当前位置:文档之家› 离散型随机变量

离散型随机变量

离散型随机变量
离散型随机变量

概率与统计

如果不遇雨天则带来经济效益10万元, 如果遇到雨统计表明:

商场内的促销活动可获得经济效益2万元;

天则带来经济损失4万元。

国庆节有雨的概率是40%,

商场应该选择哪种促销方式?

有关部门要了解某地区小学入学新生的体重、身高情况来分析这些学生的身体发育状况。

怎样抽取一部分学校才能较好地反映全体学生的情况?

1.1离散型随机变量的分布列

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

离散型随机变量及其分布律

5.离散型随机变量及其分布律 【教学内容】:高等教育出版社浙江大学盛骤,谢式千,潘承毅编的《概率论与数理统计》第二章第§2离散型随机变量及其分布律 【教材分析】:概率论考察的是与各种随机现象有关的问题,并通过随机试验从数量的侧面来研究随机现象的统计规律性,由此,就把随机试验的每一个可能的结果与一个实数联系起来。随机变量正是为了适应这种需要而引进的,随机变量的引入有助于我们应用微积分等数学工具,把研究深入,一维离散型随机变量是随机变量中最简单最基本的一种。 【学情分析】: 1、知识经验分析 学生已经学习了概率的意义及概率的公理化定义,学习了事件的关系及运算,掌握了概率的基本计算方法。 2、学习能力分析 学生虽然具备一定的基础的知识和理论基础,但概念理解不透彻,解决问题的能力不高,方法应用不熟练,知识没有融会贯通。 【教学目标】: 1、知识与技能: 了解离散型随机变量的分布律,会求某些简单的离散型随机变量的分布律列;掌握伯努利试验及两点分布, 2、过程与方法 由本节内容的特点,教学中采用启发式教学法,通过教学渗透由特殊到一般的数学思想,发展学生的抽象、概括能力。 3、情感态度与价值观 通过引导学生对解决问题的过程的参与,使学生进一步感受到生活与数学“零距离”,从而激发学生学习数学的热情。 【教学重点、难点】: 重点:掌握离散型随机变量的概念及其分布律、性质,理解伯努利试验,两点分布。 难点:伯努利试验,两点分布。 【教学方法】:讲授法启发式教学法 【教学课时】:1个课时 【教学过程】:

一、问题引入(离散型随机变量的概念) 例1:观察掷一个骰子出现的点数。 随机变量 X 的可能值是 : 1, 2, 3, 4, 5, 6。 例2若随机变量 X 记为 “连续射击, 直至命中时的射击次数”, 则 X 的可能值是: 1,2,3,. 例3 设某射手每次射击打中目标的概率是0.8,现该射手射了30次,则随 机变量 X 记为“击中目标的次数”, 则 X 的所有可能取值为: 0,1,2,3,,30. 定义 有些随机变量的取值是有有限个或可列无限多个,称此随机变量为离散型随机变量。 【设计意图】:让学生感受到数学与生活“零距离”,从而激发学生学习数学的兴趣,使学生获得良好的价值观和情感态度。 二、离散型随机变量的分布律 定义 设离散型随机变量X 的所有可能取值为),2,1( =k x k , X 取各个可能值得概率,即事件称}{k x X =的概率,为 ,2,1,}{===k p x X P k k 由概率的定义,k p 满足如下两个条件: 1))21(0 ,,=≥k p k ; 2) ∑∞ ==1 1k k p (分布列的性质) 称(2.1)式为离散型随机变量为X 的概率分布或分布律, 也称概率函数。 常用表格形式来表示X 的概率分布: n i n p p p p x x x X 2121 【设计意图】:给出分布律的概念和性质,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。 例1:()()1,2,,C k P X k k N X N ?=== 若为随机变量的分布律,是确 定常数C 。 解:由分布律特征性质 1 知 C ≥ 0 , 由其特征性质 2 知 1 ()1N k P X k == =∑ 1 N k C k N =?=∑ )(12C N N ++=+ ()12 C N += 21C N ∴= + 【设计意图】:通过这个例子,让学生掌握离散型随机变量的分布律的性质。

离散型随机变量及其分布列教案

离散型随机变量及其分布列第一课时 2.1.1离散型随机变量 教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量. 2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想 描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识. 3、发展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识 数学的科学价值和应用价值. 教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究. 教学方法:启发讲授式与问题探究式. 教学手段:多媒体 教学过程: 一、创设情境,引出随机变量 提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示? 启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系. 在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比如可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果. 再提出思考问题2:一位篮球运动员3次罚球的得分结果可以用数字表示吗? 让学生思考得出结论:投进零个球——— 0分 投进一个球——— 1分 投进两个球——— 2分 投进三个球——— 3分 得分结果可以用数字0、1、2、3表示. 二、探究发现 1、随机变量 问题1.1:任何随机试验的所有结果都可以用数字表示吗? 引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量. 问题1.2:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念? 引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量. 随机变量常用字母X、Y、ξ、η来表示. 问题1.3:随机变量与函数有类似的地方吗? 引导学生回顾函数的理解: 函数 实数实数 在引导学生类比函数的概念,提出对随机变量的理解:

《离散型随机变量的概念》教学设计

离散型随机变量的概念》教学设计 一、教材分析 《离散型随机变量的概念》是人教 A 版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第一课时。本章是在必修三中学习了基本的概率统计知识的基础上,进一步学习随机变量及其分布的知识。本节内容一方面承接了必修三的知识;另一方面,掌握好这一节课将有助于后续的学习,因此它在知识体系上起着承上启下的作用。随机变量是连接随机现象和实数空间的一座桥梁,从而使得更多的数学工具有了用武之地。离散型随机变量是最简单的随机变量。本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法。 二、学情分析 学生在必修 3 概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1 中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括。 三、教学策略分析 学生是教学的主体,本节课要给学生提供各种参与机会。本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,培养学生分析问题、 解决问题的能力

四、目标分析 1知识与技能目标:理解随机变量和离散型随机变量的概念,能够运用随机变量表示随机事件,学会恰当的定义随机变量; 2、过程与方法目标:在教学过程中,以不同的实际问题为导向,弓I导学生分析问题的特点,归纳问题的共性,提高理解分析能力和抽象概括能力; 3、情感与态度目标:通过列举生活中的实例,提高学生学习数学的积极性, 使学生进一步感受到数学与生活的零距离,增强数学应用意识。 五、教学重点与难点 教学重点:随机变量、离散型随机变量概念的理解及随机变量的实际应用;教学难点:对随机变量概念的透彻理解及对引入随机变量目的的认识。 六、教学过程设计:

高考数学-随机变量及其分布-1-离散型随机变量及其分布

专项-离散型随机变量及其分布列 知识点 1.随机变量的有关概念 (1)随机变量:随着试验结果变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量分布列的概念及性质 (1)概念:若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: 此表称为离散型随机变量P ( X =x i )=p i ,i =1,2,…,n 表示X 的分布列. (2)分布列的性质:① p i ≥0,i =1,2,3,…,n ;① 11 =∑=n i i p 3.常见的离散型随机变量的分布列 (1)两点分布 若随机变量X 的分布列具有上表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率. (2)超几何分布 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n - k N -M C n N ,k =0,1,2,…,m , 其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ①N *. 如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.

题型一离散型随机变量的理解 【例1】下列随机变量中,不是离散型随机变量的是( ) A .某个路口一天中经过的车辆数X B .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度X C .某超市一天中来购物的顾客数X D .小马登录QQ 找小胡聊天,设X =? ???? 1,小胡在线 0,小胡不在线 【例2】写出下列各随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果. (1)抛掷甲、乙两枚骰子,所得点数之和X ; (2)某汽车在开往目的地的道路上需经过5盏信号灯,Y 表示汽车首次停下时已通过的信号灯的盏数. 【例3】袋中装有10个红球、5个黑球.每次随机抽取1个球,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示事件“放回5个红球”的是( ) A .ξ=4 B .ξ=5 C .ξ=6 D .ξ≤5 【例4】袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是 ( ) A .5 B .9 C .10 D .25 【过关练习】 1.指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由. ①掷一枚质地均匀的硬币5次,出现正面向上的次数; ②掷一枚质地均匀的骰子,向上一面出现的点数; ③某个人的属相随年龄的变化; ④在标准状态下,水结冰的温度. 2.某人射击的命中率为p (0

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概 率()i i P X x p ==(12)i =、……称为X 的概率分 布或分布律,表格表示形式如下: [2] 性质: ? 0i p ≥ ?11n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞= ? 则称X 为连续型随机变量,()f x 称为概率密度函 数或者密度函数。

[2] 连续型随机变量的密度函数的性质 ?()0f x ≥ ? ()1f x dx +∞ -∞=? ?{}()()()P a X b F b F a f x dx +∞ -∞<≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= (3) 连续型随机变量和离散型随机变量的区别: [1] 由连续型随机变量的定义,连续型随机变量的定义域是 (),-∞+∞,对于任何x ,000 {}()()0P X x F x F x ==--=;而对于离散型随机变量的分布函数有有限个或可列个间 断点,其图形呈阶梯形。 [2] 概率密度()f x 一定非负,但是可以大于1,而离散型随 机变量的概率分布i p 不仅非负,而且一定不大于1. [3] 连续型随机变量的分布函数是连续函数,因此X 取任何 给定值的概率都为0. [4] 对任意两个实数a b <,连续型随机变量X 在a 与b 之间 取值的概率与区间端点无关,即:

随机变量及其分布-离散型随机变量及其分布

离散型随机变量及其分布列 知识点 1随机变量的有关概念 (1) 随机变量:随着试验结果变化而变化的变量,常用字母 X , Y , E, n …表示. (2) 离散型随机变量:所有取值可以一- 变量. 2. 离散型随机变量分布列的概念及性质 (1)概念:若离散型随机变量 X 可能取的不同值为 X 1, X 2,…,X i ,…,x n , X 取每一个值X i (i = 1,2,…,n) 的概率P(X = X i )= P i ,以表格的形式表示如下: 此表称为离散型随机变量 P(X = X i )= p i , = 1,2,…, n 表示X 的分布列. (2)分布列的性质: n ① p i >0 i = 1,2,3,…,n ;① P i 1 i 1 3. 常见的离散型随机变量的分布列 (1)两点分布 若随机变量X 的分布列具有上表的形式,则称 X 服从两点分布,并称 p = P(X = 1)为成功概率. (2)超几何分布 其中 m = min{ M , n},且 n 汆, M 哥,n , M , N ①N *. 如果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 题型一离散型随机变量的理解 【例 1】 下列随机变量中,不是离散型随机变量的是 ( ) A .某个路口一天中经过的车辆数 X B .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度 X C .某超市一天中来购物的顾客数 X 在含有M 件次品的N 件产品中,任取 n 件,其中恰有X 件次品,则 P(X = k)= c M c N —M c N ,k = 0,1,2, m ,

离散型随机变量的分布列综合题精选(附答案)

离散型随机变量的分布列综合题精选(附答案) 1.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖,盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖。卡片用后入回盒子,下一位参加者继续重复进行。 (Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从 盒中抽取两张都是“世博会会徽”卡的概率是 18 5 ,求抽奖者获奖的概率; (Ⅱ)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及ξξ,D E 的值。 解:(I )设“世博会会徽”卡有n 张, 由,18 5292 =C C n 得n=5, 故“海宝”卡有4张,抽奖者获奖的概率为6 1 2924=C C …………5分 (II )) 1 ,4(~B ξ的分布列为)4,3,2,1,0()5()1()(44===-k C k P k k k ξ 0.9 )61(4,364=-?==? =∴ξξD E …………12分 2.某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K 和D 两个动作。比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。 假设每个运动员完成每个系列中的K 和D 两个动作的得分是相互独立的。根据赛前训练的统计数据,某运动员完成甲系列和乙系列中的K 和D 两个动作的情况如下表: 表1:甲系列 表2:乙系列 动作 K 动作 D 动作 得分 90 50 20 0 概率 10 910 110910 1 动作 K 动作 D 动作 得分 100 80 40 10 概率 4 3 4 1 4 341

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

离散型随机变量及其分布范文

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ??????、ξ取每一个值()1,2,i x i =???的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) 01,2,i p i ≥=???,;12(2) 1P P ++ = 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+ 知识点二:两点分布: 若随机变量X 的分布列: 则称 X 的分布列为两点分布列. 特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1) 为成功率. (2)两点分布又称为0-1分布或伯努利分布 (3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究. 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列 1.离散型随机变量的分布列 (1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: (2)表示:离散型随机变量可以用表格法、解析法、图象法表示. (3)性质:离散型随机变量的分布列具有如下性质: ①p i ≥0,i =1,2,…,n ; ② 11 =∑=n i i p 2.两个特殊分布列 (1)两点分布列 如果随机变量X 的分布列是 P (X =1)为成功概率. (2)超几何分布列 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为 P (X =k )=n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,称分布 列 如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布. (3)公式P (X =k )=C k M C n - k N -M C n N 的推导 由于事件{X =k }表示从含有M 件次品的N 件产品中,任取n 件,其中恰有k 件次品这一随机事件,因此它的基本事件为从N 件产品中任取n 件.由于任一个基本事件是等可能出现的,并且它有n N C 个基本事件,而其中恰有k 件次品,则必有(n -k )件正品,因此事件{X =k }中含有k n M N k M C C --个基本事件,由古典概 型的概率公式可知P (X =k )=C k M C n - k N -M C n N . [知识点拨]1.离散型随机变量分布列表格形式的结构特征 分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为事件发生的概率. 2.两点分布的特点 (1)两点分布中只有两个对应结果,且两个结果是对立的. (2)由对立事件的概率求法可知:P(X =0)+P(X =1)=1.

离散型随机变量及其分布列练习题和答案

高二理科数学测试题(9-28) 1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( ) ()A 33710(1)C p p - ()B 33 310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概 率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.312 3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( ) ()A 23332()55C ? ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 4.某地区气象台统计,该地区下雨的概率是 15 4,刮三级以上风的概率为152,既 刮风又下雨的概率为10 1,则在下雨天里,刮风的概率为( ) A. 225 8 B.2 1 C.8 3 D.4 3 5.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ). A.15 B.25 C.35 D.45 6.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( ) A.2101012)85()83(?C B.83)85()83(29911?C C.29911)83()85(?C D. 29911)85()83(?C

离散型随机变量的教学设计

“离散型随机变量”的教学设计 一、内容和内容解析 “随机变量及其分布”一章的主要内容就是要通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的概型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义,了解条件概率和两个事件相互独立的概念。 “离散型随机变量”是这一章的开门课。因此,在本节课中,让学生了解本章的主要内容及其研究该内容所用的数学思想方法,对学生明确学习目标和学习任务,提高他们的求知欲望,激发他们的学习兴趣非常重要。于是,本节课的第一个教学任务就是要做好章头图的教学。教材的章头图从实例和图形两个方面展示了本章要学习的内容,一个是离散型随机变量的产生背景和分布列的条形图,另一个是正态分布的背景和正态分布密度曲线。教学时要充分地运用章头图的这两个背景,通过问题的形式,帮助学生明确本章要学习的主要内容和意义。 对于一个随机现象,就是要了解它所有可能出现的结果和每一个结果出现的概率。对于随机试验,只要了解了它可能出现的结果,以及每一个结果发生的概率,也就基本把握了它的统计规律。为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量。随机变量能够反映随机现象的共性,有关随机变量的结论可以应用到具有不同背景的实际问题中。而高中阶段主要研究的是有限的离散型的随机变量,因此,本节课的第二个教学任务就是通过具体实例,帮助学生掌握随机变量和离散型随机变量的概念,理解它们的意义和作用,能对一个随机试验的结果,用一个随机变量表示,并能确定其取值范围。 二、目标和目标解析 1.了解本章学习的内容和意义。具体要求为: (1)通过章头图中给出的射击运动的情景,帮会学生了解,在射击运动中,每次射击的成绩是一个非常典型的随机事件。在这个离散型的随机事件中,如何刻画每个运用员射击的技术水平与特点?如何比较两个运动员的射击水平?如何选拔运动员参加比赛获胜的概率大?这些问题的解决需要离散型随机变量的概率分布、均值、方差等有关知识; (2)通过章头图中给出的高尔顿板游戏情景,帮助学生了解在这样一个连续型的随机事件的游戏活动中,小球落在哪个槽中的可能性更大?槽中的小球最后会堆积成什么形状?这些问题与本章将要学习的正态分布有关; (3)在上述两个情景的基础上,通过问题的形式,帮助学生提出本章要研究的问题和基本思想:随机事件形形色色,随机现象表现各异,但如果舍弃具体背景,它们就会呈现出一些共性;如果把随机试验的结果数量化,用随机变量表示试验结果,就可以用数学工具来研究这些随机现象。这样不仅阐述了本章的主要内容,而且激发了学生的学习兴趣,使他们明确本章的学习目标以及研究本章内容的数学思想方法。 2.理解随机变量和离散型随机变量的描述性定义,以及随机变量与函数的关系,能够把一个随机试验的结果用随机变量表示,能够根据所关心的问题定义一个随机变量。具体要求是: (1)在对具体问题的分析过程中,帮助学生理解用随机变量表示随机试验结果的意义和作用:为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量,掌握随机变量的描述性概念,了解随机变量与函数的关系,构造随机变量应当注意的问题(如随机变量应该有实际意义、应该尽量简单,以便于研究),以及用随机变量表示随机事件的方法等;

-离散型随机变量讲课教案

-离散型随机变量

§2.1.1离散型随机变量 教材分析 本节内容是数学2-3 第二章随机变量及其分布列的起始课,对后续内容的学习起着奠基的作用.是在学习了数学3第二章统计和第三章概率的知识后,对概率与统计内容的再学习,可以看作是对前面学习过的两章内容的应用和加深.要求能够理解随机变量及离散型随机变量的含义.本课题的重难点是随机变量、离散型随机变量的含义通过大量举出身边的实例,可以很好地帮助学生理解分随机变量、离散型随机变量的含义,要求学生有意识地运用概率与统计的视角,观察生活中的有关现象,为后续内容的学习作好积累上的准备. 课时分配 本节内容用1课时的时间完成,主要讲随机变量、离散型随机变量的含义. 教学目标 重点: 随机变量、离散型随机变量的含义 难点:随机变量、离散型随机变量的含义 知识点: 1.理解随机变量的意义; 2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子; 3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量. 能力点:发展抽象、概括能力,提高实际解决问题的能力.. 教育点:学会合作探讨,体验成功,提高学习数学的兴趣. 自主探究点:如何运用离散型随机变量的概念解释生活中的有关现象. 考试点:随机变量、离散型随机变量的含义. 易错易混点:随机变量与函数的区别. 拓展点:离散型随机变量的取值及其相应概率的特点. 教具准备多媒体、实物投影仪 课堂模式学案导学

一、引入新课 思考:掷一枚骰子,出现正面向上的点数共有几种不同的数字?能否用这些数值表示相应结果呢? 答:共有6中,可以用1 , 2 ,3,4,5,6来表示相应结果 思考:那么掷一枚硬币的结果是否也可以用数字来表示呢? 答:掷一枚硬币,可能出现正面向上、反面向上两种结果 虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上: 正面向上——1; 反面向上——0 师总结:在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示在这个对应关系下,数字随着试验结果的变化而变化这种随着试验结果的变化而变化的变量我们称为随机变量——引出随机变量的定义: 二、探究新知 (一)随机变量 随机变量的定义:随着试验结果变化而变化的变量称为随机变量(random variable ) 随机变量常用字母 X , Y,ξ,η,…表示 师举例:例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 生举例:1; 2;

离散型随机变量(优质课一等奖)

2.1离散型随机变量 淮北十二中崔军 一、教学目标解析 1.在对具体实例的分析中,认识和体会随机变量对刻画随机现象的重要性和建立随机变量概念的必要性,并会恰当地定义随机变量来描述所感兴趣的随机现象,能叙述随机变量可能取的值及其所表示的随机试验的结果; 2.在列举的随机试验中,通过对随机变量取值类型的分辨,归纳和概括离散型随机变量的特征,形成离散型随机变量的概念,并会利用离散型随机变量刻画随机试验的结果; 3.在举例、观察、思考、发现中经历将随机试验结果数量化的过程,渗透将实际问题转化为数学问题的思想方法,进一步形成用随机观念观察和分析问题的意识. 二、教学重点和难点解析: 本节内容是为求离散型随机变量的分布列作铺垫的一节概念课,所以要把随机变量和离散型随机变量的概念讲清楚。于是,可以确定的重点、难点是: 重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.难点:对随机变量意义的理解;构造随机变量的方法。 三、教学方法:启发讲授式与问题探究式. 四、教学手段:多媒体 五、教学过程设计: (一)情景引入展示图片:北京奥运男子50米步枪三姿决赛精彩一幕。 (二)新课讲解 试验1:某人在射击训练中,射击一次,命中的环数. 试验2:掷一枚骰子一次,向上的点数. 思考:从上述两个试验中,你能发现它们有无共同的特征? 1、随机变量定义: 问题1:随机变量与函数有什么区别与联系吗? 问题2:你能再举些随机试验的例子吗? 问题3:任何随机试验的所有结果都可以用数字表示吗?

试验3:观看一场足球赛,你比较喜欢的那个球队,会出现哪几种结果? 能否用数字刻画随机试验的结果呢? 试验4:掷一枚硬币,可能会出现哪几种结果?能否用数字来刻画这种随机试验的结果呢? 2、离散型随机变量的定义: 3、典型例题 例1、已知在10件产品中有2件不合格品。现从这10件产品中任取3件,这是一个随机现象。 (1)写成该随机现象所有可能出现的结果; (2)试用随机变量来描述上述结果。 练习:写成该随机现象所有可能出现的结果,并试用随机变量来描述上述结果。 (1)从学校回家要经过5个红绿灯口,可能遇到红灯的次数。 (2)袋中装有5只同样大小的球,编号为1,2,3,4,5,现从中随机取出3只球,被取出的球的最大号码数。 课时小结: 1、你能用自己的语言总结一下这节课的主要内容吗?随机变量、离散型随机变量的概念。 2、你能简单说说引入随机变量的好处吗? 思考:抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二次骰子掷出的点数差记为X,则X是一个随机变量。 (1)写成随机现象所有可能出现的结果。 (2)试用随机变量来描述上述结果。 (3)试问“X>4”表示的试验结果是什么? 教学反思:

常见离散型随机变量的分布列

4.常见离散型随机变量的分布列 (1>两点分布像 这样的分布列叫做两点分布列. 如果随机变量X的分布列为两点分布列,就称X服从分布,而称p=P(X=1> 为成功概率. (2>超几何分布列 一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为 P(X=k>=错误!,k=0,1,2,…,m, 其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.称分布列为超几何分布列.如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布. 1设离散型随机变量X 求:(1>2X+1的分布列; (2>|X-1|的分布列. 【思路启迪】利用p i≥0,且所有概率之和为1,求m;求2X+1的值及其分布列;求|X-1|的值及其分布列. 【解】由分布列的性质知: 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 首先列表为: 4 9 3 则常数c=________,P(X=1>=________.X的所有可能取值x i(i=1,2,…,>; (2>求出取各值x i的概率P(X=x i>;(3>列表,求出分布列后要注意应用性质检验所求的结果是否准确.常用类型有:(1>由统计数据求离散型随机变量的分布列,关键是由统计数据利用事件发生的频率近似表示该事件的概率,由统计数据得到的分布列可以帮助我们更好地理解分布列的作用和意义.(2>由古典概型来求随机变量的分布列,这时需利用排列、组合求概率.(3>由相互独立事件同时发生的概率求分布列无

论是何种类型,都需要深刻理解随机变量的含义及概率分布.3.(2018年福建>受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下: (1>从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率; (2>若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3>该厂预计今后这两种品牌轿车销量相当,因为资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.【解】(1>设“甲品牌轿车首次出现故障发生在保修期内”为事件A ,则P (A >=错误!=错误!.(2>依题意得,X 1的分布列为 X 2的分布列为 (3>由(2>得,E (X 1>=1×错误!+2× 错误!+3×错误!=2.86(万元>, E (X 2>=1.8×错误!+2.9×错误!=2.79(万元>.因为E (X 1>>E (X 2>,所以应生产甲品牌轿车. 4.(2018年湖南>某商店试销某种商品20天,获得如下数据: 试销结束后(2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1>求当天商店不进货的概率; (2>记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望. 解:(1>P (“当天商店不进货”>=P (“当天商品销售量为0件”>+P (“当天商品销售量为1件”> =错误!+错误!=错误!. (2>由题意知,X 的可能取值为2,3. P (X =2>=P (“当天商品销售量为1件”>=错误!=错误!;P (X =3>=P (“当天商品销售量为0件”>+P (“当天商品销售量为2件”>+P (“当天商品销售量为3件”>=错误!+错误!+错误!=错误!.故X 的分布列为

数学百大经典例题——离散型随机变量分布列(新课标)

耗用子弹数的分布列 例 某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 分析:确定ξ取哪些值以及各值所代表的随机事件概率,分布列即获得. 解:本题要求我们给出耗用子弹数ξ的概率分布列.我们知道只有5发子弹,所以ξ的取值只有1,2,3,4,5.当1=ξ时,即9.0)1(==ξP ;当2=ξ时,要求第一次没射中,第二次射中,故09.09.01.0)2(=?==ξP ;同理,3=ξ时,要求前两次没有射中,第三次射中,009.09.01.0)3(2=?==ξP ;类似地,0009.09.01.0)4(3=?==ξP ;第5次射击不同,只要前四次射不中,都要射第5发子弹,也不考虑是否射中,所以41.0)5(==ξP ,所以耗用子弹数ξ的分布列为: 说明:搞清5=ξ的含义,防止这步出错.5=ξ时,可分两种情况:一是前4发都没射中,恰第5发射中,概率为0.14×0.9;二是这5发都没射中,概率为0.15,所以, 5 41.09.01.0)5(+?==ξP .当然, 5 =ξ还有一种算法:即 0001.0)0009.0009.009.09.0(1)5(=+++-==ξP . 独立重复试验某事件发生偶数次的概率 例 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________. 分 析 : 发 生 事 件 A 的 次 数 () p n B ,~ξ,所以, ),,2,1,0,1(,)(n k p q q p C k p k n k k n =-===-ξ其中的k 取偶数0,2,4,…时,为二项式 n q p )(+ 展开式的奇数项的和,由此入手,可获结论. 解:由题,因为 ()p n B ,~ξ且ξ取不同值时事件互斥,所以,

常见离散型随机变量分布列示例

常见随机事件的概率与分布列示例 1、耗用子弹数的分布列 例 某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 分析:确定ξ取哪些值以及各值所代表的随机事件概率,分布列即获得. 解:本题要求我们给出耗用子弹数ξ的概率分布列.我们知道只有5发子弹,所以ξ的取值只有1,2,3,4,5.当1=ξ时,即9.0)1(==ξP ;当2=ξ时,要求第一次没射中,第二次射中,故09.09.01.0)2(=?==ξP ;同理,3=ξ时,要求前两次没有射中,第三次射中,009.09.01.0)3(2=?==ξP ;类似地,0009.09.01.0)4(3=?==ξP ;第5次射击不同,只要前四次射不中,都要射第5发子弹,也不考虑是否射中,所以41.0)5(==ξP ,所以耗用子弹数ξ的分布列为: 说明:搞清5=ξ的含义,防止这步出错.5=ξ时,可分两种情况:一是前4发都没射中,恰第5发射中,概率为0.14×0.9;二是这5发都没射中,概率为0.15,所以, 5 41.09.01.0)5(+?==ξP .当然, 5 =ξ还有一种算法:即 0001.0)0009.0009.009.09.0(1)5(=+++-==ξP . 2、独立重复试验某事件发生偶数次的概率 例 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________. 分 析 : 发 生 事 件 A 的 次 数 () p n B ,~ξ,所以, ),,2,1,0,1(,)(n k p q q p C k p k n k k n =-===-ξ其中的k 取偶数0,2,4,…时,为二项式 n q p )(+ 展开式的奇数项的和,由此入手,可获结论.

相关主题
文本预览
相关文档 最新文档