当前位置:文档之家› 离心式通风机设计

离心式通风机设计

离心式通风机设计
离心式通风机设计

离心式通风机设计

通风机的设计包括气动设计计算,结构设计和强度计算等内容。这一章主要讲第一方面,而且通风机的气动设计分相似设计和理论设计两种方法。相似设计方法简单,可靠,在工业上广泛使用。而理论设讲方法用于设计新系列的通风机。本章主要叙述离心通风机气动设计的一般方法。

离心通风机在设计中根据给定的条件:容积流量,通风机全压,工作介质及其密度

,以用其他要求,确定通风机的主要尺寸,例如,直径及直径比,转速n,进出口

宽度和,进出口叶片角和,叶片数Z,以及叶片的绘型和扩压器设计,以保证通风机的性能。

对于通风机设计的要求是:

(1)满足所需流量和压力的工况点应在最高效率点附近;

(2)最高效率要高,效率曲线平坦;

(3)压力曲线的稳定工作区间要宽;

(4)结构简单,工艺性能好;

(5)足够的强度,刚度,工作安全可靠;

(6)噪音低;

(7)调节性能好;

(8)尺寸尽量小,重量经;

(9)维护方便。

对于无因次数的选择应注意以下几点:

(1)为保证最高的效率,应选择一个适当的值来设计。

(2)选择最大的值和低的圆周速度,以保证最低的噪音。

(3)选择最大的值,以保证最小的磨损。

(4)大时选择最大的值。

§1 叶轮尺寸的决定

图3-1叶轮的主要参数:图3-1为叶轮的主要参数:

:叶轮外径

:叶轮进口直径;

:叶片进口直径;

:出口宽度;

:进口宽度;

:叶片出口安装角;

:叶片进口安装角;

Z:叶片数;

:叶片前盘倾斜角;

一.最佳进口宽度

在叶轮进口处如果有迴流就造成叶轮中的损失,为此应加速进口流速。一般采用,叶轮进口面积为,而进风口面积为,令为叶轮进口速度的变化系数,故有:

由此得出:

(3-1a)

考虑到轮毂直径引起面积减少,则有:

(3-1b )

其中

在加速20%时,即,

(3-1c)

图3-2 加速20%的叶轮图

图3-2是这种加速20%的叶轮图。近年来的研究加速不一定是必需的,在某些情况下减速反而有利。

二.最佳进口直径

由水力学计算可以知道,叶道中的损失与速度的平方成正比,即。为此

选择在一定的流量和转速条件下合适的,以使为最小。

首先讨论叶片厚度的影响。如图3-3,由于叶片有一定厚度;以及折边的存在,这样使进入风机的流速从增加至,即:

图3-3 叶片厚度和进出口的阻塞系数计算用和分别表示进出口的阻塞系数:

(3-2a)

式中为节距,为切向叶片厚度

同理

那么进出口的径向速度为:

当气流进入叶轮为径向流动时,,那么:

(3-2b)

为了使最小,也就是损失最小,应选用适当的。当过大时,过小,但加大很多,使(3-2c)式右边第二项过大,加大。当过小时,(3-2c)式右第二项小,第一项会过大,总之在中间值时,使最小,即

考虑到进口20%加速系数,及轮毂的影响,的表达式为(3-1b)式,代入(3-2c)式为:

(3-3c)

对式(3-3)求极小值,得出的优化值为:

(3-4a)

出口直径不用上述类似的优化方法,只要选用合适的即可:

(3-4b)

即:

(3-4c)

也可以根据,求出

(3-4d)

三.进口叶片角

1.径向进口时的优化值

同一样,根据为最小值时,优化计算进口叶片角。当气流为径向进口时,,且均布,那么从进口速度三角形(令进口无冲击=)

代入值后得出值,最后得出:

(3-5)

求极值,即

(3-6a)

这就是只考虑径向进口时的优化值。

把(3-6a)式代入(3-4a)至(3-4d)式:

(3-6b)

进而当时:

(3-6c)

或者:

(3-6d)

2.当叶轮进口转弯处气流分布不均匀时的优化值。

图3-4,叶片进口处速度分布不均匀,在前盘处速度大小为和,比该面上的平均值要大,设

那么

此外:

当时:

(3-7a)

进而采用近似公式:

其中为叶轮前盘叶片进口处的曲率半径。计算出来的角比小一些。如下表所示:

: 0.2 0.4 1.0 2.0 3.0 4.0

: 0.952 0.88 0.74 0.58 0.472 0.424

:

那么

(3-7b)

式中为的平均值。

图3-4叶片进口处和分布不均匀

图3-5进口速度三角

3.当气流进入叶片时有预旋,即:

由图3-5进口速度三角形可以得出:

求极值后:

(2-8a)

可以看出当气流偏向叶轮旋转方向时(正预旋),将增大,同时得到:

4.叶轮的型式不同时有所区别

一般推荐叶片进口角稍有一个较小的冲角。后向叶轮中叶道的摩擦等损失较小,此时

的选择使叶轮进口冲击损失为最小。

冲角

一般后向叶轮:

对于前向叶轮,由于叶道内的分离损失较大,过小的进口安装角导片弯曲度过大,分离损失增加。较大的安装角虽然使进口冲击损失加大,但是流道内的损失降低,两者比较,效率反而增高。

一般前向叶轮:

当时,甚至。

四.叶轮前后盘的圆角和叶片进口边斜切

设计中,在可能情况下尽量加大叶轮前后盘的圆角半径r和R(图3-1)。叶片进口边斜切是指前盘处叶片进口直径大于后盘处的直径,以适应转弯处气流不均匀现象。

如果叶片进口与轴平行,如图3-6(a)所示,在进口边各点是相同的。但该处气流速度不均匀,而周速相同。故气流角不同,这样就无法使叶片前缘各点的气流毫无冲击地进入叶轮。为此将叶片进口边斜切(见图3-6(b)),靠近前盘处的大,且其亦大,而靠近后盘小,且亦小。使气流良好地进入叶道。

前向叶轮,进口气流角是根据叶片弯曲程度来考虑的,故不做成斜切。

图3-6叶轮前后盘的圆角和叶片进口边斜切

五.叶片数Z的选择

叶片数太少,一般流道扩散角过大,容易引起气流边界层分离,效率降低。叶片增加,能减少出口气流偏斜程度,提高压力。但过多的叶片会增加沿程摩阻损失和叶道进口的阻塞,也会使效率下降。

根据试验,叶片间流道长度l为流道出口宽度a的2倍,且l为,由几何关系:

那么

(3-9)

出口角大的叶轮,其叶道长度较短就容易引起当量扩张角过大,应采用较多叶片。出口角小时,叶道较长,应采用较少叶片。同时较小时,Z也少一些为好,以免进口叶片过于稠密。

对于后向叶轮:当Z=8~12个时,采用机翼型及弧型叶片,当Z=12~16时,应采用直线型叶片。

对于前向叶轮,Z=12~16.

六.叶片进出口宽度

1. 后向叶轮一般采用锥形圆弧型前盘,对于一定流量叶轮,过小则出口速度过大,

叶轮后的损失增大,而过大,扩压过大,导致边界层分离,所以的大小要慎重决定。由于

(3-10a)

上式表明,在一定的时,值与成正比,对于一定的叶轮过大,出口速

度大,叶轮后损失增大,反之过小,扩压度过大。试验证明,不同的,值不同,即

(3-10b)

然后,利用(3-10a)式可计算出。

后向叶轮的进口处宽度,一般可近似计算:

(3-10c)

2.前向叶轮进口处参数影响很大。其叶片入口处宽度应比公式计算出的大一些。例如当

前向叶轮采用平直前盘时:,若采用锥形前盘,必须正确选用前盘倾斜角,即

0.3~0.4 0.45~0.55 >0.5

根据值及,可决定。

图3-7 前盘形状

叶片形状的确定

离心式通风机主要参数及Z已知后,就可以绘制叶片的形状,叶片的形状有很多选择。

一.平直叶片

平直叶片是最简单的叶片型式,根据图3-8,由正弦定理:

(3-11)

上式表明,

和之间满足(3-11)式,不能同时任意选择。

例如:

: 0.3 0.5 0.7

(当

时)

:

图3-8平直叶片

二. 圆弧型叶片

圆弧型叶片分单圆弧和多圆弧,一般多采用单圆弧。在设计中,一般先求出

,Z 等,根据已知条件确定叶片圆弧半径

的大小,和该圆弧的中心位置P ,

以及圆弧所在半径

图3-9a后向圆弧叶片

图3-9 b前向圆弧叶片

图3-9 c 径向叶片1.后向叶片圆弧如图3-9a所示,已知

在和中,P0为公共边:

由余弦公式:

(3-12a)

( 3-12b)

叶片长度l:

2.前向叶轮圆弧叶片

(3-13a)

(3-13b)

3.径向叶片见图3-9c

(3-14a)

(3-14b)

三.叶片流道的决定

对于直叶片和圆弧叶片,其进口不能很准确地成型,所以在某些情况下会产生过高的前缘叶片压力,从而导致了气流的分离。最好在进口有一段无功叶片,或用近似的圆弧表示。这种无功近似圆弧如图3-10所示:

从1点引出的无功圆弧的半径r等于从该点引出的对数曲线的曲率半径。图解时,连接01两点,做角,过0点做的垂线,交于角的另一边为A点,以为半径做圆弧,弧段为无功叶片,e点的以后用抛物线,或者曲线板延长,而且保证出口角为即可。流道画出以后,检查过流断面,过流断面变化曲线的斜率不能大于,

否则的话,扩散度过在,造成较大的边界层损失,甚至分离。一般叶片较少时,用圆弧叶片还是合理的。

图3-10无功叶片及过流断面检查

图3-11无功叶片的形状

2015离心式通风机设计和选型手册

离心式通风机设计 通风机的设计包括气动设计计算,结构设计和强度计算等内容。这一章主要讲第一方面,而且通风机的气动设计分相似设计和理论设计两种方法。相似设计方法简单,可靠,在工业上广泛使用。而理论设讲方法用于设计新系列的通风机。本章主要叙述离心通风机气动设计的一般方法。 离心通风机在设计中根据给定的条件:容积流量,通风机全压,工作介质及其密度 ,以用其他要求,确定通风机的主要尺寸,例如,直径及直径比,转速n,进出口 宽度和,进出口叶片角和,叶片数Z,以及叶片的绘型和扩压器设计,以保证通风机的性能。 对于通风机设计的要求是: (1)满足所需流量和压力的工况点应在最高效率点附近; (2)最高效率要高,效率曲线平坦; (3)压力曲线的稳定工作区间要宽; (4)结构简单,工艺性能好; (5)足够的强度,刚度,工作安全可靠; (6)噪音低; (7)调节性能好; (8)尺寸尽量小,重量经; (9)维护方便。 对于无因次数的选择应注意以下几点: (1)为保证最高的效率,应选择一个适当的值来设计。 (2)选择最大的值和低的圆周速度,以保证最低的噪音。 (3)选择最大的值,以保证最小的磨损。

(4)大时选择最大的值。 §1 叶轮尺寸的决定 图3-1叶轮的主要参数:图3-1为叶轮的主要参数: :叶轮外径 :叶轮进口直径; :叶片进口直径; :出口宽度; :进口宽度; :叶片出口安装角;

:叶片进口安装角; Z:叶片数; :叶片前盘倾斜角; 一.最佳进口宽度 在叶轮进口处如果有迴流就造成叶轮中的损失,为此应加速进口流速。一般采用,叶轮进口面积为,而进风口面积为,令为叶轮进口速度的变化系数,故有: 由此得出: (3-1a) 考虑到轮毂直径引起面积减少,则有: (3-1b) 其中 在加速20%时,即, (3-1c)

离心通风机使用说明书

离心通风机 使 用 说 明 书

Jiangsu Sanji Environmental Protect Engineering Equipments CO.,LTD 江苏三机环保设备工程有限公司 一、用途 4-72型离心通风机作为一般工厂及大建筑物的室内通风换气,即可用作输入气体,也可用作输出气体。空气和其它不自燃、对人体无害的、对钢铁材料无腐蚀性的气体。气体内不许有粘性物质,所含的尘土及硬质颗粒不大于150mg/m3。气体的温度:不超过80℃。 4-72型离心通风机在我国是使用最早的风机,然而也是使用最普通的风机,从高层建筑到地下铁道,从锅炉鼓风到厂房换气,4-72型风机随处可见。 二、型式 从电机一侧正视,叶轮顺时针旋转者称右旋风机,以“右”表示;叶轮逆进针旋转者称左旋风机,以“左”表示。 风机的出口位置,以机壳的出风口角度表示。4-72型风机№2.8~6出厂时均做成一种型式,使用单位根据要求再安装成所需要的位置,订货时不需注明。其中№2.8出风口位置调整范围是0°~255°,间隔是45°;№16、20出风口位置制成固定的三种0°、90°、180°,不能调整,订货时需注明。 风机的传动方式有A、B、C、D四种:4-72型风机中,№2.8~6采用A式传动,№8~12采用C、D式传动,№16~20采用B式传动。 三、结构 4-72型风机中№2.8~6主要由叶轮、机壳、进风口、电机等部分组成。№8~20除具有上述部分外,还有传动部分。 (1)叶轮:由10个后倾机翼型叶片、曲线型前盘和平板后盘组成,用钢板制造,并经动、静平衡校正,空气性能良好,效率高,运转平稳。 (2)机壳:做成二种不同型式。其中№2.8~12机壳作成整体,不能拆开,№16~20的机壳制成三开式,除沿中分水平面分为两半外,上半部再沿中心线垂直分为两半,用螺栓连接。 (3)进风口:制成整体,装于风机一侧,与轴向平行的截面为曲线开关作用是能使气流顺畅时入叶轮,且损失较小。 (4)传动:由主轴、轴承箱、流动轴承、皮带轮或联轴器组成。 四、性能与选择 本样本只给出№10样机的无因次性能和曲线,由性能和曲线计算№10以上风机的有因次性能参数。 1、4-72型离心通风机特点和用途

2015离心式通风机设计和选型手册

通风机的设计包括气动设计计算,结构设计和强度计算等内容。这一章主要讲第一方面,而且通风机的气动设计分相似设计和理论设计两种方法。相似设计方法简单,可靠,在工业上广泛使用。而理论设讲方法用于设计新系列的通风机。本章主要叙述离心通风机气动设计的一般方法。 离心通风机在设计中根据给定的条件:容积流量,通风机全压,工作介质及其密度 ,以用其他要求,确定通风机的主要尺寸,例如,直径及直径比,转速n,进出口 宽度和,进出口叶片角和,叶片数Z,以及叶片的绘型和扩压器设计,以保证通风机的性能。 对于通风机设计的要求是: (1)满足所需流量和压力的工况点应在最高效率点附近; (2)最高效率要高,效率曲线平坦; (3)压力曲线的稳定工作区间要宽; (4)结构简单,工艺性能好; (5)足够的强度,刚度,工作安全可靠; (6)噪音低; (7)调节性能好; (8)尺寸尽量小,重量经; (9)维护方便。 对于无因次数的选择应注意以下几点: (1)为保证最高的效率,应选择一个适当的值来设计。 (2)选择最大的值和低的圆周速度,以保证最低的噪音。 (3)选择最大的值,以保证最小的磨损。

(4)大时选择最大的值。 §1 叶轮尺寸的决定 图3-1叶轮的主要参数:图3-1为叶轮的主要参数: :叶轮外径 :叶轮进口直径; :叶片进口直径; :出口宽度; :进口宽度; :叶片出口安装角;

:叶片进口安装角; Z:叶片数; :叶片前盘倾斜角; 一.最佳进口宽度 在叶轮进口处如果有迴流就造成叶轮中的损失,为此应加速进口流速。一般采用,叶轮进口面积为,而进风口面积为,令为叶轮进口速度的变化系数,故有: 由此得出: (3-1a) 考虑到轮毂直径引起面积减少,则有: (3-1b) 其中 在加速20%时,即, (3-1c)

离心风机气动设计方法的发展及其应用

离心风机气动设计方法的发展及其应用 从1975年开始,我们一直致力于风机气动设计方法研究及高性能风机产品开发,本文结合我们工作实践讨论离心风机气动设计方法的发展及其应用。 1 离心风机气动设计的工程方法(1990年前)——不能预估工况性能 国际公认的离心和轴流风机气动设计工程方法的权威著作是德国著名风机专家B.Eck的专著《风机》(1973年英文版)[1],关于离心风机气动设计的主要思想为基于一维、二维不可压理想均匀流假定及进口速度三角形无预旋假定,通过离心风机内部流动及其损失机理分析,结合70年代以前的气动设计经验和性能试验数据,提出了一套完整的离心风机气动设计工程方法,奠定了离心风机气动设计的基础。其核心内容是确定叶轮参数两个公式,一是连续方程,可确定叶轮进口直径d1,见公式(1),另一个是叶轮机械做功的欧拉方程(又称全压公式,对于不可压流体,也就是动量方程的积分),可确定叶片的几何出口角β2j,见公式(2)。 式中,Q-,H-分别为流量系数和全压系数,ε,β1j,ψ,μ和i分别为叶轮进口加速系数、几何进口角、进口充满系数、有限叶片修正系数和进口冲角,ηi为叶轮流动效率,d2,b2和β2j分别为叶轮出口直径、宽度和几何出口角。Eck还对两个重要的设计参数,即叶轮进口加速系数(定义为进风口出口和叶轮进口截面的面积比值)和几何进口角提出具体建议,前者应大于1,具体推荐取值为1.2,使进入叶轮的流动是较强的加速流,可减少分离,后者,建议采用i+35.4°,这是根据在同样流量下,进口速度最小,因而可使

叶轮内的流动损失最小推导得到的优化值。Eck还提出叶片型线应使叶片通道内的流速具有相同的减速,这样在流道中就没有大的减速出现,可减少分离,这种型线称为等减速流型(dw/dt=wdw/ds=const),我们在学习Eck方法的基础上,引用了透平机械和航空工程中的一些设计思想,结合9-19风机开发,经过多次设计—样机—性能试验,突破了风机行业和Eck的一些设计思想和经验系数的取值,1977年研制成功的9-19№.6风机样机全压效率,η=86%,A声压级L PA=94.5dB,比A声压级L PA=17.1dB,比当时市场流行的高压风机系列产品8-18№.6风机效率提高21%,A声压级下降5.5dB,比A声压级下降6.5dB,且具有效率高、噪声低、性能曲线平坦及高效区宽广的优点,结构简单,工艺可行。在9-19风机开发的基础上,又开发了其姐妹系列9-26风机,由于其优良性能,很快被机械工业部指定为全国推广的优秀高压离心风机产品系列,替代当时流行的8-18和9-27 系列风机,直到现在9-19和9-26风机还是风机市场高压风机主力产品。1980年提出了9-19风机的气动力设计方法[2],对Eck方法提出以下主要改进:1)采用叶轮进口加速系数小于1,具体建议为0.7~0.8,这样可以大大减少叶轮进口流速,不仅可以减少叶轮损失,也有利于减少噪声,因为噪声和流速的6次方成正比,理由是这种扩压流动,虽然会有一些分离流,但考虑到高速旋转叶轮产生的离心力,会将流入叶轮的少量分离流甩开;2)对前向风机采用很小的叶轮出口宽度和叶轮直径比值,约为0.09,以减少叶片的出口角(见公式(2)),并由连续方程可知,它能提高w2/w1值,因而减少叶片通道的扩压度,可减少分离,提高效率;3)提出等当量扩张角流型(w-1.5 dw/ds=const)代替Eck的等减速流型,认为这样更为合理,理由是前者将整个叶片通道设计为一个等当量扩张角的圆锥通道,这样的扩张才更为均匀,而且容易控制,只要这个锥角设计在一个合理值以内即可;4)离心风机噪声主要是叶片通过频率(BPF)的离散噪声和湍流和旋涡引起的宽带噪声,其中蜗舌间隙δ(蜗舌与叶轮间的最小距离和叶轮直径的比值)是影响BPF噪声的主要

离心通风机选型及设计

离心通风机选型及设计 1.引言…………………………………………………………………… .(1) 2.离心式通风机的结构及原理 (3) 2.1离心式风机的基本组成 (3) 2.2离心式风机的原理 (3) 2.3离心式风机的主要结构参数 (4) 2.4离心式风机的传动方式 (5) 3离心风机的选型的一般步骤 (5) 4.离心式通风机的设计 (5) 4.1通风机设计的要求 (5) 4.2设计步骤 (6) 4.2.1叶轮尺寸的决定 (6) 4.2.2离心通风机的进气装置 (13) 4.2.3蜗壳设计 (14) 4.2.4参数计算 (20) 4.3离心风机设计时几个重要方案的选择 (24) 5.结论 (25) 附录 (25)

引言 通风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。通风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;谷物的烘干和选送;风洞风源和气垫船的充气和推进等。 通风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 通风机已有悠久的历史。中国在公元前许多年就已制造出简单的木制砻谷风车,它的作用原理与现代离心通风机基本相同。1862年,英国的圭贝尔发明离心通风机,其叶轮、机壳为同心圆型,机壳用砖制,木制叶轮采用后向直叶片,效率仅为40%左右,主要用于矿山通风。1880年,人们设计出用于矿井排送风的蜗形机壳,和后向弯曲叶片的离心通风机,结构已比较完善了。 1892年法国研制成横流通风机;1898年,爱尔兰人设计出前向叶片的西罗柯式离心通风机,并为各国所广泛采用;19世纪,轴流通风机已应用于矿井通风和冶金工业的鼓风,但其压力仅为100~300帕,效率仅为15~25%,直到二十世纪40年代以后才得到较快的发展。 1935年,德国首先采用轴流等压通风机为锅炉通风和引风;1948年,丹麦制成运行中动叶可调的轴流通风机;旋轴流通风机、子午加速轴流通风机、斜流通风机和横流通风机也都获得了发展。 按气体流动的方向,通风机可分为离心式、轴流式、斜流式和横流式等类型。 离心通风机工作时,动力机(主要是电动机)驱动叶轮在蜗形机壳内旋转,空气经吸气口从叶轮中心处吸入。由于叶片对气体的动力作用,气体压力和速度得以提高,并在离心力作用下沿着叶道甩向机壳,从排气口排出。因气体在叶轮内的流动主要是在径向平面内,故又称径流通风机。 离心通风机主要由叶轮和机壳组成,小型通风机的叶轮直接装在电动机上中、大型通风机通过联轴器或皮带轮与电动机联接。离心通风机一般为单侧进气,用单级叶轮;流量大的可双侧进气,用两个背靠背的叶轮,又称为双吸式离心通风机。 叶轮是通风机的主要部件,它的几何形状、尺寸、叶片数目和制造精度对性能有很大影响。叶轮经静平衡或动平衡校正才能保证通风机平稳地转动。按叶片出口方向的不同,叶轮分为前向、径向和后向三种型式。前向叶轮的叶片顶部向叶轮旋转方向倾斜;径向叶轮的叶片顶部是向径向的,又分直叶片式和曲线型叶片;后向叶轮的叶片顶部向叶轮旋转的反向倾斜。 前向叶轮产生的压力最大,在流量和转数一定时,所需叶轮直径最小,但效率一般较低;后向叶轮相反,所产生的压力最小,所需叶轮直径最大,而效率一般较高;径向叶轮介于两者之间。叶片的型线以直叶片最简单,机翼型叶片最复杂。 为了使叶片表面有合适的速度分布,一般采用曲线型叶片,如等厚度圆弧叶片。叶轮通常都有盖盘,以增加叶轮的强度和减少叶片与机壳间的气体泄漏。叶片与盖盘的联接采用焊接或铆接。焊接叶轮的重量较轻,流道光滑。低、中压小型离心通风机的叶轮也有采用铝合金铸造的。 轴流式通风机工作时,动力机驱动叶轮在圆筒形机壳内旋转,气体从集流器进入,通过叶轮获得能量,提高压力和速度,然后沿轴向排出。轴流通风机的布置形式有立式、卧式和倾斜式三种,小型的叶轮直径只有100毫米左右,大型的可达20米以上。

离心鼓风机操作说明书

使用说明书 鼓风机系5级、单吸入双支承结构。定子为垂直剖分式,铸铁制造,由进气机壳、出气机壳、中间机壳组成,进气口、出气口均水平以便于安装及管路的铺设;中间机壳上设有将叶轮产生的空气动压力转变为静压力和将空气导入下一级入口的扩压器和回流道。中间机壳上装有迷宫环,以防止和减小气体泄漏。 主轴采用优质碳结构钢制成,并经热处理和精加工而成,其上装有叶轮、平衡盘,半联轴器等。 叶轮系铝合金铸件,除流道外全部加工而成。经静平衡校验后,按顺序装于轴上,再进行动平衡校验,平衡等级为G2.5级,以防止设备在运转中出现有害的振动,损坏转子。 主轴两端装有滚动轴承(SKF6316),润滑脂为ZL-2锂基润滑脂。 本机由电动机通过弹性联轴器驱动,从电动机一端看,转子顺时针方向旋转。 鼓风机与电动机一起安装在机座上。 3 性能

风机出厂前均按标准进行空气动力试验,将试验数据输入微机后,绘出风压、风量、效率性能曲线。 风量:风量大致在85m3/min和145m3/min之间变化。风量由大到小变化时,升压则由小到大变化,当风量在85m3/min以下时,鼓风机发生喘振,产生不正常的振动与冲击,在这种情况下工作是不允许的,因此在此范围内应加以控制,并应尽快地打开输出阀门来避免长期在此状态下运转。鼓风机的最佳工作范围在105m3/min至135m3/min,此时可以取得较高的效率。 2 升压:升压值范围在89000pa至70200pa之间,与风量相对应升压85000pa至75000pa 之间取得较高的效率。 温度:使用气体温度为常温空气。因为输入气体的的温度会给鼓风机的性能带来影响,吸入气体温度比设计条件高时得不到预定的输出压力,相反吸入温度下降时,因输出压力过大,轴功率也会增大。压力:吸入压力比设计压力增大,轴功率也会增加。吸入压力下降时,也得不到规定的输出压力。 4 安装 鼓风机的安装是一项十分重要的工作,施工过程中应充分注意。 4.1风机的安装是分层进行的,首先安装下层的机座,待机座调平后再安装机体和电机,以避免因机座的安装误差使机体产生变形。

离心风机说明书

目录 1.风机的用途及适用范围.............................................................................. 错误!未定义书签。 2. 风机的结构形式............................................. 错误!未定义书签。 3. 风机的安装、调整和试运转(分别为D式、F式)............... 错误!未定义书签。 4. 风机的运行................................................. 错误!未定义书签。 5. 风机的维护................................................. 错误!未定义书签。 6. 风机成套供货范围(一台)................................... 错误!未定义书签。 7. 订货需知(需提供下列资料)................................. 错误!未定义书签。 8. 备件订货说明............................................... 错误!未定义书签。 表一:经常或定期检查项目 ................................ 错误!未定义书签。 表二:运行时每3—6个月检查的项目 ....................... 错误!未定义书签。 表三:风机的主要故障及排除方法 .......................... 错误!未定义书签。 表四:轴承振动允许值 .................................... 错误!未定义书签。 附图I ................................................... 错误!未定义书签。 附图II .................................................. 错误!未定义书签。 附图III ................................................. 错误!未定义书签。 附图IV .................................................. 错误!未定义书签。 附图V ................................................... 错误!未定义书签。 附图VI .................................................. 错误!未定义书签。 本技术文件受法律保护,未经本公司同意,不得使用、复制、扩散或以其它方式提供给第三方。

离心通风机的设计

离心通风机的设计 已知条件:风机全压P tf =2554 Pa,风机流量q v =5700 m 3/h, 风机进口压力P in =101324.72Pa 风机进口温度t m =25°C 空气气体常数R=287J/ ㎏×k 风机转速n=2900r/min 1.空气密度ρ ()()33in 1847.16.3027328732.133*760273m kg m kg t R P in =??????+=+=ρ 2.风机的比转速 432.154.5???? ??=iF in v s q n n ρρ 4325541847.12.13600 5700290054.5??? ?????=s n =55.73 3.选择叶片出口角A 2β A 2β=?35 由于比转速较小,选择后弯圆弧叶片。 4.估算全压系数t ψ []210439.1107966.23835.02523??-?+=--s A t n βψ []273.5510439.135107966.23835.0253???-??+=-- =0.873

5.估算叶轮外缘圆周速度2u s m s m p u t tF 772.70873.0187.1212554212=??==ρψ 6. 估算叶轮外缘出口直径2D m m n u D 462.029001416.3772.70606022=?? ? ????==π 选择2D =0.46m ,相应地s m 85.692=u 7. 计算风机的t ψ、?、s D 、σ 884.085.691847.1212554u 21p 2 22tF t =??==ρψ 136.085.6946.045700/3600u D 4q 22 22v =??==ππ ? 611.20.136884.0993.0993 .0412141t s =?==?ψD 405.0884.0136.04321 43t 21===ψ?σ 8.确定叶轮进口直径0D ????? ? ??+=2 004d c q D v π 选择悬臂式叶轮,d=0,参考表3-11a 选0c =30s m ;

4-68型离心式通风机使用说明书(大)

离心式通风机使用说明书 一、概述 4-68型离心通风机(以下简称风机)可作一般通风换气用,其机号为NO.2.8、3.15、3.55、4、4.5、5、6.3、8、9、10、11.2、12.5、14、16、20等型号。 二、风机使用条件 1、应用场所:作为一般工厂及室内通风换气。 2、输送气体:空气和其它不自燃的,对人体无害的,对钢铁材料无腐蚀性的气体。 3、气体状况:气体内严禁含有粘性物质,含尘和其它固体杂质不大于110mg/m3。 4、使用环境:海拔高度不超过1000m,环境温度不超过80℃。 三、结构形式 1、风机分顺时针旋转和逆时针旋转两种形式,从电动机一端正视,叶轮按顺时针方向旋转的称为右旋风机,以“右”表示,按逆时针方向旋转的称为左旋风机,以“左”表示。 2、风机的转动方式为A、B、C、D四种。 A式:表示无轴承箱装置,叶轮与电动机直联传动。 B式:表示悬臂支承装置,皮带传动,皮带轮在两轴承中间。 C式:表示悬臂支承装置,皮带传动,皮带轮在轴承外侧。 D式:表示悬臂支承装置,用联轴器联接传动。 3、风机机壳用钢板焊接而成。 4、叶轮为后倾圆弧叶片,经过动、静平衡校正,空气性能好,噪声低,运转平稳。 5、集流器压制成形,装于风机侧面,能使气体顺利地进入叶轮,且损失较小。 四、安装和调试 1、安装前:应对风机各部件进行全面的检查,叶轮的旋转方向与机壳上标明的旋转方向一致,各部联接紧密,叶轮、主轴、轴承等主要部件无损伤,传动组灵活等等,如果发现问题应立即予以修理和调整。 2、安装时:注意检查机壳内不应有遗留的工具及其它杂物,在一些接合面上为了防止生锈,减少拆卸困难,应涂上一些润滑脂或机械油,进风出风管道联接应调整到自然吻合,不得强行联接,更不许将管道重量加在风机各部件上,并保证风机水平位置。 3、安装要求: 3.1按图纸所示的位置与尺寸进行安装,为确保高效率,特别要保证进风口与叶轮的轴向、径向间隙。 3.2安装后,试拨动传动组,检查是否有过紧或与固定部分碰撞现象,发现不妥之处必须调整好。 3.3主轴带轮与电机带轮相对应的槽不得错位,套上皮带后,应装安全罩(用户自制)以利安全。 4、风机的试运转: 4.1全部安装完毕,总检合格后,才能进行试运转。为了防止电动机因过载被烧毁,风机启动时必须在无载荷(关闭进气管道中的闸门)的情况下进行,如情况良好,逐渐将阀门开启达到规定的工况为止,在运转过程中严格控制电流,不得超过电机额定电流值。 4.2风机在运转过程中经常检查轴承温度是否正常,轴承温升不得大于40℃表温不得大于70℃。如发觉风机有剧烈的振动、撞击、轴承温度迅速上升等反常现象时必须紧急停车。 五、风机的维护 为了避免维护不当而引起人为故障及事故,为了充分延长风机的使用寿命,必须加强风机的维护。 1、风机维护注意事项:

9-19、9-26型高压离心通风机说明书

一、通风机的用途

9-19、9-26型离心通风机,一般采用于锻冶炉及高压强制通风,并可广泛用于输送物料、输送空气及无腐蚀性不自然、不含粘性物质之气体。介质温度一般不超过50℃(最高不超过80℃),介质中所含尘土及硬质颗粒不大于150mg/m。 二、通风机的型式 本通风机为单吸入式,有№4、4.5、5、5.6、6.3、7.1、8、9、10、11.2、12.5、14、16共13个机号。 通风机可制成右旋和左旋两种 型式。从电机一端正视,如叶轮顺时针旋转称右旋风机,以“右”表示;逆时针旋转称左旋风机,以“左”表示。 风机的出口位置以机壳的出口角度表示。“左”、“右”均可制成0°、45°、90°、135°、180°、225°共六种角度。 风机的传动方式为A式(№4~6.3)和D式(№7.1~16)两种。 三、通风机的结构 №4~6.3主要由叶轮、机壳、进风口、支架等组成;№7.1~16主要由叶轮、机壳、进风口、传动组等组成。 图1. 9-19№10样机无因次性能曲线叶轮:9-19型风机叶片为12片,9-26型风机叶片为16片。均属前向弯曲叶型。叶轮扩压器外缘最 -1-

高圆周速度不超过140m/s。叶轮成型后经静、动平衡校正,故运转平稳。 机壳:用普通钢板焊接成蜗壳型整体。 进风口:做成收敛式流线型的整体结构,用螺栓固定在前盖板组上。 传动组:由主轴、轴承箱、联轴器等组成。主轴由优质钢制成,轴承箱整体结构,采用滚动轴承,用轴承润滑脂润滑。 四、通风机的性能与选择 9-19与9-26型风机只给№10样机的无因次性能表及曲线。由给出的无因次性能表或曲线计算№10以上风机的有因次性能。 由无因次计算有因次参数的公式:1. Q=900πD22×U2×Φ(m3/h) 2. Kρ=ρ2×U22×Ψ/101300/[(ρ1× U22×Ψ/354550+1)3.5–1] 3. P=ρ1×U2×Ψ/ Kρ(Pa) 4. N in=πD22/4000×ρ1×U23×λ(KW) 5.N re= N in/ηm×K(KW) 图2. 9-26№10样机无因次性能曲线 式中:Q-流量(m3/h) P-全压 (Pa) D2-叶轮叶片外缘直径(m) U2-叶轮叶片外缘线速度(m/s) ρ1-进气密度(kg/m3) Kρ-全压压缩性系数 N in-内功率(KW) N re-所需功率(KW) ηm -机械效率 (A式传动取1,D式传动取0.98) K -电机储备系数 当使用状态为非标准状态时,必 须把非标准状态的性能换算到标准 状态的性能,然后根据换算性能选择 风机。其换算公式如下: Q0=Q×n0/n(m3/h) P0=P×(n0/n)2×ρ0/ρ×K p/ K p0(Pa) N in0= N in×(n0/n)3×(ρ0/ρ) (KW) ηin0=ηin ηin-内效率 n -转速(r/min) 表1 9-19№10样机的无因次性能表 1234567Φ0.030.0370.0440.0510.0580.0650.072 ψ0.8280.8420.8350.08140.780.7450.705 ψd0.04780.07250.10250.13800.17930.22630.2792 λ0.032470.03890.04510.051250.057850.0650.0725 ηin0.7650.8000.8150.810.7820.7450.700 -2-

离心通风机设计

离心通风机选型及设计 1.引言?????????????????????.(1?) ???? 2.离心式通风机的结构及原理????????????...?..(?3)?离心式风机的基本组成??????????????????(3) 离心式风机的原理 ????????????????????(3) 离心式风机的主要结构参数 ????????????????(4) 3 离心风机的选型的一般步骤?????????????????(5) 4.离心式通风机的设计????????????????????(5) 通风机设计的要求????????????????????(5) 设计步骤 ????????????????????????(6) 4.2.1叶轮尺寸的决定????????????????????(6) 4.2.2离心通风机的进气装置?????????????????(13) 4.2.3蜗壳设计???????????????????????(14) 4.2.4参数计算???????????????????????(20) 离心风机设计时几个重要方案的选择?????????(24) 5.结论???????????????????????????(25) 附录????????????????????????????(25)

引言 通风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。通风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;谷物的烘干和选送;风洞风源和气垫船的充气和推进等。 通风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 能有很大影响。叶轮经静平衡或动平衡校正才能保证通风机平稳地转动。按叶片出口方 向的不同,叶轮分为前向、径向和后向三种型式。前向叶轮的叶片顶部向叶轮旋转方向倾斜;径向叶轮的叶片顶部是向径向的,又分直叶片式和曲线型叶片;后向叶轮的叶片顶部向叶轮旋转的反向倾斜。 前向叶轮产生的压力最大,在流量和转数一定时,所需叶轮直径最小,但效率一般较低;后向叶轮相反,所产生的压力最小,所需叶轮直径最大,而效率一般较高;径向叶轮介于两者之间。叶片的型线以直叶片最简单,机翼型叶片最复杂。 为了使叶片表面有合适的速度分布,一般采用曲线型叶片,如等厚度圆弧叶片。叶轮通常都有盖盘,以增加叶轮的强度和减少叶片与机壳间的气体泄漏。叶片与盖盘的联接采用焊接或铆接。焊接叶轮的重量较轻,流道光滑。低、中压小型离心通风机的叶轮也有采用铝合金铸造的。 轴流式通风机工作时,动力机驱动叶轮在圆筒形机壳内旋转,气体从集流器进入,通过叶轮获得能量,提高压力和速度,然后沿轴向排出。轴流通风机的布置形式有立式、卧式和倾斜式三种,小型的叶轮直径只有100 毫米左右,大型的可达20 米以上。 小型低压轴流通风机由叶轮、机壳和集流器等部件组成,通常安装在建筑物的墙壁 或天花板上;大型高压轴流通风机由集流器、叶轮、流线体、机壳、扩散筒和传动部件组成。叶片均匀布置在轮毂上,数目一般为2~24。叶片越多,风压越高;叶片安装角一般为10°~45°,安装角越大,风量和风压越大。轴流式通风机的主要零件大都用钢板焊接或铆接而成。 斜流通风机又称混流通风机,在这类通风机中,气体以与轴线成某一角度的方向进 入叶轮,在叶道中获得能量,并沿倾斜方向流出。通风机的叶轮和机壳的形状为圆锥形。这种通风机兼有离心式和轴流式的特点,流量范围和效率均介于两者之间。 横流通风机是具有前向多翼叶轮的小型高压离心通风机。气体从转子外缘的一侧进入叶轮,然后穿过叶轮内部从另一侧排出,气体在叶轮内两次受到叶片的力的作用。在相同性能的条件下,它的尺寸小、转速低。 与其他类型低速通风机相比,横流通风机具有较高的效率。它的轴向宽度可任意选择,而不影响气体的流动状态,气体在整个转子宽度上仍保持流动均匀。它的出口截面窄而长,适宜于安装在各种扁平形的设备中用来冷却或通风。 通风机的性能参数主要有流量、压力、功率,效率和转速。另外,噪声和振动的大小也是通风机的主要技术指标。流量也称风量,以单位时间内流经通风机的气体体积表示;压力也称风压,是指气体在通风机内压力升高值,有静压、动压和全压之分;功率是指通风机的输入功率,即轴功率。通风机有效功率与轴功率之比称为效率。通风机全压效率可达90%。 通风机未来的发展将进一步提高通风机的气动效率、装置效率和使用效率,以降低 电能消耗;用动叶可调的轴流通风机代替大型离心通风机;降低通风机噪声;提高排烟、排

离心风机安装使用说明书

离心风机安装使用说明书 一.安装注意事项: 1.安装扩散筒 离心风机出风口没有接管道直接露于大气中,通常在风机出风口安装(如左图)的扩散筒,这样可以避免压力损失,气流扰动,扩散筒的 锥度?15高度等于1?1.5倍风机出口宽度 2.安装排气弯管 Don't(不合理) Do(合理) 离心风机出风口安装弯管时,弯管的弯向要于风机页的旋转方向一致,而且管道的折弯处建议安装圆弧形分离板(如左图),这样可以改善气流的工作状况,从而减小系统的压力损失. 3.安装方形进气室 Don't(不合理) Do(合理)

离心风机安装方形进气室时,进气室折弯处要安装圆弧形分离板, 进风口处安装导流板,而且风室要尽量大,进气室W/R<1.0(如左图),这样可以避免气流在风室中形成涡流,降低压力损失,减小系统的噪音. 4.安装圆形进气室 Don't(不合理 Do(合理) 离心风机进风口安装圆形管道时,管道应直接,平滑地于风机联结(如左图),这样可以避免由弯形管道所引起的流通面积减小,而产生的紊流区和压力损失,降低系统噪音. 5.进出风口有障碍物 Don't(不合理) Do(合理) 离心风机进出风口有障碍物(如左图),将回阻扰气流流向风机,导

致气流扰动,从而使系统阻力增加,流量减少,噪音增大,所以进出 风口与障碍物之间至少保证1.5倍管道直径的距离. 6管道进出口防护 为了防止外界杂物吸入管道,导致管道堵塞,使得整个管道系统不能正常运行,在管道进出口要求安装安全防护网. 二.使用注意事项: 1.风机在第一次使用之前必须详细检查产品铭牌表示的电压和频率是否符合当地的要求,严格按照电机额定电压运行. 2.风机运行前,必须先检查风机页与机壳之间有无碰撞摩擦,电机是否有接地,,绝缘是否良好. 3.风机运行前,必须先检查页轮旋转方向是否正确,无误方可运转,在试运转中有异常声响和振动现象,应立即停机,切断电源进行 排除,正常后才可使用. 4.风机进风口垂直向下或向上进气时,电动机应更换压力轴承方可使用. 5.风机输送介子的温度不应超过80 6.风机不应在水易喷洒和直接淋雨之处使用. 7.风机不能在化学气体易腐蚀,易燃,易爆环境中使用. 8.紧固风机的地基或支撑一定要牢固. 9.风机管网连接要稳固,且不许将管道重量加在风机各部件上. 10.管道中安装有调节门时,关机前要关掉风机进风调节门,出风调节门稍开,风机运转正常后逐渐打开调节门. 三.维修与保养: 1.只有风机设备完全正常的情况下方可运转.

离心通风机设计毕业论文

本科毕业设计(论文) 题目SFF型离心通风机设计 学院机械工程学院 年级专业 班级学号 学生 校导师职称 校外导师职称 论文提交日期

本科毕业设计(论文)诚信承诺书 本人重声明:所呈交的本科毕业设计(论文),是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本人签名:日期: 本科毕业设计(论文)使用授权说明 本人完全了解常熟理工学院有关收集、保留和使用毕业设计(论文)的规定,即:本科生在校期间进行毕业设计(论文)工作的知识产权单位属常熟理工学院。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许毕业设计(论文)被查阅和借阅;学校可以将毕业设计(论文)的全部或部分容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编毕业设计(论文),并且本人电子文档和纸质论文的容相一致。 的毕业设计(论文)在解密后遵守此规定。 本人签名:日期: 导师签名:日期:

SFF型离心通风机设计论文 摘要 伴随着社会快速发展的需要,风机在国民经济中的应用越来越广泛,因此风机的设计和制造不仅对风机领域的发展和技术的提高有着深远影响,而且风机设计中节能减排减震等的思想方案可以推广至各个生产领域。 根据通风机气体流动方向的不同,通风机可以分为离心式、轴流式、斜流式和横流式等类型。其中按应用围广泛程度来说,离心通风机因在矿井、锅炉、纺织、建筑物通风等众多场合均有涉及,所以应用远超其他类型通风机。本文献综述了在纺织机械中以三角胶带为传动方式的SFF型离心通风机的设计,该设计主要涵盖了离心通风机的工作原理、适用场合、发展现状、机械部分的组成等,以及分析了圆弧形前弯叶片的设计和小正方形法蜗壳型线的绘制等。考虑到通风机速度不高且伴有冲击,轴承座采用脂润滑结构,且整体设计中采取了加装整体减震支架的措施。 关键字:离心通风机三角胶带前弯叶片

A、D式离心风机使用说明书

A、D式传动方式离心风机 使用说明书 目录 一、概述………………………………………………………. 二、产品主要结构简介………………………………………. 三、电控柜简介………………………………………………. 四、机组的安装………………………………………………. 五、润滑油系统的冲洗及加注润滑油………………………. 六、操作与使用………………………………………………. 七、风机的维护………………………………………………. 序言 为使用户能正确使用和维护产品,提高风机的运行效率,延长使用寿命,以及防止意外事故发生,请用户在安装使用风机前,务必对该使用说明书所叙述的内容进行仔细阅读,并加以理解,以免发生差错。本使用说明书请用户妥善保存,以便随时查阅。 一、概述 本说明书主要适用于A、D型传动结构的单吸入(或双吸入)离心式风机,关于A、D型传动的具体意义,详见如下: 1、风机型号的后缀 风机型号的后缀(风机的型号的末尾英文字母)代表风机的不同传动方式,常见的如下: A式传动—风机叶轮与电机直联。无轴承风机。 C式传动—风机的两个轴承位于风机的同一侧,风机与电机之间用皮带轮方式联接。 D式传动—风机的两个轴承位于风机的同一侧,风机与电机之间用联轴器联接。 F式传动—风机的两个轴承分别位于风机的两侧,风机与电机之间用联轴器联

2、风机的型号的前缀 根据风机的使用环境不同,风机的用途不同,对风机的型号的前缀(风机的型号的第一个字母)不同。常见的如下: G—鼓风机 Y—引风机 R—热风机 W—高温风机 M—煤粉风机 F—防腐风机 MC—煤磨除尘风机 SL—循环耐磨风机 等等。 二、产品主要结构简介 风机机组除风机本体外,根据用户需要,可配备各种外配套,主要有液力耦合器(或液体电阻调速器)、电机(或变频电机)、慢转装置、差动导叶调节装置(也称调节门)风机进、出口膨胀节、润滑油站、电动执行器、消声器、电控柜(或机旁仪表柜)、高压(或低压柜)…等。对外配置的配置,不同的用户有不同的要求,具体的供货范围根据合同。用户根据自己合同所订配套,对本说明书针对性的进行选择阅读及应用。 1、A式风机结构及特点简介 风机由叶轮、机壳、进风口、电机支架等部分组成。 1.1叶轮为钢板焊接而成,叶片一般为10-14片,焊接于前盘与后盘中间。叶轮经过静、动平衡校正,保证运转平衡,噪声低,有较高的强度,使用寿命较长。 1.2机壳:用钢板焊接成蜗形壳,整体结构。 1.3进风口:收敛式进风口制成整体结构,用螺栓固定在机壳入口侧。 2、D式风机结构及特点简介 风机主要由叶轮、机壳、进风口、调节门、及传动组部分组成: 2.1叶轮:叶片焊接于锥弧形前盘与平板后盘中间。风机效率高、强度高、噪声低。叶轮经静动平衡校正和超速运转实验,故运转平稳可靠。 2.2机壳:用普通钢板焊接成蜗形体 2.3进风口:收敛、流线型的进风口制成整体结构,用螺栓固定于风机入口一侧。 2.4调节门:用来调节流量的装置,轴向安装于进风口之前。调节范围由0°(全开)到90°(全闭)。调节门的搬把位置:从进风口方向看在右侧,对右旋风机,搬把由下往上推是由全闭到全开方向,对左旋风机,搬把由上往下拉是由全闭到全开方向。 2.5传动部分:由主轴、轴承箱、支架、滚动轴承、联轴器组成 传动:传动部分的主轴由优质钢制成,本风机均采用滚动轴承。轴承箱上装有温度计和油位指示器(仅引风机)润滑油采用30号机械油,加油量按油位标志要求。引风机备有水冷装置,因此,须加装输水管,耗水量随气温不同而异,一般按0.5~1m3/h考虑。 三、电控柜简介

离心风机的选型与设计

摘要 离心式通风机的设计包括气动设计计算,结构设计和强度计算等内容。离心式通风机 的气动设计分相似设计和理论设计两种方法。相似设计方法简单,可靠,在工业上广泛使用。 而理论设讲方法用于设计新系列的通风机。本文在了解离心通风机的基本组成,工作原理以 及设计的一般方法的基础上,设计了一种离心通风机。 关键字:离心式通风机工作原理设计方法 ABSTRACT The design of Centrifugal fan includes the calculation of aerodynamic and the structure etc. The aerodynamic design of Centrifugal fan has two kinds of methods: one is the likeness designs, the other is theoretical designs. Based on above, this article designed a Centrifugal fan based on above. Key words: Centrifugal fan; working principle; design method

1.引言…………………………………………………………………… .(1) 2.离心式通风机的结构及原理 (3) 2.1离心式风机的基本组成 (3) 2.2离心式风机的原理 (3) 2.3离心式风机的主要结构参数 (4) 2.4离心式风机的传动方式 (5) 3离心风机的选型的一般步骤 (5) 4.离心式通风机的设计 (5) 4.1通风机设计的要求 (5) 4.2设计步骤 (6) 4.2.1叶轮尺寸的决定 (6) 4.2.2离心通风机的进气装置 (13) 4.2.3蜗壳设计 (14) 4.2.4参数计算 (20) 4.3离心风机设计时几个重要方案的选择 (24) 5.结论 (25) 附录 (25)

离心通风机设计毕业论文

离心通风机设计毕业论 文 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

本科毕业设计(论文) 题目SFF型离心通风机设计 学院机械工程学院 年级专业 班级学号 学生姓名 校内导师职称 校外导师职称 论文提交日期

本科毕业设计(论文)诚信承诺书 本人郑重声明:所呈交的本科毕业设计(论文),是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本人签名:日期: 本科毕业设计(论文)使用授权说明 本人完全了解常熟理工学院有关收集、保留和使用毕业设计(论文)的规定,即:本科生在校期间进行毕业设计(论文)工作的知识产权单位属常熟理工学院。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许毕业设计(论文)被查阅和借阅;学校可以将毕业设计(论文)的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编毕业设计(论文),并且本人电子文档和纸质论文的内容相一致。 保密的毕业设计(论文)在解密后遵守此规定。 本人签名:日期: 导师签名:日期:

SFF型离心通风机设计论文 摘要 伴随着社会快速发展的需要,风机在国民经济中的应用越来越广泛,因此风机的设计和制造不仅对风机领域的发展和技术的提高有着深远影响,而且风机设计中节能减排减震等的思想方案可以推广至各个生产领域。 根据通风机气体流动方向的不同,通风机可以分为式、轴流式、斜流式和横流式等类型。其中按应用范围广泛程度来说,离心通风机因在矿井、锅炉、纺织、建筑物通风等众多场合均有涉及,所以应用远超其他类型通风机。本文献综述了在纺织机械中以三角胶带为传动方式的SFF型离心通风机的设计,该设计主要涵盖了离心通风机的工作原理、适用场合、发展现状、机械部分的组成等,以及分析了圆弧形前弯叶片的设计和小正方形法蜗壳型线的绘制等。考虑到通风机速度不高且伴有冲击,轴承座采用脂润滑结构,且整体设计中采取了加装整体减震支架的措施。 关键字:离心通风机三角胶带前弯叶片 The design of SFF type centrifugal fan Abstract Along with the rapid development of society, the fan is used more and more widely in the national economy. Therefore the design and manufacture of fan not only have a far-reaching influence in the development of fan and the improvement of technology , but also the scheme that energy saving and carbon emission reduction ,

相关主题
文本预览
相关文档 最新文档