当前位置:文档之家› 高中数学竞赛00试题教师版数列

高中数学竞赛00试题教师版数列

高中数学竞赛00试题教师版数列
高中数学竞赛00试题教师版数列

高中数学竞赛(00-06)———数列

1.(00全国)给定正数p,q,a,b,c,其中p?q,若p,a,q是等比数列,p,b,c,q是等差数列,2?2ax+c=0 则一元二次方程bx ( A )

(A)无实根(B)有两个相等实根(C)有两个同号相异实根(D)有两个异号实根

2.(03全国)删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列,这个新数列的第2003项是()w.w.w.k.s.5.u.c.o.m A.2046 B2047 C.2048

D.2049

22=2116,∴2026=a=a,=2025,462115=a=a.解:注意到45而20702026—454521151981—且在从第1981项到第2070项之间的90项中没有完全平方数.又1981+22=2003,∴a2003=a+22=2026

+22=2048.故选(C).198120042005?2004?20051,,….(04天津)已知数列,这个数列的特点是,,,3S2004等于项之和从第二项起,每一项都等于它的前后两项之和,则这个数列的前20042005200401)( D )(B)C()((A)D

2????aa)2006年江苏)已知数列的最大项是(的通项公式,则4.(?a nn

????????aaaa DBAC14325. (2006吉林预赛)对于一个有n项的n25?4nn?

数列P=(p,p,…,p),P的“蔡查罗和”定义为n12+…p(1≤k≤n),若数列(p,p,…,p)的“蔡、s、s…s、的算术平均值,其中s=p+p2006k1n22k112查罗和”为2007,那么数列(1,p,p,…,p)的“蔡查罗和”为()200621A. 2007 B. 2008 C. 2006 D. 1004 =4(n≥1),且a=9,其前n3a+a项之和为S。则满足不.6(集训试题)已知数列{a}满足nn+11nn1的最小整数n是( ) A.5 B.6 C.7 D.8 等式|S-n-6|

22214??3f(123)?1?2))(nf(n)?f(f)f(n)?nf(,,?k?1,2,3,,比如。记k1k?1f(2006)=( ) (A) 20 (B) 4 (C) 42 则(D) 145. 2006aaaa3142??|a?T,i??1,2,3,462T?{0,1,,3,4,5,},M?{},将)M记集

合9.(2005全国i2347777中的元素按从大到小的顺序排列,则第2005个数是()

5563556211041103A.B.C.D.????????????

42323424234377777777777777771_______.

_____3+log3,+log3,+log等比数列009(全国)aaa的公比是8423.

a,a,a,...,a,...,(3?a)(6?a)?18,且a?3,全国)已知数列满足关系式10(040?21n1nn0n1?

_________________________则。的值是a oi?i111b??18,?)(6?)(3,n?0,1,2,...,则0.?6b?13b?解:设即nn?1n bba n?n1n1111{b?})?2(b?b?2b?,b??是公比为2的等比数列,故数列n nn?11n?n3333111111nnn?1n?1?b??2?(2?21)(b?)?2?b?(?).

?????1i?2?n3n?1)?2???b?(2?1)??(n。??

n0n33a3330n?1??nnn?2(21)1111

i a32?133??00i?i?oi?i231920x?x? ?xxf(x)?1??x?x y的多将关于表为关于的多项式11(05全国)21920,y? ?ay?a?ayaya?y?g(y)?x?4.则式中其项202011921?15?a? ?aa?.

20106?x)(xf的等比数列,由等比数1,公比为解:由题设知,和式中的各项构成首项为2121211?y?4)(?x)1?1(?x,g(y)?f(x?.)?,?y?4x列的求和公式,得:得令

y?5?x?1x?121?15?ga(1)?.?a?a?a ?,1y?有取20102612(05天

津)在数列{a}中,已知a=2,a+a=1(n∈N).若S为数列{a}的前n项nnnn+11+n和,那么,S-2S +S的值是_________________. 2 0052 0042 003n,S解:3.当n为偶数时,a+a=1,a+a=1,…,a+a=1,则S=n2004n32n411-21?n3n?,+aa…1=+a1=+an;=1002当为奇数时,a,a,,=则,S+a=1=1nn12354n-22∴S=1003,S=1004;∴S-2S+S .3=2 0052 0042 00320052003.

1????naf2020a??q?表示这个等比数列的首项为.设,公比13(2006年江苏)1n2??nf n?n 时,有最大值.数列的前项的积,则当xn?x?(n?1)xx2x?。= , 且14.(2005年浙江)已知数列,满足,则2005n?1nn1tsr}?t?s?r|{aa?2?2?2,0tr,s,中的数由

小到为整数,集合15.(2005四川)设?{a}a ,13,147,11,大组成数列,则。:36n

11??)?(aS?a Sa,其前n项和16.数列则满足=_____的各项为正数, nnnnn a2n S n)=f(nn,n?N,求=1+2+3+ (50)

答案:的最大值.( 17.(00全国)设S n S)?32(n1?n236?45a7a?nn}a{.Na?n?,a?1,全国)数列满足:18.(05n10?n21?aaan?N,n?N,为完全平方为正整数;1证明:()对任意(2)对任意1nnn?数。}a{,a?5得形式变.将条件严格(证:1)由题设得单调递增且

n12222a?7a?45a?36,a?7aa?a?9?0①两边平方整理得n1nnn?1?nnn?122?a?7aa?a?9?0②

1n?n1?nn(a?a)(a?a?7a)?0,a?a,?a?a?7a?0?②得①-n1nn?1?1n?1nn?1nnn?1?1?n a?7a?a.③

11nb?n?a?1,a?5n?N,a为正整数由③式及.…………………………10可知,对任意分n01aa22n?1n)(.?(aa?1),?aa1?9(a?a)?④)将

①两边配方,得(21n?1nn?1n?nn3??)?(a?aaa?a?9mod3(a)?a?由③≡

??nn?1n aa?1)?(a?a为正整数。≡0(mod3)∴∴④式成立≡.

nn?1n?n1n1?nn a?a

n1n?013?aa?1是完全平方数.……………………………………………………20分

1n?n{a}a?2a?a?n?201a?p?a?p,其已知数列19.(06天津),满足,n?1nn?2n21ann p的值最小.的值,使得是正整数,试求中是给定的实数,n b?a?aa?2a?a?n?20 1n?,2,,。解【】令由题设有,

n12nn?nn??n1n?1n?1??20?nb?b?(i??20)(b?b)1b?,即…………5分。且,于是

nn?1i1i?11?i?i1b?b?[1?2??(n?1)]?2n(n?1) .1n(n?1)(n?40)?1b?∴ (10)

分.(※)n2a?2a?a?1?20?p?17?a?a1ap?ap??,又,则.2112321.a?aa?aa3n?.,且∴当,的值最小时,应有

1nnnn?1?n b?a?a?0b?a?a?0.即…………………………………15分,

1n?n?11nn?nn(n?1)(n?40)?2n?40??*n?N n?40n?3∴当由(※)式,得解得,由于,且,

??(n?2)(n?41)??2n?40??a的值最小.………………20时,分

40??????yy?f(?3sinxtan)?xsin(2,?tan)。记,设,20.(2006陕西赛区预赛)已知f(x)的表达式; (1)

12*{a})a()(n??{a};aN?,a2a?f的通项公式。(2)定义正数数列. 。试求数列nnn1nn?12

*a?4n?1 (n?N)a中所有能被3或将等差数列年南昌市){}:5整除的数200621.(nn bb的值. 剩下的数自小到大排成一个数列{},求,删去后n2006

高中数学竞赛数列问题

高中数学竞赛数列问题 一、 高考数列知识及方法应用(见考纲) 二、 二阶高次递推关系 1.因式分解降次。例:正项数列{a n },满足12+=n n a S ,求a n (化异为同后高次) 2.两边取对数降次。例:正项数列{a n },a 1=1,且a n ·a n+12 = 36,求a n 三、 线性递推数列的特征方程法 定理1:若数列{a n }的递推关系为a n+2=λ1a n+1+λ2a n ,则设特征方程x 2=λ1x+λ2, 且此方程有相异两根x 1,x 2(x 1≠x 2),则必有 a n =c 1x 1n +c 2x 2n ,其中c 1,c 2由此数列已知前2项解得,即 ???+=+=2 222112 2 2111x c x c a x c x c a 或由???+=+=22111 2 10x c x c a c c a 得到。(见训练及考试题) 定理2:若方程x 2=λ1x+λ2有相等重根x 0,则有 a n =(c 1+c 2n )x 0n ,其中c 1,c 2仍由定理1方程组解得。 例如.:1,已知.数列{}n a 满足)(,11221+++∈+===N n a a a a a n n n ,求数列{}n a 的 通项公式 2,.数列{}n a 中,设,2,1321===a a a 且)3(32 1 1≥+= --+n a a a a n n n n ,求数列{}n a 的通项公式 3,.数列}{n a 满足:.,2 36 457,12 10N n a a a a n n n ∈-+= =+ 证明:(1)对任意n a N n ,∈为正整数;(2)求数列}{n a 的通项公式。 4,已知.数列{}n a 满足121,2,a a n N +==∈都有2144n n n a a a ++=-,求数列 {}n a 的通项公式 四、 特殊递推的不动点法 ( f (x )= x 的解称为f (x )的不动点 ) 定理1:若数列{a n }满足递推:a n+1=a ·a n +b (a ,b ∈R ), 则设x=ax+b ,得不动点1 0--= a b x 且数列递推化为:a n+1-x 0=a (a n -x 0),

高中数学数列测试题附答案与解析

第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a -的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9 二、填空题 11.设f (x )=221 +x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+… +f (5)+f (6)的值为 . 12.已知等比数列{a n }中,

高中数学竞赛_数列【讲义】

第五章 数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高中数学竞赛专题讲座数列

高中数学竞赛专题试题讲座——数列 一、选择题部分 1.(2006年江苏)已知数列{}n a 的通项公式2 2 45 n a n n =-+,则{}n a 的最大项是( B ) ()A 1a ()B 2a ()C 3a ()D 4a 2(2006安徽初赛)正数列满足()231221,10,103n n n t a a a a a n --===≥,则100lg ()a = ( ) A 、98 B 、99 C 、100 D 、101 3. (2006吉林预赛)对于一个有n 项的数列P=(p 1,p 2,…,p n ),P 的“蔡查罗和”定义为s 1、s 2、…s n 、的算术平均值,其中s k =p 1+p 2+…p k (1≤k≤n ),若数列(p 1,p 2,…,p 2006)的“蔡查罗和”为2007,那么数列(1,p 1,p 2,…,p 2006)的“蔡查罗和”为 ( A ) A. 2007 B. 2008 C. 2006 D. 1004 4.(集训试题)已知数列{a n }满足3a n+1+a n =4(n ≥1),且a 1=9,其前n 项之和为S n 。则满足不等式|S n -n-6|<125 1 的最小整数n 是 ( ) A .5 B .6 C .7 D .8 解:由递推式得:3(a n+1-1)=-(a n -1),则{a n -1}是以8为首项,公比为- 3 1 的等比数列, ∴S n -n=(a 1-1)+(a 2-1)+…+(a n -1)= 3 11] )31 (1[8+--n =6-6×(-31)n ,∴|S n -n-6|=6×(31)n <1251,得:3n-1 >250,∴满足条件的最小整数n=7,故选C 。 5.(集训试题)给定数列{x n },x 1=1,且x n+1= n n x x -+313,则 ∑=2005 1 n n x = ( ) A .1 B .-1 C .2+3 D .-2+3 解:x n+1= n n x x 3 3 133 - +,令x n =tan αn ,∴x n+1=tan(αn +6 π), ∴x n+6=x n , x 1=1,x 2=2+3, x 3=-2-3, x 4=-1, x 5=-2+3, x 6=2-3, x 7=1,……,∴有 ∑===2005 1 11n n x x 。故选A 。 6、(2006陕西赛区预赛)已知数列{}{}n n a b 、 的前n 项和分别为n A ,n B 记

高中数学数列练习题

数列经典解题思路 求通项公式 一、观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) K ,1716 4,1093,542,211 (3) K ,52,2 1,32 ,1 解:(1)110-=n n a (2);122++=n n n a n (3);12 +=n a n 二、公式法 例1. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( D ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 例2. 已知等比数列{}n a 的首项11=a , 公比10<

高中数学竞赛讲义(五)──数列

高中数学竞赛讲义(五) ──数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,…. 数列分有穷数列和无穷数列两种,数列{a n}的一般形式通常记作a1, a2,a3,…,a n或a1, a2, a3,…,a n…。其中a1叫做数列的首项,a n是关于n的具体表达式,称为数列的通项。 定理1 若S n表示{a n}的前n项和,则S1=a1, 当n>1时,a n=S n-S n-1. 定义2 等差数列,如果对任意的正整数n,都有a n+1-a n=d(常数),则{a n}称为等差数列,d叫做公差。若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d. 定理2 等差数列的性质:1)通项公式 a n=a1+(n-1)d;2)前n项和公式: S n=;3)a n-a m=(n-m)d,其中n, m 为正整数;4)若n+m=p+q,则a n+a m=a p+a q;5)对任意正整数p, q,恒有a p-a q=(p-q)(a2-a1);6)若A,B 至少有一个不为零,则{a n}是等差数列的充要条件是S n=An2+Bn.

定义3 等比数列,若对任意的正整数n,都有 ,则{a n}称为等比数列,q叫做公比。 定理3 等比数列的性质:1)a n=a1q n-1;2)前n 项和S n,当q1时,S n=;当q=1时,S n=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则a m a n=a p a q。 定义4 极限,给定数列{a n}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|a n-A|<,则称A为n→+∞时数列{a n}的极限,记作 定义5 无穷递缩等比数列,若等比数列{a n}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n 项和S n的极限(即其所有项的和)为(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切n ≤k的自然数n都成立时(k≥n0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。 定理5 对于齐次二阶线性递归数列x n=ax n-1+bx n-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则x n=c1a n-1+c2βn-1,其中c1, c2由初始条件x1, x2的值确定;(2)若α=β,则x n=(c1n+c2) αn-1,其中c1, c2的值由x1, x2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是 人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学竞赛讲义_数列

数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

《高中数学竞赛》数列

竞赛辅导 数列(等差数列与等比数列) 数列是高中数学中的一个重要课题,也是数学竞赛中经常出现的 问题。数列最基本的是等差数列与等比数列。 所谓数列,就是按一定次序排列的一列数。如果数列{a n}的第n项a n与项数(下标)n之间的函数关系可以用一个公式a n=f(n)来表示,这个公式就叫做这个数列的通项公式。 从函数角度看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,…n})的函数当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式。 为了解数列竞赛题,首先要深刻理解并熟练掌握两类基本数列的定义、性质有关公式,把握它们之间的(同构)关系。 一、等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。等差数列{a n}的通项公式为: 前n项和公式为: 从(1)式可以看出,是的一次数函()或常数函数(),()排在一条直线上,由(2)式知,是的二次函数()或一次函数(),且常数项为0。在等差数列{ }中,等差中项:且任意两项的关系为: 它可以看作等差数列广义的通项公式。 从等差数列的定义、通项公式,前项和公式还可推出: 若 二、等比数列 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比。公比通常用字母表示。等比数列{a n}的通项公式是: 前项和公式是:

在等比数列中,等比中项: 且任意两项的关系为 如果等比数列的公比满足0<<1,这个数列就叫做无穷递缩等比数列,它的各项的和(又叫所有项的和)的公式为: 从等比数列的定义、通项公式、前项和公式可以推出: 另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂,则{}是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。重要的不仅是两类基本数列的定义、性质,公式;而且蕴含于求和过程当中的数学思想方法和数学智慧,也是极其珍贵的,诸如“倒排相加”(等差数列),“错位相减”(等比数列)。 数列中主要有两大类问题,一是求数列的通项公式,二是求数列的前n项和。 三、范例 例1.设a p,a q,a m,a n是等比数列{a n}中的第p、q、m、n项,若p+q=m+n, 求证: 证明:设等比数列{}的首项为,公比为q,则 说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积, 即:a1+k·a n-k=a1·a n 对于等差数列,同样有:在等差数列{ }中,距离两端等这的两项之和等于首末两项之和。即:a1+k+a n-k=a1+a n 例2.在等差数列{}中,a4+a6+a8+a10+a12=120,则2a9-a10= A.20 B.22 C.24 D28 解:由a4+a12=2a8,a6+a10 =2a8及已知或得 5a8=120,a8=24 而2a9-a10=2(a1+8d)-(a1+9d)=a1+7d=a8=24。

精选高中数学数列分类典型试题及答案

【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1) 2 1231,314,3413a a a =∴=+==+=. (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++ ++= , 所以证得 31 2n n a -=. 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =, 又112233 ,,a b a b a b +++成等比数列,求 n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)21 12322...28n n a a a a n -++++=左边相当于是数列 {} 1 2n n a -前n 项和的形式, 可以联想到已知 n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况.

高中数学竞赛专题之数列

高中数学竞赛专题之数列 一、数列的性质 等差数列与等比数列是中学阶段的两种重要数列,也是各年高考、竞赛的重点,现将它们的主要性质及容对照讨论如下: 性质1:若K K ,,,,21n a a a 是等差(等比)数列,那么K K ,,,,kj i j i i a a a ++仍是等差(等比)数列。 性质2:若}{n a 为等差数列,且 ∑∑===k l l k l l j i 11 ,那么 ∑∑===k l j k l i l l a a 1 1 (脚标和相同则对应的 项的和相同);若}{n a 为等比数列,且∑∑===k l l k l l j i 1 1 ,那么l l j k l i k l a a 1 1 ===ππ(脚标和相同则对 应的项的积相同)。 性质3:若}{n a 为等差数列,记K K ,,,,1 )1(1 2 1 1∑∑∑=-+=+==== k i k m i m k i k i k i i a S a S a S ,那么 }{m S 仍为等差数列,}{n a 为等比数列,记K K ,,,,)1(1 1 21 1k m i k l m k i k l i k l a P a P a P -+=+=====πππ, 那么}{m P 仍为等比数列。 性质4:若}{n a 为等比数列,公比为q ,且|q|〈1,则q a S n n -= ∞ →1lim 1 。 例1、若}{n a 、}{n b 为等差数列,其前n 项和分别为n n T S ,,若 1 32+=n n T S n n , 则=∞→n n n b a lim ( )A.1 B. 36 C. 32 D.94 例2、等差数列}{n a 的前m 项和为30,前2m 项和为100,则它的前3m 项的和为( ) A.130 B. 170 C. 210 D.260 例3、}{n a 、}{n b 为等差数列,其前n 项和分别为n n T S ,,若 3 3131 3++=n n T S n n (1)求2828a b 的值, (2)求使n n a b 为整数的所有正整数n 。

高中数学《数列》测试题

11会计5班《数列》数学测试卷2012.4 一、选择题(2'1836'?=) 1.观察数列1,8,27,x ,125,216,… 则x 的值为( ) A .36 B .81 C .64 D .121 2.已知数列12a =,12n n a a +=+,则4a 的值为( ) A .12 B .6 C .10 D .8 3.数列1,3,7,15,… 的通项公式n a 等于( ) A .1 2 n - B .21n - C .2n D .21n + 4.等差数列{n a }中,16a =,418a =,则公差d 为( ) A .4 B .2 C .—3 D .3 5.128是数列2,4,8,16,… 的第( )项 A .8 B .5 C .7 D .6 6.等差数列{n a }中,12a =,327S =,则3a 的值为( ) A .16 B .20 C .11 D .7 7.在等差数列中,第100项是48,公差是 1 3 ,首项是( ) A .5 B .10 C .15 D .20 8.在等差数列{n a }中,1234525a a a a a ++++=,则3a 为( ) A .3 B .4 C .5 D .6 9.已知数列0,0,0,0,… 则它是( ) A .等差数列非等比数列 B .等比数列非等差数列 C .等差数列又等比数列 D .非等差数列也非等比数列 10.在等比数列{n a }中,4520a a ?=,则27a a ?为( ) A .10 B .15 C .20 D .25 班级 姓名 学号 11.等比数列1,2,4,… 的第5项到第11项的和等于( ) A .2030 B .2033 C .2032 D .2031 12.等差数列中,第1项是 —8,第20项是106,则第20项是( ) A .980 B .720 C .360 D .590 13.在等比数列中,12a =,3q =,则4S =( ) A .18 B .80 C .—18 D .—80 14.三个正数成等差数列,其和为9,它们依次加上1,3,13后成为等比数列,则这三个数为( ) A .6,3,0 B .1,3,5 C .5,3,1 D .0,3,6 15.在等比数列中,第5项是 —1,第8项是 — 1 8 ,第13项是( ) A .13 B .1256- C .78- D .1128 - 16.若a ,b , c 成等比数列,则函数2 ()f x ax bx c =++的图像与x 轴的交点个数为( ) A .2 B .0 C .1 D .不确定 17.某农场计划第一年产量为80万斤,以后每年比前一年多种20%,第五年产量约为( ) A .199万斤 B .595万斤 C .144万斤 D .166万斤 18.把若干个苹果放到8个箱子中,每个箱子不能不装,要使每个箱子中所装的苹果个数互不相同,至少需要苹果( ) A .35个 B .36个 C .37个 D .38个 二、填空题(3'824'?=) 19.数列1,32- ,54,78-,916 ,… 的通项公式是 20.数列2,7,14,23,( ),47,… 并写出数列的通项公式

高中数学竞赛数论

高中数学竞赛 数论 剩余类与剩余系 1.剩余类的定义与性质 (1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。K 0,K 1,…,K m-1为模m 的全部剩余类. (2)性质(ⅰ)i m i K Z 1 0-≤≤=Y 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里. (ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ?a ≡b(modm). 2.剩余系的定义与性质 (1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,2 1 ,,1,0,1,,121,21--+----m m m ΛΛ;当m 为偶数时,12 ,,1,0,1,,12,2--+-- m m m ΛΛ或2,,1,0,1,,12m m ΛΛ-+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系?两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系. 证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!

高中数学数列试题精选以及详细答案

高中数学数列试题精选以及详细答案

高中数学数列试题精选 【例1】 求出下列各数列的一个通项公式 (1)14(2)23,,,,,…,,,,…38516732964418635863(3)(4)12--1318115124 2928252,,,,…,,,,… 【例2】 求出下列各数列的一个通项公式. (1)2,0,2,0,2,… (2)10000,,,,,,,, (131517) (3)7,77,777,7777,77777,…(4)0.2,0.22,0.222,0.2222,0.22222,… 【例3】 已知数列,,,,…则是这个数列的第25221125 几项. 【例4】 已知下面各数列{a n }的前n 项和S n 的公式,求数列的通项公式. (1)S n =2n 2-3n (2)S n =n 2+1

(3)S n =2n +3 (4)S n =(-1)n+1·n 【例5】 a =a 1n(n 1)(n 2)a 1n n 11已知+≥,=,-- (1)写出数列的前5项; (2)求a n . 【例6】 数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2.(1)求a 3+a 5;(2)256225 是此数列中的项吗? 【例7】 已知数a n =(a 2-1)(n 3-2n)(a=≠±1)是递增数列,试确定a 的取值范围. 高中数学数列试题精选以及详细答案 【例1】 求出下列各数列的一个通项公式 (1)14(2)23,,,,,…,,,,…38516732964418635863(3)(4)12--1318115124 2928252,,,,…,,,,… 解 (1)所给出数列前5项的分子组成

高中数学竞赛辅导讲义-第五章--数列【讲义】

第五章 数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n = d n n na a a n n 2 ) 1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有 a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数 列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有q a a n n =+1 ,则{a n }称为等比数列,q 叫做公比。

定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时, S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即 b 2=a c (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极 限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为 q a -11 (由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程

高中数学数列练习题及答案解析

高中数学数列练习题及答案解析 第二章数列 1.{an}是首项a1=1,公差为d=3的等差数列,如果an=005,则序号n等于. A.667B.668C.669D.670 2.在各项都为正数的等比数列{an}中,首项a1=3,前三项和为21,则a3+a4+a5=. A.33B.7C.84D.189 3.如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则. A.a1a8>a4a5B.a1a8<a4a5C.a1+a8<a4+a5D.a1a8=a4a5 4.已知方程=0的四个根组成一个首项为 |m-n|等于. A.1B.313C.D.8421的等差数列,则 5.等比数列{an}中,a2=9,a5=243,则{an}的前4项和为. A.81 B.120 C.1D.192 6.若数列{an}是等差数列,首项a1>0,a003+a004>0,a003·a004<0,则使前n项和Sn>0成立的最大自然数n是. A.005B.006C.007D.008

7.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=. A.-4B.-6C.-8D.-10 8.设Sn是等差数列{an}的前n项和,若 A.1B.-1 C.2D.1 a2?a1的值是. b2a5S5=,则9=. a3S599.已知数列-1,a1,a2,-4成等差数列,-1,b1,b2,b3,-4成等比数列,则 A.11111B.-C.-或D.2222 210.在等差数列{an}中,an≠0,an-1-an+an+1=0,若S2n-1=38,则n=. 第 1 页共页 A.38B.20 C.10D.9 二、填空题 11.设f=1 2?x,利用课本中推导等差数列前n项和公式的方法,可求得f+f+…+f+…+ f+f的值为12.已知等比数列{an}中, 若a3·a4·a5=8,则a2·a3·a4·a5·a6=. 若a1+a2=324,a3+a4=36,则a5+a6=. 若S4=2,S8=6,则a17+a18+a19+a20=. 82713.在和之间插入三个数,使这五个数成等比数列,

相关主题
文本预览
相关文档 最新文档