当前位置:文档之家› 定积分知识点总结

定积分知识点总结

定积分知识点总结
定积分知识点总结

定积分知识点总结

北京航空航天大学

李权州

一、定积分定义与基本性质

1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数

)1,...,1,0(1-=-=?+n i x x x i i i 中最大者.

在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=.

)1,...,1,0(1-=≤≤+n i x x i i i ξ

而做成总和

∑-=?=1

0)(n i i i x f ξσ

然后建立这个总和的极限概念:

σπ0

||||lim →=I

另用""δε-语言进行定义:

0>?ε,0>?δ,在||||πδ<时,恒有

εσ<-||I

则称该总和σ在0→λ时有极限I .

总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为

?=b

a

dx x f I )(

2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性

如果任意)(),(],,[x g x f b a x ∈,则??≥b

a

b

a

dx x g dx x f ,)()(

特别地,如果任意,0)(],,[≥∈x f b a x 则?≥b

a

dx x f 0)(

(2) 积分的线性性质

???±=±b

a

b

a

b

a

dx x g dx x f dx x g x f )()())()((βαβα

特别地,有??=b

a

b

a

x f c dx x cf )()(.

设f(x)在[a,b]上可积,且连续,

(1)设c 为[a,b]区间中的一个常数,则满足

???+=b

c

c

a

b

a

dx x f dx x f dx x f )()()(

实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得

)()()(θf a b dx x f b

a

-=?

二、达布定理

1.达布和

分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和

∑∑=+=+-=-=n

i i i i n

i i i i x x m f S x x M f S 1

11

1)(),(,)(),(ππ

),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下

特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界.

回到一般情况,有上下界定义知道

i i i M f m ≤≤)(ξ

将这些不等式逐项各乘以i x ?(i x ?是正数)并依i 求其总和,可以得到

),(),(f S f S πσπ≤≤

推论1 设f(x)在[a,b]上有界. 设有两个分割π,'π,'π是在π的基础上的加密分割,多加了k 个新分店,则

||,

||),(),'(),(||,||),(),'(),(πωππππωπππk f S f S f S k f S f S f S +≤≤-≥≥

这里m M m M ,,-=ω分别为f 在[a,b]上的上、下确界. 推论2 设f(x)在[a,b]上有界. 对于任意两个分割',ππ,有

)(),(),()(a b M F S f S a b m -≤≤-ππ

2.达布定理

定义 设f(x)在[a,b]上有界,定义

上一个分割为,

上一个分割为}],[|),(sup{}],[|),(inf{b a f S I b a f S I ππππ?=?=

称I 为f(x)在[a,b]上的上积分,I 为f(x)在[a,b]上的下积分.

定理 对于f(x)在[a,b]上的有界函数,则有

.),(lim ,),(lim 0

||||0

||||I f S I f S ==→→ππππ

3.函数可积分条件 设f(x)在[a,b]上有界,下列命题等价: (1)f(x)在[a,b]可积; (2);I I =

(3)对于[a,b]上的任何一个分割π,∑=-→=-n

i i i i x x 110

||||0)(lim ωπ

; (4)任给0>ε,存在0>δ,对于[a,b]上的任何分割π,当δπ<||||,有

∑=-<-n

i i i

i

x

x 1

1

)(εω

成立;

(5)任给0>ε,在[a,b]存在一个分割π,当δπ<||||时有

∑=-<-n

i i i

i

x

x 1

1

)(εω

成立.

这里i i i m M -=ω为f(x)在区间],[1-i i x x 上的振幅.

三、微积分基本定理

定理(Newton-Leibniz 公式) 设f(x)在[a,b]上可积,且在[a,b]上有原函数F(x),则

)()()(a F b F dx x f b

a

-=?

注:(x)是f ’(x) 的原函数,故当]),(['b a R f ∈时,该公式可写为

)()()('a f b f dx x f b

a

-=?

2.上述定理并不是说可积函数一定有圆环数,而是说如果存在原函数,那么可用来计算定积分的值.

Newton-Leibniz 公式把原先在复杂的定积分中的定义的积分值计算化为求原函数的问题,为普及微积分打开了大门. 四、定积分的计算

除了利用Newton-Leibniz 公式计算微积分外,还可以使用换元公式和分部积分计算微积分.

1 定积分中变量替换公式 设要计算积分?b

a

dx x f )(,这里f(x)是在区间[a,b]内连续

的. 令)(t x ?=,函数)(t ?具备下列条件:

1)函数)(t ?在某一区间],[βα内有定义且连续,而其值当t 在],[βα内变化时恒不越出区间[a,b]的范围;

2);)(,)(b a ==β?α?

3)在区间],[βα有一连续函数)('t ?. 于是成立公式

??=β

α??dt t t f dx x f b a

)('))(()(

由于被积函数假设是连续的,不但这些定积分存在,同时其相应不定积分也存在,并且在两情形都可以用基本公式.

2 定积分的分部积分法 在不定积分部分曾经讨论过公式,??-=vdu uv udv

这里假设以x 为自变量的函数u ,v 以及其导函数u ’,v ’都是在考虑区间[a,b]里连续的. 则我们有

??-=b

a

b

a

vdu a b

uv udv

五、定积分中值定理

微分中值公式

),(),)((')()(b a a b F a F b F ∈-=-ξξ

说明,函数值的差可以通过其导数值来表达和估算. 如果从微分运算的逆运算来认识积分运算,那么就有相应的积分的中值公式:记F ’(x)=f(x),即把F(x)看作是可积函数f(x)的原函数,则上述公式化为

),(),)(()(b a a b f dx x f b

a

∈-=?

ξξ

这一类公式称之为积分中值公式,它显示出一个函数的定积分可以通过其自身进行表

达和估算.

上述公式的几何意义可以从面积的意义来考察:设f(x)是[a,b]上的正值连续函数,则公式左边的面积与右边表达式所代表的举矩形面积相等,而矩形的高)(ξf 正是f(x) 在[a,b]上的积分平均值:

?-=b a dx x f a

b f )(1)(ξ 1 定积分第一中值公式 设]),([b a R g ∈,且函数值不变号(即对一切

0)(0)(],,[≤≥∈x g x g b a x 或).

(1)若]),([b a R f ∈,且记)}({sup ]

,[x f M b a =,)}({inf ]

,[x f m b a =,则存在μ:],[,b a x M m ∈≤≤μ,

使得

??=b

a

b

a

dx x g dx x g x f )()()(μ

(2) 若]),([b a C f ∈,则存在],[b a ∈ξ,使得

?

?=b

a

b

a

dx x g f dx x g x f )()()()(ξ

2 定积分第二中值公式

引理(Abel) 设有两组数},...,,{},,...,,{2121n n b b b a a a 记∑===k

i i k n k a A 1),...,2,1(,则

∑∑=-=++-=n i n i n n i i

i

i

i b A b

b A b a 1

1

1

1

)(

推论 若有),...,2,1(n k M A m k =≤≤,且0...21≥≥≥≥n b b b ,则有

111Mb b a mb n

i i i ≤≤∑=

定理(Bonnet 型) 设]),([b a R g ∈.

(1)若f(x)是[a,b]上非负递减函数,则存在],[b a ∈ξ,使得

??=b

a

a

dx x g a f dx x g x f ξ

)()()()(

(2)若f(x)是[a,b]上非负递增函数,则存在],[b a ∈ξ,使得

?

?=b a

a

dx x g a f dx x g x f ξ

)()()()(

3 定积分第三中值公式

定理(Weierstrassz 型) 设f(x)在[a,b]上是单调函数,]),([b a R g ∈,则存在],[b a ∈ξ,

使得

???

+=b

a

b

a

dx x g b f dx x g a f dx x g x f ξ

ξ)()()()()()(

六、函数可积分的勒贝格定理

定义 设A 是实数集合,若,对任意0>ε,存在至多可数的系列开区间},{*N n I n ∈, 它是A 的一个开覆盖,并且∑∞

=≤1||n n I ε,则称A 为零测度集或者零测集.

定理零测集性质如下:

(1)至多可数个零测集的并集是零测集;

(2)设A为零测集,若A

B?,那么B也是零测集.

定理(Lebesgue定理) 若函数f在[a,b]区间上有界,则f在[a,b]区间上Riemann 可积的充分必要条件是f在[a,b]区间不连续点的集合

x

b

a

=

f

D∈

f

{

],

}

,

[

(处不连续

)

在x

为零测集.

第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4 不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题 经济数学——积分 二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或 dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间 /内原函数?(primitive furwtion ) 例(sinx) =cosx sinx 是 cos 兀的原函数. (inx) =— (X >0) X In X 是1在区间((),+oo)内的原函数. X 第一节 五、

定理原函数存在定理: 如果函数八X)在区间内连续, 那么在区 间^内存在可导函数F(x), 使Hxef,都有F\x) = f(x). 简言之:连续函数一定有原函数. 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 1 f 例(sinx) =cosx (sinx + C) =cosx (C为任意常数) 经济数学一微积分 关于原函数的说明: (1) (2) 证 说明F(x)+c是f (兀舶全部原粛或 经济数学一微积分

经济数学——微积分 不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ? 经济数学——微积分 6 =X% /. fx^dx =—— 十 C. J 」 6 例2求f --------- dr. J 1 + X- / J 解?/ (arctanx)= ,, I ‘ 1 + 疋 心& =皿2 被积函数 『积分号 积分变量 寒积表达式 F(x)

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

专题13定积分与微积分基本定理知识点

专题13定积分与微积分基 本定理知识点 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

考点13 定积分与微积分基本定理 一、定积分 1.曲边梯形的面积 (1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x =所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤: ①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②); ③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和; ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 2.求变速直线运动的路程 3.定积分的定义和相关概念 (1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/() f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

定积分的概念和性质公式

1.曲边梯形的面积 设在区间*I上:;--L ,则由直线工’=■<、応匚、V 1及曲线■V °/W所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间-八「中任意插入若干个分点将宀…-分成n个小区间 兀5 5 <…,小区间的长度&广呜一為」(T三12… 在每个小区间- :-一I〕上任取一点-■■作乘积 求和取极限:则面积取极限

J=1 其中;'1 ; J L厂V '…,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度| I「是上*的连续函数,且1■求在这段时间内物体所经过的路程。 分割求近似:在「〔[内插入若干分点■- _ "将其分成 n 个小区间「—,小区间长度■- _■'.-1, ■1丄。任取? _ _ 做 求和取极限:则路程一取极限 将分成n个小区间-,其长度为2 - —,在每个小区间 上任取一点「:,作乘积■- ' ■',并求和 r , 记1■r 1,如果不论对怎样分法,也不论小区间[:■ 上的 点「怎样取法,只要当「「I;时,和总趋于确定的极限,则称这个极限 为函数-—I在区间上的定积分,记作J ',即 定义设函数」?、在L?二上有界,在-亠二中任意插入若干个分点

其中叫被积函数,一’,八叫被积表达式,'‘叫积分变量,二叫积分下限, 「叫积分上限,-’」叫积分区间。■叫积分和式。 说明: 1.如果(*)式右边极限存在,称-’’」在区间-仁丄可积,下面两类函数在区间 上…-可积,(1)」在区间-LL■- - 上连续,则■' J'-在可积。(2)-’八在区间-‘丄-上有界且只有有限个间断点,则在--"-■ 上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所 3.

定积分知识点总结

定积分知识点总结 北京航空航天大学 李权州 一、定积分定义与基本性质 1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数 )1,...,1,0(1-=-=?+n i x x x i i i 中最大者. 在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=. )1,...,1,0(1-=≤≤+n i x x i i i ξ 而做成总和 ∑-=?=1 0)(n i i i x f ξσ 然后建立这个总和的极限概念: σπ0 ||||lim →=I 另用""δε-语言进行定义: 0>?ε,0>?δ,在||||πδ<时,恒有 εσ<-||I 则称该总和σ在0→λ时有极限I . 总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为 ?=b a dx x f I )( 2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性 如果任意)(),(],,[x g x f b a x ∈,则??≥b a b a dx x g dx x f ,)()(

特别地,如果任意,0)(],,[≥∈x f b a x 则?≥b a dx x f 0)( (2) 积分的线性性质 ???±=±b a b a b a dx x g dx x f dx x g x f )()())()((βαβα 特别地,有??=b a b a x f c dx x cf )()(. 设f(x)在[a,b]上可积,且连续, (1)设c 为[a,b]区间中的一个常数,则满足 ???+=b c c a b a dx x f dx x f dx x f )()()( 实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得 )()()(θf a b dx x f b a -=? 二、达布定理 1.达布和 分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和 ∑∑=+=+-=-=n i i i i n i i i i x x m f S x x M f S 1 11 1)(),(,)(),(ππ ),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下 和 特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界. 回到一般情况,有上下界定义知道 i i i M f m ≤≤)(ξ 将这些不等式逐项各乘以i x ?(i x ?是正数)并依i 求其总和,可以得到

定积分知识点总结

定积分知识点总结 航空航天大学 权州 一、定积分定义与基本性质 1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数 )1,...,1,0(1-=-=?+n i x x x i i i 中最大者. 在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=. )1,...,1,0(1-=≤≤+n i x x i i i ξ 而做成总和 ∑-=?=1 0)(n i i i x f ξσ 然后建立这个总和的极限概念: σπ0 ||||lim →=I 另用""δε-语言进行定义: 0>?ε,0>?δ,在||||πδ<时,恒有 εσ<-||I 则称该总和σ在0→λ时有极限I . 总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为 ?=b a dx x f I )( 2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性

如果任意)(),(],,[x g x f b a x ∈,则??≥b a b a dx x g dx x f ,)()( 特别地,如果任意,0)(],,[≥∈x f b a x 则?≥b a dx x f 0)( (2) 积分的线性性质 ???±=±b a b a b a dx x g dx x f dx x g x f )()())()((βαβα 特别地,有??=b a b a x f c dx x cf )()(. 设f(x)在[a,b]上可积,且连续, (1)设c 为[a,b]区间中的一个常数,则满足 ???+=b c c a b a dx x f dx x f dx x f )()()( 实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得 )()()(θf a b dx x f b a -=? 二、达布定理 1.达布和 分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和 ∑∑=+=+-=-=n i i i i n i i i i x x m f S x x M f S 1 11 1)(),(,)(),(ππ ),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下和 特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界. 回到一般情况,有上下界定义知道

不定积分知识点总结

三一文库(https://www.doczj.com/doc/152119863.html,)/总结 〔不定积分知识点总结〕 引导语:不定积分一直是很多人都掌握不好的一个知识点,那么不定积分要怎么学好呢?接下来是小编为你带来收集整理的不定积分知识点总结,欢迎阅读! ▲不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F (x) =f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数 的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数 的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ▲定积分 1、定积分解决的典型问题

(1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积 3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论| ∫abf(x)dx|≤∫ab|f(x)|dx 性质设及分别是函数f(x)在区间[a,b]上的最大值和最小值,则 ( b-a ) ≤∫abf(x)≤dx≤ ( b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分 值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)( b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点 ( ab )外连续,而在点的邻域内无界,如果两个广义积分∫af(x)dx与∫bf(x)dx 都收敛,则定义∫af(x)dx=∫bf(x)dx ,否则 (只要其中一

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

定积分知识点汇总(新、选)

定积分 一.定积分的几何意义 ① ()0f x >时,()b a f x dx S =? ()0f x <时, ()b a f x dx S =-? ()f x 有正有负时, 1(), b a f x dx S =?2(), c b f x dx S =-? 3()d c f x dx S =? 面积和123()()()b c d a b c S S S f x dx f x dx f x dx ++=-+? ?? [()()]b a f x g x dx S -=? 二.定积分基本性质 ①当a b =时,()0b a f x dx =? . ②()()b b a a kf x dx k f x dx =? ? ③1212[()()()]()()()b b b b n n a a a a f x f x f x dx f x dx f x dx f x dx ±±???±=±±÷??±? ??? ④ 12 1 ()()()()n b c c b a a c c f x dx f x dx f x dx f x dx =++???+? ??? ⑤若奇函数()y f x =在[,]a a -上连续不断,则()0a a f x dx -=? ⑥若偶函数()y f x =在[,]a a -上连续不断,则0()2()a a a f x dx f x dx -=? ? 123()()()().d b c d a a b c f x dx f x dx f x dx f x dx S S S =++=-+? ? ??

微分基本定理:如果()f x 是区间[,]a b 上的连续函数,且'()()F x f x =,则 ()() ()()b b a a f x dx F x F b F a ==-? (牛顿—莱布尼兹公式) 1.直线0,,0x x y π===与曲线sin y x =所围成图形的面积用定积分表示为 2.用定积分表示抛物线2 23y x x =-+与直线3y x =+所围成图形的面积为 3.曲线2 1,2,0,0y x x x y =-===围成的阴影部分的面积用定积分表示为 4.由曲线24,4,0,0y x x x y =-===和x 轴围成的封闭图形的面积是( ) 4 2 .(4)A x dx -? 4 20 .|(4)|B x dx -? 420 .|4|C x dx -? 24 2202 .(4)(4)D x dx x dx -+-?? 5.计算下列定积分 (1)3 23 9x dx --? (2)1 21 44x dx --?

导数及定积分知识点的总结及练习(经典)

导数的应用及定积分 (一)导数及其应用 1.函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0 Δy Δx =lim Δx → f (x 0+Δx )-f (x 0)Δx .我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx → f (x 0+Δx )-f (x 0)Δx 。 2.导数的几何意义 函数y =f (x )在x =x 0处的导数,就是曲线y =f (x )在x =x 0处的切线的斜率 ,即k =f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0) Δx . 3.函数的导数 对于函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数.当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y =f (x )的导函数(简称为导数),即f ′(x )=y ′=lim Δx →0 f (x 0+Δx )-f (x 0) Δx . 4.函数y =f(x)在点x 0处的导数f ′(x 0)就是导函数f ′(x)在点x =x 0处的函数值,即f ′(x 0)=f ′(x)|x =x 0。 5.常见函数的导数 (x n )′=__________.(1 x )′=__________.(sin x )′=__________.(cos x )′=__________. (a x )′=__________.(e x )′=__________.(log a x )′=__________.(ln x )′=__________. (1)设函数f (x )、g (x )是可导函数,则: (f (x )±g (x ))′=________________;(f (x )·g (x ))′=_________________. (2)设函数f (x )、g (x )是可导函数,且g (x )≠0,?? ?? f (x ) g (x )′=___________________. (3)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为yx ′=y u ′·u x ′.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 6.函数的单调性 设函数y =f(x)在区间(a ,b)内可导, (1)如果在区间(a ,b)内,f ′(x)>0,则f(x)在此区间单调__________; (2)如果在区间(a ,b)内,f ′(x)<0,则f(x)在此区间内单调__________. (2)如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化较__________,其图象比较__________. 7.函数的极值

不定积分总结

不定积分

一、原函数 定义1 如果对任一I x ∈,都有 )()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 为)(x f 在区间I 上的原函数。 例如:x x cos )(sin =',即x sin 是x cos 的原函数。 2 211)1ln([x x x +='++,即)1ln(2x x ++是 2 11x +的原函数。 原函数存在定理:如果函数)(x f 在区间I 上连续,则)(x f 在区间I 上一定有原函数,即存在区间I 上的可导函数)(x F ,使得对任一I x ∈,有)()(x f x F ='。 注1:如果)(x f 有一个原函数,则)(x f 就有无穷多个原函数。 设)(x F 是)(x f 的原函数,则)(])([x f C x F ='+,即C x F +)(也为)(x f 的原函数,其中C 为任意常数。 注2:如果)(x F 与)(x G 都为)(x f 在区间I 上的原函数,则)(x F 与)(x G 之差为常数,即C x G x F =-)()((C 为常数) 注3:如果)(x F 为)(x f 在区间I 上的一个原函数,则C x F +)((C 为任意常数)可表达)(x f 的任意一个原函数。 二、不定积分 定义2 在区间I 上,)(x f 的带有任意常数项的原函数,成为)(x f 在区间I 上的不定积分,记为?dx x f )(。 如果)(x F 为)(x f 的一个原函数,则 C x F dx x f +=?)()(,(C 为任意常数)

x y o )(x F y = C x F y +=)( 三、不定积分的几何意义 不定积分的几何意义如图5—1所示: 图 5—1 设)(x F 是)(x f 的一个原函数,则)(x F y =在平面上表示一条曲线,称它为 )(x f 的一条积分曲线.于是)(x f 的不定积分表示一族积分曲线,它们是由) (x f 的某一条积分曲线沿着y 轴方向作任意平行移动而产生的所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x 的点处有互相平行的切线,其斜率都等于)(x f . 在求原函数的具体问题中,往往先求出原函数的一般表达式C x F y +=)(,再从中确定一个满足条件 00)(y x y = (称为初始条件)的原函数)(x y y =.从几何上讲,就是从积分曲线族中找出一条通过点),(00y x 的积分曲线. 四、不定积分的性质(线性性质) [()()]()()f x g x dx f x dx g x dx ±=±??? ()() kf x dx k f x dx =??k ( 为非零常数)

不定积分知识点总结

不定积分知识点总结 不定积分知识点总结 不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F'(x)=f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积

3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论|∫abf(x)dx|≤∫ab|f(x)|dx 性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m (b-a )≤∫abf(x)≤dx≤M (b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)(b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点c (a

5.1 定积分的概念与性质-习题

1.利用定积分的定义计算下列积分: ⑴ b a xdx ? (a b <); 【解】第一步:分割 在区间[,]a b 中插入1n -个等分点:k b a x k n -=,(1,2,,1k n =-),将区间[,]a b 分为n 个等长的小区间[(1),]b a b a a k a k n n --+-+, (1,2,,k n =),每个小区间的长度均为k b a n -?=, 取每个小区间的右端点k b a x a k n -=+, (1,2,,k n =), 第二步:求和 对于函数()f x x =,构造和式 1 ()n n k k k S f x ==??∑1 n k k k x ==??∑1 ()n k b a b a a k n n =--=+ ?∑ 1()n k b a b a a k n n =--=+∑1 ()n k b a b a na k n n =--=+∑ 1()n k b a b a na k n n =--=+∑(1) []2 b a b a n n na n n ---=+? ^ 1()[(1)]2b a b a a n -=-+ ?-1 ()()22b a b a b a a n --=-+-? 1 ()()22b a b a b a n +-=--? 第三步:取极限 令n →∞求极限 1 lim lim ()n n k k n n k S f x →∞ →∞ ==??∑1 lim()( )22n b a b a b a n →∞ +-=--? ()(0)22 b a b a b a +-=--?()2b a b a +=-222b a -=, 即得 b a xdx ? 22 2 b a -=。

定积分知识总结

定积分知识总结 一、基本概念和性质 (1)定义 []()[]()) ()(lim ) ()()(,,,,0 max ...,) ()(lim lim )(11 11111101 1 -=∞ →-=----∞ →∞ →=∞ →-?-?=-?≈=→-∞→==-?=?∑∑∑∑?i i n i i n i i n i i i i i i i i i i i i i i i i i n i n n i n n i i b a n x x f x x f S x x f S I S I S I x x I x x n b x x x a n b a x x f S dx x f ξξξξξ④求极限:即③求和:, 上任取一点在上用矩形代替在上的代数面积为在②记时,要求当<<<个小区间,区间分成①把的定义: []dx x g dx x f dx x g x f a b b a b a b a b a ??+??=??+?-=????)()()()(12βαβα②线性运算性质:①)定积分的性质 ( )()()(=??-=????a a a b b a dx x f dx x f dx x f ())) (定要求的区间可积即可,不一其中,包含③区间的可加性:b a c c b a dx x f dx x f dx x f b c c a b a ,,,()()()(∈?+?=????

[][][][]????????≥≡=?≥?≥?≥≥?≥b a b a b a b a b a b a dx x g dx x f x g x f x g x f b a x g x f x f x f dx x f x f x f b a x f dx x g dx x f x g x f b a x g x f dx x f x f b a x f )()(),()(),()(,)(),(0 :0)(00:0)(0 )(0)(0)(,)()()(),()(,)()(0 )(0)(,)(>则: 不恒等于且上连续,在区间推论:若区间上都等于则是指在整个;,也可能整个区间均为可能个别点上等于>,则不恒等于,上连续,在⑥若则上可积且在,⑤若,则上可积且在④ [][][][][]) ()()(,,)() ()()(,)(,)()()(,)(a b f dx x f b a b a x f a b M dx x f a b m M m b a x M x f m b a x f dx x f dx x f b a x f b a b a b a b a -?=?∈-≤?≤-∈≤≤?≤???? ?ξξ,使得: 点上连续,则至少存在一在闭区间若⑨(积分中值定理) 均为常数,则:,,,上可积,在⑧若上可积,则 在⑦若 二、微积分基本公式 1、积分上限函数及其导数 定义:设函数)(x f 在区间],[b a 上连续,对于任意],[b a x ∈,)(x f 在区间],[x a 上也连续,所以函数)(x f 在],[x a 上也可积.显然对于],[b a 上的每一个x 的取值,都有唯一对应的定积分?x a dt t f )(和x 对应,因此?x a dt t f )(是定义在],[b a 上的函数.记 为 ?=Φx a dt t f x )()(,],[b a x ∈. 称)(x Φ叫做变上限定积分,有时又称为变上限积分函数.

高中数学定积分知识点

高中数学定积分知识点Newly compiled on November 23, 2020

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111 212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度; 5、常见的函数导数 6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有:

用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表 f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大格,检查/() 值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值 8.利用导数求函数的最值的步骤:求) f在[]b a,上的最大值与最小值的步骤如下: (x a,上的极值; ⑴求) (x f在[]b ⑵将) f a f b比较,其中最大的一个是最大值,最小的一个是最小 f的各极值与(),() (x 值。[注]:实际问题的开区间唯一极值点就是所求的最值点; 9.求曲边梯形的思想和步骤(“以直代曲”的思想) 10.定积分的性质 根据定积分的定义,不难得出定积分的如下性质:

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

相关主题
文本预览