2015年02月27日649973720的初中数学组卷-——三角函数
- 格式:doc
- 大小:894.08 KB
- 文档页数:26
三角函数练习1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( ) A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00〈∠A<300B 、300<∠A 〈450C 、450〈∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a:b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(—sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(—32,—12)D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1。
6米,则旗杆的高度约为( )A .6.9米B .8。
5米C .10.3米D .12.0米 10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m(D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米 D 。
(一)精心选一选(共36分)1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定2、在Rt △ABC 中,∠C=900,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )5、 A 、74 B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(,12)B .(-,12)C .(-,-12)D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为()A.6.9米 B.8.5米 C.10.3米 D.12.0米10.王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()(A)350m(B)100 m(C)150m(D)3100m11、如图1,在高楼前D点测得楼顶的仰角为30︒,向高楼前进60米到C点,又测得仰角为45︒,则该高楼的高度大约为()A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距().(A)30海里(B)40海里(C)50海里(D)60海里(二)细心填一填(共33分)1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC中,若AC=3,则cosA=________.3.在△ABC中,AB= ,B=30°,则∠BAC的度数是______.图19.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图,太线与地面成60°角,一棵倾斜的大树与地面成30°角,• 这时测得大树在地面上的影子约为10米,则大树的高约为________米。
初中三角函数基础检测题山岳 得分(一)精心选一选(共36分)1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定2、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒, 向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填(共33分)1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC 中,AB= ,AC=2,∠B=30°,则∠BAC 的度数是______.图145︒30︒BAD C4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根 号). 7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,则tan B =_________. 9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)第6题图xOAy B北甲北乙第5题图αACB第10题图A40°52mCD第9题图B43第4题图10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米。
2015年上海市中考数学试卷一、选择题1.(4分)下列实数中,是有理数的为()A.B.C.πD.02.(4分)当a>0时,下列关于幂的运算正确的是()A.a0=1B.a﹣1=﹣a C.(﹣a)2=﹣a2D.a=3.(4分)下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=4.(4分)如果一个正多边形的中心角为72°,那么这个多边形的边数是()A.4B.5C.6D.75.(4分)下列各统计量中,表示一组数据波动程度的量是()A.平均数B.众数C.方差D.频率6.(4分)如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是()A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB 二、填空题7.(4分)计算:|﹣2|+2=.8.(4分)方程=2的解是.9.(4分)如果分式有意义,那么x的取值范围是.10.(4分)如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是.11.(4分)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是℉.12.(4分)如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是.13.(4分)某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是.14.(4分)已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:年龄(岁)1112131415人数55161512那么“科技创新社团”成员年龄的中位数是岁.15.(4分)如图,已知在△ABC中,D、E分别是边AB、边AC的中点,=,=,那么向量用向量,表示为.16.(4分)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠F AD=度.17.(4分)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D的半径长可以等于.(只需写出一个符合要求的数)18.(4分)已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B 落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于.三、解答题19.(10分)先化简,再求值:÷﹣,其中x=﹣1.20.(10分)解不等式组:,并把解集在数轴上表示出来.21.(10分)已知:如图,在平面直角坐标系xOy中,正比例函数y=x的图象经过点A,点A的纵坐标为4,反比例函数y=的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数的解析式;(2)直线AB的表达式.22.(10分)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:≈1.7)23.(12分)已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.24.(12分)已知在平面直角坐标系xOy中(如图),抛物线y=ax2﹣4与x轴的负半轴相交于点A,与y轴相交于点B,AB=2,点P在抛物线上,线段AP与y轴的正半轴交于点C,线段BP与x轴相交于点D,设点P的横坐标为m.(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长;(3)当tan∠ODC=时,求∠P AD的正弦值.25.(14分)已知,如图,AB是半圆O的直径,弦CD∥AB,动点P,Q分别在线段OC,CD上,且DQ=OP,AP的延长线与射线OQ相交于点E,与弦CD相交于点F(点F 与点C,D不重合),AB=20,cos∠AOC=,设OP=x,△CPF的面积为y.(1)求证:AP=OQ;(2)求y关于x的函数关系式,并写出它的定义域;(3)当△OPE是直角三角形时,求线段OP的长.2015年上海市中考数学试卷参考答案与试题解析一、选择题1.(4分)下列实数中,是有理数的为()A.B.C.πD.0【点评】此题主要考查了无理数和有理数的区别,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.(4分)当a>0时,下列关于幂的运算正确的是()A.a0=1B.a﹣1=﹣a C.(﹣a)2=﹣a2D.a=【点评】此题主要考查了零指数幂的性质以及负指数幂的性质和分数指数幂的性质等知识,正确把握相关性质是解题关键.3.(4分)下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=【点评】本题考查了正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.4.(4分)如果一个正多边形的中心角为72°,那么这个多边形的边数是()A.4B.5C.6D.7【点评】本题考查的是正多边形的中心角的有关计算,掌握正多边形的中心角和为360°和正多边形的中心角相等是解题的关键.5.(4分)下列各统计量中,表示一组数据波动程度的量是()A.平均数B.众数C.方差D.频率【点评】本题考查了标准差的意义,波动越大,标准差越大,数据越不稳定,反之也成立.6.(4分)如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是()A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB 【点评】此题主要考查了菱形的判定以及垂径定理,熟练掌握菱形的判定方法是解题关键.二、填空题7.(4分)计算:|﹣2|+2=4.【点评】本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.8.(4分)方程=2的解是x=2.【点评】此题主要考查了无理方程的求解,要熟练掌握,解答此题的关键是要明确:(1)解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.(2)注意:用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.9.(4分)如果分式有意义,那么x的取值范围是x≠﹣3.【点评】本题考查的是分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10.(4分)如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是m <﹣4.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.(4分)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是77℉.【点评】本题考查的是求函数值,理解函数值的概念并正确代入准确计算是解题的关键.12.(4分)如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是y=x2+2x+3.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.13.(4分)某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:年龄(岁)1112131415人数55161512那么“科技创新社团”成员年龄的中位数是14岁.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.15.(4分)如图,已知在△ABC中,D、E分别是边AB、边AC的中点,=,=,那么向量用向量,表示为﹣.【点评】此题考查了平面向量的知识以及三角形中位线的性质.注意掌握三角形法则的应用.16.(4分)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠F AD=22.5度.【点评】本题考查了正方形的性质,全等三角形的判定与性质,求证Rt△AEF≌Rt△ADF 是解本题的关键.17.(4分)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D的半径长可以等于14(答案不唯一).(只需写出一个符合要求的数)【点评】本题考查了圆与圆的位置关系、点与圆的位置关系,解题的关键是首先确定⊙B 的半径,然后确定⊙D的半径的取值范围,难度不大.18.(4分)已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B 落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于4﹣4.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和旋转的性质.三、解答题19.(10分)先化简,再求值:÷﹣,其中x=﹣1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(10分)解不等式组:,并把解集在数轴上表示出来.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.21.(10分)已知:如图,在平面直角坐标系xOy中,正比例函数y=x的图象经过点A,点A的纵坐标为4,反比例函数y=的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数的解析式;(2)直线AB的表达式.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式和一次函数与反比例函数的交点的求法,注意数形结合的思想在解题中的应用.22.(10分)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:≈1.7)【点评】本题考查了解直角三角形的应用、勾股定理的应用.根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.23.(12分)已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.【点评】本题考查了相似三角形的判定和性质,直角三角形的判定和性质,平行四边形的性质,熟记定理是解题的关键.24.(12分)已知在平面直角坐标系xOy中(如图),抛物线y=ax2﹣4与x轴的负半轴相交于点A,与y轴相交于点B,AB=2,点P在抛物线上,线段AP与y轴的正半轴交于点C,线段BP与x轴相交于点D,设点P的横坐标为m.(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长;(3)当tan∠ODC=时,求∠P AD的正弦值.【点评】此题考查了二次函数的综合,用到的知识点是相似三角形的判定与性质、勾股定理、特殊角的三角函数值,关键是根据题意作出辅助线,构造相似三角形.25.(14分)已知,如图,AB是半圆O的直径,弦CD∥AB,动点P,Q分别在线段OC,CD上,且DQ=OP,AP的延长线与射线OQ相交于点E,与弦CD相交于点F(点F 与点C,D不重合),AB=20,cos∠AOC=,设OP=x,△CPF的面积为y.(1)求证:AP=OQ;(2)求y关于x的函数关系式,并写出它的定义域;(3)当△OPE是直角三角形时,求线段OP的长.【点评】本题考查了圆的综合知识、相似三角形的判定及性质等知识,综合性较强,难度较大,特别是第三题的分类讨论更是本题的难点.第11页(共11页)。
2015年初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2kmC.D.(4-km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.DCB A(第7题)(第9题)(第10题)l13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.(第17题)GF E D CBA F EDC B A (第18题)ba(第13题)20%10%30%40%其他乒乓球篮球羽毛球(第15题)19.(本题满分5分)(052--. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50︒,求 DE、 DF的长度之和(结果保留π).25.(本题满分8分)如图,已知函数kyx=(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.(第24题)F EDCBA26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.(第26题)28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)2015年苏州市初中毕业暨升学考试数学试题答案一、选择题1.C 2.B 3.A 4.C 5.D6.B 7.C 8.D 9.A 10.B二、填空题11.3a12.55 13.60 14.()()22a b a b+-15.1416.3 17.27 18.16三、解答题19.解:原式=3+5-1 =7.20.解:由12x+≥,解得1x≥,由()315x x-+>,解得4x>,∴不等式组的解集是4x>.21.解:原式=()21122xxx x++÷++=()2121211x xx xx++⨯=+++.当1x===.22.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60505x x=+.解这个方程,得x=25.经检验,x=25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴ DE的长度= DF 的长度=556111806ππ⨯⨯=. ∴ DE、 DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上,∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=, 在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1.∴C 点的坐标为(1,0),BC26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +==== ,∴32ABC S = . 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC ,∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°, ∴∠APC =2∠ABC =90°.下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b=(cm/s ). ∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一), OO 1=14cm (见解法一),1254v v =,∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。
直角三角形与勾股定理一.选择题1. (2015辽宁大连,8,3分)如图,在△ABC 中,∠C =90°,AC =2,点D 在BC 上,∠ADC =2∠B ,AD =5,则BC 的长为( )A .3-1B .3+1C .5-1D .5+1 【答案】D【解析】解:在△ADC 中,∠C =90°,AC =2,所以CD =()1252222=-=-AC AD ,因为∠ADC =2∠B ,∠ADC =∠B +∠BAD ,所以∠B =∠BAD ,所以BD =AD =5,所以BC =5+1,故选D .2.(2015•四川南充,第9题3分)如图,菱形ABCD 的周长为8cm ,高AE 长为cm ,则对角线AC 长和BD 长之比为( ) (A )1:2 (B )1:3 (C )1:(D )1:【答案】D 【解析】试题分析:设AC 与BD 的交点为O ,根据周长可得AB =BC =2,根据AE =可得BE =1,则△ABC 为等边三角形,则AC =2,BO =,即BD =2,即AC :BD =1:.考点:菱形的性质、直角三角形.3.(2015•四川资阳,第9题3分)如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是A.13cm B .261cm C .61cm D .234cm考点:平面展开-最短路径问题..分析:将容器侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.解答:解:如图:∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B ===13(Cm).故选:A.点评:本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.4. (2015•浙江滨州,第10题3分)如图,在直角的内部有一滑动杆.当端点沿直线向下滑动时,端点会随之自动地沿直线向左滑动.如果滑动杆从图中处滑动到处,那么滑动杆的中点所经过的路径是( )A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分图5【答案】B【解析】试题分析:根据题意和图形可知△AOB始终是直角三角形,点C为斜边上的中点,根据直角三角形斜边上的中线等于斜边的一半,可知OC始终等于AB的一半,O点为定点,OC 为定长,所以它始终是圆的一部分.故选B考点:直角三角形斜边上的中线等于斜边的一半5. (2015•浙江湖州,第9题3分)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G 分别在AD,BC上,连结OG,DG,若OG⊥DG,且☉O的半径长为1,则下列结论不成立的是( )A. CD+DF=4B. CD−DF=2−3C. BC+AB=2+4D. BC−AB=2【答案】A.【解析】试题分析:如图,设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,利用“AAS”易证△OMG≌△GCD,所以OM=GC=1, CD=GM=BC-BM-GC=BC-2.又因AB=CD,所以可得BC−AB=2.设AB=a,BC=b,AC=c, ⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b -c),所以c=a+b-2. 在Rt△ABC中,由勾股定理可得,整理得2ab-4a-4b+4=0,又因BC−AB=2即b=2+a,代入可得2a(2+a)-4a-4(2+a)+4=0,解得,所以,即可得BC+AB=2+4. 再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得,所以CD−DF=,CD+DF=.综上只有选项A错误,故答案选A.考点:矩形的性质;直角三角形内切圆的半径与三边的关系;折叠的性质;勾股定理;6. (2015•浙江嘉兴,第7题4分)如图,中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则☉C的半径为(▲)(A)2.3 (B)2.4(C)2.5 (D)2.6考点:切线的性质;勾股定理的逆定理..分析:首先根据题意作图,由AB是⊙C的切线,即可得CD⊥AB,又由在直角△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理求得AB的长,然后由S△ABC=AC•BC=AB•CD,即可求得以C为圆心与AB相切的圆的半径的长.解答:解:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,即CD===,∴⊙C的半径为,故选B.点评:此题考查了圆的切线的性质,勾股定理,以及直角三角形斜边上的高的求解方法.此题难度不大,解题的关键是注意辅助线的作法与数形结合思想的应用.8. (2015•四川乐山,第7题3分)如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.B.C.D.【答案】D.考点:1.锐角三角函数的定义;2.勾股定理;3.勾股定理的逆定理;4.格型.9, (2015•四川眉山,第10题3分)如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接C D.若BD=1,则AC的长是()A.2B.2C.4D.4考点:含30度角的直角三角形;线段垂直平分线的性质;勾股定理..分析:求出∠ACB,根据线段垂直平分线的性质求出AD=CD,推出∠ACD=∠A=30°,求出∠DCB,即可求出BD、BC,根据含30°角的直角三角形性质求出AC即可.解答:解:∵在Rt△ABC中,∠B=90°,∠A=30°,∴∠ACB=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠ACD=∠A=30°,∴∠DCB=60°﹣30°=30°,在Rt△DBC中,∠B=90°,∠DCB=30°,BD=1,∴CD =2BD =2, 由勾股定理得:BC ==,在Rt △ABC 中,∠B =90°,∠A =30°,BC =,∴AC =2BC =2,故选A .点评: 本题考查了三角形内角和定理,等腰三角形的性质,勾股定理,含30度角的直角三角形性质的应用,解此题的关键是求出BC 的长,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.10. (2015•浙江省台州市,第8题)如果将长为6cm ,宽为5cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( )A .8cmB .52cmC .5.5cmD .1cm二.填空题1、(2015•四川自贡,第13题4分)已知,AB 是⊙O 的一条直径 ,延长AB 至C 点,使AC 3BC =,CD 与⊙O 相切于D 点,若CD 3=,则劣弧AD 的长为 .考点:圆的基本性质、切线的性质、直角三角形的性质、勾股 定理、弧长公式等.分析:本题劣弧AD 的长关键是求出圆的半径和劣弧AD 所对的圆心角的度数.在连接OD 后,根据切线的性质易知ODC 90∠=o ,圆的半径和圆心角的度数可以通过Rt △OPC 获得解决.DCB AO 13题D CBAO略解:连接半径OD .又∵CD 与⊙O 相切于D 点 ∴OD CD ⊥ ∴ODC 90∠=o∵AC 3BC = AB 2OB = ∴OB BC = ∴ 1OB OC 2= 又OB OD =∴1OD OC 2= ∴在Rt △OPC cos OD 1DOC OC 2∠== ∴DOC 60∠=o ∴AOD 120∠=o ∴在Rt △OPC 根据勾股定理可知:222OD DC OC += ∵CD 3= ∴()()222OD 32OD += 解得:OD 1=则劣弧AD 的长为120OD 120123180180πππ⨯⨯⨯⨯==o o o o. 故应填 23π2. (2015•浙江滨州,第17题4分)如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .【答案】(10,3)考点:折叠的性质,勾股定理3. (2015•四川省内江市,第22题,6分)在△ABC 中,∠B =30°,AB =12,AC =6,则BC = 6 .考点: 含30度角的直角三角形;勾股定理..分析: 由∠B =30°,AB =12,AC =6,利用30°所对的直角边等于斜边的一半易得△ABC 是直角三角形,利用勾股定理求出BC 的长. 解答: 解:∵∠B =30°,AB =12,AC =6,∴△ABC是直角三角形,∴BC===6,故答案为:6.°点评:此题考查了含30°直角三角形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.4.(2015•江苏泰州,第16题3分)如图,矩形中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为__________.【答案】4.8.【解析】试题分析:由折叠的性质得出EP=AP, ∠E=∠A=90°,BE=AB=8,由ASA证明△ODP≌△OEG,得出OP=OG,PD=GE,设AP=EP=x,则PD=GE=6-x,DG=x,求出CG、BG,根据勾股定理得出方程,解方程即可.试题解析:如图所示:∵四边形ABCD是矩形∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中∴△ODP≌△OEG∴OP=OG,PD=GE,∴DG=EP设AP=EP=x,则PD=GE=6-x,DG=x,∴CG=8-x,BG=8-(6-x)=2+x根据勾股定理得:BC2+CG2=BG2即:62+(8-x)2=(x+2)2解得:x=4.8∴AP=4.8.考点:1.翻折变换(折叠问题);2.勾股定理;3.矩形的性质.5.(2015•江苏徐州,第17题3分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.考点:正方形的性质..专题:规律型.分析:首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.解答:解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…,∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.点评:该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.6.(2015•山东东营,第17题4分)如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.【答案】.考点:1.正方体的侧面展开图;2.最值问题;3.勾股定理.7.(2015•广东广州,第16题3分)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为3 .考点:三角形中位线定理;勾股定理.专题:动点型.分析:根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.解答:解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.点评:本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.8.(2015•泉州第11题4分)如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=30°°.解:∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD =∠BAC =30°,故答案为:30°.9.(2015•湖南株洲,第15题3分)如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果AB =10,EF =2,那么AH 等于第15题图GHF ED CAB 【试题分析】本题考点为:全等三角形的对应边相等,直角三角形的勾股定理,正方形的边长相等; 由全等可知:AH =DE ,AE =AH +HE由直角三角形可得:222AE DE AB +=,代入可得答案为:610.(2015•江苏无锡,第17题2分)已知:如图,AD 、BE 分别是△ABC 的线和角平分线,AD ⊥BE ,AD =BE =6,则AC 的长等于 _________ .考点: 三角形位线定理;勾股定理.专题: 计算题.分析: 延长AD 至F ,使DF =AD ,过点F 作平行BE 与AC 延长线交于点G ,过点C 作CH ∥BE ,交AF 于点H ,连接BF ,如图所示,在直角三角形AGF ,利用勾股定理求AG 的长,利用SAS 证得△BDF ≌△CDA ,利用全等三角形对应角相等得到∠ACD =∠BFD ,证得AG ∥BF ,从而证得四边形EBFG 是平行四边形,得到FG =BE =6,利用AAS 得到三角形BOD 与三角形CHD 全等,利用全等三角形对应边相等得到OD =DH =3,得AH =9,然后根据△AHC ∽△AFG ,对应边成比例即可求得A C .解答: 解:延长AD 至F ,使DF =AD ,过点F 作FG ∥BE 与AC 延长线交于点G ,过点C 作CH ∥BE ,交AF 于点H ,连接BF ,如图所示,在Rt △AFG ,AF =2AD =12,FG =BE =6,根据勾股定理得:AG==6,在△BDF和△CDA,∴△BDF≌△CDA(SAS),∴∠ACD=∠BFD,∴AG∥BF,∴四边形EBFG是平行四边形,∴FG=BE=6,在△BOD和△CHD,,∴△BOD≌△CHD(AAS),∴OD=DH=3,∵CH∥FG,∴△AHC∽△AFG,∴=,即=,解得:AC=,故答案为:点评:本题考查了三角形全等的判定和性质,三角形相似的判定和性质,平行四边形的判定和性质以及勾股定理的应用,作辅助线构建直角三角形和平行四边形是解题的关键.11.(2015·湖北省武汉市,第16题3分)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是_________【解析】作M关于ON对称点M1,点N关于OA的对称点N1,连接M1N1分别交OA、ON 于Q,P,此时MP+PQ+NQ的值最小.由对称性质知,M1P=MP,N1Q=NQ,所以MP+PQ+NQ= M1N1.连接ON1、OM1,则∠M1OP=∠POM=∠N1OM=30°,所以∠N1OM1=90°.又ON1=ON=3,OM1 =OM=1,所以M1N1=11ONOM =10.【指点迷津】线段和的最小值问题,一般都是将几条线段转化为同一条线段长度,根据两点之间线段最短来说明.一般是通过做对称点转化到同一条线段上,根据勾股定理计算最小值.三.解答题1. (2015辽宁大连,24,11分)如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2.点P、Q同时从D点出发,以相同的速度分别沿射线DC、射线DA运动。
一、选择题:1.(2015.上海市,第4题,3分)如果一个正多边形的中心角为72,那么这个正多边形的边数是……………().A、4;B、5;C、6;D、7.2. (2015.天津市,第2题,3分)cos45︒的值等于( )(A)12(B)22(C)32(D)3【答案】B. 【解析】试题分析:根据特殊角的三角函数值即可得cos45︒=22,故答案选B.考点:特殊角的三角函数值.3. (2015.北京市,第6题,3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M、C两点间的距离为( )A0.5km B.0.6km C.0.9km D.1.2km【答案】D.【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半可得MC=1.2km.故选D.考点:直角三角形斜边上的中线等于斜边的一半4. (2015.陕西省,第6题,3分)如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个二、填空题:1.(2015.上海市,第15题,4分)如图,已知在ABC ∆中,D 、E 分别是边AB 、边AC 的中点,AB m =,AC n =,那么向量DE 用向量m 、n 表示为______________.ED CBA【答案】1122m n -+ 【解析】试题分析:先根据三角形法则将DE 用DA AE +表示出来,再根据中点及平行向量将其转化为用m 、n 表示,即11112222DE DA AE AB AC m n =+=-+=-+.考点:平面向量的基本运算.2. (2015.河南省,第10题,3分)如图,△ABC 中,点D 、E 分别在边AB ,BC 上,DE//AC ,若DB=4,DA=2,BE=3,则EC= .【答案】23. 【解析】试题分析:∵DE//AC,∴DB:AD=BE:CE,∴4:2=3:EC,EC=23.考点:平行线分线段成比例定理.3.(2015.宁夏,第13题,3分)如图,港口A 在观测站O 的正东方向,OA =4,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为 .【答案】22. 【解析】试题分析:如图,过点A 作AD ⊥OB 于D .先解Rt △AOD ,得出AD=21OA=2,再由△ABD 是等腰直角三角形,得出BD=AD=2,则AB=2AD=22.考点:解直角三角形的应用(方向角问题);特殊角的三角函数值.E C DBA第10题4. (2015.重庆市A 卷,第15题,4分)已知△ABC ∽△DEF,ABC ∆与DEF ∆的相似比为4:1,则ABC ∆与DEF ∆对应边上的高之比为.5. (2015.重庆市B 卷,第14题,4分)已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为2:3,则△ABC 与△DEF 对应边上的中线的比为________. 【答案】2:3 【解析】试题分析:根据相似三角形对应边上的中线之比等于相似比可得:△ABC 与△DEF 对应边上的中线的比为2:3.考点:相似三角形的应用.6. (2015.天津市,第16题,3分)如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E . 若AD=3,DB =2,BC =6,则DE 的长 为 .EC D AB【答案】185. 【解析】试题分析:由DE∥BC 可得△ADE ∽△ABC,根据相似三角形的性质可得3,56AD DE DE=AB BC =即,解得185DE =. 考点:相似三角形的判定与性质.7. (2015.陕西省,第12题,3分)请从以下两小题中任选一个作答,若多选,则按第一题计分。
2015年中考数学试题及答案word一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2.5B. πC. 0.33333...D. √4答案:B2. 一个矩形的长是宽的两倍,若宽为x,则其面积为?A. 2x^2B. x^2C. 4x^2D. x答案:A3. 一个数的相反数是-5,这个数是?A. 5B. -5C. 0D. 10答案:A4. 下列哪个方程的解是x=2?A. 2x + 3 = 7B. 3x - 2 = 4C. 4x - 5 = 3D. 5x + 6 = 16答案:A5. 一个等腰三角形的两边长分别为3和5,其周长是多少?A. 11B. 13C. 16D. 14答案:B6. 一个圆的半径为3,其面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C7. 函数y=2x+3中,当x=1时,y的值是多少?A. 5B. 6C. 7D. 8答案:A8. 下列哪个选项表示的是正比例关系?A. y = 2xB. y = x^2C. y = 1/xD. y = √x答案:A9. 一个数的立方根等于它本身,这个数是?A. 0B. 1C. -1D. 所有选项答案:D10. 一个数的平方等于9,这个数是?A. 3B. -3C. ±3D. 9答案:C二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可能是______。
答案:±512. 一个数的平方是25,这个数可能是______。
答案:±513. 一个数的倒数是2,这个数是______。
答案:1/214. 一个数的立方是8,这个数是______。
答案:215. 一个数除以2余1,除以3余2,除以4余3,这个数最小是______。
答案:5716. 一个等差数列的首项是3,公差是2,第5项是______。
答案:1117. 一个等比数列的首项是2,公比是3,第3项是______。
答案:1818. 一个直角三角形的两个直角边长分别是3和4,斜边长是______。
解直角三角形一.选择题1,(2015威海,第2题4分)【答案】D【解析】根据三角函数的定义,边AC=BCtan26其按键顺序正确的是【备考指导】本题考查了解直角三角形的知识,解答本题的关键是利用三角函数的知识解直角三角形,求解相关线段的长度,难度一般.2.(2015·省市,第12题3分)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为().A. B.51 C. D.1013. (2015•滨州,第12题3分)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为( )A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D考点:反比例函数,三角形相似,解直角三角形5. (2015•第10题,3分)如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11﹣2)米 B.(11﹣2)米C.(11﹣2)米D.(11﹣4)米考点:解直角三角形的应用..分析:出现有直角的四边形时,应构造相应的直角三角形,利用相似求得PB、PC,再相减即可求得BC 长.解答:解:如图,延长OD,BC交于点P.∵∠ODC=∠B=90°,∠P=30°,OB=11米,CD=2米,∴在直角△CPD中,DP=DC•cot30°=2m,PC=CD÷(sin30°)=4米,∵∠P=∠P,∠PDC=∠B=90°,∴△PDC∽△PBO,∴=,∴PB===11米,∴BC=PB﹣PC=(11﹣4)米.故选:D.点评:本题通过构造相似三角形,综合考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念.6.(2015•日照,第10题4分)如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值()A.B. C.D.考点:解直角三角形..分析:延长AD,过点C作CE⊥AD,垂足为E,由tanB=,即=,设AD=5x,则AB=3x,然后可证明△CDE∽△BDA,然后相似三角形的对应边成比例可得:,进而可得CE=x,DE=,从而可求tan∠CAD==.解答:解:如图,延长AD,过点C作CE⊥AD,垂足为E,∵tanB=,即=,∴设AD=5x,则AB=3x,∵∠CDE=∠BDA,∠CED=∠BAD,∴△CDE∽△BDA,∴,∴CE=x,DE=,∴AE=,∴tan∠CAD==.故选D.点评:本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,是基础知识要熟练掌握,解题的关键是:正确添加辅助线,将∠CAD放在直角三角形中.7.(2015•聊城,第10题3分)路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD的高度为1米,则桥塔AB的高度约为()A.34米B.38米C.45米 D. 50米考点:解直角三角形的应用-仰角俯角问题..分析:Rt△ADE中利用三角函数即可求得AE的长,则AB的长度即可求解.解答:解:过D作DE⊥AB于E,∴DE=BC=50米,在Rt△ADE中,AE=DE•tan41,5°≈50×0.88=44(米),∵CD=1米,∴BE=1米,∴AB=AE+BE=44+1=45(米),∴桥塔AB的高度为45米.点评:本题考查仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.8(2015,9,3分)如图,斜面AC的坡度(CD与AD的比)为1:2,AC=米,坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高度为( )A.5米B.6米C. 8米D. 米【答案】A考点:解直角三角形二.填空题1. (2015•滨州,第14题4分)如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为 .【答案】24考点:菱形的性质,解直角三角形2. (2015•第18题,3分)如图,在等边△ABC有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为3.考点:旋转的性质;等边三角形的性质;解直角三角形..专题:计算题.分析:先根据等边三角形的性质得AB=AC,∠BAC=60°,再根据旋转的性质得AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,于是可判断△ADE为等边三角形,得到DE=AD=5;过E点作EH⊥CD于H,如图,设DH=x,则CH=4﹣x,利用勾股定理得到52﹣x2=62﹣(4﹣x)2,解得x=,再计算出EH,然后根据正切的定义求解.解答:解:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵△ABD绕A点逆时针旋转得△ACE,∴AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,∴△ADE为等边三角形,∴DE=AD=5,过E点作EH⊥CD于H,如图,设DH=x,则CH=4﹣x,在Rt△DHE中,EH2=52﹣x2,在Rt△DHE中,EH2=62﹣(4﹣x)2,∴52﹣x2=62﹣(4﹣x)2,解得x=,∴EH==,在Rt△EDH中,tan∠HDE===3,即∠CDE的正切值为3.故答案为:3.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和解直角三角形.3.(2015•,第15题3分)如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC= .考点:线段垂直平分线的性质;解直角三角形.分析:根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cos C.解答:解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,故答案为.点评:本题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.4. (2015•省江市,第22题,6分)在△ABC中,∠B=30°,AB=12,AC=6,则BC= 6.考点:含30度角的直角三角形;勾股定理..分析:由∠B=30°,AB=12,AC=6,利用30°所对的直角边等于斜边的一半易得△ABC是直角三角形,利用勾股定理求出BC的长.解答:解:∵∠B=30°,AB=12,AC=6,∴△ABC是直角三角形,∴BC===6,故答案为:6.°点评:此题考查了含30°直角三角形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.5.(2015•东营,第14题3分)4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为,B处的俯角为.如果此时直升机镜头C处的高度CD为200米,点A、D、B在同一直线上,则AB两点的距离是米.【答案】200(+1)【解析】试题分析:∵∠CDA=∠CDB=90°,∠A=30°,∠B=45°,∴AD=CD=200,BD=CD=200,∴AB=AD+BD=200(+1)(米);考点:解直角三角形的应用.6.(2015第17题3分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000 米.考点:解直角三角形的应用-坡度坡角问题..分析:过点B作BC⊥水平面于点C,在Rt△ABC中,根据AB=200米,∠A=30°,求出BC的长度即可.解答:解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.点评:本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数的知识进行求解.7.(2015荆州第15题3分)15.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为137 米(结果保留整数,测角仪忽略不计,≈1.414,,1.732)考点:解直角三角形的应用-仰角俯角问题.专题:计算题.分析:根据仰角和俯角的定义得到∠ABD=30°,∠ACD=45°,设AD=xm,先在Rt△ACD中,利用∠ACD的正切可得CD=AD=x,则BD=BC+CD=x+100,然后在Rt△ABD中,利用∠ABD的正切得到x=(x+100),解得x=50(+1),再进行近似计算即可.解答:解:如图,∠ABD=30°,∠ACD=45°,BC=100m,设AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+100,在Rt△ABD中,∵tan∠ABD=,∴x=(x+100),∴x=50(+1)≈137,即山高AD为137米.故答案为137.点评:本题考查了解直角三角形﹣的应用﹣仰角俯角:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.8.(2015•,第13题3分)如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC =BD =15cm , ∠CBD =40°,则点B 到CD 的距离为 cm (参考数据:sin 20°≈ 0.342,com 20°≈0.940, sin 40°≈ 0.643, com 40°≈ 0.766.精确到0.1cm ,可用科学计算器).((第13题)图2图1OABCP答案:解析:如右图,作BE ⊥CD 于点E .∵BC =BD , BE ⊥CD , ∴∠CBE =∠DBE =20°,在Rt △BCD 中,cos ,BEDBE=BD∴cos BE 2015, ∴BE ≈15×0.940=14.19.(2015•,第14题3分)如图,在△ABC 中,AB =BC =4,AO=BO ,P 是射线CO 上的一个动点,∠AOC =60°,则当△PAB 为直角三角形时,AP 的长为 .(第14题)AB答案:解析:如图,分三种情况讨论: 图(1)中,∠APB =90°,∵AO =BO , ∠APB =90°,∴PO =AO =BO =2, 又∠AOC =60°, ∴△APO 是等边三角形, ∴AP =2;BABA图(2)中,∠APB=90°,∵AO=BO, ∠APB=90°,∴PO=AO=BO=2,又∠AOC=60°, ∴∠BAP=30°,在Rt△ABP中,AP=cos30°×4=23 .图(3)中,∠ABP=90°, ∵BO=AO=2 , ∠BOP=∠AOC=60°,∴PB=23, ∴AP=()2242327∴AP的长为2,23或2710. (2015•,第16题4分)图1是一可以折叠的小床展开后支撑起来放在地面的示意图,此时,点A,B,C在同一直线上,且∠ACD=90°.图2是小床支撑脚CD折叠的示意图,在折叠过程中,ΔACD变形为四边形ABC'D',最后折叠形成一条线段BD".(1)小床这样设计应用的数学原理是▲(2)若AB:BC=1:4,则tan∠CAD的值是▲【答案】(1)三角形的稳定性和四边形的不稳定性;(2)815.【考点】线动旋转问题;三角形的稳定性;旋转的性质;勾股定理;锐角三角函数定义.【分析】(1)在折叠过程中,由稳定的ΔACD变形为不稳定四边形ABC'D',最后折叠形成一条线段BD",小床这样设计应用的数学原理是:三角形的稳定性和四边形的不稳定性。
初中三角函数专项练习题及答案(DOC)初中三角函数专项练题及答案1、在直角三角形中,各边都扩大2倍,则锐角A的正弦值与余弦值都不变。
2、在Rt△ABC中,∠C=90,BC=4,sinA=5,则AC=3.3、若∠A是锐角,且13sinA-tanA>4,则30<∠A<45.4、若cosA=3,则4sinA+2tanA=11.5、在△ABC中,∠A:∠B:∠C=1:1:2,则a:b:c=1:1:2.6、在Rt△ABC中,∠C=90,则sinA=cosB。
7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么正确的是tanB=3/2.8.点(-sin60°,cos60°)关于y轴对称的点的坐标是(-2,2)。
9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣。
某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°。
若这位同学的目高1.6米,则旗杆的高度约为10.3米。
10.___同学从A地沿北偏西60º方向走100m到B地,再从B地向___方向走200m到C地,此时___同学离A地150m。
11、如图1,在高楼前D点测得楼顶的仰角为30,向高楼前进60米到C点,又测得仰角为45,则该高楼的高度大约为82米。
12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距约为67.5海里。
1.在三角形Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=4/5.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=3/7.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是120°。
4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为2sin15°。
精品 "正版〞资料系列 ,由本公司独创 .旨在将 "人教版〞、〞苏教版 "、〞北师 大版 "、〞华师大版 "等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和 检测题分享给需要的朋友 .本资源创作于2021年8月 ,是当前最|新版本的教材资源 .包含本课对应 内容 ,是您备课、上课、课后练习以及寒暑假预习的最|正确选择 .1.【2021课标3 ,文6】函数1ππ()sin()cos()536f x x x =++-的最|大值为 ( ) A .65B .1C .35D .15【答案】A【解析】由诱导公式可得:cos cos sin 6233x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,那么:()16sin sin sin 53353f x x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 函数的最|大值为65. 所以选A.【考点】三角函数性质【名师点睛】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合 ,通过变换把函数化为sin()y A x B ωϕ=++的形式再借助三角函数图象研究性质 ,解题时注意观察角、函数名、结构等特征.2.【2021课标II ,文3】函数π()sin(2)3f x x =+的最|小正周期为 A.4π B.2π C. π D.π2【答案】C【考点】正弦函数周期【名师点睛】函数sin()(A 0,0)y A x B ωϕω=++>>的性质(1)max min =+y A B y A B =-,.(2)周期2.T πω=(3)由ππ()2x k k ωϕ+=+∈Z 求对称轴 (4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z 求减区间; 3.【2021课标3 ,文4】4sin cos 3αα-=,那么sin 2α = ( ) A .79-B .29-C .29D .79【答案】A【解析】()2sin cos 17sin 22sin cos 19ααααα--===--.所以选A.【考点】二倍角正弦公式【名师点睛】应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角 ,其手法通常是 "配凑〞.(2)变名:通过变换函数名称到达减少函数种类的目的 ,其手法通常有 "切化弦〞、 "升幂与降幂〞等.(3)变式:根据式子的结构特征进行变形 ,使其更贴近某个公式或某个期待的目标 ,其手法通常有: "常值代换〞、 "逆用变用公式〞、 "通分约分〞、 "分解与组合〞、 "配方与平方〞等.4.【2021山东 ,文4】3cos 4x =,那么cos2x = A.14- B.14 C.18- D.18【答案】D【考点】二倍角公式【名师点睛】(1)三角函数式的化简与求值要遵循 "三看〞原那么,一看角,二看名,三看式子结构与特征.(2)三角函数式化简与求值要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.5.【2021天津 ,文7】设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.假设5π11π()2,()0,88f f ==且()f x 的最|小正周期大于2π ,那么 (A )2π,312ωϕ== (B )211π,312ωϕ==- (C )111π,324ωϕ==- (D )17π,324ωϕ==【答案】A 【解析】试题分析:因为条件给出周期大于2π ,1156388844T ππππ-=== ,2233T ππωω==⇒=,再根据252238212k k πππϕπϕπ⨯+=+⇒=+ ,因为ϕπ< ,所以当0k =时 ,12πϕ=成立 ,应选A.【考点】三角函数的性质【名师点睛】此题考查了()sin y A x ωϕ=+的解析式 ,和三角函数的图象和性质 ,此题表达方式新颖,是一道考查能力的好题 ,此题可以直接求解 ,也可代入选项 ,逐一考查所给选项:当58x π=时 ,2538122πππ⨯+= ,满足题意 ,251138122πππ⨯-=- ,不合题意 ,B 选项错误;151138244πππ⨯-=- ,不合题意 ,C 选项错误;15738242πππ⨯+= ,满足题意;当118x π=时 ,2113812πππ⨯+= ,满足题意;111718382424πππ⨯+=,不合题意 ,D 选项错误.此题选择A 选项.6.【2021山东 ,文7】函数2cos 2y x x =+最|小正周期为 A.π2 B. 2π3C.πD. 2π 【答案】C【考点】三角变换及三角函数的性质【名师点睛】求三角函数周期的方法:①利用周期函数的定义.②利用公式:y=A sin(ωx+φ)和y=A cos(ωx+φ)的最|小正周期为2π|ω|,y=tan(ωx+φ)的最|小正周期为π|ω|.③对于形如sin cosy a x b xωω=+的函数,一般先把其化为()y xωϕ=+的形式再求周期.7.【2021福建,文7】将函数siny x=的图象向左平移2π个单位 ,得到函数()y f x=的函数图象 ,那么以下说法正确的选项是 ( )()()()()...32.-02A y f xB y f xC y f x xD y f xπππ====⎛⎫= ⎪⎝⎭是奇函数的周期是的图象关于直线对称的图象关于点,对称【答案】D【解析】试题分析:将函数siny x=的图象向左平移2π个单位 ,得到函数sin()cos2y x xπ=+= ,因为cos()02yπ=-= ,所以()-02y f xπ⎛⎫= ⎪⎝⎭的图象关于点,对称 ,选D.考点:三角函数图象的变换 ,三角函数诱导公式 ,三角函数的图象和性质.【名师点睛】此题主要考查函数图像的平移及三角函数的性质,关于三角函数图像对称的结论是:()()()sin0f x A x Aωφω=+≠,那么()f x图像关于直线0x x=对称的充要条件是()f x A=±,()f x图像关于点(),0x对称的充要条件是()f x=.8.【2021(高|考)福建 ,文6】假设5sin13α=- ,且α为第四象限角 ,那么tanα的值等于 ( )A.125B.125- C.512D.512-【答案】D【考点定位】同角三角函数根本关系式.【名师点睛】此题考查同角三角函数根本关系式 ,在sin α、cos α、tan α三个值之间 ,知其中的一个可以求剩余两个 ,但是要注意判断角α的象限 ,从而决定正负符号的取舍 ,属于根底题.9.(2021课标全国Ⅰ ,文7)在函数①y =cos|2x | ,②y =|cos x | ,③πcos 26y x ⎛⎫=+ ⎪⎝⎭,④πtan 24y x ⎛⎫=-⎪⎝⎭中 ,最|小正周期为π的所有函数为( ). A .①②③ B .①③④ C .②④ D .①③答案:A解析:由于y =cos|2x |=cos 2x ,所以该函数的周期为2ππ2=;由函数y =|cos x |的图象易知其周期为π;函数πcos 26y x ⎛⎫=+ ⎪⎝⎭的周期为2ππ2=;函数πtan 24y x ⎛⎫=- ⎪⎝⎭的周期为π2,故最|小正周期为π的函数是①②③ ,应选A. 名师点睛:此题考查余弦函数、正切函数的性质 ,函数的周期 ,注意区别函数||cos x y =与|cos |x y =的图象与性质 ,容易题.10.【2021天津 ,文8】函数()cos (0),.f x x x x R ωωω=+>∈在曲线()y f x =与直线1y =的交点中 ,假设相邻交点距离的最|小值为3π,那么()f x 的最|小正周期为 ( ) A.2π B.23π C.π D.2π 【答案】C考点:三角函数性质【名师点睛】此题考查三角函数图象与性质 ,此题属于根底题 ,研究三角函数图象与性质 ,要把函数的解析式化为标准形式 ,如:sin()y A x k ωϕ=++ ,这个过程经常使用降幂公式和辅助角公式 ,然后借助正弦函数的图像与性质去解决问题 ,此题需要借助条件求出ω ,然后计算周期.11.【2021(高|考)新课标1 ,文8】函数()cos()f x x ωϕ=+的局部图像如下图 ,那么()f x 的单调递减区间为 ( ) (A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈【答案】D【解析】由五点作图知 ,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩ ,解得=ωπ ,=4πϕ ,所以()cos()4f x x ππ=+ ,令22,4k x k k Z πππππ<+<+∈ ,解得124k -<x <324k + ,k Z ∈ ,故单调减区间为 (124k -,324k + ) ,k Z ∈ ,应选D. 【考点定位】三角函数图像与性质【名师点睛】此题考查函数cos()y A x ωϕ=+的图像与性质 ,先利用五点作图法列出关于ωϕ,方程 ,求出ωϕ, ,或利用利用图像先求出周期 ,用周期公式求出ω ,利用特殊点求出ϕ ,再利用复合函数单调性求其单调递减区间 ,是中档题 ,正确求ωϕ,使解题的关键.12.【2021(高|考)新课标2文数】函数=sin()y A x ωϕ+的局部图像如下图 ,那么 ( )(A )2sin(2)6y x π=- (B )2sin(2)3y x π=-(C )2sin(2+)6y x π= (D )2sin(2+)3y x π=【答案】A考点:三角函数图像的性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数图像的最|高点、最|低点确定A ,h 的值 ,函数的周期确定ω的值 ,再根据函数图像上的一个特殊点确定φ值.13.【2021年.浙江卷.文4】为了得到函数x x y 3cos 3sin +=的图象 ,可以将函数x y 3cos 2=的图象 ( )12π4π个单位长 12π4π个单位长【答案】A 【解析】试题分析:因为)43sin(23cos 3sin π+=+=x x x y ,所以将函数x y 3cos 2=的图象向右平移12π个单位长得函数)43sin(2)432sin(2)43cos(2)12(3cos 2πππππ+=-+=+-=-=x x x x y ,即得函数x x y 3cos 3sin +=的图象 ,选A.考点:三角函数的图象的平移变换 ,公式)4sin(2cos sin π+=+x x x 的运用 ,容易题.【名师点睛】三角函数图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象 ,有两种主要途径 "先平移后伸缩〞与 "先伸缩后平移〞平移变换和伸缩变换都是针对x 而言 ,即x 本身加减多少值 ,而不是依赖于ωx 加减多少值.14.【2021(高|考)新课标2文数】函数π()cos 26cos()2f x x x =+-的最|大值为 ( ) (A )4 (B )5(C )6 (D )7【答案】B考点:正弦函数的性质、二次函数的性质. 【名师点睛】求解此题易出现的错误是认为当3sin 2x =时 ,函数23112(sin )22y x =--+取得最|大值.[2021(高|考)新课标Ⅲ文数]假设tan 13θ=,那么cos 2θ= ( ) (A )45-(B )15-(C )15 (D )45【答案】D 【解析】试题分析:2222222211()cos sin 1tan 43cos 21cos sin 1tan 51()3θθθθθθθ---====+++. 考点:1、同角三角函数间的根本关系;2、二倍角.【方法点拨】三角函数求值:① "给角求值〞将非特殊角向特殊角转化 ,通过相消或相约消去非特殊角 ,进而求出三角函数值;② "给值求值〞关键是目标明确 ,建立和所求之间的联系.15. 【2021四川 ,文3】为了得到函数sin(1)y x =+的图象 ,只需把函数sin y x =的图象上所有的点 ( )A .向左平行移动1个单位长度B .向右平行移动1个单位长度C .向左平行移动π个单位长度D .向右平行移动π个单位长度 【答案】A 【解析】试题分析:只需把sin y x =的图象上所有的点向左平移1个单位 ,便得函数sin(1)y x =+的图象.选A.【考点定位】三角函数图象的变换.【名师点睛】此题考查三角函数图象的变换 ,解答此题的关键 ,是明确平移的方向和单位数 ,这取决于x 加或减的数据.此题属于根底题 ,是教科书例题的简单改造 ,易错点在于平移的方向记混.16.【2021(高|考)山东 ,文4】要得到函数4y sin x =-(3π)的图象 ,只需要将函数4y sin x =的图象 ( )(A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【考点定位】三角函数图象的变换.【名师点睛】此题考查三角函数图象的变换 ,解答此题的关键 ,是明确平移的方向和单位数 ,这取决于x 加或减的数据.此题属于根底题 ,是教科书例题的简单改造 ,易错点在于平移的方向记混. 17.【2021(高|考)天津文数】函数)0(21sin 212sin )(2>-+=ωωωx xx f ,R x ∈.假设)(x f 在区间)2,(ππ内没有零点 ,那么ω的取值范围是 ( )(A )]81,0( (B ))1,85[]41,0( (C )]85,0( (D )]85,41[]81,0(【答案】D 【解析】试题分析:1cos sin 1()x )2224x x f x ωωπω-=+-=- ,()0sin(x )04f x πω=⇒-= ,所以4(,2),(k z)k x ππππω+=∉∈ ,因此115599115115(,)(,)(,)(,)(,)(0,][,]848484848848ωω∉=+∞⇒∈ ,选D. 考点:解简单三角方程【名师点睛】对于三角函数来说 ,常常是先化为y =Asin(ωx+φ)+k 的形式 ,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原那么 ,即尽可能地化为同角函数、同名函数、同次函数等 ,其中切化弦也是同化思想的表达;降次是一种三角变换的常用技巧 ,要灵活运用降次公式.18.【2021(高|考)陕西版文第2题】函数()cos(2)4f x x π=+的最|小正周期是 ( ).2A π.B π.2C π.4D π【答案】B考点:同角的三角函数关系式 ,容易题.【名师点晴】此题主要考查的是余弦函数的最|小正周期 ,属于容易题.解题时只要正确记忆正弦函数、预先函数的最|小正周期周期公式2T wπ=,就不会出现错误 19. 【2021(高|考)陕西 ,文6】 "sin cos αα=〞是 "cos 20α=〞的 ( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要【答案】A【解析】22cos 20cos sin 0(cos sin )(cos sin )0ααααααα=⇒-=⇒-+= , 所以sin cos αα=或sin cos αα=- ,故答案选A .【考点定位】1.恒等变换;2.命题的充分必要性.【名师点睛】1.此题考查三角恒等变换和命题的充分必要性 ,采用二倍角公式展开cos 20α= ,求出sin cos αα=或sin cos αα=-.2.此题属于根底题 ,(高|考)常考题型.20.【2021(高|考)新课标1文数】假设将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为 ( )(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y=2sin(2x –π3)【答案】D 【解析】试题分析:函数y 2sin(2x )6π=+的周期为π,将函数y 2sin(2x )6π=+的图像向右平移14个周期即4π个单位,所得函数为y 2sin[2(x ))]2sin(2x )463πππ=-+=-,应选D. 考点:三角函数图像的平移【名师点睛】函数图像的平移问题易错点有两个,一是平移方向,注意 "左加右减 ",二是平移多少个单位是对x 而言的,不用忘记乘以系数.21.【2021课标II ,文13】函数()2cos sin f x x x =+的最|大值为 .【考点】三角函数有界性【名师点睛】通过配角公式把三角函数化为sin()y A x B ωϕ=++的形式再借助三角函数图象研究性质 ,解题时注意观察角、函数名、结构等特征.一般可利用|sin cos |a x b x +≤求最|值.22.【2021江苏 ,5】假设π1tan(),46α-=那么tan α= ▲ .【答案】75【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ππαππααππα+-+=-+===---.故答案为75. 【考点】两角和正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式 ,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出式与待求式之间的联系及函数的差异 ①一般可以适当变换式 ,求得另外函数式的值 ,以备应用; ②变换待求式 ,便于将式求得的函数值代入 ,从而到达解题的目的.(3)给值求角:实质是转化为 "给值求值〞 ,先求角的某一函数值 ,再求角的范围 ,确定角.23.【2021课标1 ,文15】π(0)2a ∈, ,tan α =2 ,那么πcos ()4α- =__________.【解析】试题分析:由tan 2α=得sin 2cos αα= 又22sincos 1αα+=所以21cos 5α= 因为(0,)2πα∈所以cos αα==因为cos()cos cossin sin444πππααα-=+所以cos()4πα-==【考点】三角函数求值【名师点睛】三角函数求值的三种类型(1 )给角求值:关键是正确选用公式 ,以便把非特殊角的三角函数转化为特殊角的三角函数.(2 )给值求值:关键是找出式与待求式之间的联系及函数的差异. ①一般可以适当变换式 ,求得另外函数式的值 ,以备应用; ②变换待求式 ,便于将式求得的函数值代入 ,从而到达解题的目的.(3 )给值求角:实质是转化为 "给值求值〞 ,先求角的某一函数值 ,再求角的范围 ,确定角.24. 【2021(高|考)四川文科】 =.【答案】12考点:三角函数诱导公式【名师点睛】此题也可以看作是一个来自于课本的题 ,直接利用课本公式解题 ,这告诉我们一定要立足于课本.有许多三角函数的求值问题一般都是通过三角函数的公式把函数化为特殊角的三角函数值而求解.25.【2021(高|考)浙江文数】22cos sin 2sin()(0)x x A x b A ωϕ+=++> ,那么A =______ ,b =______.;1. 【解析】试题分析:22cos sin 21cos2sin 2)14x x x x x π+=++=++ ,所以 1.A b == 考点:三角恒等变换.【思路点睛】解答此题时先用降幂公式化简2cos x ,再用辅助角公式化简cos 2sin 21x x ++ ,进而对照()sin x b ωϕA ++可得A 和b .26.[2021(高|考)新课标Ⅲ文数]函数sin y x x =的图像可由函数2sin y x =的图像至|少向右平移_____________个单位长度得到. 【答案】3π考点:1、三角函数图象的平移变换;2、两角差的正弦函数.【误区警示】在进行三角函数图象变换时 ,提倡 "先平移 ,后伸缩〞 ,但 "先伸缩 ,后平移〞也经常出现在题目中 ,所以也必须熟练掌握 ,无论是哪种变形 ,切记每一个变换总是对字母x 而言 ,即图象变换要看 "变量〞起多大变化 ,而不是 "角〞变化多少.27.【2021(高|考)浙江 ,文11】函数()2sin sin cos 1f x x x x =++的最|小正周期是 ,最|小值是.【答案】π【解析】()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+3)42x π=-+ ,所以22T ππ==;min 3()2f x =-. 【考点定位】1.三角函数的图象与性质;2.三角恒等变换.【名师点睛】此题主要考查三角函数的图象与性质以及三角恒等变换.主要考查学生利用恒等变换化简三角函数 ,利用整体代换判断周期与最|值的能力.此题属于容易题 ,主要考查学生的根本运算能力以及整体代换的运用.28.【2021(高|考)新课标1文数】θ是第四象限角,且sin(θ +π4) =35,那么tan(θ–π4) =. 【答案】43- 【解析】试题分析:由题意sin sin 442θθπππ⎡⎤⎛⎫⎛⎫+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3cos 45θπ⎛⎫=-= ⎪⎝⎭, 因为2222k k θ3ππ+<<π+π()k ∈Z ,所以722444k k θ5ππππ+<-<π+()k ∈Z ,从而4sin 45θπ⎛⎫-=- ⎪⎝⎭,因此4tan 43θπ⎛⎫-=- ⎪⎝⎭.故填43-. 考点:三角变换29.【2021湖南文15】ω>0,在函数y =2sin ωx 与y =2cos ωx 的图像的交点中 ,距离最|短的两个交点的距离为 ,那么ω =_____. 【答案】2πω=【考点定位】三角函数图像与性质【名师点睛】正、余弦函数的图像既是中|心对称图形 ,又是轴对称图形. 应把三角函数的对称性与奇偶性结合 ,体会二者的统一.这样就能理解条件 "距离最|短的两个交点〞一定在同一个周期内 ,此题也可从五点作图法上理解.30.【2021(高|考)天津 ,文14】函数()()sin cos 0f x x x ωωω=+>,x ∈R ,假设函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,那么ω的值为.【解析】由()f x 在区间(),ωω-内单调递增,且()f x 的图像关于直线x ω=对称,可得π2ωω≤,且()222πsin cos sin 14f ωωωω⎛⎫=+=⇒+= ⎪⎝⎭,所以2ππ42ωω+=⇒= 【考点定位】此题主要考查三角函数的性质.【名师点睛】此题将三角函数单调性与对称性结合在一起进行考查,表达此题解法中用到的两个结论:①()()()sin 0,0f x A x A ωϕω=+≠≠的单调区间长度是半个周期;②假设()()()sin 0,0f x A x A ωϕω=+≠≠的图像关于直线0x x =对称,那么()0f x A =或()0f x A =-.31. 【2021(高|考)重庆文第13题】将函数()()⎪⎭⎫⎝⎛<≤->+=220sin πϕπωϕω,x x f 图像上每一点的横坐标缩短为原来的一半 ,纵坐标不变 ,再向右平移6π个单位长度得到x y sin =的图像 ,那么=⎪⎭⎫⎝⎛6πf ______.所以1sin sin 62664f ππππ⎛⎫⎛⎫=⨯+==⎪ ⎪⎝⎭⎝⎭,. 考点:1、三角函数的图象变换;2、特殊角的三角函数值.【名师点睛】此题考查了三角函数的图象变换 ,特殊角的三角函数值 ,此题属于根底题 ,注意图象的平移方向与正负符之间的关系不要弄错了.32.【2021(高|考)四川 ,文13】sin α+2cos α=0 ,那么2sin αcos α-cos 2α的值是______________. 【答案】-1【解析】由可得 ,sin α=-2cos α ,即tan α=-22sin αcos α-cos 2α=22222sin cos cos 2tan 1411sin cos tan 141ααααααα----===-+++ 【考点定位】本意考查同角三角函数关系式、三角函数恒等变形等根底知识 ,考查综合处理问题的能力.【名师点睛】同角三角函数(特别是正余弦函数)求值问题的通常解法是:结合sin 2α+cos 2α=1 ,解出sin α与cos α的值 ,然后代入计算 ,但这种方法往往比拟麻烦 , ,先求出tan α的值 ,对所求式除以sin 2α+cos 2α(=1)是此类题的常见变换技巧 ,通常称为 "齐次式方法〞 ,转化为tan α的一元表达式 ,可以防止诸多繁琐的运算.属于中档题.33.【2021北京 ,文16】函数())2sin cos 3f x x -x x π=-.(I )f (x )的最|小正周期; (II )求证:当[,]44x ππ∈-时 ,()12f x ≥-. 【答案】 (Ⅰ )π; (Ⅱ )详见解析.试题解析:(Ⅰ )31π()2sin 2sin 2sin 22sin(2)223f x x x x x x x =+-=+=+. 所以()f x 的最|小正周期2ππ2T ==. (Ⅱ )因为ππ44x -≤≤ , 所以ππ5π2636x -≤+≤.所以ππ1sin(2)sin()362x +≥-=-.所以当ππ[,]44x ∈-时 ,1()2f x ≥-.【考点】1.三角函数的性质;2.三角恒等变换.【名师点睛】此题考查三角函数式的恒等变形及三角函数的图象与性质 ,此题属于根底题 ,要求准确应用降幂公式和辅助角公式进行变形 ,化为标准的()sin y A x ωϕ=+的形式 ,借助正弦函数的性质去求函数的周期、最|值等 ,但要注意函数的定义域 ,求最|值要给出自变量的取值.34.【2021浙江 ,18】 (此题总分值14分 )函数f (x ) =sin 2x –cos 2x –x cosx (x ∈R ).(Ⅰ )求)32(πf 的值. (Ⅱ )求)(x f 的最|小正周期及单调递增区间.【答案】 (Ⅰ )2; (Ⅱ )最|小正周期为π ,单调递增区间为Z k k k ∈++]32,6[ππππ. 【解析】试题分析: (Ⅰ )由函数概念32cos 32sin 3232cos 32sin )32(22πππππ--=f ,分别计算可得; (Ⅱ )化简函数关系式得)sin(ϕω+=x A y ,结合ωπ2=T 可得周期 ,利用正弦函数的性质求函数的单调递增区间.(Ⅱ )由x x x 22sin cos 2cos -=与x x x cos sin 22sin =得)62sin(22sin 32cos )(π+-=--=x x x x f所以)(x f 的最|小正周期是π由正弦函数的性质得Z k k x k ∈+≤+≤+,2236222πππππ解得Z k k x k ∈+≤≤+,326ππππ所以)(x f 的单调递增区间是Z k k k ∈++]32,6[ππππ. 【考点】三角函数求值、三角函数的性质【名师点睛】此题主要考查了三角函数的化简 ,以及函数的性质 ,属于根底题 ,强调根底的重要性 ,是(高|考)中的常考知识点;对于三角函数解答题中 ,当涉及到周期 ,单调性 ,单调区间以及最|值等都属于三角函数的性质 ,首|先都应把它化为三角函数的根本形式即,然后利用三角函数的性质求解.35.【2021(高|考)重庆 ,文18】函数f(x) =122cos x . (Ⅰ)求f (x )的最|小周期和最|小值 ,(Ⅱ)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍 ,纵坐标不变 ,得到函数g (x )∈,2ππ⎡⎤⎢⎥⎣⎦时 ,求g(x)的值域. 【答案】 (Ⅰ )()f x 的最|小正周期为 ,最|小值为2+32 , (Ⅱ )1323,]. 【解析】试题解析: (1) 2113()sin 23cos sin 2(1cos 2)222f x x xx x 1333sin 2cos 2sin(2)22232x x x, 因此()f x 的最|小正周期为,最|小值为2+32. (2)由条件可知:3g()sin()32x x. 当[,]2x时 ,有2[,]363x , 从而sin()3x的值域为1[,1]2, 那么3sin()32x的值域为1323,]. 故g()x 在区间[,]2上的值域是1323,].【考点定位】1. 三角恒等变换 , ,3.三角函数图象变换.【名师点睛】此题考查三角恒等变形公式及正弦函数的图象及性质 ,第|一问采用先降幂再用辅助角公式将函数化为()sin()f x A x B ωϕ=++的形式求解 ,第二小问在第|一问的根底上应用三角函数图象变换知识首|先求出函数()g x 的解析式 ,再结合正弦函数的图象求其值域.此题属于中档题 ,注意公式的准确性及变换时的符号.36.【2021(高|考)安徽 ,文16】函数2()(sin cos )cos 2f x x x x =++ (Ⅰ )求()f x 最|小正周期; (Ⅱ )求()f x 在区间[0,]2π上的最|大值和最|小值.【答案】 (Ⅰ )π; (Ⅱ )最|大值为1+最|小值为0(Ⅱ )由 (Ⅰ )得计算结果 ,1)42sin(2)(++=πx x f当]2,0[π∈x 时 ,]45,4[42πππ∈+x由正弦函数x y sin =在]45,4[ππ上的图象知 ,当242ππ=+x ,即8π=x 时 ,)(x f 取最|大值12+;当4542ππ=+x ,即4π=x 时 ,)(x f 取最|小值0.综上 ,)(x f 在[0,]2π上的最|大值为12+ ,最|小值为0.【考点定位】此题主要考查同角的根本关系、三角恒等变换、三角函数B x A y ++=)sin(ϕω的性质 ,以及正弦函数的性质.【名师点睛】熟练掌握三角函数的同角的根本关系和恒等变换公式以及三角函数B x A y ++=)sin(ϕω的性质是解决此题的关键 ,考查了考生的根本运算能力.37.【2021(高|考)福建 ,文21】函数()2cos 10cos 222x x xf x =+. (Ⅰ )求函数()f x 的最|小正周期; (Ⅱ )将函数()f x 的图象向右平移6π个单位长度 ,再向下平移a (0a > )个单位长度后得到函数()g x 的图象 ,且函数()g x 的最|大值为2.(ⅰ )求函数()g x 的解析式;(ⅱ )证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【答案】 (Ⅰ )2π; (Ⅱ ) (ⅰ )()10sin 8g x x =-; (ⅱ )详见解析.【解析】 (I )因为()2cos 10cos 222x x x f x =+5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭.所以函数()f x 的最|小正周期2πT =.(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x > ,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x -> ,即04sin 5x >.由45<知 ,存在003πα<< ,使得04sin 5α=. 由正弦函数的性质可知 ,当()00,x απα∈-时 ,均有4sin 5x >. 因为sin y x =的周期为2π ,所以当()002,2x k k παππα∈++- (k ∈Z )时 ,均有4sin 5x >. 因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->> ,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++- ,使得4sin 5k x >. 亦即存在无穷多个互不相同的正整数0x ,使得()00g x >. 【考点定位】1、三角函数的图像与性质;2、三角不等式.【名师点睛】三角函数的定义域、值域、单调性、周期、奇偶性、对称性都是通过将解析式变形为()sin()f x A x ωφ=+进行;假设三角函数图象变换是纵向伸缩和纵向平移 ,都是相对于()f x 而言 ,即()()f x Af x →和()()f x f x k →+ ,假设三角函数图象变换是横向伸缩和横向平移 ,都是相对于自变量x 而言 ,即()()f x f x ω→和()()f x f x a →+;此题第 (ⅱ )问是解三角不等式问题 ,由函数周期性的性质 ,先在一个周期内求解 ,然后再加周期 ,将存在无穷多个互不相同的正整数0x ,使得()00g x > ,转化为解集长度大于1 ,是此题的核心.38.【2021(高|考)湖北 ,文18】某同学用 "五点法〞画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时 ,列表并填入了局部数据 ,如下表:(Ⅰ )请将上表数据补充完整 ,填写在答题卡上相应位置........... ,并直接写出函数()f x 的解 析式;(Ⅱ )将()y f x =图象上所有点向左平行移动π6个单位长度 ,得到()y g x =图象 ,求 ()y g x =的图象离原点O 最|近的对称中|心.【答案】 (Ⅰ )根据表中数据 ,解得π5,2,6A ωϕ===-.数据补全如下表:且函数表达式为π()5sin(2)6f x x =-; (Ⅱ )离原点O 最|近的对称中|心为π(,0)12-.(Ⅱ )由 (Ⅰ )知π()5sin(2)6f x x =- ,因此πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为sin y x =的对称中|心为(π,0)k ,k ∈Z . 令π2π6x k += ,解得ππ212k x =- ,k ∈Z .即()y g x =图象的对称中|心为ππ0212k -(,),k ∈Z ,其中离原点O 最|近的对称中|心为π(,0)12-. 【考点定位】此题考查五点作图法和三角函数图像的平移与三角函数的图像及其性质 ,属根底题.【名师点睛】将五点作图法、三角函数图像的平移与三角函数的图像及其性质联系在一起 ,正确运用方程组的思想 ,合理的解三角函数值 ,准确使用三角函数图像的平移和三角函数的图像及其性质是解题的关键 ,能较好的考查学生根底知识的实际应用能力、准确计算能力和标准解答能力.39.【2021(高|考)北京文数】 (本小题13分 )函数)0(2cos cos sin 2)(>+=ωωωωx x x x f 的最|小正周期为π. (1 )求ω的值;(2 )求)(x f 的单调递增区间. 【答案】 (Ⅰ )1ω= (Ⅱ )3,88k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ).sin 2cos 2x x ωω=+24x πω⎛⎫=+ ⎪⎝⎭ ,所以()f x 的最|小正周期22ππωωT ==. 依题意 ,ππω= ,解得1ω=.(II )由 (I )知()24f x x π⎛⎫=+ ⎪⎝⎭.函数sin y x =的单调递增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ).由222242k x k πππππ-≤+≤+,得388k x k ππππ-≤≤+. 所以()f x 的单调递增区间为3,88k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ). 考点:两角和的正弦公式、周期公式、三角函数的单调性.【名师点睛】三角函数的单调性:1.三角函数单调区间确实定 ,一般先将函数式化为根本三角函数标准式 ,然后通过同解变形或利用数形结合方法求解.关于复合函数的单调性的求法;2利用三角函数的单调性比拟两个同名三角函数值的大小 ,必须先看两角是否同属于这一函数的同一单调区间内 ,不属于的 ,可先化至|同一单调区间内.假设不是同名三角函数 ,那么应考虑化为同名三角函数或用差值法(例如与0比拟 ,与1比拟等)求解. 40.【2021(高|考)北京文第16题】 (本小题总分值13分 )函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的局部图象如下图.(1 )写出()f x 的最|小正周期及图中0x 、0y 的值;(2 )求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最|大值和最|小值.【答案】 (1 )π ,076x π=, 03y =; (2 )最|大值0 ,最|小值3-.(2 )因为[,]212x ππ∈--,所以52[,0]66x ππ+∈-,于是 当206x π+= ,即12x π=-时 ,()f x 取得最|大值0;当262x ππ+=-,即3x π=-时 ,()f x 取得最|小值3-.考点:本小题主要考查三角函数的图象与性质 ,求三角函数的最|值等根底知识 ,考查同学们数形结合、转化与化归的数学思想 ,考查同学们分析问题与解决问题的能力. 41.【2021(高|考)山东文数】 (本小题总分值12分 )设2()π)sin (sin cos )f x x x x x =--- . (I )求()f x 得单调递增区间;(II )把()y f x =的图象上所有点的横坐标伸长到原来的2倍 (纵坐标不变 ) ,再把得到的图象向左平移π3个单位 ,得到函数()y g x =的图象 ,求π()6g 的值. 【答案】 (I )()f x 的单调递增区间是()5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(或()5(,)1212k k k Z ππππ-+∈ )(∏由()222,232k x k k Z πππππ-≤-≤+∈即得()5,1212k x k k Z ππππ-≤≤+∈写出()f x 的单调递增区间(∏ )由()f x 2sin 21,3x π⎛⎫=-⎪⎝⎭平移后得()2sin 1.g x x =+-进一步可得.6g π⎛⎫ ⎪⎝⎭试题解析: (I )由()()()2sin sin cos f x x x x x π=---()212sin cos x x x =-- )1cos 2sin 21x x =-+-sin 221x x =-+-2sin 21,3x π⎛⎫=-+- ⎪⎝⎭由()222,232k x k k Z πππππ-≤-≤+∈得()5,1212k x k k Z ππππ-≤≤+∈所以 ,()f x 的单调递增区间是()5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(或()5(,)1212k k k Z ππππ-+∈ )(∏ )由 (I )知()f x 2sin 21,3x π⎛⎫=-+- ⎪⎝⎭把()y f x =的图象上所有点的横坐标伸长到原来的2倍 (纵坐标不变 ) ,得到y =2sin 13x π⎛⎫=-+- ⎪⎝⎭的图象 ,再把得到的图象向左平移3π个单位 ,得到y 2sin 1x =的图象 ,即()2sin 1.g x x =+-所以 2sin 166g ππ⎛⎫=+-=⎪⎝⎭考点:1.和差倍半的三角函数;2.三角函数的图象和性质;3.三角函数图象的变换. 【名师点睛】此题 ,此题 ,关键在于能利用三角公式化简函数、进一步讨论函数的性质 ,利用 "左加右减、上加下减〞变换原那么 ,得出新的函数解析式并求值.此题较易 ,能较好的考查考生的根本运算求解能力及复杂式子的变形能力等.42.【2021(高|考)北京 ,文15】 (本小题总分值13分 )函数()2sin 2xf x x =-. (I )求()f x 的最|小正周期; (II )求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最|小值.【答案】 (I )2π; (II ).数的最|小正周期; (II )将x 的取值范围代入 ,先求出3x π+的范围 ,再数形结合得到三角函数的最|小值.试题解析: (Ⅰ )∵()sin 2sin()3f x x x x π=+-=+- ,∴()f x 的最|小正周期为2π. (Ⅱ )∵203x π≤≤,∴33x πππ≤+≤.当3x ππ+= ,即23x π=时 ,()f x 取得最|小值.∴()f x 在区间2[0,]3π上的最|小值为2()3f π=.考点:倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最|值.【名师点晴】此题主要考查的是降幂公式、辅助角公式、三角函数的最|小正周期和三角函数的最|值 ,属于中档题.解题时要注意重要条件 "20,3π⎡⎤⎢⎥⎣⎦〞 ,否那么很容易出现错误.解此题需要掌握的知识点是降幂公式、辅助角公式、三角函数的最|小正周期和三角函数的图象 ,即211sin cos 222αα=-+,()sin cos a x b x x ϕ+=+ ,函数()()sin f x x ωϕ=A + (0A > ,0ω> )的最|小正周期是2πωT =.43.【2021(高|考)广东 ,文16】 (本小题总分值12分 )tan 2α=. (1 )求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2 )求2sin 2sin sin cos cos 21ααααα+--的值.【答案】 (1 )3-; (2 )1. 【解析】试题分析: (1 )由两角和的正切公式展开 ,代入数值 ,即可得tan 4πα⎛⎫+ ⎪⎝⎭的值; (2 )先利用二倍角的正、余弦公式可得222sin 22sin cos sin sin cos cos 21sin sin cos 2cos ααααααααααα=+--+- ,再分子、分母都除以2cos α可得22sin 22tan sin sin cos cos 21tan tan 2αααααααα=+--+- ,代入数值 ,即可得2sin 2sin sin cos cos 21ααααα+--的值.试题解析: (1 )tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2 )2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+---。
1 三角函数 一.选择题(共15小题) 1.(2014•安顺)如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于( )
A. B. C. D. 2.(2014•义乌市)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是( )
A.1 B.1.5 C.2 D.3 3.(2014•威海)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是( )
A. B. C. D. 4.(2014•贵阳)在Rt△ABC中,∠C=90°,AC=12,BC=5,则sinA的值为( ) A. B. C. D.
5.(2014•广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=( )
A. B. C. D. 6.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为( ) A. B. C. D. 2
7.(2014•包头)计算sin245°+cos30°•tan60°,其结果是( ) A.2 B.1 C. D.
8.(2014•凉山州)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是( ) A.45° B.60° C.75° D.105°
9.(2014•连云港)如图,若△ABC和△DEF的面积分别为S1、S2,则( )
A.S1=S2 B.S1=S2 C.S1=S2 D.S1=S2 10.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为( )
A.100米 B.50米 C.米 D.50米 11.(2014•德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( )
A.4米 B.6米 C.12米 D.24米 12.(2014•丽水)如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是( )
A.9m B.6m C.m D.m 13.(2014•凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是( ) 3
A.15m B.20m C.10m D.20m 14.(2014•临沂)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为( )
A.20海里 B.10海里 C.20海里 D.30海里 15.(2014•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)( )
A.10.8米 B.8.9米 C.8.0米 D.5.8米 二.填空题(共8小题) 16.(2014•宜宾)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny. 据此判断下列等式成立的是 _________ (写出所有正确的序号)
①cos(﹣60°)=﹣;
②sin75°=; ③sin2x=2sinx•cosx; ④sin(x﹣y)=sinx•cosy﹣cosx•siny.
17.(2014•攀枝花)在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C= _________ .
18.(2014•白银)△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C= _________ . 19.(2014•宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出 _________ 个这样的停车位.(≈1.4) 4
20.(2014•上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为 _________ 米.
21.(2014•怀化)如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他离地面高度为h=2米,则这个土坡的坡角为 _________ .
22.(2014•抚顺)如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为 _________ 米.
23.(2014•襄阳)如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为 _________ m(结果保留根号)
三.解答题(共7小题) 24.(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.
25.(2014•重庆)如图,在△ABC中,CD⊥AB,垂足为D.若AB=12,CD=6,tanA=,求sinB+cosB的值. 5
26.(2014•柳州)如图,在△ABC中,BD⊥AC,AB=6,AC=5,∠A=30°. ①求BD和AD的长; ②求tan∠C的值.
27.(2014•上海)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH. (1)求sinB的值; (2)如果CD=,求BE的值.
28.(2014•仪征市一模)某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m. 6
(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)? (2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的
距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是m,请
判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,)
29.(2014•工业园区一模)钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为12海里(即MC=12海里).在A点测得岛屿的西端点M在点A的东北方向;航行4海里后到达B点,测得岛屿的东端点N在点B的北偏东60°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离.
30.(2014•邻水县模拟)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结 7
果保留根号形式) 8 9
三角函数 参考答案与试题解析 一.选择题(共15小题) 1.(2014•安顺)如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于( )
A. B. C. D. 考点: 锐角三角函数的定义. 分析: tan∠CFB的值就是直角△BCF中,BC与CF的比值,设BC=x,则BC与CF就可以用x表示出来.就可以求解. 解答: 解:根据题意:在Rt△ABC中,∠C=90°,∠A=30°, ∵EF⊥AC, ∴EF∥BC,
∴ ∵AE:EB=4:1, ∴=5,
∴=, 设AB=2x,则BC=x,AC=x. ∴在Rt△CFB中有CF=x,BC=x.
则tan∠CFB==. 故选:C. 点评: 本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻边比斜边;正切等于对边比邻边.
2.(2014•义乌市)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是( )
A. 1 B. 1.5 C. 2 D. 3 10
考点: 锐角三角函数的定义;坐标与图形性质. 专题: 数形结合. 分析: 根据正切的定义即可求解. 解答: 解:∵点A(t,3)在第一象限, ∴AB=3,OB=t,
又∵tanα==, ∴t=2. 故选:C.
点评: 本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
3.(2014•威海)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是( )
A. B. C. D. 考点: 锐角三角函数的定义;三角形的面积;勾股定理. 专题: 网格型. 分析: 作AC⊥OB于点C,利用勾股定理求得AC和AO的长,根据正弦的定义即可求解. 解答: 解:作AC⊥OB于点C. 则AC=,
AO===2,
则sin∠AOB===. 故选:D.
点评: 本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
4.(2014•贵阳)在Rt△ABC中,∠C=90°,AC=12,BC=5,则sinA的值为( ) A. B. C. D.