当前位置:文档之家› 膜分离的原理

膜分离的原理

膜分离的原理
膜分离的原理

膜分离的原理是什么?

何为纳滤膜?

答:纳滤膜的透过物大小在1-10nm,科学家们推测纳滤膜表面分离层可能拥有纳米级(10nm以下)的孔结构,故习惯上称之为"纳滤膜"又叫"纳米膜"、"纳米管"。

纳滤膜净化原理?

答:(1)溶解--扩散原理:渗透物溶解在膜中,并沿着它的推动力梯度扩散传递,在膜的表面形成物相之间的化学平衡,传递的形式是:能量=浓度o淌度o推动力,使得一种物质通过膜的时候必须克服渗透压力。

(2)电效应:纳滤膜与电解质离子间形成静电作用,电解质盐离子的电荷强度不同,造成膜对离子的截留率有差异,在含有不同价态离子的多元体系中,由于道南(DONNAN)效应,使得膜对不同离子的选择性不一样,不同的离子通过膜的比例也不相同。

道南平衡:当把荷电膜置于盐溶液中会发生动力学平衡。膜相中的反离子浓度比主体溶液中的离子浓度高而同性离子的浓度低,从而在主体溶液中产生道南能位势,该能位势阻止了反离子从膜相向主体溶液的扩散和同性离子从主体溶液向膜的扩散。当压力梯度驱动水通过膜进同样会产生一个能位势,道南能位势排斥同性离子进入膜,同时保持电中性,反离子也被排斥。

三达纳滤膜具有哪些特点?

答:①超低压力下工作(0.15Mpa的压力下就可以稳定工作)。

②大通量供水。在普通的市政水压下就可以使用,水通量可达15m2/小时。

③选择性离子脱除。在去除细菌、病毒、过量金属离子、低分子有机物、氟、砷等有害物质的同时,保留一定量钾、钠、钙、铁等对人体有益矿物质。

④使用领域广。在淡水处理、工业废水处理、医药和食品领域都有广泛的应用。

如何保存纳滤膜?

答:纳滤膜的保存目标是防止微生物在膜表布的繁殖及破坏,防止膜的水解,冻结及膜的收缩变形。前人就有微生物对膜性能的影响进行过多种试验,结果表明:不同的微生物对膜的性能产生不同的影响。防止膜的水解,对任何膜都很重要。温度和PH值是醋酸纤维素膜水解的两个主要因素。对芳香聚酰胺膜,PH值及水中游离氯的含量则是其水解的主要因素。纳滤膜的冻结在冬季运输过程中常常发生。经验表明膜的冻结使膜中的水分形成冰晶而使膜结构膨胀,造成膜的性能大幅度下降或破坏。膜的收缩变形,发生在湿态膜保存时的失水、及膜在与高深度溶液接触时膜中的水急剧向溶液中扩散。不同种类的纳滤膜,其保存方法不同。醋酸纤维素纳滤膜在干态时应避免阳光直接照射,要保存在荫凉、干燥的地方。保存温度以8~35℃。

三达纳滤膜用在水处理时与反渗透膜有什么区别?

答:纳滤膜是荷电膜,能进行电性吸附,它具有敏锐的分子截留区,对不同物质能有目的地提纯或去除的优越分离效果。反渗透膜的滤分子量在100以下,只能过滤掉水中的水分子和气体。在相同的水质及环境下制水,纳滤膜所需的压力小于反渗透膜所需的压力。

三达纳滤膜与反渗透制水水质有何不同?

答:经纳滤膜过滤后的自来水能脱除细菌、病毒、低分子有机物、重金属等物质,保留部分

的铁、钠、钙等对人体有益的矿物质。而用反渗透膜过滤自来水只能得到含有水分子和气体的净水。

膜分离技术受到世界各技术先进国家的高度重视,近30 年来,美国、加拿大、日本和欧洲技术先进国家,一直把膜技术定位为高新技术,投入大量资金和人力,促进膜技术迅速发展,使用范围日益扩大。

膜分离技术的发展和应用,为许多行业,如纯水生产、海水淡化、苦咸水淡化,电子工业、制药和生物工程、环境保护、食品、化工、纺织等工业,高质量地解决了分离、浓缩和纯化的问题,为循环经济、清洁生产提供依托技术。

1 膜分离技术简介

1.1 膜的定义

膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。

1.2 膜的种类

分离膜包括:反渗透膜(0. 0001~0. 005μm) ,纳滤膜(0. 001~0. 005μm) ,超滤膜(0. 001~0. 1μm) ,微滤膜(0. 1~1μm) 、电渗析膜、渗透气化膜、液体膜、气体分离膜、电极膜等。他们对应不同的分离机理,不同的设备,有不同的应用对象。膜本身可以由聚合物,或无机材料,或液体制成,其结构可以是均质或非均质的,多孔或无孔的,固体的或液体的,荷电的或中性的。膜的厚度可以薄至100μm,厚至几毫米。不同的膜具有不同的微观结构和功能,需要用不同的方法制备。制膜方法一直是膜领域的核心研究课题,也是各公司严格保密的核心技术。

1.3膜分离技术的定义

把上述的膜制成适合工业使用的构型,与驱动设备(压力泵、或电场、或加热器、或真空泵) 、阀门、仪表和管道联成设备。在一定的工艺条件下操作,就可以来分离水溶液或混和气体。透过膜的组分被称为透过流分。这种分离技术被称为膜分离技术。

2膜技术的应用领域

2.1供水

2.1.1高质量饮用水供给

随着水体的污染和人民生活水平提高,人们越来越希望得到高质量的饮用水供给。采用活性炭吸附过滤和超滤结合制取高质量饮用水,设备投资少,制水成本低,是优质饮用水制备的经济有效方法,具有广阔的市场前景。

2.1.2工业供水

自来水和地下水的水质不能满足许多化学工业、电子工业和纺织工业的要求,需要经过净化处理方可以使用,超滤膜技术是净化工业用水的重要技术之一。

2.1.3 医药用水

医药针剂用水是采用多级蒸馏制备的,其工艺繁琐、能耗高、而且质量常常得不到保证。用超滤膜技术除针剂热源和终端水热源,取得很好效果。

2. 2 工艺水的处理(分离、浓缩、分级和纯化)

在各工业生产过程中,往往有分离、浓缩、分级和纯化某种水溶液的需求。传统用的方法是沉淀、过滤、加热、冷冻、蒸馏、萃取和结晶等过程。这些方法表现出流程长、耗能多、物料损失多、设备庞大、效率低、操作繁琐等缺点,以超滤膜技术取代某种传统技术可以获得显著的经济效益。

2.2.1膜技术在制药工业的应用

膜技术广泛应用于生物制备和医药生产中的分离、浓缩和纯化。如血液制备的分离、抗菌素和干扰素的纯化、蛋白质的分级和纯化、中草药剂的除菌和澄清等。发酵是生物制药的主流技术,从发酵液中提取药物,

传统工艺是溶剂萃取或加热浓缩,反复使用有机溶剂和酸碱溶液,耗量大,流程长,废水处理任务重。特别是许多药物热敏性强,使传统工艺的实用性多受限制。国际先进的制药生产线,大量采用膜分离技术代替传统的分离、浓缩和纯化工艺。如以膜设备浓缩纯化抗生素、中药汤及中药针剂澄清等。

2.2.2 膜技术在食品领域工业的应用

利用超滤膜技术把发酵液中产品和菌体分离,再采用其它方法精制流程。其优点是:生产效率和产品质量提高;简化了工艺流程;菌体蛋白不含外加杂质,利用价值高,达到资源综合利用。酱油、醋的澄清、果汁澄清和浓缩、乳制品生产、制糖工业都采用了膜技术。

2.2.3 膜技术在各种工业生产中的应用

凡是涉及分子级的浓缩和分离的过程,都有膜技术应用的机会。汽车电泳漆的在线纯化采用超滤膜除去杂质,持续保证涂漆质量;燃料工业泳超滤膜技术分离和浓缩中间体。

2.3 在环境保护和水资源化的应用

膜技术在废水处理、污染防治和水资源综合利用方面得到广泛应用。在许多情况下,不仅处理了废水,还能回收有用物质和能量。

2.3.1各种含油废水及废油的处理

①采油回注水的处理:膜法可以除去在水中的乳化溶解油,提高注入水的质量。②含油废水的处理:许多工业生产和运输业都产生大量的含油废水,膜滤技术是达标排放最有效的方法。③废润滑油的纯化:用常规技术加膜分离,可得到很纯的润滑油,适用于汽车等废机油的处理。④机床切削油的纯化回收:膜法可除去废切削油中的细菌和杂质,处理后回用。⑤废食用油的纯化处理技术:食用油在连续高温下产生致癌物质,用膜法可将这部分除去。⑥食用菜籽油的纯化:菜籽油中含有15 %~48 %高含炭量的芥子酸。用膜法可除去,达到标准(芥子酸<5 %) 。

2.3.2 废水的处理及回用

①膜生物反应器处理生活污水回用中水,其占地面积小,设备投资低,处理水质好。②印刷显影废水的处理及回用,采用膜技术处理可以达标排放,也可回收。③电镀废水可采用膜技术处理,水回用,污染物回槽利用。④印染废水采用膜分离可除去有色染料,得到的水回用。牛仔布印染废水可回收靛蓝燃料。⑤造纸废水用膜可将废水中的木质素、色素等分离出来,净化水可排放或回用。

2.3.3水的淡化技术

①海水淡化技术:应用最新的膜蒸馏技术,最适合和船用发动机热交换器连用,利用废热生产淡水,适合于中、小型渔船远航捕捞使用。②咸水淡化技术:将天然咸水用膜淡化到应用水质标准。

2. 4气体分离、浓缩技术及其应用

①氧化浓缩:可用膜装置制成安全、简便的医疗和理疗设备,也可用于炼钢吹氧或助燃等工业生产,富氧浓度35 %~80 %。②氮气浓缩:氮气可用于食品保存、汽车存储、飞机加油、防爆及化学工业,膜设备的氮可浓缩至90 %~98 %。③二氧化碳、二氧化硫、氢气的分离:当二氧化碳、二氧化硫、氢气分别和其它气体混和在一起时,可用膜将它们分离出来,满足工业的需要。④氢气的分离和浓缩:在化工产品制造时,往往排出大量氢气,可用膜法将氢气分离出来。

2.5 其它

①膜法保鲜剂:在水果、蛋类外部侵涂一层膜可达保鲜目的。保鲜后,存放期长,外观色泽好。②制造维生素E 的膜法分离技术:用膜可以从黄豆油中提取VE 的混合物,其抽提剂可循环使用。

3膜分离技术的国内发展动态

中国的膜技术从60 年代中期起步研究,长时间在实验室内和中试规模徘徊。从“七五”计划开始,国家科委把膜技术列为国家重大科研项目加以支持,膜技术取得较大进展,特别是改革开放的国策促进了广泛的国际交流,膜技术在国民经济发展中的重要性日益增大,国内膜工业产值也逐渐增加。

近10 年来,中国的膜技术的总体水平有了很大的进展,但与国际技术先进国家的差距仍然很大。问题主要表现在:生产现代化、产业化程度低,原料不规范,工艺参数未严格控制,产品质量不稳定;膜的品种少,应用范围小。尤其应用的工艺设计、系统成套能力、膜组件水平、相关机电产品等方面,尚未达到国际先进水平,

远不能满足国内市场需求,膜技术存在着很大的发展空间。

首先,我们要加强研发能力,推动膜技术产业的发展,依靠科技进步,提高产品质量,降低成本,增加品种,扩大应用面。

再者,,通过招商引资,引进技术,消化吸收,提高膜技术应用的工艺设计、系统成套能力,膜制备和膜组件水平,膜品种及相关机电产品等方面达到国际先进水平。

1,反渗透原理,就是指通过离子交换净化水,使水的杂志都被滤掉。

2,反渗透原理:透过的物质具有选择性的薄膜成为半透膜。一般将只能透过溶剂而不能透过溶质的薄膜视为理想的半透膜。当把相同体积的稀溶液(如淡水)和浓液(如海水或盐水)分别置于一容器的两侧,中间用半透膜阻隔,稀溶液中的溶剂将自然的穿过半透膜,向浓溶液侧流动,浓溶液侧的液面会比稀溶液的液面高出一定高度,形成一个压力差,达到渗透平衡状态,此种压力差即为渗透压。渗透压的大小决定于浓液的种类,浓度和温度与半透膜的性质无关。若在浓溶液侧施加一个大于渗透压的压力时,浓溶液中的溶剂会向稀溶液流动,此种溶剂的流动方向与原来渗透的方向相反,这一过程称为反渗透。

反渗透膜分离技术的基本原理和特点

来源:作者:时间:2008-09-16 点击:

相同的外压下,当溶液与纯溶剂为半透膜隔开时,纯溶剂会通过半透膜使溶液变淡的现象称为渗透。这时溶剂分子在单位时间内进入溶液内的数目要比溶液内的溶剂分子在同一时间内通过半透膜进入纯溶剂内的数目多。表面上看来,溶剂通过半透膜渗透到溶液中,使得溶液体积增大,浓度变稀,当单位时间内溶剂分子从两个相反的方向穿过半透膜的数目彼此相等,即达到渗透平衡。渗透必须通过一种膜来进行,这种膜只能允许溶剂分子通过,而不允许溶质的分子通过,因此称之为半透膜。

当半透膜隔开溶液与纯溶剂时,加在原溶液上使其恰好能阻止纯溶剂进入溶液的额外压力称之为渗透压,通常溶液愈浓,溶液的渗透压愈大。如果加在溶液上的压力超过了渗透压,则反而使溶液中的溶剂向纯溶剂方向流动,这个过程叫做反渗透。反渗透膜分离技术就是利用反渗透原理进行分离的方法。

反渗透膜分离技术的特点如下:

1. 在常温不发生相变化的条件下,可以对溶质和水进行分离,适用于对热敏感物质的分离、浓缩,并且与有相变化的分离方法相比,能耗较低。

2. 杂质去除范围广,不仅可以去除溶解的无机盐类,而且还可以去除各类有机物杂质。

3. 较高的除盐率和水的回用率,可截留粒径几个纳米以上的溶质。

4. 由于只是利用压力作为膜分离的推动力,因此分离装置简单,容易操作维修。

5. 由于反渗透装置要在高压下运转,因此必须配备高压泵和耐高压的管路。

6. 反渗透装置要求进水要达到一定的指标才能正常运行,因此源水在进反渗透膜器之前要采用一定的预处理措施。为了延长膜的使用寿命,还要定期对膜进行清洗,以清除污垢。

膜分离技术受到世界各技术先进国家的高度重视,近30 年来,美国、加拿大、日本和欧洲技术先进国家,一直把膜技术定位为高新技术,投入大量资金和人力,促进膜技术迅速发展,使用范围日益扩大。

膜分离技术的发展和应用,为许多行业,如纯水生产、海水淡化、苦咸水淡化,电子工业、制药和生物工程、环境保护、食品、化工、纺织等工业,高质量地解决了分离、浓缩和纯化的问题,为循环经济、清洁生产提供依托技术。

1 膜分离技术简介

1.1 膜的定义

膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。

1.2 膜的种类

分离膜包括:反渗透膜(0. 0001~0. 005μm) ,纳滤膜(0. 001~0. 005μm) ,超滤膜(0. 001~0. 1μm) ,微滤膜(0. 1~1μm) 、电渗析膜、渗透气化膜、液体膜、气体分离膜、电极膜等。他们对应不同的分离机理,不同的设备,有不同的应用对象。膜本身可以由聚合物,或无机材料,或液体制成,其结构可以是均质或非均质的,多孔或无孔的,固体的或液体的,荷电的或中性的。膜的厚度可以薄至100μm,厚至几毫米。不同的膜具有不同的微观结构和功能,需要用不同的方法制备。制膜方法一直是膜领域的核心研究课题,也是各公司严格保密的核心技术。

1.3膜分离技术的定义

把上述的膜制成适合工业使用的构型,与驱动设备(压力泵、或电场、或加热器、或真空泵) 、阀门、仪表和管道联成设备。在一定的工艺条件下操作,就可以来分离水溶液或混和气体。透过膜的组分被称为透过流分。这种分离技术被称为膜分离技术。

2膜技术的应用领域

2.1供水

2.1.1高质量饮用水供给

随着水体的污染和人民生活水平提高,人们越来越希望得到高质量的饮用水供给。采用活性炭吸附过滤和超滤结合制取高质量饮用水,设备投资少,制水成本低,是优质饮用水制备的经济有效方法,具有广阔的市场前景。

2.1.2工业供水

自来水和地下水的水质不能满足许多化学工业、电子工业和纺织工业的要求,需要经过净化处理方可以使用,超滤膜技术是净化工业用水的重要技术之一。

2.1.3 医药用水

医药针剂用水是采用多级蒸馏制备的,其工艺繁琐、能耗高、而且质量常常得不到保证。用超滤膜技术除针剂热源和终端水热源,取得很好效果。

2. 2 工艺水的处理(分离、浓缩、分级和纯化)

在各工业生产过程中,往往有分离、浓缩、分级和纯化某种水溶液的需求。传统用的方法是沉淀、过滤、加热、冷冻、蒸馏、萃取和结晶等过程。这些方法表现出流程长、耗能多、物料损失多、设备庞大、效率低、操作繁琐等缺点,以超滤膜技术取代某种传统技术可以获得显著的经济效益。

2.2.1膜技术在制药工业的应用

膜技术广泛应用于生物制备和医药生产中的分离、浓缩和纯化。如血液制备的分离、抗菌素和干扰素的纯化、蛋白质的分级和纯化、中草药剂的除菌和澄清等。发酵是生物制药的主流技术,从发酵液中提取药物,传统工艺是溶剂萃取或加热浓缩,反复使用有机溶剂和酸碱溶液,耗量大,流程长,废水处理任务重。特别是许多药物热敏性强,使传统工艺的实用性多受限制。国际先进的制药生产线,大量采用膜分离技术代替传统的分离、浓缩和纯化工艺。如以膜设备浓缩纯化抗生素、中药汤及中药针剂澄清等。

2.2.2 膜技术在食品领域工业的应用

利用超滤膜技术把发酵液中产品和菌体分离,再采用其它方法精制流程。其优点是:生产效率和产品质量提高;简化了工艺流程;菌体蛋白不含外加杂质,利用价值高,达到资源综合

利用。酱油、醋的澄清、果汁澄清和浓缩、乳制品生产、制糖工业都采用了膜技术。

2.2.3 膜技术在各种工业生产中的应用

凡是涉及分子级的浓缩和分离的过程,都有膜技术应用的机会。汽车电泳漆的在线纯化采用超滤膜除去杂质,持续保证涂漆质量;燃料工业泳超滤膜技术分离和浓缩中间体。

2.3 在环境保护和水资源化的应用

膜技术在废水处理、污染防治和水资源综合利用方面得到广泛应用。在许多情况下,不仅处理了废水,还能回收有用物质和能量。

2.3.1各种含油废水及废油的处理

①采油回注水的处理:膜法可以除去在水中的乳化溶解油,提高注入水的质量。②含油废水的处理:许多工业生产和运输业都产生大量的含油废水,膜滤技术是达标排放最有效的方法。

③废润滑油的纯化:用常规技术加膜分离,可得到很纯的润滑油,适用于汽车等废机油的处理。④机床切削油的纯化回收:膜法可除去废切削油中的细菌和杂质,处理后回用。⑤废食用油的纯化处理技术:食用油在连续高温下产生致癌物质,用膜法可将这部分除去。⑥食用菜籽油的纯化:菜籽油中含有15 %~48 %高含炭量的芥子酸。用膜法可除去,达到标准(芥子酸<5 %) 。

2.3.2 废水的处理及回用

①膜生物反应器处理生活污水回用中水,其占地面积小,设备投资低,处理水质好。②印刷显影废水的处理及回用,采用膜技术处理可以达标排放,也可回收。③电镀废水可采用膜技术处理,水回用,污染物回槽利用。④印染废水采用膜分离可除去有色染料,得到的水回用。牛仔布印染废水可回收靛蓝燃料。⑤造纸废水用膜可将废水中的木质素、色素等分离出来,净化水可排放或回用。

2.3.3水的淡化技术

①海水淡化技术:应用最新的膜蒸馏技术,最适合和船用发动机热交换器连用,利用废热生产淡水,适合于中、小型渔船远航捕捞使用。②咸水淡化技术:将天然咸水用膜淡化到应用水质标准。

2. 4气体分离、浓缩技术及其应用

①氧化浓缩:可用膜装置制成安全、简便的医疗和理疗设备,也可用于炼钢吹氧或助燃等工业生产,富氧浓度35 %~80 %。②氮气浓缩:氮气可用于食品保存、汽车存储、飞机加油、防爆及化学工业,膜设备的氮可浓缩至90 %~98 %。③二氧化碳、二氧化硫、氢气的分离:当二氧化碳、二氧化硫、氢气分别和其它气体混和在一起时,可用膜将它们分离出来,满足工业的需要。④氢气的分离和浓缩:在化工产品制造时,往往排出大量氢气,可用膜法将氢气分离出来。

2.5 其它

①膜法保鲜剂:在水果、蛋类外部侵涂一层膜可达保鲜目的。保鲜后,存放期长,外观色泽好。②制造维生素E 的膜法分离技术:用膜可以从黄豆油中提取VE 的混合物,其抽提剂可循环使用。

3膜分离技术的国内发展动态

中国的膜技术从60 年代中期起步研究,长时间在实验室内和中试规模徘徊。从“七五”计划开始,国家科委把膜技术列为国家重大科研项目加以支持,膜技术取得较大进展,特别是改革开放的国策促进了广泛的国际交流,膜技术在国民经济发展中的重要性日益增大,国内膜工业产值也逐渐增加。

近10 年来,中国的膜技术的总体水平有了很大的进展,但与国际技术先进国家的差距仍然很大。问题主要表现在:生产现代化、产业化程度低,原料不规范,工艺参数未严格控制,产品质量不稳定;膜的品种少,应用范围小。尤其应用的工艺设计、系统成套能力、膜组件水平、

相关机电产品等方面,尚未达到国际先进水平,远不能满足国内市场需求,膜技术存在着很大的发展空间。

首先,我们要加强研发能力,推动膜技术产业的发展,依靠科技进步,提高产品质量,降低成本,增加品种,扩大应用面。

再者,,通过招商引资,引进技术,消化吸收,提高膜技术应用的工艺设计、系统成套能力,膜制备和膜组件水平,膜品种及相关机电产品等方面达到国际先进水平。

第五章提取、分离与精制

第五章提取、分离与精制 习题 一、选择题 【A型题】 1.浸提的基本原理是 A.溶剂的浸润与渗透,成分的溶解浸出 B.溶剂的浸润,成分的解吸与溶解 C.溶剂的浸润与渗透,成分的解吸与溶解,溶质的扩散与置换 D.溶剂的浸润,成分的溶解与滤过,浓缩液扩散 E.溶剂的浸润,浸出成分的扩散与置换 2.药材浸提过程中推动渗透与扩散的动力是 A.温度 B.溶媒用量 C.时间 D.浸提压力 E.浓度差3.与溶剂润湿药材表面无关的因素是 A.浓度差 B.药材性质 C.浸提压力 D.溶剂的性质 E.接触面的大小 4.浸提时,一般温度应控制在 A.浸提溶剂的沸点或接近沸点 B.100℃ C.100℃以下 D.100℃以上 E.150℃ 5.浸提过程中,溶剂通过下列哪一个途径进入细胞组织 A.毛细管 B.与蛋白质结合 C.与极性物质结合 D.药材表皮 E.细胞壁破裂 6.浸提药材时 A.粉碎度越大越好 B.温度越高越好 C.时间越长越好 D.溶媒pH越高越好 E.浓度差越大越好 7.下列哪一种方法不能增加浸提浓度梯度 A.不断搅拌 B.更换新鲜溶剂 C.连续逆流提取 D.动态提取 E.高压提取 8.在扩散公式中dc/dx代表 A.浓度差 B.扩散速率 C.扩散系数 D.扩散半径

E.扩散浓度 9.乙醇作为浸出溶媒不具备的特点是 A.极性可调 B.溶解范围广 C.可以延缓酯类药物的水解 D.具有防腐作用 E.可用于药材脱脂 10.浸提过程中加入酸、碱的作用是 A.增加浸润与渗透作用 B.增加有效成分的溶解作用 C.增大细胞间隙 D.增加有效成分的扩散作用 E.防腐11.下列关于单渗漉法的叙述,正确的是 A.药材先湿润后装筒 B.浸渍后排气 C.慢漉流速为1~5ml/min D.快漉流速为5~8ml/min E.大量生产时,每小时流出液应相当于渗漉容器被利用容积的1/24~1/12 12.渗漉法提取时,影响渗漉效果的因素是 A.与渗漉柱高度成正比,与柱直径成反比 B.与渗漉柱高度成反比,与柱直径成正比 C.与渗漉柱高度成反比,与柱直径成反比 D.与渗漉柱高度成正比,与柱直径成正比 E.与渗漉柱大小无关 13.回流浸提法适用于 A.全部药材 B.挥发性药材 C.对热不敏感的药材 D.动物药 E.矿物药 14.下列哪一种操作不属于水蒸气蒸馏浸提法 A.水中蒸馏 B.挥发油提取 C.水上蒸馏 D.多效蒸发 E.通水蒸气蒸馏 15.煎煮法作为最广泛应用的基本浸提方法的原因是 A.水经济易得 B.水溶解谱较广 C.可杀死微生物 D.浸出液易于滤过 E.符合中医传统用药习惯

膜分离的原理

膜分离的原理是什么? 何为纳滤膜? 答:纳滤膜的透过物大小在1-10nm,科学家们推测纳滤膜表面分离层可能拥有纳米级(10nm以下)的孔结构,故习惯上称之为"纳滤膜"又叫"纳米膜"、"纳米管"。 纳滤膜净化原理? 答:(1)溶解--扩散原理:渗透物溶解在膜中,并沿着它的推动力梯度扩散传递,在膜的表面形成物相之间的化学平衡,传递的形式是:能量=浓度o淌度o推动力,使得一种物质通过膜的时候必须克服渗透压力。 (2)电效应:纳滤膜与电解质离子间形成静电作用,电解质盐离子的电荷强度不同,造成膜对离子的截留率有差异,在含有不同价态离子的多元体系中,由于道南(DONNAN)效应,使得膜对不同离子的选择性不一样,不同的离子通过膜的比例也不相同。 道南平衡:当把荷电膜置于盐溶液中会发生动力学平衡。膜相中的反离子浓度比主体溶液中的离子浓度高而同性离子的浓度低,从而在主体溶液中产生道南能位势,该能位势阻止了反离子从膜相向主体溶液的扩散和同性离子从主体溶液向膜的扩散。当压力梯度驱动水通过膜进同样会产生一个能位势,道南能位势排斥同性离子进入膜,同时保持电中性,反离子也被排斥。 三达纳滤膜具有哪些特点? 答:①超低压力下工作(0.15Mpa的压力下就可以稳定工作)。 ②大通量供水。在普通的市政水压下就可以使用,水通量可达15m2/小时。 ③选择性离子脱除。在去除细菌、病毒、过量金属离子、低分子有机物、氟、砷等有害物质的同时,保留一定量钾、钠、钙、铁等对人体有益矿物质。 ④使用领域广。在淡水处理、工业废水处理、医药和食品领域都有广泛的应用。 如何保存纳滤膜? 答:纳滤膜的保存目标是防止微生物在膜表布的繁殖及破坏,防止膜的水解,冻结及膜的收缩变形。前人就有微生物对膜性能的影响进行过多种试验,结果表明:不同的微生物对膜的性能产生不同的影响。防止膜的水解,对任何膜都很重要。温度和PH值是醋酸纤维素膜水解的两个主要因素。对芳香聚酰胺膜,PH值及水中游离氯的含量则是其水解的主要因素。纳滤膜的冻结在冬季运输过程中常常发生。经验表明膜的冻结使膜中的水分形成冰晶而使膜结构膨胀,造成膜的性能大幅度下降或破坏。膜的收缩变形,发生在湿态膜保存时的失水、及膜在与高深度溶液接触时膜中的水急剧向溶液中扩散。不同种类的纳滤膜,其保存方法不同。醋酸纤维素纳滤膜在干态时应避免阳光直接照射,要保存在荫凉、干燥的地方。保存温度以8~35℃。 三达纳滤膜用在水处理时与反渗透膜有什么区别? 答:纳滤膜是荷电膜,能进行电性吸附,它具有敏锐的分子截留区,对不同物质能有目的地提纯或去除的优越分离效果。反渗透膜的滤分子量在100以下,只能过滤掉水中的水分子和气体。在相同的水质及环境下制水,纳滤膜所需的压力小于反渗透膜所需的压力。 三达纳滤膜与反渗透制水水质有何不同? 答:经纳滤膜过滤后的自来水能脱除细菌、病毒、低分子有机物、重金属等物质,保留部分

膜分离技术

水的深度处理工艺综述 人类对膜的认识是从自然界中存在的膜开始的,到现在,各种人工合成膜已成为了我们生活中不可或缺的一部分。其种类繁多,作用也千差万别,但他们具有一个共同的特点-选择透过性。 水的膜技术的应用开始于20世纪60年代,最早使用反渗透膜进行海水淡化。其后膜技术得到了迅速发展,并被众多领域应用。自用于反渗透脱盐后,又开发出纳滤、超滤和微滤技术,这些不同的膜都有其独特的性能,可满足不同的处理要求。 1定义 膜从广义上可以定义为两相之间的一个具有选择透过性的薄层屏障。 膜分离是指在某种推动力作用下,利用膜的选择透过性能,达到分类混合物(如溶液)中离子、分子以及某些微粒的过程。与传统过滤器的最大不同是,膜可以在离子或分子范围内进行分离,并且该过程是一种物理过程,不需发生相变化和添加助剂。在某种推动力的作用下,利用某种隔膜特定的透过性能,使溶质或溶剂分离的方法,称为膜分离。 膜分离是用天然或人工合成膜,以外界能量或化学位差作推动力,对双组份或多组分溶质和溶剂进行分离、分级、提纯和富集的方法。膜分离可以用于液相和气相分离,可以用于水溶液体系、非水溶液体系、水溶胶体系以及含有其他微粒的水溶液体系等。 分离溶质时一般叫渗析,分离溶剂时一般叫渗透。 2分类与特点 膜可以是固态的,也可以是液体甚至是气态的。膜可以是均相的或非均相的,对称的或非对称的,可以是带电的或中性的,而带电膜又可以是带正电或带负电的,或二者兼而有之。膜可以是具有渗透性的,也可以是具有半渗透性的,但不能是完全不透过性的。目前使用的分离膜绝大多数是固相膜。由于膜材料的种类非常丰富,制备条件也多种多样,一般来说膜的分类有以下几种: (1)按分离机理:反应膜、离子交换膜、渗透膜等; (2)按膜的形态:均质膜和非对称膜;

膜分离技术的介绍及应用讲解

题目:膜分离技术读书报告日期2015年11月20日

目录 一、膜的种类特点及分离原理 (1) 二、最新膜分离技术进展 (3) 1. 静电纺丝纳米纤维在膜分离中的应用 (3) 1.1 静电纺丝技术的历史发展 (3) 1.2 静电纺丝纳米纤维制备新型结构复合膜 (3) 1.2.1 在超滤方面 (4) 1.2.2 在纳滤方面 (4) 1.2.3 在渗透方面 (5) 1.2.4 静电纺丝纳米纤维制备空气过滤膜 (5) 2. 多孔陶瓷膜应用技术 (6) 2.1 高渗透选择性陶瓷膜制备技术 (7) 2.1.1 溶胶—凝胶技术 (7) 2.1.2 修饰技术 (7)

一、膜的种类特点及分离原理 膜分离技术(membrane separation technology, MST)是天然或人工合成的高分子薄膜以压力差、浓度差、电位差和温度差等外界能量位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法。常用的膜分离方法主要有微滤(micro-filtration, MF)、超滤(ultra-filtration,UF)、纳滤(nano-filtration,NF)、反渗透(reverse-osmosis, RO)和电渗析(eletro-dialysis, ED)等。MST具有节能、高效、简单、造价较低、易于操作等特点、可代替传统的如精馏、蒸发、萃取、结晶等分离,可以说是对传统分离方法的一次革命,被公认为20世纪末至21世纪中期最有发展前景的高新技术之一,也是当代国际上公认的最具效益技术之一。 分离膜的根本原理在于膜具有选择透过性,按照分离过程中的推动力和所用膜的孔径不同,可分为20世纪30年代的MF、20世纪40年代的渗析(Dialysis, D)、20世纪50年代的ED、20世纪60年代的RO、20世纪70年代的UF、20世 纪80年代的气体分离 (gas-separation, GS)、20世纪90 年代的PV和乳化液膜(emulsion liquid membrane, ELM)等。 制备膜元件的材料通常是有 机高分子材料或陶瓷材料,膜材料中的孔隙结构为物质透过分离膜而发生选择性分离提供了前提,膜孔径决定了混合体系中相应粒径大小的物质能否透过分离膜。图1是MF、UF、NF、RO的工作示意图。MF的推动力是膜两端的压力差,主要用来去除物料中的大分子颗粒、细菌和悬浮物等;UF的推动力也是膜两端的压力差,主要用来处理不同相对分子质量或者不同形状的大分子物质,应用较多的领域有蛋白质或多肽溶液浓缩、抗生素发酵液脱色、酶制剂纯化、病毒或多聚糖的浓缩或分离等;NF自身一般会带有一定的电荷,它对二价离子特别是二价阴离子的截留率可达99%,在水净化方面应用较多,同时可以透析被RO膜截留的无机盐;RO是一种非对称膜,利用对溶液施加一定的压力来克服溶剂的渗透压,使溶剂通过反向从溶液

膜分离技术及其原理的介绍

膜分离技术及其原理的介绍

人们对膜进行科学研究是近几十年来的事。反渗透膜是膜分离技术发展中是一个重要的突破,使膜分离技术进入了大规模工业化应用的时代。其发展的历史大致为:20世纪30年代微孔过滤;40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化。此外,以膜为基础的其它新型分离过程,以及膜分离与其它分离过程结合的集成过程也日益得到重视和发展。 一、膜分离原理 膜分离过程是以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差、温度差等)时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。不同的膜过程使用不同的膜,推动力也不同。目前已经工业化应用的膜分离过程有微滤(MF)、超滤(UF)、反渗透(RO)、渗析(D)、电渗析(ED)、气体分离(GS)、渗透汽化(PV)、乳化液膜(ELM)等。 二、膜分离技术 反渗透、超滤、微滤、电渗析这四大过程在技术上已经相当成熟,已有大规模的工业应用,形成了相当规模的产业,有许多商品化的产品可供不同用途使用。这里主要以反渗透膜和超滤膜为代表介绍一下。 反渗透膜(RO)

反渗透膜使用的材料,最初是醋酸纤维素(CA),1966年开发出聚酰胺膜,后来又开发出各种各样的合成复合膜。CA膜耐氯性强,但抗菌性较差。合成复合膜具有较高的透水性和有机物截留性能,但对次氯酸等酸性物质抗性较弱。这两种材料耐热性较差,高温度大约是60℃左右,这使其在食品加工领域的应用中受到限制。 超滤膜(UF) 超滤膜也是使用CA做材料,后来各种合成高分子材料得以广泛应用。其材料多种多样,共同特点是具有耐热、耐酸碱、耐生物腐蚀等优点。 以上就是为大家介绍的全部内容,希望对大家有帮助。

第五章 膜分离

纳米膜过滤是介于反渗透与超滤之间的液相膜处理新技术。其特点为: (1)能截留小分子的有机物并可同时透析除盐,集浓缩透析为一体; (2)操作压力远比反渗透低,具有节约动力的优点。 纳滤膜的性质与特点 大多数的纳滤膜是由多层聚合物薄膜组成。活性层通常带荷负电化学基团。一般认为纳滤膜是多孔性的,其平均孔径为2nm。作为一般规律,通常分子量截留范围为100一200道尔顿,纳滤膜具有良好的热稳定性,pH稳定性和有机溶剂的稳定性。 纳米过滤的分离机理 纳滤膜不仅具有依靠筛分作用进行分离,也显示有建立在离子电荷密度基础上的选择性,因为膜的离子选择性,对于含有不同自由离子的溶液,透过膜的离子分布是不相同的(透过率随离子浓度的变化而变化),这就是Donnan效应。 Donnan平衡模型 对于荷电膜脱盐,多用Donnan平衡模型来解释。 当系统达到平衡时,膜相、水相、溶液相的离子的化学电位应该达到平衡态。虽然,利用Donna 平衡理论来说明荷电膜的脱盐机理有所依据,而对于在压力下透过膜的机理,还不能从膜、进料及传质过程等多方面来定量描述。 第二节膜材料及其特性 膜材料 ◆纤维素衍生物 醋酸纤维素(CA):由纤维素和醋酸反应制得。是反渗透膜、微滤和超滤的膜材料。 优点:价格便宜,膜的分离和透过性能良好; 缺点:pH使用范围窄(pH=4~8),容易被微生物分解以及在高压操作下时间长了容易产生压密,引起透量下降。 硝酸纤维素(CN):由纤维素和硝酸反应制得。价格便宜,广泛用作透析膜和微滤膜材料。为了增加膜的强度,一般与醋酸纤维素混合使用。 再生纤维素:纤维素溶于某些溶剂如铜氨溶液并在溶解过程中发生降解,在成膜过程中又回复到纤维素的结构,称为再生纤维素。广泛用于人工肾透析膜材料和微滤、超滤膜材料。 ◆聚砜类 是一类具有高机械强度的工程塑料。是目前最重要、生产量最大的高分子聚合膜。 用途:超滤和微滤的膜材料,多种商品复合膜的支撑层膜材料。 优点:耐酸、耐碱缺点:耐有机溶剂的性能差。 聚砜类材料可以通过化学反应,制成带有负电荷或正电荷的膜材料或膜。荷电聚砜可以直接用作反渗透膜材料。用它制成的荷电超滤膜抗污染性能特别好。经磺化的聚砜醚(SPES-C)可用于制造均相离子交换膜。 ◆聚酰胺类及杂环含氮高聚物 类型:芳香聚酰胺(APA)、芳香聚酰胺-酰肼(APAH)、聚苯砜酰胺(APSA)、聚苯并咪唑(PBI)、

膜分离技术处理工业废水的应用现状及发展趋势

扬州工业职业技术学院 2013 —2014 学年 第一学期 文献检索论文 课题名称:膜分离技术在废水处理中的应用及其发展方向设计时间: 2013.10.10~2013.12.15 系部:化学工程学院 班级: 1301应用化工 姓名:郑鹏 指导教师:王富花 学号: 1301110137

目录 摘要 (1) Abstract (1) 第一章前言 (3) 1.1膜技术在水处理中应用的基本原理 (3) 1.1.1根据混合物物理性质的不同 (3) 1.1.2根据混合物的不同化学性质 (3) 1.2 膜分离技术的特 点 (4) 2.1 分离性 (4) 2.1.1 分离膜必须对被分离的混合物具有选择透过(即具有分离)的能力 (4) 2.1.2 分离能力要适度 (4) 2.2 透过性 (4) 2.3 物理、化学稳定性 (4) 2.4 经济性 (5) 3在工业废水处理中的具体应用 (5) 3.1 淀粉污水处理 (5) 3.2 含酚废水处理 (5) 3.3 含氰废水处理 (5) 3.4 重金属离子的处理 (6) 3.5 炼油废水处理 (6) 展望 (6) 参考文献 (8)

膜分离技术在废水处理中的应用及其发展方向 摘要:本文阐述了膜分离技术基本原理及其特点、分离膜需要具备的条件,介绍了膜分离技术在工业废水处理中的应用情况,提出了膜分离技术发展趋势。 关键词:膜分离技术;废水处理;发展趋势 膜分离技术是在20世纪初出现、20世纪60年代迅速崛起的一门分离新技术,膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、吸附、萃取、深冷分离等)相比较,过程不发生相变,可以在常温下操作,具有能耗低、效率高、工艺简单等特点,受到世界各技术先进国家的高度重视,投入大量资金和人力,促进膜技术迅速发展,使用范围日益扩大,广泛应用于工业废水等处理过程,给人类带来了巨大的环境效应。膜分离技术应用到工业废水的处理中,不仅使渗透液达到排放标准或循环生产,而且能回收有价资源。 1. 膜分离技术的基本原理和特点 1.1 膜技术在水处理中应用的基本原理是:利用水溶液(原水)中的水分子具有透过分离膜的能力,而溶质或其他杂质不能透过分离膜,在外力作用下对水溶液(原水)进行分离,获得纯净的水,从而达到提高水质的目的。总的说来,分离膜之所以能使混在一起的物质分开,不外乎两种手段。 1.1.1 根据混合物物理性质的不同——主要是质量、体积大小和几何形态差异,用过筛的办法将其分离。微滤膜分离过程就是根据这一原理将水溶液中孔径大于50 nm的固体杂质去掉的。 1.1.2 根据混合物的不同化学性质。物质通过分离膜的速度取决于以下两个步骤的速度,首先是从膜表面接触的混合物中进入膜内的速度(称溶解速度),其次是进入膜内后从膜的表面扩散到膜的另一表面的速度。二者之和为总速度。总速度愈大,透过膜所需的时间愈短;总速度愈小,透过时间愈久。 1.2 膜分离技术的特点 膜分离技术是以高分子分离膜为代表的一种新型流体分离单元操作技术。在膜分离出现前,已有很多分离技术在生产中得到广泛应用。例如:蒸馏、吸附、吸收、苹取、深冷分离等。与这些传统的分离技术相比,膜分离具有以下特点: (1) 膜分离通常是一个高效的分离过程。例如:在按物质颗粒大小分离的领域,以重力为基础的分离技术最小极限是微米,而膜分离却可以做到将相对分子质量为几千甚至几百的物质进行分离(相应的颗粒大小为纳米)。 (2) 膜分离过程的能耗(功耗)通常比较低。大多数膜分离过程都不发生“相”

膜分离技术及其应用和前景

膜分离技术概论 XXX 机械工程及自动化专业机械104班1003010414 摘要:膜分离是在20世纪60年代迅速发展起的一门分离技术,膜分离主要包括分离、浓缩、纯化和精制等功能且操作简单、易于操作,因此目前膜分离技术被广泛应用于供水、制药、食品、环保、废品回收、水的淡化等工业生产过程中,产生了巨大的经济效益和社会效益。本文首先介绍了膜分离技术中的一些概念、膜的种类及其原理,然后介绍了一些常见的膜分离过程在实际生产中的应用;最后介绍了我国膜分离技术的发展概况及前景。 关键词:膜分离,技术,前景,概况 Membrane-Seperating technology Abstract: Membrane-Seperating technology is a separating technology which developed fast in the 1960s. This technology involves in various functions like separating、concrntrating、purifying and refining,what else, for it’s easily to operate it’s now widely used in the fields of water supplyment、medicine production、food、environment protecting、waste water recycling and so on, make great economical and social benefits. This passage first explain some concepts membrane technology、main theory involved and sort of it. Key words: Membrane-Seperating,technology,introduction,prospect 1膜分离技术的原理 现代膜分离技术分离的根本原理在于膜具有选择透过性。膜分离法是用天然或人工合成的高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法,可用于液相和气相。对于液相分离,可用于水溶液体系、非水溶液体系、水溶胶体系以及含有其他微粒的水溶液体系。以下重点介绍反渗透的基本原理、微滤原理及超滤原理。

第4、5章课后习题答案 膜分离技术概论 黄维菊

第四章超滤和纳滤 一、选择题 1. UF同RO、NF、MF一样,均属于压力驱动型膜分离技术。超滤主要用于从液相物质中分离大分子化合物(蛋白质,核酸聚合物,淀粉,天然胶,酶等),胶体分散液(粘土,颜料,矿物质,乳液颗粒,微生物),乳液(润滑脂-洗涤剂以及油-水乳液)。采用先与适合的大分子复合的办法时也可以用超滤来分离低分子量溶质,从而可达到某些含有各种小分子量可溶性溶质和高分子物质(入蛋白质、酶、病毒)等溶液的浓缩、分离、提纯和净化。 其操作静压差一般为(A)被分离组分的直径大约为(B),这相当于光学显微镜的分辨极限,一般为分子量大于500-1000000的大分子和胶体粒子,这种液体的渗透压很小,可以忽略,总之超滤对去除水中的微粒、胶体、细菌、热源和各种的有机物有较好的效果,但它几乎不能截留(C).UF的分离机理为(D)过程,但膜表面的化学性质也是影响超滤分离的重要因素。 A(1)1mpa-10mpa (2)0.01mpa-0.2mpa (3)0.1mpa-1mpa (4)0.2mpa-0.4mpa B(1)0.1nm-1nm (2)10nm-0.05um (3)0.05um-1um (4)0.005um-0.1um C(1)无机离子(2)大分子物质和胶体(3)悬浮液和乳浓液 D(1)筛孔分离(2)溶解-扩散机理 2. 纳滤膜大多从反渗透膜演化而来,但制作比反渗透膜更精细。日本学者大谷敏郎对纳滤膜进行了具体的定义:操作压力(A),截留分子量(B),NaCL的截留率<=90%的膜可以认为是纳滤膜。纳滤以压力为推动力,依靠(C),可实现低分子有机物的脱盐纯化和高价离子脱除。 A(1)1mpa-10mpa (2)0.01mpa-0.2mpa (3)0.1mpa-1mpa (4)<=1.50mpa B(1)200-1000 (2)500-30万(3)>0.05um的颗粒 C(1)筛孔分离(2)溶解-扩散机理 (3)溶解扩散Donna效应(4)离子交换 1. A(3) B(4) C(1) D(1) 2、 A(4) B(1) C(3) 二、填空题 1、超滤是介于______之间的一种膜过程,膜孔径范围为________。超滤的典型应用是从溶液中分离________,所能分离的溶质分子量下限为几千Dalton。超滤和微滤膜均可视为多孔膜,其截留取决于溶质大小和形状(与膜孔大小相对而言)。溶剂的传递正比于操作压力。 2、纳滤膜与反渗透膜几乎相同,只是其网状结构更疏松,这意味着对__________离子的截留率很低,但对________离子的截留率仍很高。这两种膜的应用领域是不同的,当需要对浓度较高的NaCL进行高强度截留时,最后选择________过程。当需要对低浓度、二价离子

液膜分离的原理及应用

宁波大学硕士研究生2016/2017学年第1学期期末答题纸 考试科目:生化分离技术课程编号:考卷类型:(A/B) 姓名:学号:阅卷老师:成绩: 液膜分离的原理及应用 摘要:液膜模拟生物膜的结构,通常由膜溶剂、表面活性剂和流动载体组成。它利用选择透过性原理,以膜两侧的溶质化学浓度差为传质动力,使料液中待分离溶质在膜内相富集浓缩,分离待分离物质。 关键字:液膜分离技术,乳化液膜,支撑液膜。 Principle and application of liquid membrane separation Abstract:Liquid membrane simulates the structure of a biofilm, usually consisting of a membrane solvent, a surfactant, and a mobile carrier. It uses the principle of selective permeability to the membrane on both sides of the solute chemical concentration difference for the mass transfer power,so that the liquid to be separated in the membrane solute enrichment enrichment, separation of the material to be separated. key words:liquid membrane separation technology, emulsion liquid membrane ,supported liquid membrane ,waste water treatment。 液膜分离是 60 年代中期诞生的一种新型的膜分离技术。它具有膜分离的一般特点, 主要是依据膜对不同物质具有选择性渗透的性质来进行组分的分离。自20世纪 60 年代美国林登埃克森研究与工程公司黎念之博士( N.N.Li)发明后[1]。液膜通常由膜溶剂、表面活性剂、流动载体和膜增强添加剂组成[2]。各国学者相继开展了大量的研究。该技术在湿法冶金、金属离子回收、废水处理、生物制品分离与生物医药分离、化工分离等方面已显示出广泛的应用前景。目前液膜技术处理农药厂废水已实现工业化, 在含锌废水处理中已进行了工业试验, 液膜技术分离宇宙飞船中 CO2 也已成功得到应用, 液膜分离技术正在得到迅速的发展。 生物学家们在液膜促进传递方面取得的成就引起了化学工程师们的注意. 60 年代中期 , Bloch 等[3]采用支撑液膜( supported liquid membrane) 研究了金属提取过程, Ward 与 Robb[4]研究了 CO2 与 O2 的液膜分离, 他们将支撑体液膜称为固定化液膜( immobilized liquid membrane). 黎念之( N .N . Li) 在用du Nuoy 环法测定含表面活性剂水溶液与油溶液之间的界面张力时 ,观察到了相当稳定的界面膜 ,由此开创了研究液体表面活性剂膜( liquid surfactant membrane) 或乳化液膜( emulsion liquid membrane)的历史[5] 1液膜分离原理 1.1液膜及其分类 液膜是分隔两个液相的第三液相,它与被分隔液体的互溶度极小。膜相液通常由膜溶剂、载体、表面活性剂、稳定剂所组成。 膜溶剂是膜相液的基体,占膜总量的90%以上,选择膜溶剂主要考虑膜的稳定性和对溶质的溶解性。当原料液为水溶液时,用有机溶剂作液膜,当原料液为有机溶剂时,用水作液膜。 载体是运载溶质穿过液膜的物质,它能与被分离的溶质发生化学反应,它分为离子型和非离子型。离子型载体通过离子交换方式与溶质离子结合,在膜中迁移;非离子

膜分离系统

1:技术说明 膜分离的基本原理就是利用各气体组分在高分子聚合物中的溶解扩散速率不同,因而在膜两侧分压差的作用下导致其渗透通过纤维膜壁的速率不同而分离。推动力(膜两侧相应组分的分压差)、膜面积及膜的分离选择性,构成了膜分离的三要素。依照气体渗透通过膜的速率快慢,可把气体分成“快气”和“慢气”。常见气体中,H2O、H2、He、H2S、CO2等称为“快气”;而称为“慢气”的则有的CH4及其它烃类、N2、CO、Ar等。 分离器的外壳类似一管壳式换热器,内装数万根细小的中空纤维丝。中空纤维的优点就是能够在最小的体积中提供最大的分离面积,使得分离系统紧凑高效,同时可以在很薄的纤维壁支撑下,承受较大的压力差。混合气体进入膜分离器壳程后,沿纤维外侧流动,维持纤维内外两侧一适当的压力差,则气体在分压差的驱动下,“快气”(氢气)选择性地优先透过纤维膜壁在管内低压侧富集而作为渗透气(产品气)导出膜分离系统,渗透速率较慢的气体(烃类)则被滞留在非渗透气侧,压力几乎跟原料气的相同,经减压冷却后送出界区。?普里森2:工艺流程描述 膜分离的工艺流程非常简单,可分为预处理(水洗和加热)和膜分离两部分。使原料气远离露点,不至因可冷凝物富集液化形成液膜而影响分离性能,用一蒸汽调节阀与温度变送器联合实现原料气温度的调节、指示、报警及联锁;而此处流量变送器的作用是对原料气的流量实现指示及报警;加热过的气体经一管道过滤器进入膜分离器组进行分离,在低压侧得到富氢的渗透气,作为产品气返回压缩机入口;而非渗透气经减压后并入燃料气管网。稳定流量的甲醇尾气在3.65-4.4MPa(A)时进入膜分离界区,此气体首先进水洗塔以洗去气体中甲醇,水洗塔设立高低液位报警、洗涤水量过低及联锁。洗去甲醇气体进入气液分离器,以除去气体中夹带的液体。从气液分离器出来的气体进入一套管式换热器将原料气加热至50 ?C,该系统设计有一个联锁导流阀DV-2201对膜分离器进行保护。 整个膜分离系统基本上无运动部件,控制回路及监控点少,开、停车方便快捷,甚少维修,开工率极高。 3:膜分离器技术指标 芯件中空纤维?美国产普里森 壳体材质20# 设计压力,MpaG 6.0 C ??设计温度,100 C、压力MPaG 50,4.5 ?操作温度 4:膜分离装置得到具有以下性质产品渗透气: 产品气压力:≥ 2.1 MPa(A) 气体组成:(V %):H2 +CO+CO2: ≥95% 装置氢气收率≥85% 装置操作弹性范围60-120% 膜回收生产的尾气减压到0.3Mpa(G)送往锅炉燃烧,回收热量. 装置的可靠性及使用寿命 装置使用寿命大于15年。 膜的使用寿命不小于10年,静止设备的使用寿命不小于15年。 装置安全稳定运行时间不小于2年。

膜分离技术及其应用 本科教学大纲

膜分离技术及其应用 课程编码:课程名称:膜分离技术及其应用 总学分: 1.5 总学时:24 课程英文名称:Membrane Separation Technology and Their application 适用专业:与环境相关专业 一、课程性质、地位和任务 《膜分离技术》是环境工程和环境科学专业的专业特色课。通过本课程的学习,主要使学生掌握膜分离技术基础理论,熟悉反渗透、纳滤、超滤、微滤、电渗析等膜技术的工作原理和各种膜分离组件的结构和各种膜技术的特点,培养学生综合利用膜技术基本理论与各种具体膜技术相结合进行初步应用设计的能力。二、教学目标要求 1.掌握膜及膜分离技术的基本概念,了解国内外膜分离技术的发展现状及存在的主要问题。 2.理解并掌握电渗析、超滤、微滤、反渗透等分离膜的基本性质及工艺流程等。3.掌握不同膜分离过程的基本理论及影响因素,并运用实际中去。 三、理论教学内容及安排 第1章概述(4.0学时) 教学目标:理解膜及膜分离技术等概念及以及膜分离技术的发展现状与趋势。重点、难点:重点是对膜的认识;难点是膜分离过程的特点及其存在的问题。1.1 分离膜与膜分离技术的概念(1.0学时) 1.2 膜分离技术发展沿革(1.0学时) 1.3 功能膜的分类(0.5学时) 1.4 膜分离过程的类型(0.5学时) 1.5 膜材料及膜的制备(1.0学时) 第2章电渗析(3.0学时) 教学目标:理解电渗析的基本原理、渗析和电渗析等概念。 重点、难点:重点是离子迁移过程的的认识;难点是膜的选择透过性的影响因子。 2.1 概述(0.5学时) 2.2 电渗析基本原理(1.0学时) 2.3 电渗析主要组件(0.5学时) 2.4 电渗析器(0.5学时) 2.5 EDI (0.5学时)

膜分离技术的应用现状及发展前景

膜分离技术的应用现状及发 展前景(总6页) 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

膜分离技术的应用现状及发展前景 摘要:膜分离技术( Membrane Separation Technologies)是近十几年发展起来的一种高新技术,随着膜设备和技术的不断发展和成熟,其在各行业中有着广泛的应用。本文介绍了膜分离技术的特性,阐述了膜分离技术在食品工业、水处理、生物技术、医药工业和医疗设备方面的应用,并展望膜分离技术应用领域的发展前景,分析膜分离技术在膜材料、新的膜过程和膜通量等方面的发展趋势,同时指出膜分离技术将在人类社会的发展史上起到不可替代的作用。 关键词:膜分离技术;膜生物反应器;选择透过性膜;膜材料; 前言: 膜分离技术是指用天然或人工合成的具有选择透过性膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和浓缩的边缘学科高新技术[1]。由于膜分离技术具有节能、高效、简单、造价低、无相变、可在常温下连续操作等优点,而且特别适合热敏性物质的处理的特点,其应用已渗透到人们生活和生产的各个方面,现已被广泛应用于化工、环保、生物工程、医药和保健、食品和生化工程等行业[2]。虽然膜分离技术的应用在许多方面离产业化要求还有很长的距离,但是随着新型膜材料的不断开发、高效的强化膜过程分离技术研究的不断深入, 膜分离技术应将得到更加广泛的应用,其在未来是世界各国研究的热点,它将在各个领域发挥更引人注目的作用。 现本文对膜技术的特点、类型及其在各方面的应用现状进行综述,并且提出了膜分离技术的发展前景。 1 膜分离技术的特点 膜分离技术作为一种新型的分离技术, 具有以下特点[3]: 1.1 在常温下进行,特别适用于热敏性物质的分离、分级、提纯和浓缩,且 可以同步进行能较好地保持产品原有的色、香、味和营养成分; 1.2 分离过程中不发生相变,挥发性物质损失少,节约能源; 1.3 具有冷杀菌作用,保存期长,无二次污染; 1.4 选择性好,应用范围广,但要选择相应的膜类型; 1.5 设备简单,易于操作,可连续进行,效率高。 2 膜分离技术的类型

膜分离

膜分离 中文名称:膜分离 Subject: membrane separation 专业:化学工程与工艺 Specialty: Chemical Engineering &Technology 本科生(Name):*** 指导老师(Instructor):*** 摘要(ABSTRACT):膜分离是在20世纪初出现,20世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。 关键词(Key Word):膜分离膜分离技术原理 应用学科:生物化学与分子生物学(一级学科);生物膜(二级学科) 定义:根据生物膜对物质选择性通透的原理所设计的一种对包含不同组分的混合样品进行分离的方法。分离中使用的膜是根据需要设计合成的高分子聚合物,分离的混合样品可以是液体或气体。 膜分离的基本原理和方法 一、膜分离概念 用天然或人工合成的高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和浓缩的方法,统称为膜分离法。 在一个容器中,如果用膜把它隔成两部分,膜的一侧是水溶液,另一侧是纯水,或者膜的两侧是浓度不同的溶液,则通常把小分子溶质透过膜向纯水侧或稀溶液侧移动、水分透过膜向溶液侧或浓溶液侧移动的分离称为渗析(或透析)。如果仅溶液中的水分(溶剂)透过膜向纯水侧或浓溶液侧移动,溶质不透过膜移动,这种分离称为渗透。 二、膜性能 通常,膜性能是指膜的物化稳定性和膜的分离透过性。 膜的物化稳定性主要是指膜的耐压性、耐热性、适用的pH范围、化学惰性、机械强度。膜的物化稳定性主要取决于构成膜的高分子材料。由于膜的多孔结构和水溶胀性使膜的物化稳定性低于纯高分子材料的物化稳定性,这主要是指膜的抗氧化性、抗水解性、耐热性和机械强度等。 (一) 膜的抗氧化和抗水解性能 膜的抗氧化和抗水解性能,既取决于膜材料的化学结构,又取决于被分离溶液的性质。氧化、水解的最终结果,使膜的色泽变深、发硬变脆,其化学结构与外观形态也受到破坏。假如膜在水溶液中的氧化机理与膜材料在空气中的氧化相似,那么此溶液中由氧化物质产生的初级自由基(X·)便能与高分子材料(R—H键)进行如下反应: R—H+X·→R·+H—X 然后高分子材料的自由基R·与O2作用进行链转移:反应产物ROOH不稳定,经过一系列反应由醇变成醛,由醛再转化为酸、CO2和水等。 由于高分子材料因氧化而产生的主链断裂,首先发生在键能低的键上,因此,为了阻止反应式的进行,希望高分子材料中各个共价键有足够的强度,即希望有高的键能。膜是具有选择性分离功能的材料。利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。 膜分离与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理

膜分离技术应用综述

膜分离技术应用综述-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《食品科学概论》课程论文 论文题目:膜分离技术应用综述 学 院 :生物工程学院 专 业 :食品科学与工程 年级班别 :09级一班 学 号 :2009407010122 学生姓名 :齐莹 学生邮箱 :963894228@https://www.doczj.com/doc/152498959.html, 指导教师 :陈清禅 2011年 5 月 24 日 JINGCHU UNIVERSITY OF TECHNOLOGY

膜分离技术应用综述 齐莹 2009407010122 摘要综述膜分离技术的特点、种类及分离机理,介绍国内外膜分离技术的研究进展及其在各个领域的应用现状,同时指出该技术存在的问题,提出选用更佳的膜材料以及多种膜分离技术联用是其今后的发展方向。 关键词膜分离技术微滤超滤食品工业 膜分离是在20世纪初出现,上世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。据统计,膜销售每年以14%~30%的速度增长,而最大的市场为生物医药市场[1] 。 1膜分离的简介 1. 1 膜的定义 膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。 1. 2 膜的种类 分离膜包括:反渗透膜(0. 0001~0. 005μm) ,纳滤膜(0. 001 ~0. 005μm) 超滤膜(0. 001 ~0. 1μm) 微滤膜(0. 1~1μm) 、电渗析膜、渗透气化膜、

相关主题
文本预览
相关文档 最新文档