当前位置:文档之家› 典型的两级运放环路稳定性分析

典型的两级运放环路稳定性分析

典型的两级运放环路稳定性分析
典型的两级运放环路稳定性分析

典型的两级运算放大器环路稳定性分析

典型的两级运放如图所示,负载电容CL=50fF。

首先建立静态工作点。加偏置电流I0=4uA,加共模输入电平1.25V。仿真后得到结果如下,静态工作点是合适的。

1.开环分析

米勒补偿前做开环分析如下,显然,这是不合适的。

加米勒补偿电容Cc=200fF,做开环分析如下,显然,这也是不合适的。这是由于电路中存在零点造成的。

加入调零电阻Rz=40K,,仿真结果如下。可以看出,,

,相位裕度为40度,不够。可通过加大补偿电容来进一步分裂p1,p2主次极

点。(已尝试过加米勒补偿电容Cc=300fF可以得到大于60度的相位裕度)。但是本次设计的运放用在负反馈环路中,故只需要负反馈环路是稳定的就达到设计标准。

理论计算。

查看各管子的静态工作点。

,,,即。

,,,即

。理论值与仿真结果非常接近。

,理论值与仿真结果非常接近。

,理论值与仿真结果非常接近。

,理论值

与仿真结果40度偏差较大。

2.在负反馈环路中做环路稳定性分析:

从上图可以看出,加入反馈电阻网络R1,R2后就打破了原有的静态工作点:主要是反馈电阻网络R1,R2中的电流由M7管提供,所以M7管的静态工作点打破了,即运放的第二级跨导GmⅡ,输出电阻R2都变了。从波特图中可以看出相位裕度为77度,满足设计标准。理论计算:

查看各管子的静态工作点。

,,

,即。

,,,即

。理论值与仿真结果非常接近。

,理论值与仿真结果非常接近。

,理论值与仿真结果非常接近。

,理论值

与仿真结果77度偏差较大。

此结果可能是由于gm7变大,原来的调零电阻RZ过大造成的。现在改变调零电阻Rz=25K,

,仿真结果如下:

此时,相位裕度为63度,满足设计标准。

3.改用大电感大电容仿真环路增益:

仿真方法如上图所示,将环路断开,加入大电感L0=1GH通直流以建立直流工作点,并且断开交流通路,加入大电容C3=1GF通交流小信号V8。从仿真结果图中可以看出相位裕度为70度。不同的仿真方式所得到的结果略有误差。

一般我们认为加入iprobe仿真环路增益的方法更接近于真实值。

*注:本文中电路是采用tsmc025BCD60v工艺仿真。

关于共模反馈环路稳定性的考虑 Return To Innocence

关于共模反馈环路稳定性的考虑Return To Innocence 在全差分运放的设计中,通常共模反馈的环路会比主运放的级数要多,这时共模反馈环路中多个极点会影响环路的稳定性,这里试着对此问题做些分析 下图是一个简单的两级全差分放大器,其中的cmfb部分利用两个VCVS得到输出信号的共模,再与输入的Vcmo比较得到cmfb的反馈控制信号。 考虑共模反馈环路,其中存在3个极点,包括运放第一级的输出极点、第二级的输出极点以及cmfb节点对应的极点。与分析运放稳定性问题一样,前两者分别为主极点和次主极点,对于第3个极点,由于其阻抗和输出极点一样在1/gm 量级(实际上,为消除系统失调,运放输出共源放大的mos 管和cmfb的二极管连接的mos管有相同的过驱动电压,其gm按w/l成比例),不能简单的忽略。 实际上,这个cmfb的极点与上图中P管的特征频率ft相关,为此我们需要为其选择一个合适的过驱动电压Vov:首先Vov不能太低,这样才能以保证其ft在足够高的频率,以避免cmfb极点对环路的作用;同时这Vov也不能太高,他必须提供一定的gm/Id,保证运放输出级在电流一定的条件下

有足够的gm,从而避免运放输出极点频率的下降。 上面是对利用理想VCVS得到输出共模的方式下的一些分析,下面我们看看实际的得到输出共模电路中的问题。 以电阻方式等到输出信号的共模电平是一种常见的方法,如果忽略前面电路的输出阻抗,cm-sense的电阻Rs和之后的共模比较电路的栅节点电容Cx会在共模反馈的环路中引入一个极点。考虑到一般Rs至少要在Rds量级以避免其对运放增益的衰减,这位个极点的位置不会太高,因此必须加以考虑。实际中,可通过在电阻Rs上并联电容Cs来减小这一极点的影响。 在上面的电路中, 通过简单的分析, 可以得到: 引入Cs 之后, 由cm-sense 部分引入的零极点为: Po=1/(Rs*(Cs+Cx)), Zo=1/(Rs*Cs), 即在极点之后补了一个零点来抵消其作用. 至于具体的Cs 的取值, 考虑Cs 至少与Cx 比较接近, cmfb 环路才能得到一定的相位裕度, 若进一步考虑零极点对建立时间的影响, 应该将Cs/Cx 取为一定值以上才能将零极点拉的足够近, 以减小这一零极点对对共模信号建立时间的影响。 2 您可能也喜欢:

【精品】第9章边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价. 9。1边坡的变形与破坏类型 9。1.1概述

随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边

坡已高达300—500m,而水电工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。

经典运放电路分析

从虚断,虚短分析基本运放电路 运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出及输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出 Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了! 今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入

端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 1)反向放大器: 图1 图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,

运放稳定性分析环路稳定性基础

运放稳定性分析 环路稳定性基础 引言 本系列所采用的所有技术都将“以实例来定义”,而不管它在其他应用中能否用普通公式来表达。为便于进行稳定性分析,我们在工具箱中使用了多种工具,包括数据资料信息、技巧、经验、SPICE仿真以及真实世界测试等,都将用来加快我们的稳定运放电路设计。尽管很多技术都适用于电压反馈运放,但上述这些工具尤其适用于统一增益带宽小于20MHz的电压反馈运放。选择增益带宽小于20MHz的原因是,随着运放带宽的增加,电路中的其他一些主要因素会形成回路,如印制板(PCB) 上的寄生电容、电容中的寄生电感以及电阻中的寄生电容与电感等。我们下面介绍的大多数经验与技术并非仅仅是理论上的,而且是从利用增益带宽小于20MHz的运放、实际设计并构建真实世界电路中得来的。 本系列的第1部分回顾了进行稳定性分析所需的一些基本知识,并定义了将在整个系列中使用的一些术语。 波特图(曲线)基础 幅度曲线的频率响应是电压增益改变与频率改变的关系。这种关系可用波特图上一条以分贝(dB) 来表示的电压增益比频率(Hz) 曲线来描述。波特幅度图被绘成一种半对数曲线:x轴为采用对数刻度的频率(Hz)、y轴

则为采用线性刻度的电压增益(dB) ,y轴最好是采用方便的每主格45°刻度。波特图的另一半则是相位曲线(相移比频率),并被描绘成以“度”来表示的相移比频率关系。波特相位曲线亦被绘成一种半对数曲线:x轴为采用对数刻度的频率(Hz)、y轴为采用线性刻度的相移(度),y轴最好是采用方便的每主格45°刻度。 幅度波特图要求将电压增益转换成分贝(dB) 。进行增益分析时,我们将采用以dB(定义为20Log10A)表示的电压增益,其中A为以伏/伏表示的电压增益。

边坡稳定性分析资料讲解

边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价。 9.1 边坡的变形与破坏类型 9.1.1概述 随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报

等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边坡已高达300—500m,而水电 工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。 因此,广大工程地质和岩石力学工作者对此问题进行了长期不懈的探索研究,取得了很大的进展;从初期的工程地质类比法、历史成因分析法等定性研究发展到极限平衡法、数值分析法等定量分析法,进而发展到系统分析法、可靠度方法灰色系统方法等不确定性方法,同时辅以物理模拟方法,并且诞生了工程地质力学理论、岩(土)体结构控制论等,这些无疑为边坡工程及滑坡预报研究奠定了坚实的基础,为人类工程建设做出了重大贡献。 在工程中常要遇到岩坡稳定的问题,例如在大坝施工过程中,坝肩开挖破坏了自然坡脚,使得岩体内部应力重新分布,常常发生岩坡的不稳定现象。又如在引水隧洞的进出口部位的边坡、溢洪道开挖的边坡、渠道的边坡以及公路、铁路、采矿工程等等都会遇到岩坡稳定的问题。如果岩坡由于力过大和强度过低,则它可以处于不稳定的状态,一部分岩体向下或向外坍滑,这一种现象叫做滑坡。滑坡造成危害很大,为此在施工前,必须做好稳定分析工作。 岩坡不同于一般土质边坡,其特点是岩体结构复杂、断层、节理、裂隙互相切割,块体极不规则,因此岩坡稳定有其独特的性质。它同岩体的结构、块体密度和强度、边坡坡度、高度、岩坡表面和顶部所受荷载,边坡的渗水性能,地下水位的高低等有关。 岩体内的结构面,尤其是软弱结构面的的存在,常常是岩坡不稳定的主要因素。大部分岩坡在丧失稳定性时的滑动面可能有三种。一种是沿着岩体软弱岩层滑动;另一种是沿着岩体中的结构面滑动;此外,当这两种软弱面不存在时,也可能在岩体中滑动,但主要的是前面两种情况较多。在进行岩坡分析时,应当特别注意结构面和软弱层的影

运放稳定性1-环路稳定性基础

运放稳定性 第1部分(共15部分):环路稳定性基础 作者:Tim Green ,TI 公司Burr-Brown 产品战略发展经理 1.0 引言 本系列所采用的所有技术都将“以实例来定义”,而不管它在其他应用中能否用普通公式来表达。为便于进行稳定性分析,我们在工具箱中使用了多种工具,包括数据资料信息、技巧、经验、SPICE 仿真以及真实世界测试等,都将用来加快我们的稳定运放电路设计。尽管很多技术都适用于电压反馈运放,但上述这些工具尤其适用于统一增益带宽小于20MHz 的电压反馈运放。选择增益带宽小于20MHz 的原因是,随着运放带宽的增加,电路中的其他一些主要因素会形成回路,如印制板 (PCB) 上的寄生电容、电容中的寄生电感以及电阻中的寄生电容与电感等。我们下面介绍的大多数经验与技术并非仅仅是理论上的,而且是从利用增益带宽小于20MHz 的运放、实际设计并构建真实世界电路中得来的。 本系列的第1部分回顾了进行稳定性分析所需的一些基本知识,并定义了将在整个系列中使用的一些术语。 9Data Sheet Info 9Tricks 9Rules-Of-Thumb 9 9 Testing Goal:EASILY Tricks & Rules-Of-Thumb apply for Voltage Feedback Op Amps, Unity Gain Bandwidth <20MHz To learn how to analyze and design Op Amp circuits for guaranteed Loop Stability using Data Sheet Info, Tricks, Rules-Of-Thumb, Tina SPICE Simulation, and Testing.Note: 图1.0 稳定性分析工具箱 图字(上、下): 数据资料信息、技巧、经验、Tina SPICE 仿真、测试; 目的:学习如何用数据资料信息、技巧、经验法则、Tina SPICE 仿真及测试来“更容易地”分析和设计运放,以确保环路稳定性; 注:用于统一增益带宽小于20MHz 的电压反馈运放的技巧与经验法则。 1.1 波特图(曲线)基础 幅度曲线的频率响应是电压增益改变与频率改变的关系。这种关系可用波特图上一条以分贝 (dB) 来表示的电压增益比频率 (Hz) 曲线来描述。波特幅度图被绘成一种半对数曲线:x 轴为采用对数刻度的频率 (Hz)、y 轴则为采用线性刻度的电压增益 (dB) ,y 轴最好是采用方便的每主格45°刻度。波特图的另一半则是相位曲线(相移比频率),并被描绘成以“度”来表示的相移比频率关系。波特相位曲线亦被绘成一种半对数曲线:x 轴为采用对数刻度的频率 (Hz)、y 轴为采用线性刻度的相移(度),y 轴最好是采用方便的每主格45°刻度。

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

滑坡稳定性定量分析法(最新)

打造最便宜 滑坡稳定性定量分析方法 目前,滑坡稳定性分析和工程治理主要是依据工程地质类比、自然历史分析、工程地质力学分析、极限平衡力学计算、弹塑性有限元计算等进行的,且在一定的程度上都有一定的实效性和可靠性。滑坡是一个复杂的、非线性的动态系统,且大型滑坡规模大、机制复杂、破坏性强,不仅失稳影响范围广,而且防治难度高、治理措施复杂。采用工程地质类比、历史反演和地质力学分析,需弄清地层结构、地质构造、地壳演化历史等问题。通过对滑坡形成的地质环境条件、影响因素、变形破坏及形成机制等特征的综合性分析,滑坡堆积体在天然状态下处于稳定状态, 在连续降雨、暴雨影响下处于基本稳定状态。在连续降雨、暴雨及地震等影响下处于欠稳定状态。 一、传统的稳定系数法。 稳定系数预测法是最早的滑坡空间预测方法,它是基于极限平衡法理论提出来的,是将有滑动趋势范围内的边坡土体沿某一滑动面切成若干竖条或斜条,在分析条块受力的基础上建立整个滑动土体的力 或力矩平衡方程,并以此为基础确定边坡的稳定安全系数。这些方法均假设土体沿着一个潜在的滑动面发生刚性滑动或转动。简化的极限平衡法有瑞典法,Bishop法、Spencer法,Janbu法, Sarma法等。通过计算滑坡体的安全系数Fs,来预测边坡的稳定性。 Fs=F抗滑力/F下滑力 当Fs<1.0,不稳定状态; 当Fs=1.0,临界状态; 当Fs>1.0,稳定状态。 二、数值分析方法。 ①有限单元法 有限元法是目前使用最广泛的一种数值分析方法。优点是部分地考虑了边坡岩体的非均质和不连续性,可以给出岩体的应力、应变大小与分布;避免了极限平衡分析法中将滑体视为刚体而过于简化的缺点;能近似地从应力应变去分析边坡的变形破坏机制,分析最先、最容易发生屈服破坏的部位和需要首先进行加固的部位等。但是对于大的变形和位移不连续问题的求解还不理想。 ②离散单元法 离散单元法是处理结构控制型岩体工程问题较成熟方法。该程序不但允许有限位移和离散体的转动及脱离,而且在计算过程中可以自动判别块体之间可能出现新的接触关系,因此它可以方便地实现对复杂结构体变形破坏的模拟,可以将所研究的区域划分为一个个多边块体单元,单元之间通过接触关系,建立位移和力的相互作用规律,通过迭代使得每一个块体都达到平衡状态。在稳定分析中,它的功能在于反映岩块之间接触的滑移、分离和倾翻等大位移的同时,又能计算岩块内部的变形与应力,该法的另一个优点是利用显式时间差分解求解动力平衡方程,可方便地求解非线性大位移和动力稳定。 ③统计分析方法。 这是目前国内外研究人员研究滑坡稳定性使用较多的一类方法。统计分析方法建立在对滑坡影响因子和滑坡分布关系的分析之上,因此,它能最大程度反映滑坡分布与致灾因子之间的关系,使地质灾害危险性评价更加趋近于客观现实。包括信息量法、多元统计方法、聚类分析方法等。 三、瑞典法的基本理论 瑞典圆弧滑动法是条分法中最古老而又最简单的方法。除了假定滑裂面是个圆柱面外, 在求条底反力时忽略了条间力的作用, 且在求安全系数时仅考虑对同一点的力矩平衡。其安全系数方程为:

多级运放稳定性分析及补偿方法

多级运算放大器的频率补偿分析 Bo yang 2009-5-3 由于单级运算放大器cascode不能满足低电压的要求,而且短沟道效应和深亚微米CMOS的本征增益下降,所以要使用多级放大,这样就涉及到频率补偿的问题。大部分的频率补偿拓扑结构都是采用极点分离和零极点抵消技术(使用电容和电阻)。对于两级运算放大器而言这样的补偿无论是在理论分析还是在实际电路中都是可行的,但是对于多级放大器而言,要考虑的因素很多(电容面积,功耗,压摆率等)。而且理论的分析不一定都适用于实际的电路。所以对于多级放大器的频率补偿,这里给出了几种拓扑结构。 由于系统结构,传输函数都很复杂,所以在分析这些拓扑结构之前先给出一些假设条件:1):假设每一级的增益都远远大于1; 2):假设负载电容和补偿电容都大于寄生集总电容; 3):每一级之间的寄生电容忽略不计。 以上这些假设都是很容易满足,而且在大部分电路中都是满足这些条件条件的。 一single stage 对于单级放大器而言,其频率响应比较好,只有一个左半平面得极点,没有零点,所以 整个系统是稳定的。极点位置为:。其增益带宽积为GBW=gmL/CL.所以可以通过增大跨导,减小输出电容的方式来增大带宽。实际上它的相位裕度没有90度,是因为存在着寄生的零极点。二这些寄生的零极点于信号路径上的偏置电流和器件的尺寸有关,所以单位增益带宽也不能无限制的增加,而是等于寄生最小极点或者零点的一半为比较合适的,而且大的偏置电流和小的器件尺寸对于稳定性是必要的 二 two stage 对于两级的运放,就是采用简单的米勒补偿(SMC)。其补偿的结构如下所示: 对于这种结构的传递函数可以表述如下 从传递函数中很容易知道零极点位置。其中一个右半平面得零点和两个极点。为了保证系统稳定性,次极点和零点要在比单位增益频率大的地方,这样就要求Cm很大并把主极点推的很低,这样增益带宽积就要减小,要保持同样的速度即单位增益带宽,就要求大的功耗(增加跨导)通常选择次极点在单位增益频率两倍的位置。同时在这里要注意一点的是,零点的位置一定要比次级点位置高,要不就会出现稳定性问题。为了维持系统稳定,次级点 是GBW的1/2。所以。同样则有通过以上两个关系式不难发现,GBW并不随第一级的跨导的增大而增大,因为补偿电容也在同比增大。所以,要增大GBW 就要增大第二级跨导和减小输出电容。

典型的两级运放环路稳定性分析

典型的两级运算放大器环路稳定性分析 典型的两级运放如图所示,负载电容CL=50fF。 首先建立静态工作点。加偏置电流I0=4uA,加共模输入电平1.25V。仿真后得到结果如下,静态工作点是合适的。 1.开环分析 米勒补偿前做开环分析如下,显然,这是不合适的。

加米勒补偿电容Cc=200fF,做开环分析如下,显然,这也是不合适的。这是由于电路中存在零点造成的。

加入调零电阻Rz=40K,,仿真结果如下。可以看出,, ,相位裕度为40度,不够。可通过加大补偿电容来进一步分裂p1,p2主次极 点。(已尝试过加米勒补偿电容Cc=300fF可以得到大于60度的相位裕度)。但是本次设计的运放用在负反馈环路中,故只需要负反馈环路是稳定的就达到设计标准。 理论计算。 查看各管子的静态工作点。 ,,,即。 ,,,即 。

, 。理论值与仿真结果非常接近。 ,理论值与仿真结果非常接近。 , ,理论值与仿真结果非常接近。 , ,理论值 与仿真结果40度偏差较大。 2.在负反馈环路中做环路稳定性分析:

从上图可以看出,加入反馈电阻网络R1,R2后就打破了原有的静态工作点:主要是反馈电阻网络R1,R2中的电流由M7管提供,所以M7管的静态工作点打破了,即运放的第二级跨导GmⅡ,输出电阻R2都变了。从波特图中可以看出相位裕度为77度,满足设计标准。理论计算: 查看各管子的静态工作点。 ,, ,即。 ,,,即 。 , 。理论值与仿真结果非常接近。 ,理论值与仿真结果非常接近。 。 ,理论值与仿真结果非常接近。 ,

,理论值 与仿真结果77度偏差较大。 此结果可能是由于gm7变大,原来的调零电阻RZ过大造成的。现在改变调零电阻Rz=25K, ,仿真结果如下: 此时,相位裕度为63度,满足设计标准。 3.改用大电感大电容仿真环路增益:

运放的应用实例和设计指南

1.1运放的典型设计和应用 1.1.1运放的典型应用 运放的基本分析方法:虚断,虚短。对于不熟悉的运放应用电路,就使用该基本分析方法。 运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。 1) 运放在有源滤波中的应用 图有源滤波 上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。 该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。 其中电阻R280是防止输入悬空,会导致运放输出异常。 滤波最常用的3种二阶有源低通滤波电路为 巴特沃兹,单调下降,曲线平坦最平滑; 切比雪夫,迅速衰减,但通带中有纹波; 贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。

二阶有源低通滤波 电路的画法和截止频率 2) 运放在电压比较器中的应用 R785K1 ACH_BF1 FREN1 U85PS2801-1 1 2 4 3 R273 1K R274 1K C213 22nF FREN1 R292 200K - + U87B LM393DR2G 5 6 7 R275 1K 图电压比较 上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。 该电路实际上是过零比较器和深度放大电路的结合。 将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。 该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。 3) 恒流源电路的设计 如图所示,恒流原理分析过程如下: U5B(上图中下边的运放)为电压跟随器,故V4 V1=; 由运算放大器的虚短原理,对于运放U4A(上图中上边的运放)有:V5 V3=;

讨论电容对运放稳定性的影响

讨论电容对运放稳定性的影响 今天我们来学习电容对运放稳定性的影响,这是最后一部分内容,之后还有两次总结和回顾就结束了运放提高课的全部内容,感觉还有点意犹未尽。下面我们先来看一下输出电容对稳定性影响,上节课提到,当运放接成跟随器的形式的时候,其相应的相角裕度将会比较小,稳定性比较差,如果输出端再接一个100pF或50pF的电容将会使运放的稳定性变差,由于运放内部是由三级构成,输入级、放大级和驱动级,这里每一级的输出都会经电阻和电容的并联接地,根据第二十集的内容我们知道,电阻和电容的并联会产生一个极点,所以输入级、放大级和驱动级的电阻和电容都会引入一个极点,其中放大级极点为低频极点,输入级极点为高频极点,驱动级极点介于两者之间,而运放输出端再接一个电容时,就会使得驱动级极点频率降低,从而使得相角提前到达-180度,使得相角裕度变小,从而使得稳定性变差。 而相应的解决办法有两种,一是通过与输出电容并联一个电阻来解决,通过并联电阻使得驱动级极点频率增加,但是这里有一个问题,并联电阻将成为负载要分得一部分电流。另一种方法,如下图所示,输出经过电阻再经电容接地,这同样会带来问题,会有电流流过该电阻使得电阻将分得一部分电压使得运放输出端和电容电压不同,需要电阻的阻值很小。 至于为什么串联电阻会解决该问题,这要回到我们之前学过的内容,它虽然没有改变该极点,但是它又引入了一个零点,从而会抵消该极点的作用,使得相位在没有到达-180度之前再回到-90度。 接下来再看一下输入级电容对运放稳定性的影响,下图为同相放大器,并在反相输入端经电容接地。 再对反馈环节进行分析,得到其反馈环节为一阶系统,之前提到过,运放可以等效为理想

关于共模反馈环路稳定性的考虑

关于共模反馈环路稳定性的考虑 | Return To Innocence 收藏人:mzsm 2014-10-13 | 阅:转:| 来源| 分享 在全差分运放的设计中,通常共模反馈的环路会比主运放的级数要多,这时共模反馈环路中多个极点会影响环路的稳定性,这里试着对此问题做些分析 下图是一个简单的两级全差分放大器,其中的cmfb部分利用两个VCVS得到输出信号的共模,再与输入的Vcmo比较得到cmfb的反馈控制信号。

考虑共模反馈环路,其中存在3个极点,包括运放第一级的输出极点、第二级的输出极点以及cmfb节点对应的极点。与分析运放稳定性问题一样,前两者分别为主极点和次主极点,对于第3个极点,由于其阻抗和输出极点一样在1/gm量级(实际上,为消除系统失调,运放输出共源放大的mos管和cmfb的二极管连接的mos管有相同的过驱动电压,其gm按w/l成比例),不能简单的忽略。 实际上,这个cmfb的极点与上图中P管的特征频率ft相关,为此我们需要为其选择一个合适的过驱动电压Vov:首先Vov不能太低,这样才能以保证其ft在足够高的频率,以避免cmfb极点对环路的作用;同时这Vov也不能太高,他必须提供一定的gm/Id,保证运放输出级在电流一定的条件下有足够的gm,从而避免运放输出极点频率的下降。 上面是对利用理想VCVS得到输出共模的方式下的一些分析,下面我们看看实际的得到输出共模电路中的问题。 以电阻方式等到输出信号的共模电平是一种常见的方法,如果忽略前面电路的输出阻抗, cm-sense的电阻Rs和之后的共模比较电路的栅节点电容Cx会在共模反馈的环路中引入一个极点。考虑到一般Rs至少要在Rds量级以避免其对运放增益的衰减,这位个极点的位置不会太高,因此必须加以考虑。实际中,可通过在电阻Rs上并联电容Cs来减小这一极点的影响。

边坡稳定性分析

边坡稳定性分析 内容摘要 目前,边坡失稳的防治仍然是一项很艰巨的任务,对边坡的稳定性分析及处治技术进行深入研究具有重要的意义。论文首先简要阐述了边坡工程稳定性分析及处治技术研究的意义,介绍了边坡工程稳定性分析的一些常用方法,并结合笔者的实践经验,提出了边坡工程处治对策。 边坡稳定分析是岩土工程中的重要研究课题。边坡稳定性分析的观点变化是随着人类理论方面的突破和实践经验的积累而变化的。总的来说,边坡稳定性分析是一个逐步由定性分析向定量、半定量分析发展的过程,并且可视化程度越来越高。文章从定性分析、定量分析、不确定分析等角度介绍了几种主要的边坡稳定性分析方法 关键词:边坡;边坡稳定性;边坡失稳;稳定性分析;处治对策 1

边坡稳定性分析 目录 内容摘要 (1) 1绪论 (4) 1.1 边坡稳定性概念 (4) 1.1.1 边坡体自身材料的物理力学性质 (4) 1.1.2 边坡的形状和尺寸 (5) 1.1.3 边坡的工作条件 (5) 1.1.4 边坡的加固措施 (5) 1.2 边坡的稳定性表示方法 (5) 1.3 边坡破坏 (6) 2 边坡的分类 (6) 3 边坡稳定性的影响因素 (7) 3.1 潜在影响因素 (7) 3.1.1 地形因素 (7) 3.1.2 地质材料因素 (7) 3.1.3 地质构造因素 (8) 3.2 诱发影响因素 (8) 3.2.1 环境因素 (8) 3.2.2 人为因素 (9) 4 边坡稳定性的分析方法 (10) 4.1 定性分析方法 (10) 4.1.1 工程地质类比法 (10) 4.1.2 地质分析法(历史成因分析法) (10) 4.1.3 图解法 (10) 4.1.4 边坡的分析数据库和专家系统 (11) 4.2 定量分析方法 (11) 4.2.1 极限平衡法 (11) 2

运放电路分析

从虚断,虚短分析基本运放电路 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的 时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的 输出与输入的关系,然后得出Vo=(1+Rf)Vi ,那是一个反向放大器,然后得出 Vo=-Rf*Vi 今天,教各位战无不胜的两招,这两招在所有运放电路的教材里 都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有 较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电 压放大倍数都在80 dB 以上。而运放的输出电压是有限的,一般在10 V~14 V。因此运放的差模输入电压不足 1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位, 这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电 阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外 电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入 端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视 为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断 路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、 反向放大,什么加法器、减法器,什么差动输入暂时忘掉那些输入输出关 系的公式这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入 偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我 们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器 当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------ “虚短”和“虚断”,开 始“庖丁解牛”了。 1)反向放大器: 图 1 图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2 的电流是相同的。 流过R1的电流:I1 = (Vi - V- )/R1 a

运算放大器稳定性实验

●Hello,and welcome to the TI Precision Lab supplement for op amp stability. ●This lab will walk through detailed calculations,SPICE simulations,and real-world measurements that greatly help to reinforce the concepts established in the stability video series. ●你好,欢迎来到TI Precision Labs(德州仪器高精度实验室)的运放稳定 性环节。 ●这个实验会包括计算,SPICE仿真和实际测试。这些环节帮助大家对视频中 的概念加深理解。

●The detailed calculation portion of this lab can be done by hand,but calculation tools such as MathCAD or Excel can help greatly. ●The simulation exercises can be performed in any SPICE simulator,since Texas Instruments provides generic SPICE models of the op amps used in this lab. However,the simulations are most conveniently done in TINA-TI,which is a free SPICE simulator available from the Texas Instruments website.TINA simulation schematics are embedded in the presentation. ●Finally,the real-world measurements are made using a printed circuit board,or PCB,provided by Texas Instruments.If you have access to standard lab equipment,you can make the necessary measurements with any oscilloscope, function generator,Bode plotter,and±15V power supply.However,we highly recommend the VirtualBench from National Instruments.The VirtualBench is an all-in-one test equipment solution which connects to a computer over USB or Wi-Fi and provides power supply rails,analog signal generator and oscilloscope channels,and a5?digit multimeter for convenient and accurate measurements. This lab is optimized for use with the VirtualBench. ●本实验的计算可以通过實際計算,如果使用Mathcad或者Excel这样工具会 更好。

环路相位-开关电源稳定性设计

环路相位-开关电源稳定性设计 专业技术 环路相位-开关电源稳定性设计 摘要:环路,相位,增益,负载,开关电源,稳定性,电压,相移,电源,频率, 信号接收机-基于单芯片的GPS接收机硬件设计白光调光-白光和彩色光智能照明系统解决方案设备方案-台达UPS在中小企业中的创新应用方案触摸屏电容-电容式触摸屏系统解决方案测量肺活量-利用高性能模拟器件简化便携式医疗设备设计测量温度-热敏电阻(NTC)的基本参数及其应用动能产品-动能电子企业文化活动丰富员工生活电路板镀锡-无锡华文默克发布PCB/SMT工艺方案引擎电压-采用接近传感器的火花探测器太阳能控制器-太阳能LED街灯的挑战及安森美半导体高能效解决方案众所周知,任何闭环系统在增益为单位增益l,且内部随频率变化的相移为360°时,该闭环控制系统都会存在不稳定的可能性。因此几乎所有的开关电源都有一个闭环反馈控制系统,从而能获得较好的性能。在负反馈系统中,控制放大器的连接方式 有意地引入了180°相移,如果反馈 众所周知,任何闭环系统在增益为单位增益l,且内部随频率变化的相移为360°时,该闭环控制系统都会存在不稳定的可能性。因此几乎所有的开关电源都有一个闭环反馈控制系统,从而能获得较好的性能。在负反馈系统中,控制放大器的连接方式有意地引入了180°相移,如果反馈的相位保持在180°以内,那么控制环路将总是稳定的。当然,在现实中这种情况是不会存在的,由于各种各样的开关延时和电抗引入了额外的相移,如果不采用适合的环路补偿,这类相移同样会导致开关电源的不稳定。 1 稳定性指标衡量开关电源稳定性的指标是相位裕度和增益裕度。相位裕度是指:增益降到0dB 时所对应的相位。增益裕度是指:相位为-180度时所对应的增益大小(实际是衰减)。在实际设计开关电源时,只在设计反激变换器时才考虑增益裕度,设计其它变换器时,一般不使用增益裕度。在开关电源设计中,相位裕度有两个相互独立作用:一是可以阻尼变换器在负载阶跃变化时出现的动态过程;另一个作用是当元器件参数发生变化时,仍然可以保证系统稳定。相位裕度只能用来保证“小信号稳定”。在负载阶跃变化时,电源不可避免要进入“大信号稳定”范围。工程中我们认为在室温和标准输入、正常负载条件下,环路的相位裕度要求大于45°。在各种参数变化和误差情况下,这个相位裕度足以确保系统稳定。如果负载变化或者输入电压范围变化非常大,考虑在所有负载和输入电压下环路和相

十一种经典运放电路分析

十一种经典运放电路分析 从虚断,虚短分析基本运放电路 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

1)反向放大器: 传输文件进行[薄膜开关] 打样 图1 图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。 流过R1的电流:I1 = (Vi - V-)/R1 ………a 流过R2的电流:I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ………………c I1 = I2 ……………………d

运算放大器的稳定性4―环路稳定性主要技巧与经验

运算放大器的稳定性 第4部分(共15部分):环路稳定性主要技巧与经验 作者:Tim Green,TI公司 本系列的第4部分着重讨论了环路稳定性的主要技巧与经验。首先,我们将讨论45度相位及环路增益带宽准则,考察了在Aol 曲线与1/β曲线以及环路增益曲线Aolβ中的极点与零点之间的互相转化关系。我们还将讨论用于环路增益稳定性分析的频率“十倍频程准则”。这些十倍频程准则将被用于1/β、Aol及Aolβ曲线。我们将给出运放输入网络ZI与反馈网络ZF的幅度“十倍频程准则”。我们将开发一种用于在1/β曲线上绘制双反馈路径的技术,并将解释为何在使用双反馈路径时应该避免出现“BIG NOT”这种特殊情况。最后,我们将给出一种便于使用的实际稳定性测试方法。在本系列的第5部分中,这些关键工具的综合使用使我们能够系统而方便地稳定一个带有复杂反馈电路的实际运放应用。 环路增益带宽准则 已确立的环路稳定性标准要求在fcl处相移必须小于180度,fcl是环路增益降为零时的频率。在fcl处的相移与整个180度相移之间的差定义为相位余量。图4.0详细给出了建议用于实际电路的经验,亦即在整个环路增益带宽(f≤fcl)中设计得到135度的相移(对应于45度的相位余量)。这是考虑到,在实际电路中存在着功率上升、下降及瞬态情况,在这些情况下,运放在Aol曲线上的改变可能会导致瞬态振荡。而这种情况在功率运放电路中是特别不希望看到的。由于存在寄生电容与印制板布局寄生效应,因此这种经验还考虑在环路增益带宽中用额外的相位余量来考虑实际电路中的附加相移的。此外,当环路增益带宽中相位余量小于45度时,即可能在闭环传输函数中导致不必要的尖峰。相位余量越低及越靠近fcl,则闭环尖峰就会越明显。 180 135 45 Frequency (Hz) 90 θ -45 -135o Design for: < Loop Stability Criteria:<-180 degree phase shift at fcl -135 degree phase shift at all frequencies

相关主题
文本预览
相关文档 最新文档