当前位置:文档之家› 基于单片机水温控制器的设计设计

基于单片机水温控制器的设计设计

基于单片机水温控制器的设计设计
基于单片机水温控制器的设计设计

基于单片机水温控制器的设计设计

基于单片机的水温控制器的设计

摘要

本系统的设计可以用于热水器温度控制系统和饮水机等各种电器电路中。它以单片机AT89S52为核心,通过3个数码管显示温度和4个按键实现人机对话,使用单总线温度转换芯片DS18B20实时采集温度并通过数码管显示,并提供各种运行指示灯用来指示系统现在所处状态,如:温度设置、加热、停止加热等,整个系统通过四个按键来设置加热温度和控制运行模式。

关键词:单片机;数码管显示;单总线;DS18B20

目录

1 绪论 ................................................................................................................................... - 1 -

2 系统总体设计 ................................................................................................................... - 2 -

2.1硬件总体设计.................................................................................................... - 2 -

2.1.1硬件系统子模块 ............................................................................... - 2 -

2.2 软件总体设计................................................................................................... - 2 -

3 硬件系统设计 ................................................................................................................... -

4 -

3.1硬件电路分析和设计报告................................................................................ - 4 -

3.1.1单片机最小系统电路 ....................................................................... - 4 -

3.1.2 键盘电路 .......................................................................................... - 5 -

3.1.3 数码管及指示灯显示电路 .............................................................. - 5 -

3.1.4 温度采集电路 .................................................................................. - 7 -

3.1.5 电源电路 ........................................................................................ - 11 -

3.1.6报警电路设计 ................................................................................. - 12 -

3.1.7加热管控制电路设计 ..................................................................... - 12 -

4 系统软件设计 ................................................................................................................. - 14 -

4.1主程序流程图.................................................................................................. - 14 -

4.2各个模块的流程图.......................................................................................... - 16 -

4.2.1读取温度DS18B20模块的流程 ................................................... - 16 -

4.2.2键盘扫描处理流程 ......................................................................... - 18 -

4.2.3 报警处理流程 ................................................................................ - 18 -

5 系统调试 ......................................................................................................................... - 20 -

5.1 硬件电路调试................................................................................................. - 20 -

5.2 软件调试......................................................................................................... - 20 -

5.3 系统操作说明................................................................................................. - 21 -

5.4数据测试.......................................................................................................... - 21 -总结 ................................................................................................................................. - 23 -致谢 ................................................................................................................................. - 24 -参考文献 ............................................................................................................................. - 25 -附录一:系统源程序......................................................................................................... - 26 -附录二:系统硬件总图..................................................................................................... - 35 -

基于单片机的水温控制器的设计

1 绪论

本系统的设计可以用于水温控制系统和电饭煲等各种电器电路中。它以单片机AT89S52为核心,通过数码管显示温度和语音提示实现人机对话,使用温度转换芯片DS18B20实时采集温度并通过数码管显示,并提供各种运行指示灯用来指示系统现在所处状态,如:温度设置、加热、停止加热等,整个系统通过四个按键来设置加热温度和控制运行模式。

温度控制系统可以说是无所不在,热水器系统、空调系统、冰箱、电饭煲、电风扇等家电产品以至手持式高速高效的计算机和电子设备,均需要提供温度控制功能。以计算机为例,当中的中央处理器的运行速度愈快,所耗散的热量便愈多,为免计算机系统过热而受损,有关系统必须加强温度过高保护功能。

传统的温度采集电路相当复杂,需要经过温度采集、信号放大、滤波、AD转换等一系列工作才能得到温度的数字量,并且这种方式不仅电路复杂,元器件个数多,而且线性度和准确度都不理想,抗干扰能力弱。现在常用的温度传感器芯片不但功率消耗低、准确率高,而且比传统的温度传感器有更好的线性表现,最重要的一点是使用起来方便。

自动控制仪器仪表总的发展趋势是高性能、数字化、集成化、智能化和网络化。智能温度控制系统的设计是为了满足市场对成本低、性能稳定、可远程监测、控制现场温度的需求而做的课题,具有较为广阔的市场前景。

本系统的核心控制芯片选用的是51系列单片机AT89S52,单片机在各个技术领域中的迅猛发展,与单片机所构成的计算机应用系统的特点有关:

·单片机构成的应用系统有较大的可靠性。

·系统构建简洁、易行,能方便的实现系统功能。

·由于构成的系统是一个计算机系统,相当多的功能由软件实现,故具有柔性特点。

·有优异的性能价格比。

2 系统总体设计

2.1硬件总体设计

设计并制作一个基于单片机的热水器温度控制系统的电路,其结构框图如图2-1:

图2-1 系统结构框图

2.1.1硬件系统子模块

(1) 单片机最小系统电路部分

(2) 键盘扫描电路部分

(3) 数码管温度显示和运行指示灯电路部分

(4) 温度采集电路部分

(5) 继电器控制部分

(6) 报警部分

2.2 软件总体设计

良好的设计方案可以减少软件设计的工作量,提高软件的通用性,扩展性和可读性。

本系统的设计方案和步骤如下:

(1) 根据需求按照系统的功能要求,逐级划分模块。

(2) 明确各模块之间的数据流传递关系,力求数据传递少,以增强各模块的独立性,

便于软件编制和调试。

(3) 确定软件开发环境,选择设计语言,完成模块功能设计,并分别调试通过。

(4) 按照开发式软件设计结构,将各模块有机的结合起来,即成一个较完善的系统。

首先接通电源系统开始工作,系统开始工作后,通过按键设定温度值的上限值和下限值,确定按键将设定的温度值存储到指定的地址空间,温度传感器开始实时检测,调用显示子程序显示检测结果,调用比较当前显示温度值与开始设定的温度值比较,如果当前显示值低于设定值就通过继电器起动加热装置,直到达到设定值停止加热,之后进行保温,如果温度高于上限进行报警。

3 硬件系统设计

3.1硬件电路分析和设计报告

本次设计主要思路是通过对单片机编程将由温度传感器DS18B20采集的温度外加驱动电路显示出来,包括对继电器的控制,进行升温,当温度达到上下限蜂鸣器进行报警。P1.7开关按钮是用于确认设定温度的,初始按下表示开始进入温度设定状态,然后通过P1.5和P1.6设置温度的升降,再次按下P1.7时,表示确认所设定的温度,然后转入升温或降温。P2.3所接的发光二极管用于表示加热状态,P2.5所接的发光二极管用于表示保温状态。P2.3接继电器。P3.1是温度信号线。整个电路都是通过软件控制实现设计要求。

3.1.1单片机最小系统电路

因为89S52单片机内部自带8K的ROM和256字节的RAM,因此不必构建单片机系统的扩展电路。如图3-1,单片机最小系统有复位电路和振荡器电路。值得注意的一点是EA/必须接高电平,否则系统将不能运行。因为该脚不接时为低电平,单片机的31脚VP

EA/必须接单片机将直接读取外部程序存储器,而系统没有外部程序存储器,所以VP

VCC

图3-1 单片机最小系统图

基于单片机的温度控制系统设计文献综述

文献综述 题目基于单片机的温度控制 系统设计 学生姓名 X X X 专业班级自动化07-2 学号20070x0x0x0x 院(系) xxxxxxxxxxxxxxxx 指导教师 x x x 完成时间 2011年06月10日

基于单片机的温度控制 系统设计文献综述 1.前言 温度是日常生活、工业、医学、环境保护、化工、石油等领域最常遇到的一个物理量。而且随着现代工业的发展,人们需要对工业生产中有关温度系统进行控制,如钢铁冶炼过程需要对刚出炉的钢铁进行热处理,塑料的定型及各种加热炉、热处理炉、反应炉和锅炉中温度进行实时监测和精确控制。而有很多领域的温度可能较高或较低,现场也会较复杂,有时人无法靠近或现场无需人力来监控。如加热炉大都采用简单的温控仪表和温控电路进行控制, 存在控制精度低、超调量大等缺点, 很难达到生产工艺要求。且在很多热处理行业都存在类似的问题,所以,设计一个较为通用的温度控制系统具有重要意义。这时我们可以采用单片机控制,这些控制技术会大大提高控制精度,不但使控制简捷,降低了产品的成本,还可以和计算机通讯,提高了生产效率. 单片机是指芯片本身,而单片机系统是为实现某一个控制应用需要由用户设计的,是一个围绕单片机芯片而组建的计算机应用系统,这是单片机应用系统。单片机自问世以来,性能不断提高和完善,其资源又能满足很多应用场合的需要,加之单片机具有集成度高、功能强、速度快、体积小、功耗低、使用方便、价格低廉等特点,因此,应用日益广泛,并且正在逐步取代现有的

多片微机应用系统。 2.历史研究与现状 在工业生产温控系统中采用的测温元件和测量方法不相同,产品的工艺不同,控制温度的精度也不相同,因此对数据采集的精度和采用的控制方法也不相同。 通常由位式或时间比例式温度调节仪控制的工业加热炉温度控制系统,其主回路由接触器控制时因为不能快速反应,所以控温精度都比较低,大多在几度甚至十几度以上。随着电力电子技术及元器件的发展,出现了以下几种解决的方案: (1)主回路用无触点的可控硅和固态继电器代替接触器,配以PID或模糊逻辑控制的调节仪构成的温度控制系统,其控温精度大大提高,常在±2℃以内,优势是采用模糊控制与PID 控制相结合,对控制范围宽、响应快且连续可调系统有巨大的优越性。 (2)采用单片机温度控制系统。用单线数字温度传感器采集温度数据,打破了传统的热电阻、热电偶再通过A/D 转换采集温度的思路。用单片机对数字进行处理和控制,通过RS - 232 串口传到PC 机对温度进行监视与报警,设置温度的上限和下限。其优势是结构简单,编程不需要用专用的编程器,只需点击电脑鼠标就可以把编好的程序写到单片机中,很方便且调试、修改和升级很容易。 (3)ARM(Advanced RISC Machine)嵌入式系统模糊温度控制。利用ARM处理器的强大功能,通过读取温度传感器数据,并与设定值进行比较,然后对温度进行控制。通过内嵌的操作系统μCLinux获得极好的实时性,并且通过TCP/IP协议能与PC机

水温自动控制系统实验报告汇总

水温控制系统(B题) 摘要 在能源日益紧张的今天,电热水器,饮水机和电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费。但是利用AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成的控制系统却能解决这个问题。单片机可将温度传感器检测到的水温模拟量转换成数字量,并显示于1602显示器上。该系统具有灵活性强,易于操作,可靠性高等优点,将会有更广阔的开发前景。 水温控制系统概述 能源问题已经是当前最为热门的话题,离开能源的日子,世界将失去一切颜色,人们将寸步难行,我们知道虽然电能是可再生能源,但是在今天还是有很多的电能是依靠火力,核电等一系列不可再生的自然资源所产生,一旦这些自然资源耗尽,我们将面临电能资源的巨大的缺口,因而本设计从开源节流的角度出发,节省电能,保护环境。 一、设计任务 设计并制作一个水温自动控制系统,控制对象为 1 升净水,容器为搪瓷器皿。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。 二、要求 1、基本要求 (1)温度设定范围为:40~90℃,最小区分度为1℃,标定温度≤1℃。 (2)环境温度降低时温度控制的静态误差≤1℃。 (3)能显示水的实际温度。 第2页,共11页

2、发挥部分 (1)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。 (2)温度控制的静态误差≤0.2℃。 (3)在设定温度发生突变时,自动打印水温随时间变化的曲线。 (4)其他。 一系统方案选择 1.1 温度传感器的选取 目前市场上温度传感器较多,主要有以下几种方案: 方案一:选用铂电阻温度传感器。此类温度传感器线性度、稳定性等方面性能都很好,但其成本较高。 方案二:采用热敏电阻。选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:采用DS18B20温度传感器。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出远端引入。此器件具有体积小、质量轻、线形度好、性能稳定等优点其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此选用方案三。 1.2温度显示模块 方案一:采用8个LED八段数码管分别显示温度的十位、个位和小数位。数码管具有低能耗,低损耗、寿命长、耐老化、对外界环境要求低。但LED八度数码管引脚排列不规则,动态显示时要加驱动电路,硬件电路复杂。 方案二:采用带有字库的12864液晶显示屏。12864液晶显示屏具有低功耗,轻薄短小无辐射危险,平面显示及影像稳定、不闪烁、可视面积大、画面

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

基于单片机的水温控制系统设论文(经典)

目录 摘要 (4) 第1节课题任务要求 (5) 第2节总体方案设计 (5) 2.1 总体方案确定 (6) 2.1.1 控制方法选择 (6) 2.1.2 系统组成 (7) 2.1.3 单片机系统选择 (7) 2.1.4 温度控制 (7) 2.1.5 方案选择 (7) 第3节系统硬件设计 (8) 3.1 系统框图 (8) 3.2 程序流程图 (12) 第4节参数计算 (16) 4.1 系统模块设计 (16) 4.1.1 温度采集及转换 (16) 4.1.2 传感器输出信号放大 (17) 4.1.3模数转换 (18) 4.1.4 外围电路设计 (19) 4.1.5 数值处理及显示部分 (19) 4.1.6 PID算法介绍 (19) 4.1.7 A/D转换模块 (20) 4.1.8 控制模块 (21) 4.2 系统硬件调试 (21) 第5节 CPU软件抗干扰 (24) 5.1 看门狗设计 (24) 第6节测试方法和测试结果 (27) 6.1 系统测试仪器及设备 (27) 6.2 测试方法 (27) 6.3 测试结果 (27) 结束语 (29)

参考文献 (30) 基于单片机的水温控制系统设计 摘要: 本系统以AT89C51,AT89C2051单片机为核心,主要包括传感器温度采集,A/D模/数转换,按扭操作,单片机控制,数码管数字显示等部分。本系统采用PID算法实现温度控制功能,通过串行通信完成两片单片机信息的交互而实现温度设定、控制和显示。本设计还可以通过串口与上位机(电脑)连接,实现电脑控制。系统设计有体积小、交互性强等优点。为了实现高精度的水温控制,本单片机系统采用PID算法控制和PWM脉宽调制相结合的技术,通过控制双向可控硅改变电炉和电源的接通、断开,从而改变水温加热时间的方法来实现对水温的控制。本系统由键盘显示和温度控制两个模块组成,通过模块间的通信完成温度设定、实温显示、水温升降等功能。具有电路结构简单、程序简短、系统可靠性高、操作简便等特点。 第1节课题任务与要求: 1.基本要求 一升水由1kw的电炉加热,要求水温可以在一定围由人工设定,并能在环境温度降低时实现自动调整,以保持设定的温度基本不变。

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

AT89C51单片机温度控制系统

毕业设计(论文) 论文题目:AT89C51单片机温度控制系统 所属系部:电子工程系 指导老师:职称: 学生姓名:班级、学号: 专业:应用电子技术 2012 年05 月15 日

毕业设计(论文)任务书 题目:AT89C51单片机温度控制系统 任务与要求:设计并制作一个能够控制1KW电炉的温度控制系统,控制温度恒定在37--38度之间。 时间:年月日至年月日 所属系部:电子工程系 学生姓名:学号: 专业:应用电子技术 指导单位或教研室:测控技术教研室 指导教师:职称: 年月日

摘要 本设计是以一个1KW电炉为控制对象,以AT89C51为控制系统核心,通过单片机系统设计实现对保电炉温度的显示和控制功能。本温度控制系统是一个闭环反馈调节系统,由温度传感器DS18B20对保炉内温度进行检测,经过调理电路得到合适的电压信号。经A/D转换芯片得到相应的温度值,将所得的温度值与设定温度值相比较得到偏差。通过对偏差信号的处理获得控制信号,去调节加热器的通断,从而实现对保温箱温度的显示和控制。本文主要介绍了电炉温度控制系统的工作原理和设计方法,论文主要由三部分构成。①系统整体方案设计。②硬件设计,主要包括温度检测电路、A/D转换电路、显示电路、键盘设计和控制电路。③系统软件设计,软件的设计采用模块化设计,主要包括A/D转换模块、显示模块等。 关键词:单片机传感器温度控制

目录 绪论 (1) 第一章温度控制系统设计和思路 (2) 1.1温度控制系统设计思路 (2) 1.2 系统框图 (2) 第二章 AT89C51单片机 (3) 2.1 AT89C51单片机的简介 (3) 2.2 AT89C51单片机的主要特性 (3) 2.3 AT89C51单片机管脚说明 (4) 第三章温度控制的硬件设备 (6) 3.1温度传感器简介 (6) 3.2 DS18B20工作原理 (7) 3.3 DS18B20使用中注意事项 (8) 第四章系统硬件设计 (9) 4.1温度采集电路 (9) 4.2 数码管温度显示电路 (9) 4.2.1 数码管的分类 (9) 4.2.2 数码管的驱动方式 (10) 4.2.3 恒流驱动与非恒流驱动对数码管的影响 (11) 4.3 单片机接口电路 (12) 4.3.1 P0口的上拉电阻原理 (12) 4.3.2 上拉电阻的选择 (14) 4.4 单片机电源及下载线电路 (14) 4.5 温度控制电路 (15) 第五章温度控制的软件设计 (17) 5.1 数码管动态显示 (17) 5.2 DS18B20初始化 (17) 5.3 系统流程图 (19) 谢辞 (20) 参考文献 (21) 附录 (22)

基于单片机的模糊温度控制器的设计

基于单片机的模糊温度控制器的设计 1 引言 本文研究的被控对象为某生产过程中用到的恒温箱,按工艺要求需保持箱温100℃恒定不变。我们知道温度控制对象大多具有非线性、时变性、大滞后等特性, 采用常规的PID 控制很难做到参数间的优化组合, 以至使控制响应不能得到良好的动态效果。而模糊控制通过把专家的经验或手动操作人员长期积累的经验总结成的若干条规则,采用简便、快捷、灵活的手段来完成那些用经典和现代控制理论难以完成的自动化和智能化的目标, 但它也有一些需要进一步改进和提高的地方。模糊控制器本身消除系统稳态误差的性能比较差, 难以达到较高的控制精度, 尤其是在离散有限论域设计时更为明显, 并且对于那些时变的、非线性的复杂系统采用模糊控制时, 为了获得良好的控制效果, 必须要求模糊控制器具有较完善的控制规则。这些控制规则是人们对受控过程认识的模糊信息的归纳和操作经验的总结。然而, 由于被控过程的非线性、高阶次、时变性以及随机干扰等因素的影响, 造成模糊控制规则或者粗糙或者不够完善, 都会不同程度的影响控制效果。为了弥补其不足, 本文提出用自适应模糊控制技术,达到模糊控制规则在控制过程中自动调整和完善, 从而使系统的性能不断完善, 以达到预期的效果。 2 自调整模糊控制器的结构及仿真 (1) 控制对象 一般温度可近似用一阶惯性纯滞后环节来表示, 其传递函数为: 式中: K———对象的静态增益; Tc———对象的时间常数; τ———对象的纯滞后时间常数。 本文针对某干燥箱的温度控制, 用Cohn-Coon 公式计算各参数得: K=0.181; Tc=60; τ=20。 ( 2) 自调整模糊控制器的结构 自调整模糊控制器的结构如图1 所示。

智能温度控制系统设计

目录 一、系统设计方案的研究 (2) (一)系统的控制特点与性能要求 (2) 1.系统控制结构组成 (2) 2.系统的性能特点 (3) 3.系统的设计原理 (3) 二、系统的结构设计 (4) (一)电源电路的设计 (4) (二)相对湿度电路的设计 (6) 1.相对湿度检测电路的原理及结构图 (6) 3.对数放大器及相对湿度校正电路 (7) 3.断点放大器 (8) 4.温度补偿电路 (8) 5.相对湿度检测电路的调试 (9) (三)转换模块的设计 (9) 1.模数转换器接受 (9) 2.A/D转换器ICL7135 (9) (四)处理器模块的设计 (11) 1.单片机AT89C51简介及应用 (11) 2.单片机与ICL7135接口 (14) 3.处理器的功能 (15) 4.CPU 监控电路 (15) (五)湿度的调节模块设计 (15) 1.湿度调节的原理 (15) 2.湿度调节的结构框图 (16) 3.湿度调节硬件结构图 (16) 4.湿度调节原理实现 (16) (六)显示模块设计 (17) 1.LED显示器的介绍 (17) 2.单片机与LED接口 (17) (七)按键模块的设计 (18) 1.键盘接口工作原理 (18) 2.单片机与键盘接口 (19) 3.按键产生抖动原因及解决方案 (19) 4.窜键的处理 (19) 三、软件的设计及实现 (19) (一)程序设计及其流程图 (20) (二)程序流程图说明 (21) 四、致谢 (22) 参考文献: (22)

智能温度控制系统设计 摘要: 此系统采用了精密的检测电路(包刮精密对称方波发生器、对数放大及半波整流、温度补偿及温度自动校正及滤波电路等几部分电路组成),能够自动、准确检测环境空气的相对湿度,并将检测数据通过A/D转换后,送到处理器(AT89C51)中,然后通过软件的编程,将当前环境的相对湿度值转换为十进制数字后,再通过数码管来显示;而且,通过软件编程,再加上相应的控制电路(光电耦合及继电器等部分电路组成),设计出可以自动的调节当前环境的相对湿度:当室内空气湿度过高时,控制系统自动启动抽风机,减少室内空气中的水蒸气,以达到降低空气湿度的目的;当室内空气湿度过低时,控制系统自动启动蒸汽机,增加空气的水蒸气,以达到增加湿度的目的,使空气湿度保持在理想的状态;键盘设置及调整湿度的初始值,另外在设计个过程当中,考虑了处理器抗干扰,加入了单片机监视电路。 关键词: 湿度检测; 对数放大; 湿度调节; 温度补偿 一、系统设计方案的研究 (一)系统的控制特点与性能要求 1.系统控制结构组成 (1)湿度检测电路。用于检测空气的湿度[9]。 (2)微控制器。采用ATMEL公司的89C51单片机,作为主控制器。 (3)电源温压电路。用于对输入的200V交流电压进行变压、整流。 (4)键盘输入电路。用于设定初始值等。 (5)LED显示电路。用于显示湿度[10]。 (6)功率驱动电路(湿度调节电路)

水温自动控制系统毕业设计论文(DOC)

毕业设计论文 水温自动控制系统 钟野 院系:电子信息工程学系 专业:电气自动化技术 班级: 学号: 指导教师: 职称(或学位): 2011年5 月

目录 1 引言 (2) 2 方案设计 (2) 2.1 总体系统的设计思路 (2) 2.2 部分外围系统的设计思路 (3) 3 硬件电路设计 (3) 3.1 单片机最小系统的设计 (3) 3.2 温度检测电路的设计与论证 (4) 3.3 显示功能电路的设计与论证 (5) 3.4 温度报警提示功能电路的设计与论证 (5) 3.5 外围电路控制设计 (6) 3.6 扩展部分方案设计 (7) 4 软件设计 (7) 4.1 控制主程序设计 (7) 4.2 温度设置程序设计 (8) 4.3 上下限报警程序设计 (8) 5 结论 (9) 结束语 (9) 致谢 (10) 参考文献 (10) 附录............................................................................................................... 错误!未定义书签。

水温自动控制系统 钟野 (XXXX电子信息工程学系指导教师:CXJ) 摘要:本文设计主要是采用A T89C51单片机为控制核心、以温度传感器(DS18B20)为温度采集元件, 外加温度设置电路、温度采集电路、显示电路、报警电路和加热电路来实现对水温的显示同时自动检测及线性化处理,其误差小于±0.5℃。本文重点介绍硬件设计方案的论证和选择,以及各部分功能控制的软件的设计。本次设计的目标在于:由单片机来实现水温的自动检测及自动控制,实现设备的智能化。 关键词:单片机;温度传感器;自动控制 Abstract: This paper is designed AT89C51 microcontroller as control core and temperature sensor DS18B20) for (temperature gathering element, plus the temperature setting circuit, temperature gathering electriccircuit, display circuit, alarm circuit and heating circuit to achieve water temperature display while automatically detecting and linearization, its error is less than 0.5 + ℃. This paper mainly introduces the hardware design argumentation and choice, and some functional control software design. This design goal is: by single-chip microcomputer to realize the automatic detection and automatic temperature control, realize the intellectualized equipment. Keywords: Microcontroller; Temperature sensors; Automatic control

基于-单片机的烘箱温度控制器设计

基于单片机的烘箱温度控制器设计 目录 1.项目概述 (1) 1.1.该设计的目的及意义 (1) 1.2.该设计的技术指标 (2) 2.系统设计 (3) 2.1.设计思想 (3) 2.2.方案可行性分析 (4) 2.3.总体方案 (5) 3.硬件设计 (6) 3.1.硬件电路的工作原理 (6) 3.2.参数计算 (7) 4.软件设计 (8) 4.1.软件设计思想 (8) 4.2.程序流程图 (9) 4.3.程序清单 (10) 5.系统仿真与调试 (11) 5.1.实际调试或仿真数据分析 (11) 5.2.分析结果 (13) 6.结论 (12) 7.参考文献 (13) 8.附录 (14)

1.项目概述: 1.1.该设计的目的及意义 温度的测量及控制,随着社会的发展,已经变得越来越重要。而温度是生产过程和科学实验中普遍而且重要的物理参数,准确测量和有效控制温度是优质,高产,低耗和安全生产的重要条件。在工业的研制和生产中,为了保证生产过程的稳定运行并提高控制精度,采用微电子技术是重要的途径。它的作用主要是改善劳动条件,节约能源,防止生产和设备事故,以获得好的技术指标和经济效益。 而本设计正是为了保证生产过程的稳定运行并提高控制精度,采用以51系列单片机为控制核心,对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标。 通过本设计的实践,将以往学习的知识进行综合应用,是对知识的一次复习与升华,让以往的那些抽象的知识点在具体的实践中体现出来,更是对自己自身的挑战。 1.2.该设计的技术指标 设计并制作一个基于单片机的温度控制系统,能够对炉温进行控制。炉温可以在一定围由人工设定,并能在炉温变化时实现自动控制。若测量值高于温度设定围,由单片机发出控制信号,经过驱动电路使加热器停止工作。当温度低于设定值时,单片机发出一个控制信号,启动加热器。通过继电器的反复开启和关闭,使炉温保持在设定的温度围。 (1) 1KW 电炉加热(电阻丝),最度温度为120℃(软件实现) (2)恒温箱温度可设定,温度控制误差≦±2℃(软件实现PID) (3)实时显示温度和设置温度,显示精度为1℃(LED)。 (4)温度超过设置温度±5℃,发出超限报警,升温和降温过程不作要求。 (5)升温过程采用PID算法,控制器输出方式为PWM输出方式,降温采用自然冷却。 (6)功率电路220 VAC供电,强弱电气电隔离 2.系统设计 2.1.设计思想 以87C51单片机为整个温度控制系统的核心,为解决系统出现一时的死机的问题,需构建复位电路,来重新启动整个系统。要想控制温度,首席必须能够测量温度,就需要一温度传感器,将测量得到的温度传给单片机,经单片机处理后,去控制继电器等器件实现电炉的断与通来达到温度期望值,当温度超过设定上下限值时,可以通过中断信号,控制指示灯的亮灭,来提醒温

模电课设—温度控制系统设计

目录 1.原理电路的设计 (11) 1.1总体方案设计 (11) 1.1.1简单原理叙述 (11) 1.1.2设计方案选择 (11) 1.2单元电路的设计 (33) 1.2.1温度信号的采集与转化单元——温度传感器 (33) 1.2.2电压信号的处理单元——运算放大器 (44) 1.2.3电压表征温度单元 (55) 1.2.4电压控制单元——迟滞比较器 (66) 1.2.5驱动单元——继电器 (88) 1.2.6 制冷部分——Tec半导体制冷片 (99) 1.3完整电路图 (1010) 2.仿真结果分析 (1111) 3 实物展示 (1313) 3.1 实物焊接效果图 (1313) 3.2 实物性能测试数据 (1414) 3.2.1制冷测试 (1414) 3.2.2制热测试 (1818) 3.3.3性能测试数据分析 (2020) 4总结、收获与体会 (2121) 附录一元件清单 (2222) 附录二参考文献. (2323)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339 N为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741,NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

基于51单片机的温度控制系统的设计

基于单片机的温度控制系统设计 1.设计要求 要求设计一个温度测量系统,在超过限制值的时候能进行声光报警。具体设计要求如下: ①数码管或液晶显示屏显示室内当前的温度; ②在不超过最高温度的情况下,能够通过按键设置想要的温度并显示;设有四个按键,分别是设置键、加1键、减1键和启动/复位键; ③DS18B20温度采集; ④超过设置值的±5℃时发出超限报警,采用声光报警,上限报警用红灯指示,下限报警用黄灯指示,正常用绿灯指示。 2.方案论证 根据设计要求,本次设计是基于单片机的课程设计,由于实现功能比较简单,我们学习中接触到的51系列单片机完全可以实现上述功能,因此可以选用AT89C51单片机。温度采集直接可以用设计要求中所要求的DS18B20。报警和指示模块中,可以选用3种不同颜色的LED灯作为指示灯,报警鸣笛采用蜂鸣器。显示模块有两种方案可供选择。 方案一:使用LED数码管显示采集温度和设定温度; 方案二:使用LCD液晶显示屏来显示采集温度和设定温度。 LED数码管结构简单,使用方便,但在使用时,若用动态显示则需要不断更改位选和段选信号,且显示时数码管不断闪动,使人眼容易疲劳;若采用静态显示则又需要更多硬件支持。LCD显示屏可识别性较好,背光亮度可调,而且比LED 数码管显示更多字符,但是编程要求比LED数码管要高。综合考虑之后,我选用了LCD显示屏作为温度显示器件,由于显示字符多,在进行上下限警戒值设定时同样可以采集并显示当前温度,可以直观的看到实际温度与警戒温度的对比。LCD 显示模块可以选用RT1602C。

3.硬件设计 根据设计要求,硬件系统主要包含6个部分,即单片机时钟电路、复位电路、键盘接口模块、温度采集模块、LCD 显示模块、报警与指示模块。其相互联系如下图1所示: 图1 硬件电路设计框图 单片机时钟电路 形成单片机时钟信号的方式有内部时钟方式和外部时钟方式。本次设计采用内部时钟方式,如图2所示。 单片机内部有一个用于构成振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别为此放大器的输入端和输出端,其频率范围为~12MHz ,经由片外晶体振荡器或陶瓷振荡器与两个匹配电容一 起形成了一个自激振荡电路,为单片机提供时钟源。 复位电路 复位是单片机的初始化操作,其作用是使CPU 和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作,以防止电源系统不稳定造成CPU 工作不正常。在系统中,有时会出现工作不正常的情况,为了从异常状态中恢复,同时也为了系统调试方便,需要设计一个复位电路。 单片机的复位电路有上电复位和按键复位两种形式,因为本次设计要求需要有启动/复位键,因此本次设计采用按键复位,如图3。复位电路主要完成系统 图2 单片机内部时钟方式电路 图3 单片机按键复位电路

基于单片机的温度控制器附程序代码

生产实习报告书 报告名称基于单片机的温度控制系统设计姓名 学号0138、0140、0141 院、系、部计算机与通信工程学院 专业信息工程10-01 指导教师 2013年 9 月 1日

目录 1.引言.................................. 错误!未定义书签。 2.设计要求.............................. 错误!未定义书签。 3.设计思路.............................. 错误!未定义书签。 4.方案论证.............................. 错误!未定义书签。方案一................................................. 错误!未定义书签。方案二................................................. 错误!未定义书签。 5.工作原理.............................. 错误!未定义书签。 6.硬件设计.............................. 错误!未定义书签。单片机模块............................................. 错误!未定义书签。 数字温度传感器模块 .................................... 错误!未定义书签。 DS18B20性能......................................... 错误!未定义书签。 DS18B20外形及引脚说明............................... 错误!未定义书签。 DS18B20接线原理图................................... 错误!未定义书签。按键模块............................................... 错误!未定义书签。声光报警模块........................................... 错误!未定义书签。数码管显示模块......................................... 错误!未定义书签。 7.程序设计.............................. 错误!未定义书签。主程序模块............................................. 错误!未定义书签。 读温度值模块.......................................... 错误!未定义书签。 读温度值模块流程图: ................................. 错误!未定义书签。

基于单片机水温控制器的设计设计

基于单片机水温控制器的设计设计

基于单片机的水温控制器的设计 摘要 本系统的设计可以用于热水器温度控制系统和饮水机等各种电器电路中。它以单片机AT89S52为核心,通过3个数码管显示温度和4个按键实现人机对话,使用单总线温度转换芯片DS18B20实时采集温度并通过数码管显示,并提供各种运行指示灯用来指示系统现在所处状态,如:温度设置、加热、停止加热等,整个系统通过四个按键来设置加热温度和控制运行模式。 关键词:单片机;数码管显示;单总线;DS18B20

目录 1 绪论 ................................................................................................................................... - 1 - 2 系统总体设计 ................................................................................................................... - 2 - 2.1硬件总体设计.................................................................................................... - 2 - 2.1.1硬件系统子模块 ............................................................................... - 2 - 2.2 软件总体设计................................................................................................... - 2 - 3 硬件系统设计 ................................................................................................................... - 4 - 3.1硬件电路分析和设计报告................................................................................ - 4 - 3.1.1单片机最小系统电路 ....................................................................... - 4 - 3.1.2 键盘电路 .......................................................................................... - 5 - 3.1.3 数码管及指示灯显示电路 .............................................................. - 5 - 3.1.4 温度采集电路 .................................................................................. - 7 - 3.1.5 电源电路 ........................................................................................ - 11 - 3.1.6报警电路设计 ................................................................................. - 12 - 3.1.7加热管控制电路设计 ..................................................................... - 12 - 4 系统软件设计 ................................................................................................................. - 14 - 4.1主程序流程图.................................................................................................. - 14 - 4.2各个模块的流程图.......................................................................................... - 16 - 4.2.1读取温度DS18B20模块的流程 ................................................... - 16 - 4.2.2键盘扫描处理流程 ......................................................................... - 18 - 4.2.3 报警处理流程 ................................................................................ - 18 - 5 系统调试 ......................................................................................................................... - 20 - 5.1 硬件电路调试................................................................................................. - 20 - 5.2 软件调试......................................................................................................... - 20 - 5.3 系统操作说明................................................................................................. - 21 - 5.4数据测试.......................................................................................................... - 21 -总结 ................................................................................................................................. - 23 -致谢 ................................................................................................................................. - 24 -参考文献 ............................................................................................................................. - 25 -附录一:系统源程序......................................................................................................... - 26 -附录二:系统硬件总图..................................................................................................... - 35 -

相关主题
文本预览
相关文档 最新文档