当前位置:文档之家› 高三物理第一轮复习 波粒二象性 新人教版

高三物理第一轮复习 波粒二象性 新人教版

高三物理第一轮复习 波粒二象性 新人教版
高三物理第一轮复习 波粒二象性 新人教版

对光的波粒二象性的理解与认识(毕业论文)

2013届本科毕业论文 对波粒二象性的理解与认识 学院:物理与电子工程学院 专业班级:物理 08-8班 学生姓名:努尔麦麦提·阿不都克热木指导老师:巴哈迪尔老师 答辩日期:2013年5月11日 新疆师范大学教务处

对波粒二象性的理解与认识 摘要:波粒二象性是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。现代观察认为微观粒子,无论是光子,电子以及其它所有基本粒子,在极微小的空间内作高速运动时有时显示出波动性(这时粒子性不显著),有时显示出粒子性(这时波动性不显著).这种在不同条件下分别表现为波动和粒子的性质,或者说既具有波动性又具有粒子性,就称为波粒二象性(简称象性)。 波粒二象性理论的提出在物理学的发展史上具有重要意义,本文从人们对光本性的认识出发,到把波粒二象性推广到一切物质,比较系统地阐述了波粒二象性理论的产生和发展过程。在这个过程中探索物理学与哲学的联系,并对其中所体现的哲学观点做了尝试性总结 关键词:波粒二象性,波动性,粒子性,电子衍射,德布罗意波

目录 1.引言 (4) 2.光的波粒二象性 (5) 2.1光的波动性. (5) 2.2光的粒子性. (6) 2.3光的波粒二象性. (8) 3电子衍射实验 (10) 3.1.电子衍射实验 (10) 3.2实验数据与处理. (14) 4.波粒二象性的意义和后期成果 (15) 5.结论 (16) 参考文献 (17) 致谢 (18)

引言 1801年,杨氏进行了著名的杨氏双缝干涉实验。实验所使用的白屏上明暗相间的黑白条纹证明了光的干涉现象,从而证明了光是一种波。 1882年德国物理学家施维尔德根据新的光波学说,对光通过光栅后的衍射现象进行了成功的解释。 1887年,德国科学家赫兹发现光电效应,光的粒子性再一次被证明! 二十世纪初,普朗克和爱因斯坦提出了光的量子学说 1905年,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖 在新的事实与理论面前,光的波动说与微粒说之争以“光具有波粒二象性”而落下了帷幕。即:光既是一种波又是一种粒子!光的波动说与微粒说之争从十七世纪初笛卡儿提出的两点假说开始,至二十世纪初以光的波粒二象性告终,前后共经历了三百多年的时间。牛顿、惠更斯、托马斯.杨、菲涅耳等多位著名的科学家成为这一论战双方的主辩手。 二十世纪来临之时,这个观点面临了一些挑战。1905年由阿尔伯特·爱因斯坦研究的光电效应展示了光粒子性的一面。随后,电子衍射被预言和证实了。这又展现了原来被认为是粒子的电子波动性的一面。这个波与粒子的困扰终于在二十世纪初由量子力学的建立所解决,即所谓波粒二象性。它提供了一个理论框架,使得任何物质在一定的环境下都能够表现出这两种性质。量子力学认为自然界所有的粒子,如光子、电子或是原子,都能用一个微分方程,如薛定谔方程来描述。这个方程的解即为波函数,它描述了粒子的状态。波函数具有叠加性,即,它们能够像波一样互相干涉和衍射。同时,波函数也被解释为描述粒子出现在特定位置的几率幅。这样,粒子性和波动性就统一在同一个解释中。

(完整版)光的波粒二象性教案

光的波粒二象性 教案示例 一、教学目标 1.知识目标 (1)了解微粒说的基本观点及对光学现象的解释和所遇到的问题. (2)了解波动说的基本观点及对光学现象的解释和所遇到的问题. (3)了解事物的连续性与分立性是相对的,了解光既有波动性,又有粒子性. (4)了解光是一种概率波. 2.能力目标 培养学生对问题的分析和解决能力,初步建立光与实物粒子的波粒二象性以及用概率描述粒子运动的观念. 3.情感目标 理解人类对光的本性的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程.根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说.人类就是这样通过光的行为,经过分析和研究,逐渐认识光的本性的. 二、重点、难点分析 1、这一章的内容,贯穿一条主线——人类对光的本性的认识的发展过程.结合各节内容,适当穿插物理学史材料是必要的.这种做法不但可使课堂教学主动活泼,内容丰富,还可以对学生进行唯物辩证思想教育.本节就课本内容,十分简单,学生学起来十分枯燥.课本所提到的内容,都是结论性的,加入一些史料不仅可能而且必要. 2、本节中学生初步接触量子化、二象性、概率波等概念,由于没有直接的生活经验,所以在教学中要重点让学生体会这些概念. 三、主要教学过程 光学现象是与人类的生产和日常生活密切相关的.人类在对光学现象、规律的研究的同时,也开始了对光本性的探究. 到了17世纪,人类对光的本性的认识逐渐形成了两种学说.

(一)光的微粒说 一般,人们都认为牛顿是微粒说的代表,牛顿于1675年曾提出:“光是一群难以想象的细微而迅速运动的大小不同的粒子”,这些粒子被发光体“一个接一个地发射出来”.用这样的观点,解释光的直进性、影的形成等现象是十分方便的. 在解释光的反射和折射现象时,同样十分简便.当光射到两种介质的界面时,要发生反射和折射.在解释反射现象时,只要假设光的微粒在与介质作用时,其相互作用,使微粒的速度的竖直分量方向变化,但大小不变;水平分量的大小和方向均不发生变化(因为在这一方向上没有相互作用),就可以准确地得出光在反射时,反射角等于入射角这一与实验事实吻合的结论. 说到折射,笛卡儿曾用类似的假设,成功地得出了入射角正弦与折射角正弦之比为一常数的结论.但当光从光疏介质射向光密介质时,发生的是近法线折射,即入射角大,折射角小.这时,必须假设光在光密介质的传播速度较光在光疏介质中的传播速度大才行. 一束光入射到两种介质界面时,既有反射,又有折射.何种情况发生反射,何种情况下又发生折射呢?微粒说在解释这一点时遇到了很大的困难.为此,牛顿提出了著名的“猝发理论”.他提出:“每一条光线在通过任何折射面时,便处于某种为时短暂的过渡性结构和状态之中.在光线的前进过程中,这种状态每隔相等的间隔(等时或等距)内就复发一次,并使光线在它每一次复发时,容易透过下一个折射面,而在它(相继)两次复发之间容易被这个面所反射”,“我将把任何一条光线返回到倾向于反射(的状态)称它为‘容易反射的猝发’,而把它返回到倾向于透射(的状态)称它为‘容易透射的猝发’,并且把每一次返回和下一次返回之间所经过的距离称它为‘猝发的间隔’”.如果说“猝发理论”还能解释反射和折射的话,那么,以微粒说解释两束光相遇后,为何仍能沿原方向传播这一常见的现象,微粒说则完全无能为力了. (二)光的波动说 关于光的本性,当时还存在另一种观点,即光的波动说.认为光是某种振动,以波的形式向四周围传播.其代表人物是荷兰物理学家惠更斯.他认为,光是由发光体的微小粒子的振动在弥漫于一切地方的“以太”介质中传播过程,而不是像微粒说所设想的像子弹和箭那样的运动.他指出:“假如注意到光线向各个方向以极高的速度传播,以及光线从不同的地点甚至是完全相反的地方发出时,光射线在传播中一条光线穿过另一条光线而相互毫不影响,就能完全明白这一点:当我们看到发光的物体时,决不可能是由于从它所发生的物质,像穿过空气的子弹和箭一样,通过物质迁移所引起的”.他把光比作在水面上投入石块时产生的同心圆状波纹.发光体中的每一个微粒把振动,通过“以太”这种介质向周围传播,发出一组组同心的球面波.波面上的每一点,又可以此点为中心,再向外传播子波.当然,这样的观点解释同时发生反射和折射,比微粒说的“猝发理论”方便得多,以水波为例,水波在传播时,反射与折射可以同时发生.一列水波在与另一列水波相遇时,可以毫无影响的相互通过.

第十七章波粒二象性详解

第十七章波粒二象性

Ⅱ学习指导 一、本章知识结构 二、本章重点、难点分析 1.黑体和黑体辐射 如果某种物质能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。 (1)现实生活中不存在理想的黑体,实际的物体都能辐射红外线(电磁波),也都能吸收和反射红外线,绝对黑体是理想化模型。 (2)黑体看上去不一定是“黑”的,有些可看做暗黑体的物体由于自身较强的辐射,看起来还会很明亮,如炼钢炉口上的小孔、一些发光体也被当作黑体来处理。 (3)黑体辐射的特性:黑体辐射电磁波的强度按波长的分布只与黑体的温度有关。 (4)黑体辐射实验规律。 从下页右图中可以看出,随温度的升高,一方面,各种波长的辐射强度都在增加;另一方面辐射强度的极大值向波长较短的方向移动。

2.能量的量子化 宏观世界的能量是连续的,微观世界里的能量是不连续的,不是任意值,是量子化的,或者说是分立的。 1900年,德国物理学家普朗克提出能量量子化假说:振动着的带电微粒的能量只能是某一最小能量ε的整数倍,最小能量称为能量子 ε=h ν 普朗克常量:h =6.626×10- 34J ·s 3.光电效应的规律 (1)入射光越强,饱和光电流就越大,也就是单位时间内发射的光电子数越多。即光电流强度与入射光的强度成正比。 光电效应规律中“光电流的强度”指的是光电流的饱和值。因为光电流未达到饱和值之前,其大小不仅与入射光的强度有关,还与光电管两极间的电压有关。只有在光电流达到饱和值以后才和入射光的强度成正比。 (2)射出的光电子存在最大初动能,最大初动能与光强无关,只随光的频率的增大而增大。 遏止电压:使光电流减小到零的反向电压U C 2 1 2c e v m =eU c 遏止电压的存在说明光电子具有一定的初速度,遏止电压随入射光的频率改变,与光强无关。 (3)任何金属都存在截止频率,用超过截止频率的光照射这种金属才能产生光电效应,低于截止频率的光照射,无论光有多强,照射时间有多长,都不会产生光电效应。 (4)光电效应的瞬时性,产生光电效应的时间不会超过10- 9s 。 例1 光电效应中,从同一金属逸出的电子动能的最大值 A .只跟入射光的频率有关 B .只跟入射光的强度有关 C .跟入射光的频率和强度都有关 D .除跟入射光的频率和强度有关外,还和光照时间有关 说明:根据光电效应的规律可知,光电子最大初动能E k 值取决于入射光的频率ν,故选项A 正确。

达标作业 第十七章 波粒二象性

第十七章 波粒二象性 一、能量量子化 1.以下宏观概念,哪些是“量子化”的 ( ) A. 木棒的长度 B .物体的质量 C .物体的动量 D .学生的个数 2.红、橙、黄、绿四种单色光中,光子能量最小的是 ( ) A .红光 B .橙光 C .黄光 D .绿光 3.“约瑟夫森结”由超导体和绝缘体制成。若在结两端加恒定电压U ,则它会辐射频率为v 的电磁波,且与U 成正比,即v = kU 。已知比例系数k 仅与元电荷e 的2倍和普朗克常量h 有关。你可能不了解此现象为机理,但仍可运用物理学中常用的方法,在下列选项中,推理判断比例系数k 的值可能为 ( ) A . e h 2 B .h e 2 C .2eh D .eh 21 4.煤烟很接近黑体,其吸收率为99%,即投射到煤烟的辐射能量几乎全部被吸收,若把一 定量的煤烟置于阳光照射下,问它的温度是否一直上升?

二、光的粒子性 1.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针张开了一个角度,如图所示,这时 ( ) A.锌板带正电,指针带负电 B.锌板带正电,指针带正电 C.锌板带负电,指针带负电 D.锌板带负电,指针带正电 2.(多选)两种单色光a和b,a光照射某金属时有光电子逸出,b光照射该金属时没有光 电子逸出,则 ( ) A.在真空中,a光的传播速度较大 B.在水中,a光的波长较小 C.在真空中,b光光子的能量较大 D.在水中,b光的折射率较小 3.(多选)如图是光电效应中光电子的最大初动能E km与入射光频率ν的关系图线.从图可知( ) A.E km与ν成正比 B.入射光频率必须大于或等于极限频率ν0时,才能产生光电效应 C.对同一种金属而言,E km仅与ν有关 D.E km与入射光强度成正比 4.某单色光照射某金属时不能产生光电效应,则下述措施中可能使金属产生光电效应的是 ( ) A.延长光照时间 B.增大光的强度 C.换用波长较短的光照射 D.换用频率较低的光照射 5.如图所示,当电键S断开时,用光子能量为2.5eV的一束光照射阴极P,发现电流表读数不为零。合上电键,调节滑动变阻器,发现当电压表读数小于0.60V时,电流表读数仍不为零;当电压表读数大于或等于0.60V时,电流表读数为零。 (1)求此时光电子的最大初动能的大小。 (2)求该阴极材料的逸出功。

人教版高二物理选修3-5第十七章波粒二象性精选习题(含答案)--资料

人教版高二物理选修3-5第十七章波粒二象性精选习题(含答案) 1.关于光电效应有如下几种叙述,其中叙述不正确的是() A.对任何一种金属都存在一个“极限频率”,入射光的频率必须大于这个频率,才能产生光电效应B.光电流强度与入射光强度的有关 C.用不可见光照射金属一定比可见光照射金属产生的光电子的初动能要大 D.光电效应几乎是瞬时发生的 2.(多选题)如图所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线,(直线与横轴的交点坐标4.27,与纵轴交点坐标0.5),由图可知() A.该金属的截止频率为4.27×1014Hz B.该金属的截止频率为5.5×1014Hz C.该图线的斜率表示普朗克常量 D.该金属的逸出功为0.5eV 3.通过学习波粒二象性的内容,你认为下列说法符合事实的是() A.宏观物体的物质波波长非常小,极易观察到它的波动性 B.光和电子、质子等实物粒子都具有波粒二象性 C.康普顿效应中光子与静止的电子发生相互作用后,光子的波长变小了 D.对于任何一种金属都存在一个“最大波长”,入射光的波长必须大于这个波长,才能产生光电效应 4.氢原子的能级如图所示.氢原子从n=4能级直接向n=1能级跃迁所放出的光 子,恰能使某金属产生光电效应,下列判断正确的是() A.氢原子辐射出光子后,氢原子能量变大 =12.75eV B.该金属的逸出功W o C.用一群处于n=3能级的氢原子向低能级跃迁时所发出的光照射该金属,该金 属仍有光电子逸出 D.氢原子处于n=1能级时,其核外电子在最靠近原子核的轨道上运动 5.用一束紫外线照射某金属时不能产生光电效应,可能使该金属产生光电效应的措施是() A.改用红光照射B.改用X射线照射 C.改用强度更大的原紫外线照射D.延长原紫外线的照射时间 6.(多选题)一含有光电管的电路如图甲所示,乙图是用a、b、c光照射光电管得到的I﹣U图线,U c1、U 表示截止电压,下列说法正确的是() c2 A.甲图中光电管得到的电压为正向电压 B.a、b光的波长相等 C.a、c光的波长相等 D.a、c光的光强相等 7.(单选)一束绿光照射某金属发生了光电效应,对此,以下

第十七章 波粒二象性 复习教案讲课教案

第十七章 波粒二象性 复习教案 17.1 能量量子化 知识与技能 (1)了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射。 (2)了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系。 (3)了解能量子的概念。 教学重点:能量子的概念 教学难点:黑体辐射的实验规律 教学过程: 1、黑体与黑体辐射 (1)热辐射现象 固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。所辐射电磁波的特征与温度有关。 (2)黑体 概念:能全部吸收各种波长的电磁波而不发生反射的物体,称为绝对黑体,简称黑体。 2、黑体辐射的实验规律 黑体热辐射的强度与波长的关系:随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。 提出1:怎样解释黑体辐射的实验规律呢? 在新的理论诞生之前,人们很自然地要依据热力学和电磁学规律来解释。德国物理学家维恩和英国物理学家瑞利分别提出了辐射强度按波长分布的理论公式。结果导致理论与实验规律不符,甚至得出了非常荒谬的结论,当时被称为“紫外灾难”。(瑞利--金斯线,) 3、能量子: 1900年,德国物理学家普朗克提出能量量子化假说:辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。相应的能量是某一最小能量ε(称为能量子)的整数倍,即:ε, 1ε,2ε,3ε,... n ε,n 为正整数,称为量子数。对于频率为ν的谐振子最小能量为: 0 1 2 3 4 6 (μ e 实验结果

光的波粒二象性

光的波粒二象性 作为被列入世界上十大经典物理实验之一的双缝实验,让很多物理学家和科学家们伤透脑筋。双缝实验是一种光学实验,大家一起往下看吧。 在量子力学里,双缝实验是一种演示光子或电子等等微观物体的波动性与粒子性的实验。双缝实验是一种“双路径实验”。在这种更广义的实验里,微观物体可以同时通过两条路径或通过其中任意一条路径,从初始点抵达最终点。 这两条路径的程差促使描述微观物体物理行为的量子态发生相移,因此产生干涉现象。另一种常见的双路径实验是马赫-曾德尔干涉仪实验。双缝实验还被列入了世界十大经典物理实验之中,但是有人却认为双缝实验十分的难以理解。如果电子是互不干涉地运动,穿过双缝落到黑板上是两道痕迹。如果电子是以波的形式运动,由于波之间存在干涉,穿过双缝落到黑板上是一道道痕迹。一开始实验表明电子以波的形式运动。即使一个个电子发射,黑板上还是一道道痕迹。于是科学家想知道为什么一个个电子发射也会有波的现象,于是将高速摄像机对准双缝以便观察。重点来了:当想进一步观察时,粒子却是是互不干涉地运动,穿过双缝落到黑板上是两道痕迹!!!双缝实验,著名光学实验,在1807年,托马斯·杨总结出版了他的《自然哲学讲义》,里面综合整理了他在光学方面的工作,并在里面第一次描述了双缝实验:把一支蜡烛放在一张开了一个小孔的纸前面,这样就形成了一个点光源(从一个点发出的光源)。现在在纸后面再放一张纸,不同的是第二张纸上开了两道平行的狭缝。从小孔中射出的光穿过两道狭缝投到屏幕上,就会形成一系列明、暗交替的条纹,这就是现在众人皆知的双缝干涉条纹。 试验本身没什么问题,证明了光有波粒二象性,但是科学家们想观察清楚如何会这样,于是他们在微观层面上来观察,架设高速摄像机,观察光子是如何一个一个通过缝隙形成波干涉的,这时候神奇的事情出现了,光子波的特性消失了!又变成人类最容易理解的粒子,只出现了两条条纹。这才引出了超级可怕和诡异的电子双缝干涉实验和后来石破天惊的的“延迟选择实验”,给整个人类带来了前所未有的思想冲击。单光子双缝干涉实验现在有一种仪器,每次只发射出一个光子,这时如果遮板上仍然有两个缝隙A和B(遮板与上述传统实验一样)。依照传统理论,该光子每次有且仅有以下三种情况中的一种:被遮板挡住、通过A缝、通过B缝。 因为要观察投射面的光斑分布,所以不必考虑第一种情况。也就是说,只要光子通过了遮板,要么从A缝通过,要么从B缝通过。按照这种传统理论推导,在投射面会形

人教版高中物理选修3-5第17章《光的波粒二象性》知识点总结

第十七章:波粒二象性 一、黑体辐射规律 1、黑体:只吸收外来电磁波而不反射的理想物体 2、黑体辐射的特点 黑体的辐射强度按波长分布只与温度有关,与物体的材料和表面形 状无关(一般物体的辐射强度按波长分布除与温度有关外,还与物 体的材料、表面形状有关); 3、黑体辐射规律: ① 随着温度的升高,任意波长的辐射强度都加强 ② 随着温度的升高,辐射强度的极大值向着波长减小的方向进行; 4、普朗克的量子说: 透过黑体辐射规律,普朗克认为:电磁皮的辐射和吸收,是不连续的,而是一份一份地进行的,每份叫一个能量子,能量为γεh =。爱因斯坦受其启发,提出了光子说:光的传播和吸收也是一份一份地进行的,每一份叫一个光子,其能量为νεh = 二、光电效应:说明了光具有粒子性,同时说明了光子具有能量 1、光电效应现象 紫外光照射锌板,锌板的电子获得足够的光子能量,挣脱金 属正离子引力,脱离锌板成为光电子;锌板因失去电子而带上 正电,于是与锌板相连的验电器也带上正电,金属箔张开。 2、实验原理电路图

3、规律: ① 存在饱和电流 饱和电流:在光电管两端加正向电压时,单位时间到达阳极A 的光 电子数增多,光电流越大;但当逸出的光电子全部到达阳极后,再 增加正向电压,光电流就达到最大饱和值,称为饱和电流。 ② 存在遏止电压 在光电管两端加反向电压时,单位时间内到达阳极A 的光电子数减少,光电流减小;当反射电压达到某一值U C 时,光电流减小为零,U C 就叫“遏止电压”。 ③ 存在截止频率 a 、 截止频率的定义:任何一种金属都有一个极限频率ν0,入射光的频率低于 “极限频率”ν0时,无论入射光多强,都不能发生光电效应,这个极限频率称为 截止频率。 b 、“逸出功”定义:电子从金属表面脱离金属所需克服金属正离子的引力所做的最小功。 要发生光电效应,入射光的能量(h ν)要大于 “逸出功(W )” 即: 00W hv = ④ 光电效应的“瞬时性”——因光电效应发生的时间,即为一个光子与一个电子能量交换 的时间,所以不管光强度如何,发生光电效应的时间极短,不超过10-9 s 。 4、爱因斯坦的光电效应方程: 光电子的最大初动能等于入射光光子的能量减逸出功 即:W h E K -=ν 可见“光电子的最大初动能”与入射光的强度无关,只与入射光频率有关,图象如下图

2021年人教版高中选修3-5-《第十七章波粒二象性》章末检测含答案解析

【最新】人教版高中选修3-5-《第十七章波粒二象性》章末 检测 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.能正确解释黑体辐射实验规律的是( ) A .能量的连续经典理论 B .普朗克提出的能量量子化理论 C .牛顿提出的能量微粒说 D .以上说法均不正确 2.关于物质波,以下观点不正确的是( ) A .只要是运动着的物体,不论是宏观物体还是微观粒子,都有相应的波与之对应,这就是物质波 B .只有运动着的微观粒子才有物质波,对于宏观物体,不论其是否运动,都没有相对应的物质波 C .由于宏观物体的德布罗意波长太小,所以无法观察到它们的波动性 D .电子束照射到金属晶体上得到了电子束的衍射图样,从而证实了德布罗意的假设是正确的 3.爱因斯坦提出了光量子概念并成功地解释光电效应的规律而获得1921年的诺贝尔物理学奖.某种金属逸出光电子的最大初动能E km 与入射光频率ν的关系如图所示,其中ν0为极限频率.从图中可以确定的是() A .逸出功与ν有关 B .E km 与入射光强度成正比 C .ν<ν0时,会逸出光电子 D .图中直线的斜率与普朗克常量有关 4.如图甲所示为研究某金属光电效应的电路图,图乙为采用不同频率的光照射时遏止电压c U 与入射光频率v 的关系图,图中频率1v 、2v ,遏制电压1C U 、2C U 及电子的电荷量e 均为已知,则下列说法正确的是( )

A .普朗克常量()2121C C e U U h v v -= - B .普朗克常量()2121 C C e U U h v v += - C .该金属的截止频率为2112 021C C C C U v U v v U U += - D .该金属的截止频率为1221 021 C C C C U v U v v U U += - 5.如图甲所示为研究光电效应中入射光的频率、强弱与光电子发射情况的实验电路.阴极K 受到光照时可以发射光电子,电源正负极可以对调.实验中得到如图乙所示的实验规律,下列表述错误的是( ) A .在光照条件不变的情况下,随着所加电压的增大,光电流趋于一个饱和值 B .在光的频率不变的情况下,入射光越强饱和电流越大 C .一定频率的光照射光电管,不论光的强弱如何,遏止电压不变 D .蓝光的遏止电压大于黄光的遏止电压是因为蓝光强度大于黄光强度 6.用某单色光照射金属表面,金属表面有光电子飞出.若改变照射光的频率或改变照射光的强度,下列说法正确的是( ) A .若仅减小频率,可能不再有光电子飞出 B .若仅增大频率,光电子数目会随之增加 C .若仅减小强度,光电子飞出的时间可能会变短 D .若仅减小强度,则不再有光电子飞出

光的波粒二象性

光的波粒二象性 ━━本章总结 一部光学说的发展史,就是人类认识光本性的认识史。让我们再次作一个简略的回顾,肯定比第一课有更深刻的理解。 光的干涉、衍射有力地证明光是一种波。但它是一种什么性质的波泥? 两种不同的光波理论 1、惠更斯的波动说──把光看作是某种在介质中传播的波。这是一种典型的机械波观念,需借助介质,且波是连续的。 2、麦克斯韦的电磁说──把光波看作是一种电磁波。 两种观点的争论焦点是:光波传播是否需要介质?⑴、寻找这种介质“以太”的彻底失败(本来无一物,何来自寻烦?)。⑵、电磁波本身就是物质,自身携带能量,无须借助介质传播。⑶、但还有另一个主要问题还未解决,光波是否就是电磁波?麦克斯韦的电磁场理论证明了电磁场的速度等于光速,并由此看到了两者间的联系。赫兹又从实验得到了证实,光的行为与电磁波的行为一致,从而在理论和实验上证明了光确实是一种电磁波。它揭露了光现象的电磁本质,把光、电、磁统一起来,加深了我们对物质世界的联系和认识。光的电磁说是对光的波动说的扬弃,保留了波的特质,抛弃了它机械振动、传播连续的成份。 光电效应现象对光的电磁说提出了严重的挑战。使我们不得不再回到微粒说方面来。 3、牛顿的微说──把光看作沿直线传播的粒子流。它带有明显的机械运动的痕迹,也无法解释光的干涉、衍射这些现象。但这个学说中仍含有其合理的成份,这就是光的粒子性。 4、爱恩斯坦抛弃了牛顿微说中机械运动的成份,吸收了(对方──波动说)电磁辐射量子化的研究成果,把电磁辐射量子化转变、发展成为光行为的量子化,即光子说,重新恢复了光的粒子性的权威。 但是,光子的物质性、不连续性并非牛顿微粒说意义下的实物粒子,光子没有静止质量,就个别光子而言,它与宏观质点的运动不同,没有一定的轨道,因而无法对个别光子的行为作出“科学的”预测,它的行为不服从牛顿经典力学。光子说使光的粒子性有了新质的内容。 5、在对光本性的认识过程中,惠更斯的波动说和牛顿的微粒说是相互排斥、相互对立的。后来发展成为光的电磁说和光子说。人们发现,这两种相互对立的学说彼此都含有对方的成份,无法划清界线,更无法绝对独立,谁都不能说自己就是客观真理。光学说发展到此,已无法逃避辩证的综合。中国有句古话,叫做两极相通。人们终于明白,光的波动性和粒子性,不过是光这一客观事物矛盾对立的两个方面,它们共存于光这个统一体中,是矛盾的对立统一,彼此以对方存在为前提,这就是光的波粒二象性。它排除了非此即彼的形而上学观念(这正是形式逻辑的重大特征!),建立了亦此亦彼的辩证观念,即在一定条件下承认非此即彼,在另一条件下又承认亦此亦彼。对光来说,一定条件下(大量光子、传播过程、低频率光)波动性上升为矛盾主要方面,则波动性显著;而在另一条件下(个别光子、光与物质作用、高频率光子)粒子性上升为矛盾主要方面,则粒子性显著。所谓彼一时也,此一时也,在微观世界里也存在着。在宏观物体来说不可思议的波粒二象性,在微观世界里却是真实的图景。矛盾啊!然而是事实。只有辩证思维才可以把握。恩格斯曾经指出:“常识在它自己的日常活动范围内是极可尊敬的东西,但它一跨入广阔的研究领域,就会遇到惊人的变故。形而上学的思维方式,虽然在相当广泛、各依对象的性质而大小不同的领域是正当的,甚至是必要的,可是它每一次迟早都要达

二年级语文思维导图

二年级语文思维导图 思维导图是一种图像式思维工具。它可以使知识结构条理更清晰,增强学生的超强记忆能力及立体思维能力,让学习变成一件轻松快乐的事情。而语文更是记忆根理解性东西,二年级的语文更是开启语文之路的大门,这时可以利用二年级语文思维导图来帮助学习。“授人以鱼不如授人以渔”我们现在要做的就是把二年级语文思维导图教给孩子,让孩子利用二年级语文思维导图的学习方法更好的去学习。 语文能力是一种认知能力,即理解所呈现的口头语言和书面语言的内容并用口头语和书面语表情达意的能力,在小学语文二年级教学中,主要是指口头语和书面语,阅读和习作,教学、自学和互学,一般和特殊等能力的和谐发展。而二年级语文思维导图是一个直观、简单、有效的思维工具。它依据全脑的概念,按照大脑自身的规律进行思考,全面调动左脑的逻辑、顺序、条例、文字、数字以及右脑的图像、想象、颜色、空间、整体思维,以一种与众不同的独特的有效的方法驾驭整个范围的皮层技巧——词汇、图形、数字、逻辑、节奏、色彩空间感,利于思考、探究和联想,能够在充分激发学生学习兴趣的同时,极大地发掘人的记忆、创造、身体、语言、精神、社交等各方面的潜能,全方位地锻炼和提高学生的语文学习能力。在基础教育阶段,语文能力的学习基本遵循着“字-词-句-篇”这一学习规律。将二年级语文思维导图引入语文教学,将有助于学生理顺这一学习规律,循序渐进地开展学习,引导学生在教师的帮助下逐渐学会自己思考和解决问题,形成并不断提高自身的语文能力。 传统的词语教学只是让学生围绕着单个生字进行组词,不够形象直观,很难让学生保持兴趣,而二年级语文思维导图强调学生思想发展过程的多向性、综

2017_2018学年高中物理第十七章波粒二象性本章优化总结教师用书

第十七章波粒二象性 专题一光电效应规律及其应用 有关光电效应的问题主要有两个方面:一是关于光电效应现象的判断,二是运用光电效应方程进行计算.求解光电效应问题的关键在于掌握光电效应规律,明确各概念之间的决定关系,准确把握它们的内在联系. 1.决定关系及联系 2.“光电子的动能”可以是介于0~E km的任意值,只有从金属表面逸出的光电子才具有最大初动能,且随入射光频率增大而增大. 3.光电效应是单个光子和单个电子之间的相互作用产生的,金属中的某个电子只能吸收一个光子的能量,只有当电子吸收的能量足够克服原子核的引力而逸出时,才能产生光电效应. 4.入射光强度指的是单位时间内入射到金属表面单位面积上的光子的总能量,在入射光频率ν不变时,光强正比于单位时间内照到金属表面单位面积上的光子数,但若入射光频率不同,即使光强相同,单位时间内照到金属表面单位面积上的光子数也不相同,因而从金属表面逸出的光电子数也不相同(形成的光电流也不相同). 小明用金属铷为阴极的光电管观测光电效应现象,实验装置示意图如图甲所示.已知普朗克常量h=6.63×10-34 J·s. (1)图甲中电极A为光电管的________(填“阴极”或“阳极”); (2)实验中测得铷的遏止电压U c与入射光频率ν之间的关系如图乙所示,则铷的截止频率νc=________Hz,逸出功W0=________J; (3)如果实验中入射光的频率ν=7.00×1014 Hz,则产生的光电子的最大初动能E k=________J. [解析] (1)电极A为光电管的阳极. (2)由U c-ν图象知,

铷的截止频率为νc=5.15×1014 Hz. 由W0=hν0得W0=3.41×10-19 J. (3)由光电效应方程得: E k=hν-W0=6.63×10-34×7.00×1014 J-3.41×10-19 J=1.23×10-19 J. [答案] (1)阳极(2)5.15×1014 Hz 3.41×10-19 (3)1.23×10-19 J 1.(多选)(2016·河北保定模拟)如图所示,这是一个研究光电效应的电路图,下列叙述中正确的是( ) A.只调换电源的极性,移动滑片P,当电流表示数为零时,电压表示数为遏止电压U0的数值 B.保持光照条件不变,滑片P向右滑动的过程中,电流表示数将一直增大 C.不改变光束颜色和电路,增大入射光束强度,电流表示数会增大 D.阴极K需要预热,光束照射后需要一定的时间才会有光电流 解析:选BC.当只调换电源的极性时,电子从K到A减速运动,到A恰好速度为零时对应电压为遏止电压,所以A项错;当其他条件不变,P向右滑动,加在光电管两端的电压增 加,光电子运动更快,由I=q t 得电流表读数变大,B项正确.只改变光束强度时,单位时间 内光电子数变多,电流表示数变大,C项正确.因为光电效应的发生是瞬间的,阴极K不需要预热,所以D项错. 专题二对光的波粒二象性的进一步认识 1.大量光子产生的效果显示出波动性,比如干涉、衍射现象中,如果用强光照射,在光屏上立刻出现了干涉、衍射条纹,波动性体现了出来;个别光子产生的效果显示出粒子性,如果用微弱的光照射,在屏上就只能观察到一些分布毫无规律的光点,粒子性充分体现;但是如果微弱的光在照射时间加长的情况下,在感光底片上的光点分布又会出现一定的规律性,倾向于干涉、衍射的分布规律.这些实验为人们认识光的波粒二象性提供了良好的依据.2.光子和电子、质子等实物粒子一样,具有能量和动量,和其他物质相互作用时,粒子性起主导作用. 3.光子的能量与其对应的频率成正比,而频率是波动性特征的物理量,因此E=hν,揭示了光的粒子性和波动性之间的密切联系.

第十七章 波粒二象性本章单元复习

NO.7 第十七章 波粒二象性 第六节 本章单元复习 能量最子化:振子只能一份一份地按不连续方式辐射或吸收能量,每一份能量大小为νεh = 黑体辐射的规律:随温度的升高①各种波长的辐射强度都在增加;②温度升高时,辐射强度的最大值向短波方向移动。 光电效应的实验规律:①瞬时性;②极限频率;③最大初动能与入射光频率有关;④出射光子数与光强度成正比 康普顿效应:X 射线通过物质散射的实验时,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,其波长的改变量与散射角有关,而与入射线波长和散射物质都无关。 光的量子性:爱因斯坦于1905年提出,在空间传播的光也不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量E =h ν。 粒子波动性:德布罗意提出假设:与光子一样,静止质量不为零的实物粒子具有波动性。①实物粒子的质量为m ,速度为v ,其德布罗意波长可以表示为:mv h p h ==λ②粒子的能量也可以用与光子能量相同的形式表示:hv =ε 电子衍射实验 概率波:1926年,德国物 理学玻恩提出了概率波,认为个别微观粒子在何处出现有一定的偶然性,但是大量粒子在空间何处出现的空间分布却服从一定的统计规律。 不确定关系:微观粒子的坐标和动量不能同时..测准。理论分析计算可得: π 4h p x ≥ ?? 本章知识网络

一、黑体辐射与能量量子化假设 要点回顾: 1、一般物体热辐射的理解。 2、黑体辐射的规律。 3、普朗克能量最子化假设 典例解析: 例1、黑体辐射的实验规律如图所示,由图可知( ) A. T 1>T 2 B. T 1

第十七章 波粒二象性

第十七章波粒二象性 第一节能量量子化第二节光电效应 [教学目标] 一、知识目标:1)了解热辐射、黑体、黑体辐射的概念;知道黑体辐射的实验规律; 2)知道普朗克量子假说;3)知道光电效应现象和规律;2)知道极限频率,知道光子说;了解光电方程及逸出功; 二、能力目标:能运用光子说解释光电效应,能从能量及其转化的角度理解和应用光电效应表现出的基本规律。 三、情感目标:培养学生从理论与实验结合的高度,运用抽象思维和严密的逻辑推理阐述光现象,并运用有关原理验证确保思维的正确性;从中体会全面地认识物理问题要有充分的理论和实验依据。 [重点难点]本节的重点:光电效应现象及光电效应的主要规律——极限频率的存在及物理意义、光电子的初动能与入射光强度无关以及光电效应的瞬时性;爱因斯坦的光子说及光子能量的计算。 [教学内容] 一、能量量子化: 1、黑体与黑体辐射: 2、黑体辐射的实验规律: 3、普朗克能量子假说: 二、光电效应: 1、光电效应实验及光电效应规律: 2、极限频率: 3、光子说及光电方程: 4、光电管: 5、光电效应基本规律的再认识(从能量观点的理解和应用) [课堂讲练] 1、在演示光电效应的实验中,原来不带电的锌板与灵敏验电器相连,用弧光灯照射锌板时,验电的指针就张开一个角度,如图示,这时:() A)锌板带正电,指针带负电; B)锌板带正电,指针带正电;

C)锌板带负电,指针带正电; D)锌板带负电,指针带负电;验电器锌片弧光灯 2、用绿光照射一金属能产生光电效应,欲使光电子从阴极逸出的最大初动能增大,应()A)改用红光照射;B)增大绿光强度;C)增大光电管的加速电压D)改用紫光照射。 3、对于任何一种金属,产生光电效应必须满足的条件是:() A)入射光的强度大于某一极限强度;B)入射光的波长大于某一极限波长; C)入射光的照射时间大于某一极限时间;D)入射光的频率大于某一极限频率。 4、用同一束单色光,在同一条件下,先后照射锌片和银片,都能产生光电效应,对于这两个过程,下列四个物理量中,一定相同的是,可能相同的是,一定不相同的是。 A)照射光子的能量;B)光电子的逸出功; C)光电子的动能;D)光电子的最大初速度。 5、当某种单色光照射到金属表面时,金属表面有光电子逸出,如果光的强度减弱,频率不变,则:() A)光的强度减弱到某一最低数值时,就没有光子逸出; B)单位时间内逸出的光电子数减少; C)逸出光电子的最大初动能减少; D)单位时间内逸出的光电子数和光电子的最大初动能都要减小。 6、关于光子说,正确的是()A)在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光子; B)光子的能量由光的强度决定,光强大,每一份光子能量就大; C)光子的能量由光的频率决定,其能量与它的频率成正比; D)光子可以被电场加速。 7、某介质中光子的能量是E,波长是λ,则此介质的折射率是(C为光在真空中传播速度)() A)λE / h B)λE / ch C)c h /λE D)h /λE 8、一个功率为P=1W的光源,沿各个方向均匀辐射,照射到逸出功为2.5eV的钠片表面,测得光源距钠片的距离为R =1m,如果照射到每个原子的光能全部被最外层电子吸收,那么请你利用经典的电磁理论推测电子要经过多长时间的能量积累才能逸出钠片的表面? 9、太阳的辐射功率为3.86×1026 J/s,如果把太阳看成是频率为5×1014 Hz的单色光,则太阳每秒钟辐射多少个光子? 能量量子化、光电效应(作业) 1、红、橙、黄、绿四种单色光中,光子能量最小的是:()A)红光B)橙光C)黄光D)绿光 2、用绿光照射一光电管,能产生光电效应,欲使光电子从阴极逸出时的最大初动能增大,应:() A)改用红光照射;B)增大绿光的强度;C)增大光电管的加速电压;D)改用紫光照射;3 用光照射电子管,能发生光电效应: A)电路中一定没有电流;

如何理解光的波粒二象性

如何理解光的波粒二象性 四川省冕宁中学:刘彬学 很多同学在学完光的本性——波粒二象性后,都觉得非常困惑:无法理解光子为什么会具有波的特性?从经典物理学的观点来看,“微粒”和“波”是相互排斥的概念,或者说“波”与“微粒”是两种截然对立的存在。一个东西要么是波,要么是微粒,即“非此即彼”。 那么究竟自由理解光的波粒二象性呢?为了使中学生能够理解,又不失去其科学性。我认为应从如下几个方面来讲解。 1、物体从宏观到微观,即物体由大到小改变时,量变将导致质变——使得微观物体的运动规律不能用牛顿定律来描述。 (1)宏观物体的运动具有严格的决定性规律:“一个宏观物体的运动规律或一种宏观物理现象的变化,只要知道了它的初始条件,原则上就能知道它以后的运动状态或变化状况。一个宏观物体可以在任何轨道上被连续跟踪。表示宏观物体各种物理性质的物理量原则上都可同时被确定”。 例如:一个质量为m的物体,在动摩擦因素为μ的水平面上受到水平拉力F 的作用,以初速度V0开始做匀加速直线运动,则在t秒末物体的位移和速度多大? 解:物体受力分析如图所示:

而f=μN=μmg 根据牛顿第二定律得: F-f=ma a=(F-f)/m=(F-μmg)/m 由运动学公式有: s=V t+at2/2 =V t+(F-μmg)t2/2m V t =V +(F-μmg)t/m 显然,只要知道了物体的初始条件:初速度和始位置就可以预先确定物体在t 秒(任意时间)后的位置和速度及运动轨道等。即宏观物体的运动具有决定性的规律。 (2)微观物体的运动不具有宏观意义的决定论。当一个宏观物体用二分法不停分割时,最初的变化仅仅是量的变化,仍可用牛顿运动理论来解决其速度、位移等问题;但当分割到一定程度时,物体的运动规律将发生质的变化,不能再用牛顿运动定律来描述其规律。为什么呢?我们知道,物理学是一门测量基础上的科学:而测量宏观物体的各物理量时,由于测量仪器对被测物体的影响相对于受到的其它力而言是很小很小的,完全可以忽略不计;而测量微观物体的各物理量时,由于测量仪器对被测物体的影响不满足宏观物体那样的条件,因此,测量仪器对被测物体的影响不能忽略,测量仪器和被测对象形成一个统一的不可分割的整体,即:“观测过程是一个不可分割的整体,观测结果是一个完整的不可分割

高中物理第十七章波粒二象性章末分层突破学案选修3_5

第十七章波粒二象性 [自我校对] ①hν ② h λ ③hν-W0 ④截止 ⑤遏止

⑥饱和 ⑦瞬时 ⑧ΔxΔp 光电效应规律及其应用 算.求解光电效应问题的关键在于掌握光电效应规律,明确各概念之间的决定关系,准确把握它们的内在联系. 1.决定关系及联系 2.“光电子的动能”可以是介于0~E km的任意值,只有从金属表面逸出的光电子才具有最大初动能,且随入射光频率增大而增大. 3.光电效应是单个光子和单个电子之间的相互作用产生的,金属中的某个电子只能吸收一个光子的能量,只有当电子吸收的能量足够克服原子核的引力而逸出时,才能产生光电效应.4.入射光强度指的是单位时间内入射到金属表面单位面积上的光子的总能量,在入射光频率ν不变时,光强正比于单位时间内照到金属表面单位面积上的光子数,但若入射光频率不同,即使光强相同,单位时间内照到金属表面单位面积上的光子数也不相同,因而从金属表面逸出的光电子数也不相同(形成的光电流也不相同). 如图17-1所示是现代化工业生产中部分光电控制设备用到的光控继电器的示意图,它由电源、光电管、放大器等几部分组成.当用绿光照射图中光电管阴极K时,可发生光电效应,则以下说法中正确的是 ( ) 图17-1 A.增大绿光的照射强度,光电子的最大初动能增大 B.增大绿光的照射强度,电路中的光电流增大 C.改用比绿光波长大的光照射光电管阴极K时,电路中一定有光电流 D.改用比绿光频率大的光照射光电管阴极K时,电路中一定有光电流 E.改用比绿光频率小的光照射光电管阴极K时,电路可能有光电流 【解析】光电子的最大初动能由入射光的频率决定,选项A错误;增大绿光的照射强度,单位时间

相关主题
文本预览
相关文档 最新文档