k jw x e a e P σ。 3.AR 模型的正则方程建立了参数k a 和)(n x 的自相关函数的关系,公式如下: =)(m r x ∑=--p k x k k m r a 1 )( 1≥m 时,=)(m r x 21 )(σ+-∑=k r a p k x k 0=m 时。

滤波与功率谱估计

清华大学 《数字信号处理》期末作业 2013 年 1 月

第一题掌握去噪的方法 1.1 题目描述 MATLAB 中的数据文件noisdopp 含有噪声,该数据的抽样频率未知。调出该数据,用你学过的滤波方法和奇异值分解的方法对其去噪。要求:1.尽可能多地去除噪声,而又不损害原信号; 2.给出你去噪的原理与方法;给出说明去噪效果的方法或指标; 3.形成报告时应包含上述内容及必要的图形,并附上原程序。 1.2 信号特性分析 MATLAB所给noisdopp信号极其频域特征如图1.1、图1.2。 图1.1含有噪声的noisdopp信号

图1.2 noisdopp 信号频域特性 其中横坐标f 采用归一化频率,即未知抽样频率Fs 对应2(与滤波器设计时参数一致)。信号基本特性是一个幅值和频率逐渐增加的正弦信号叠加噪声,噪声为均匀的近似白噪声,没有周期等特点。 因为噪声信号能量在全频带均匀分布,滤波器截止频率过低则信号损失大,过高则噪声抑制小,认为频谱中含有毛刺较多的部分即为信噪比较小的部分,滤除这部分可以达到较好的滤波效果。 先给定去噪效果的评定指标。信号开始阶段频率较高(如图1.3,红圈为信号值),一周期内采样点4~5个,即信号归一化频率达到0.4~0.5(Fs=2),难以从频域将这部分信号同噪声分离,滤波后信号损失较大,故对前128点用信噪比考察其滤波效果,定义: 2 2 () 10lg (()())k k x k SNR y k x k =-∑∑ 其中,()x k 为原nosidopp 信号,()y k 为滤波后信号。SNR 越大表示滤除部分能力越小,可以反映滤波后信号对原信号的跟踪能力,对前128点主要考察SNR ,越大滤波器性能越好。

功率谱密度估计方法的MATLAB实现

功率谱密度估计方法的MATLAB实现 在应用数学和物理学中,谱密度、功率谱密度和能量谱密度是一个用于信号的通用概念,它表示每赫兹的功率、每赫兹的能量这样的物理量纲。在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。信号功率谱的概念和应用是电子工程的基础,尤其是在电子通信系统中,例如无线电和微波通信、雷达以及相关系统。因此学习如何进行功率谱密度估计十分重要,借助于Matlab工具可以实现各种谱估计方法的模拟仿真并输出结果。下面对周期图法、修正周期图法、最大熵法、Levinson递推法和Burg法的功率谱密度估计方法进行程序设计及仿真并给出仿真结果。 以下程序运行平台:Matlab R2015a(8.5.0.197613) 一、周期图法谱估计程序 1、源程序 Fs=100000; %采样频率100kHz N=1024; %数据长度N=1024 n=0:N-1; t=n/Fs; xn=sin(2000*2*pi*t); %正弦波,f=2000Hz Y=awgn(xn,10); %加入信噪比为10db的高斯白噪声 subplot(2,1,1); plot(n,Y) title('信号') xlabel('时间');ylabel('幅度');

功率谱估计介绍(介绍了matlab函数)

功率谱估计介绍 谱估计在现代信号处理中是一个很重要的课题,涉及的问题很多。在这里,结合matlab,我做一个粗略介绍。功率谱估计可以分为经典谱估计方法与现代谱估计方法。经典谱估计中最简单的就是周期图法,又分为直接法与间接法。直接法先取N点数据的傅里叶变换(即频谱),然后取频谱与其共轭的乘积,就得到功率谱的估计;间接法先计算N点样本数据的自相关函数,然后取自相关函数的傅里叶变换,即得到功率谱的估计.都可以编程实现,很简单。在matlab中,周期图法可以用函数periodogram实现。 周期图法估计出的功率谱不够精细,分辨率比较低。因此需要对周期图法进行修正,可以将信号序列x(n)分为n个不相重叠的小段,分别用周期图法进行谱估计,然后将这n段数据估计的结果的平均值作为整段数据功率谱估计的结果。还可以将信号序列x(n)重叠分段,分别计算功率谱,再计算平均值作为整段数据的功率谱估计。 种称为分段平均周期图法,一般后者比前者效果好。加窗平均周期图法是对分段平均周期图法的改进,即在数据分段后,对每段数据加一个非矩形窗进行预处理,然后在按分段平均周期图法估计功率谱。相对于分段平均周期图法,加窗平均周期图法可以减小频率泄漏,增加频峰的宽度。welch法就是利用改进的平均周期图法估计估计随机信号的功率谱,它采用信号分段重叠,加窗,FFT 等技术来计算功率谱。与周期图法比较,welch法可以改善估计谱曲线的光滑性,大大提高谱估计的分辨率。matlab中,welch法用函数psd实现。调用格式如下: [Pxx,F] = PSD(X,NFFT,Fs,WINDOW,NOVERLAP) X:输入样本数据 NFFT:FFT点数 Fs:采样率 WINDOW:窗类型 NOVERLAP,重叠长度 现代谱估计主要针对经典谱估计分辨率低和方差性不好提出的,可以极大的提高估计的分辨率和平滑性。可以分为参数模型谱估计和非参数模型谱估计。参数模型谱估计有AR模型,MA模型,ARMA模型等;非参数模型谱估计有最小方差法和MUSIC法等。由于涉及的问题太多,这里不再详述,可以参考有关资料。matlab中,现代谱估计的很多方法都可以实现。music方法用pmusic命令实现;pburg函数利用burg法实现功率谱估计;pyulear函数利用yule-walker算法实现功率谱估计等等。 另外,sptool工具箱也具有功率谱估计的功能。窗口化的操作界面很方便,而且有多种方法可以选择 在海杂波抑制的研究中,对海杂波谱分析一定要用到谱估计理论,一定得花时间学好!

功率谱估计浅谈汇总

功率谱估计浅谈 摘要:介绍了几种常用的经典功率谱估计与现代功率谱估计的方法原理,并利用Matlab对随机信号进行功率谱估计,对两种方法做出比较,分别给出其优缺点。关键词:功率谱;功率谱估计;经典功率谱估计;现代功率谱估计 前言 功率谱估计是从频率分析随机信号的一种方法,一般分成两大类:一类是经典谱估计;另一类是现代谱估计。由于经典谱估计中将数据工作区以外的未知数据假设为零,这相当于数据加窗,导致分辨率降低和谱估计不稳定。现代谱估计则不再简单地将观察区外的未知数据假设为零,而是先将信号的观测数据估计模型参数,按照求模型输出功率的方法估计信号功率谱,回避了数据观测区以外的数据假设问题。 周期图、自相关法及其改进方法(Welch)为经典(非参数)谱估计方法, 其以相关和傅里叶变换为基础,对于长数据记录较适用,但无法根本解决频率分辨率低和谱估计稳定性的问题,特别是在数据记录很短的情况下,这一问题尤其突出。以随机过程的参数模型为基础的现代参数法功率谱估计具有更高的频率分辨率和更好的适应性,可实现信号检测或信噪分离,对语音、声纳雷达、电磁波及地震波等信号处理具有重要意义,并广泛应用于通信、自动控制、地球物理等领域。在现代参数法功率谱估计方法中,比较有效且实用的是AR模型法,Burg谱估计法,现代谱估计避免了计算相关,对短数据具有更强的适应性,从而弥补了经典谱估计法的不足,但其也有一些自身的缺陷。 下面就给出这两类谱估计的简单原理介绍与方法实现。 经典谱估计法 经典法是基于传统的傅里叶变换。本文主要介绍一种方法:周期图法。 周期图法 由于对信号做功率谱估计,需要用计算机实现,如果是连续信号,则需要变换为离散信号。下面讨论离散随机信号序列的功率谱问题。 连续时间随机信号的功率谱密度与自相关函数是一对傅里叶变换对,即:

经典功率谱估计

Classical Power Spectrum Estimation Abstract With the increasing need of spectrum, various computational methods and algorithms have been proposed in the literature. Keeping these views and facts of spectrum shaping capability by FRFT based windows we have proposed a closed form solution for Bartlett window in fractional domain. This may be useful for analysis of different upcoming generations of mobile communication in a better way which are based on OFDM technique. Moreover, it is useful for real-time processing of non-stationary signals. As per our best knowledge the closed form solution mentioned in this paper have not been reported in the literature till date.This paper focuses on classical period spectral estimation and moderu spectral estimation based on Burg algorithm. By comparing various algorithms in computational complexity and resolution, Burg algorithm was used to signal processing finally. Experimental and simulation results indicated that digital signal processing system would meet system requirements for measurement accuracy. Keywords periodogram spectral estimation ; Burg algorithm I. INTRODUCTION When we expand the frequency response of any digital filter by means of Fourier series, we get impulse response of the digital filter in the form of coefficients of the Fourier series. But the resultant filter is unrealizable and also its impulse response in infinite in duration. If we directly truncate this series to a finite number of points we have to face with well known Gibbs phenomenon, so we modify the Fourier coefficients by

现代信号处理经典的功率谱估计

《现代信号处理》 姓名:李建强 学号:201512172087 专业:电子科学与技术 作业内容:在MATLAB平台上对一个特定的平稳随机信号进行经典功率谱估计和现代功率谱估计的比较 一、前言 功率谱估计是信息学科中的研究热点,在过去的30多年里取得了飞速的发展。在许多工程应用中,它能给出被分析对象的能量随频率的分布情况。平滑周期图是一种计算简单的经典方法,它的主要特点是与任何模型参数无关,但估计出来的功率谱很难与信号的真是功率谱相匹配。与周期图方法不同,现代谱估计主要是针对经典谱估计(周期图和自相关法)的分辨率低和方差性能不好的问题而提出的。其使用参数化的模型,能够给出比周期图方法高得多的频率分辨率。其内容极其丰富,涉及的学科和领域也相当广泛,按是否有参数大致可分为参数模型估计和非参数模型估计,前者有AR模型、MA模型、ARMA模型、PRONY指数模型等;后者有最小方差方法、多分量的MUSIC方法等。 二、总体概述 本次实验分别使用经典的功率谱估计(如周期图法)与AR模型法对某一特定的平稳随机信号进行其功率谱估计,由图像得到信号的频率。利用MATLAB平台,直观形象地观察并比较二者估计效果的区别,以便于加深对功率谱估计的理解和掌握。 三、具体的实现步骤 1、经典法功率谱估计 周期图法又称直接法,它是从随机信号x(n)中截取N长的一段,把它视为能量有限的

真实功率谱的估计的一个抽样。 1.1、实现步骤 (1)、模拟系统输出参数x(n)=A*sin(2πf1*n)+B*sin(2πf2*n),包括序列长度N(128或512或1024,加性高斯白噪声(AGWN)功率一定,设置A,B,f1,f2,n的值。 (2)、应用周期图法(不加窗)对信号的功率谱密度进行估计,使用直接法在MATLAB 平台上进行编程实现。 (3)、输出相应波形图,进行观察,记录。 1.2 MATLAB源代码实现 clear all; %清除工作空间所有之前的变量 close all; %关闭之前的所有的figure clc; %清除命令行之前所有的文字 n=1:1:128; %设定采样点n=1-128 f1=0.2; %设定f1频率的值0.2 f2=0.213; %设定f2频率的值0.213 A=1; %取定第一个正弦函数的振幅 B=1; %取定第一个正弦函数的振幅 a=0; %设定相位为0 x1=A*sin(2*pi*f1*n+a)+B*sin(2*pi*f2*n+a); %定义x1函数,不添加高斯白噪声x2=awgn(x1,3); %在x1基础上添加加性高斯白噪声,信噪比为3,定义x2函数temp=0; %定义临时值,并规定初始值为0 temp=fft(x2,128); %对x2做快速傅里叶变换 pw1=abs(temp).^2/128; %对temp做经典功率估计

功率谱估计MATLAB实现

功率谱估计性能分析及其MATLAB实现 一、经典功率谱估计分类简介 1.间接法 根据维纳-辛钦定理,1958年Blackman和Turkey给出了这一方法的具体实现,即先由N个观察值,估计出自相关函数,求自相关函数傅里叶变换,以此变换结果作为对功率谱的估计。 2.直接法 直接法功率谱估计是间接法功率谱估计的一个特例,又称为周期图法,它是把随机信号的N 个观察值直接进行傅里叶变换,得到,然后取其幅值的平方,再除以N,作为对功率谱的估计。 3.改进的周期图法 将N点的观察值分成L个数据段,每段的数据为M,然后计算L个数据段的周期图的平均 ,作为功率谱的估计,以此来改善用N点观察数据直接计算的周期图的方差特性。根据分段方法的不同,又可以分为Welch法和Bartlett法。 Welch法 所分的数据段可以互相重叠,选用的数据窗可以是任意窗。 Bartlett法 所分的数据段互不重叠,选用的数据窗是矩形窗。

二、经典功率谱估计的性能比较 1.仿真结果 为了比较经典功率谱估计的性能,本文采用的信号是高斯白噪声加两个正弦信号,采样率Fs=1000Hz,两个正弦信号的频率分别为f1=200Hz,f2=210Hz。所用数据长度N=400. 仿真结果如下: Figure1(a)示出了待估计信号的时域波形;

Figure2(b)示出了用该数据段直接求出的周期图,所用的数据窗为矩形窗; Figure2(c)是用BT法(间接法)求出的功率谱曲线,对自相关函数用的平滑窗为矩形窗,长度M=128,数据没有加窗; Figure2(d)是用BT法(间接法)求出的功率谱曲线,对自相关函数用的平滑窗为Hamming 窗,长度M=64,数据没有加窗; Figure2(e)是用Welch平均法求出的功率谱曲线,每段数据的长度为64点,重叠32点,使用的Hamming窗; Figure2(f)是用Welch平均法求出的功率谱曲线,每段数据的长度为100点,重叠48点,使用的Hamming窗; 2.性能比较 1)直接法得到的功率谱分辨率最高,但是方差性能最差,功率谱起伏剧烈,容易出现 虚假谱峰; 2)间接法由于使用了平滑窗对直接法估计的功率谱进行了平滑,因此方差性能比直接 法好,功率谱比直接法估计的要平滑,但其分辨率比直接法低。 3)Welch平均周期图法是三种经典功率谱估计方法中方差性能最好的,估计的功率谱 也最为平滑,但这是以分辨率的下降及偏差的增大为代价的。 3.关于经典功率谱估计的总结 1)功率谱估计,不论是直接法还是间接法都可以用FFT快速计算,且物理概念明确,因而 仍是目前较常用的谱估计方法。 2)谱的分辨率较低,它正比于2π/N,N是所使用的数据长度。 3)方差性能不好,不是真实功率谱的一致估计,且N增大时,功率谱起伏加剧。 4)周期图的平滑和平均是和窗函数的使用紧密关联的,平滑和平均主要是用来改善周期图 的方差性能,但往往又减小了分辨率和增加了偏差,没有一个窗函数能使估计的功率谱在方差、偏差和分辨率各个方面都得到改善,因此使用窗函数只是改进估计质量的一个技巧问题,并不能从根本上解决问题。 三、AR模型功率谱估计 1.A R模型功率谱估计简介 AR模型功率谱估计是现代谱估计中最常用的一种方法,这是因为AR模型参数的精确估计可以用解一组线性方程(Yule-Walker方程)的方法求得。其核心思想是:将信号看成是一个p 阶AR过程,通过建立Yule-Walker方程求解AR模型的参数,从而得到功率谱的估计。 由于已知的仅仅是长度有限的观测数据,因此AR模型参数的求得,通常是首先通过某种算法求得自相关函数的估计值,进而求得AR模型参数的估计值。常用的几种AR模型参数提取方法有: 1)自相关法 假定观测数据区间之外的数据为0,在均方误差意义下使得数据的前向预测误差最小。

MATLAB中AR模型功率谱估计中AR阶次估计的实现

MATLAB中AR模型功率谱估计中AR阶次估计的实现 (最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正) (声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计) (按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE', 'AIC', 'MDL', 'CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。) ………………………………以上省略…………………………………………………………………… 假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下: 复制内容到剪贴板 代码: Y = x; Y(1:n) = []; m = N-n; X = [];% 构造系数矩阵 for i = 1:m for j = 1:n X(i,j) = xt(n+i-j); end end beta = inv(X'*X)*X'*Y'; beta即为用最小二乘法估计出的模型参数。 此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。 4.3.3 AR模型阶次的选择及实验设计

文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(Singular Value Decomposition, SVD)定阶法、最小预测定误差阶准则 (Final Prediction Error Criterion, FPE)、AIC定阶准则(Akaika’s Information theoretic Criterion, AIC)、MDL定阶准则以及CAT定阶准则。文献[28]中还介绍了一种BIC定阶准则。SVD方法是对Yule-Walker方 程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。 以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分): 复制内容到剪贴板 代码: for m = 1:N-1 …… % 判断是否达到所选定阶准则的要求 if strcmp(criterion,'FPE') objectfun(m+1) = (N+(m+1))/(N-(m+1))*E(m+1); elseif strcmp(criterion,'AIC') objectfun(m+1) = N*log(E(m+1))+2*(m+1); elseif strcmp(criterion,'MDL') objectfun(m+1) = N*log(E(m+1))+(m+1)*log(N); elseif strcmp(criterion,'CAT') for index = 1:m+1 temp = temp+(N-index)/(N*E(index)); end objectfun(m+1) = 1/N*temp-(N-(m+1))/(N*E(m+1)); end if objectfun(m+1) >= objectfun(m) orderpredict = m; break; end end orderpredict变量即为使用相应准则预测的AR模型阶次。

相关主题
文本预览
相关文档 最新文档