当前位置:文档之家› 基于AVR单片机的温度控制系统

基于AVR单片机的温度控制系统

基于AVR单片机的温度控制系统
基于AVR单片机的温度控制系统

摘要

随着现代工业技术的发展,工业自动化技术越来越高,各种信息的感知采集、转换传输、处理控制已经成为自动控制领域的不可缺少的组成部分。而温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。

单片机具有集成度高,功能强,结构简单,应用灵活,可靠性高等特点,在工业控制,机电一体化,通信终端,智能仪器仪表等诸多领域中得到了广泛应用。本设计基于高性能的MEGA16单片机,结合嵌入式软件控制的特点,采用C语言编写程序实现温度的采集、显示、控制和报警等功能。主控制器采用A VR单片机ATmega16,温度传感器采用DS18B20,温度控制系统的对象为室温,通过温度传感器DS18B20连续对温度信息进行采集,转换为数字信号后送至主机MEGA16,由预设的算法进行运算处理后,输出信号驱动执行机构进行相应调节(此处通过控制散热风扇的转速实现),从而使温度维持在设定值附近,同时温度信号送至数码管实习显示出来。

关键词:温度控制,A VR单片机,MEGA16芯片,DS18B20芯片

Abstract

With the development of modern industrial technology, industrial automation technology more and more, the perception of all kinds of information collection, conversion, transmission, process control automation in the field has become an indispensable part.

MCU ,with characteristics of high integration, function, simple structure, flexible application, high reliability, has been widely used in many areas such as the industrial control, mechatronics, communications terminals, intelligent instruments and meters,etc.

This design is based on high-performance MEGA16 microcontroller, combined with embedded software to control, using C language programming to achieve the function of temperature collection, display, control and alarm . Host controller using A VR microcontroller ATmega16, temperature sensor DS18B20, temperature control system is targeted at room temperature, the temperature sensor DS18B20 through continuous gathering information on the temperature, the conversion to digital signal sent to the host MEGA16, from the pre-operation processing algorithm , the output signal actuator to adjust accordingly (in this case by controlling the valve opening to achieve), so temperature was maintained near the set value, while the temperature signal sent to the digital control practice displayed.

Key Words:Temperature Control,A VR MCU(MicrocontrollerUnit),Chip mega16,Chip DS18B20

目录

摘要............................................................................................................................................. I Abstract........................................................................................................................................... I I 第1章绪论.. (1)

1.1课题研究的意义 (1)

1.2温度控制系统介绍 (1)

1.2.1 国外温度控制系统的发展概况 (1)

1.2.2国内温度控制系统的发展概况 (2)

1.3论文基本结构 (2)

第2章单片嵌入式系统概述 (4)

2.1 嵌入式系统简介 (4)

2.1.1 嵌入式计算机系统 (4)

2.1.2 单片嵌入式系统 (6)

2.1.3 单片机的发展 (6)

2.1.4 单片机的发展趋势 (8)

2.2 单片嵌入式系统的结构与应用领域 (9)

第3章 AVR 单片机简介及芯片介绍 (11)

3.1 AVR 单片机简介 (11)

3.1.1 AVR 系列单片机 (11)

3.1.2单片机的基本组成结构 (11)

3.1.3 单片机基本单元与作用 (12)

3.1.4 AVR 单片机的主要特点 (15)

3.2 ATmega16 单片机 (16)

3.2.1 AVR 单片机的内核结构 (16)

3.2.2 典型AVR 芯片ATmega16 特点 (17)

3.2.3 外部引脚与封装 (18)

3.3 ATmega16 内部结构 (20)

3.3.1 AVR 中央处理器CPU (20)

3.3.2 系统时钟部件 (21)

3.3.3 存储器 (21)

3.3.4 I/O 端口 (21)

3.4 ATmega16 单片机的工作状态 (22)

3.4.1 AVR 单片机最小系统 (22)

3.4.2 对AVR 的编程下载 (23)

第4章温度控制系统方案 (24)

4.1系统方案介绍 (24)

4.2 PID算法简介 (25)

4.2.1 PID控制的原理及特点 (25)

4.2.2 比例(P)控制 (25)

4.2.3 积分(I)控制 (25)

4.2.4 微分(D)控制 (25)

4.2.5比例微分积分(PID)控制 (26)

4.2.6比例微分积分(PID)控制的优势 (26)

4.3PWM控制直流电机转速 (27)

4.4系统关键器件选择 (27)

4.4.1主控制器 (27)

4.4.2温度传感器 (28)

4.4.3其他器件 (28)

第5章温度控制系统电路设计 (29)

5.1 电源模块 (29)

5.2温度测量采集模块 (29)

5.2.1 DS18B20的测温原理 (29)

5.2.2 DS18B20的组成结构 (30)

5.2.3DS1820使用中注意事项 (31)

5.2.4DS18B20与单片机的连接 (32)

5.3报警模块 (32)

5.3.1蜂鸣器 (32)

5.3.2电路连接 (32)

5.4显示模块 (33)

5.4.1数码管 (33)

5.4.2电路连接 (34)

5.5键盘扫描模块 (35)

5.6复位模块 (36)

5.7控制执行模块 (37)

第6章温度控制系统软件设计 (38)

6.1系统工作流程示意图 (38)

6.2系统部分程序介绍 (39)

6.2.1主程序 (39)

6.2.2温度传感器软件设计 (39)

6.2.3 数据处理子程序设计 (44)

结论 (45)

参考文献 (46)

致谢 (47)

附录 (48)

第1章绪论

随着现代工业技术的发展,工业自动化技术越来越高,各种信息的感知采集、转换传输、处理控制已经成为自动控制领域的不可缺少的组成部分。而温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。

1.1课题研究的意义

在冶金工业,化工生产、电力工程、机械制造和食品加工等到许多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行监测和控制。因此,温度控制系统是工业控制中比较典型的控制系统,它是一个一阶纯滞后惯性系统,它具有明显的滞后特性,对于需要快速准确的获取和控制事实温度的场合(如制药、化工、石油、食品加工等)采用一般的控制方法很难获得满意的控制效果。采用单片机对它们进行控制,不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。

通常,温度控制的原理是检测到的温度与设定的温度进行比较,经运算后输出控制信号给温度调节控制设备,以实现对温度的控制。在工业上,偏差控制又称为“PID 控制”,这是工业过程控制中应用最广泛的一种控制形式,一般都能收到令人满意的效果。最近几年快速发展模糊控制、以及神经网络在温度控制中的应用已经非常普遍。

所以本设计以A VR单片机为基础,结合PID控制算法,设计温度控制系统。其必然会有积极的现实意义及广泛的应用前景。

1.2温度控制系统介绍

温度控制在我国电子、冶金、机械等工业领域应用非常广泛。由于其具有工况复杂、参数多变、运行惯性大、控制滞后等特点,它对控制调节器要求极高。目前,仍有相当部分工业企业在用窑、炉、烘干生产线存在着控制精度不高,炉内温度均匀性差等问题,达不到工艺要求,造成装备运行成本费用高,产出品品质低下,严重影响企业经济效益,急需进行技术改造。

近年来,国内外对温度控制调节器进行了广泛、深入的研究,特别是随着计算机技术的发展,温度控制器的研究取得巨大的进展,形成了一批商品化的温度调节器,如:智能化PID、模糊控制、自适应控制等,其性能、控制效果好,可广泛应用于温度控制系统及企业相关设备的改造。为企业的设备的技术改造服务。

1.2.1 国外温度控制系统的发展概况

自上世纪70 年代以来由于工业过程控制的需要,特别是在微电子技术和计算机

技术的迅猛发展以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化、自适应、参数自整定等方面取得成果,在这方面,以日本、美国、德国、瑞典等国技术领先,都生产出了一批商品化的、性能优异的温度控制器及仪器仪表,并在各行业广泛应用。它们主要具有如下的特点:

1、适应于大惯性、大滞后等复杂温度控制系统的控制。

2、能够适应于受控系统数学模型难以建立的温度控制系统的控制。

3、能够适应于受控系统过程复杂、参数时变的温度控制系统的控制。

4、这些温度控制系统普遍采用自适应控制、自校正控制、模糊控制、人工智能

等理论及计算机技术,运用先进的算法,适应的范围广泛。

5、温控器普遍具有参数自整定功能。借助计算机软件技术,温控器具有对控制对象控制参数及特性进行自动整定的功能。有的还具有自学习功能,它能够根据历史经验及控制对象的变化情况,自动调整相关控制参数,以保证控制效果的最优化。

6、温度控制系统具有控制精度高、抗干扰力强、鲁棒性好的特点。目前,国外温度控制系统及仪表正朝着高精度、智能化、小型化等方面快速发展。

1.2.2国内温度控制系统的发展概况

温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比仍然有着较大的差距。目前,我国在这方面总体技术水平处于20 世纪80年代中后期水平,成熟产品主要以“点位”控制及常规的PID 控制器为主,它只能适应一般温度系统控制,难于控制滞后、复杂、时变温度系统控制。而适应于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟。

1.3论文基本结构

本设计第一章为温度控制概论,简要介绍了本课题的设计意义,温度控制系统的发展现状。

第二章为单片机嵌入式系统概述,介绍单片嵌入式系统的概念,发展历史,发展趋势以及应用领域等基本内容。

第三章为AVR 单片机的相关介绍,系统的介绍AVR单片机的结构和基本原理,并具体讲述本设计中将要用到的主控制器——ATmega16单片机。

第四章为温度控制系统方案,重点说明温度控制系统的整体方案,包括硬件方案和软件方案的设计构想,说明系统将要实现的功能,并对实现该功能的PID控制算法和PWM调速进行介绍。

第五章温度控制系统硬件设计,介绍温度控制系统的硬件电路的各组成部分。第六章是温度控制系统软件设计,对系统的控制程序进行简要阐述。

第2章单片嵌入式系统概述

在各种不同类型的嵌入式系统中,以单片微控制器(Microcontroller)作为系统的主要控制核心所构成的单片嵌入式系统(国内通常称为单片机系统)占据着非常重要的地位。本书将介绍以AVR 系列单片微控制器为核心的单片嵌入式系统的原理、硬软件设计、调试等应用方法。

单片嵌入式系统的硬件基本构成可分成两大部分:单片微控制器芯片和外围的接口与控制电路。其中单片微控制器是构成单片嵌入式系统的核心。

单片微控制器又被称为单片微型计算机(Single-Chip Microcomputre 或

One-ChipMicrocomputre),或者嵌入式微控制器(Embedded Microcontroller)。而在国内普遍采用的名字为“单片机”。所谓的单片微控制器-即单片机,它的外表通常只是一片大规模集成电路芯片。但在芯片的内部却集成了中央处理器单元(CPU),各种存储器(RAM、ROM、EPROM、E2PROM 和FlashROM等),各种输入/输出接口(定时器/计数器、并行I/O、串行I/O 以及A/D 转换接口等),等众多的功能部件。因此,一片芯片就构成了一个基本的微型计算机系统。

由于单片机芯片的微小体积,极低的成本和面向控制的设计,使的它作为智能控制的核心器件被广泛地应用于嵌入到工业控制、智能仪器仪表、家用电器、电子通信产品等各个领域中的电子设备和电子产品中。可以说,由单片机为核心构成的单片嵌入式系统已成为现代电子系统中最重要的组成部分。

2.1 嵌入式系统简介

2.1.1 嵌入式计算机系统

计算机的出现首先是应用于数值计算。随着计算机技术的不断发展,计算机的处理速度越来越快,存储容量越来越大,外围设备的性能越来越好,满足了高速数值计

算和海量数据处理的需要,形成了高性能的通用计算机系统。

1. 嵌入式系统

按照计算机的体系结构、运算速度、结构规模、适用领域,将其分为大型计算机、中型机、小型机和微型计算机,并以此来组织学科和产业分工,这种分类沿袭了约40 年。近20 年来,随着计算机技术的迅速发展,以及计算机技术和产品对其它行业的广泛渗透,使得以应用为中心的分类方法变得更为切合实际。具体的说,就是按计算机的非嵌入式应用和嵌入式应用将其分为通用计算机系统和嵌入式计算机系统。

通用计算机具有计算机的标准形态,通过装配不同的应用软件,以类同面目出现,并应用在社会的各个方面。现在我们在办公室里、家庭中,最广泛普及使用的PC 机就是通用计算机其最典型的代表。而嵌入式计算机则是以嵌入式系统的形式隐藏在各种装置、产品和系统中的。在许多的应用领域中,如工业控制、智能仪器仪表、家用

电器、电子通信设备等电子系统和电子产品中,对计算机的应用有着不同的要求。这些要求的主要特征为:

(1) 面对控制对象。面对物理量传感器变换的信号输入;面对人机交互的操作控制;面对对象的伺服驱动和控制。

(2) 嵌入到应用系统。体积小、低功耗、价格低廉,可方便地嵌入到应用系统和电子产品中。

(3) 能在工业现场环境中可靠运行。

(4) 优良的控制功能。对外部的各种模拟和数字信号能及时地捕捉,对多种不同的控制对象能灵活地进行实时控制。

能够满足和适合以上这些应用的计算机系统与通用计算机系统在应用目标上有巨大的差异。具备高速计算能力和海量存储,用于高速数值计算和海量数据处理的计算机称为通用计算机系统。而将面对工控领域对象,嵌入到各种控制应用系统、各类电子系统和电子产品中,实现嵌入式应用的计算机系统称之为嵌入式计算机系统,简称嵌入式系统(Embedded System)。特定的环境、特定的功能,要求计算机系统与所嵌入的应用环境成为一个统一的整体,并且往往要满足紧凑、高可靠性、实时性好、低功耗等技术要求。对于这样一种面向具体专用应用目标的计算机系统的应用,以及系统的设计方法和开发技术,构成了今天嵌入式系统的重要内涵,也是嵌入式系统发展成为一个相对独立的计算机研究和学习领域的原因。

2. 嵌入式系统的特点与应用

嵌入式系统就是指用于实现独立功能的专用计算机系统。它由包括微处理器、微控制器、定时器、传感器等一系列微电子芯片与器件,以及嵌入在存储器中的微型操作系统或控制系统软件组成,完成诸如实时控制、监测管理、移动计算、数据处理等各种自动化处理任务。

嵌入式系统是以应用为核心、以计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、可靠性、安全性、成本、体积、重量、功耗、环境等方面有严格要求的专用计算机系统。嵌入式系统将应用程序和操作系统与计算机硬件集成在一起,简单讲就是系统的应用软件与系统的硬件一体化,具有软件代码小,高度自动化,响应速度快等特点,特别适应与面向对象的要求实时的和多任务的应用。

嵌入式计算机系统在应用数量上远远超过了各种通用计算机系统,一台通用计算机系统,如PC 机的外部设备中就包含了5-10 个嵌入式系统:键盘、鼠标、软驱、硬盘、显示卡、显示器、Modem、网卡、声卡、打印机、扫描仪、数字相机、USB 集线器等均是由嵌入式处理器控制的。在制造工业、过程控制、通讯、仪器、仪表、汽车、船舶、航空、航天、军事装备、消费类产品等方面均是嵌入式计算机的应用领域。

通用计算机系统和嵌入式计算机系统形成了计算机技术的两大分支。与通用计算机系统相比,嵌入式系统最显著的特性是面对工控领域的测控对象。工控领域的测量

对象都是一些物理量,如压力、温度、速度、位移等;控制对象则包括马达、电磁开关等。嵌入式计算机系统对这些参量的采集、处理、控制速度是有限的,而对控制方式和能力的要求则是多种多样的。显然,这一特性形成并决定了嵌入式计算机系统和通用计算机系统在系统结构、技术、学习、开发和应用等诸方面的差别,也使得嵌入式系统成为计算机技术发展中的一个重要分支。嵌入式计算机系统以其独特的结构和性能,越来越多地应用的国民经济的各个领域。

2.1.2 单片嵌入式系统

嵌入式计算机系统的构成,根据其核心控制部分的不同可分为几种不同的类型:

a. 各种类型的工控机

b. 可编程逻辑控制器PLC

c. 以通用微处理器或数字信号处理器构成的嵌入式系统

d. 单片嵌入式系统

采用上述不同类型的核心控制部件所构成的系统都实现了嵌入式系统的应用,成为嵌入式系统应用的庞大家族。

以单片机作为控制核心的单片嵌入式系统大部分应用于专业性极强的工业控制系统中。其主要特点是:结构和功能相对单一、存储容量较小、计算能力和效率比较低,简单的用户接口。由于这种嵌入式系统功能专一可靠、价格便宜,因此在工业控制、电子智能仪器设备等领域有着广泛的应用。

作为单片嵌入式系统的核心控制部件单片机,它从体系结构到指令系统都是按照嵌入式系统的应用特点专门设计的,它能最好地满足面对控制对象、应用系统的嵌入、现场的可靠运行和优良的控制功能要求。因此,单片嵌入式应用是发展最快、品种最多、数量最大的嵌入式系统,也有着广泛的应用前景。由于单片机具有嵌入式系统应用的专用体系结构和指令系统,因此在其基本体系结构上,可衍生出能满足各种不同应用系统要求的系统和产品。

作为一个典型的嵌入式系统――单片嵌入式系统,在我国大规模应用已有几十年的历史。它不但是在中、小型工控领域、智能仪器仪表、家用电器、电子通信设备和电子系统中最重要的工具和最普遍的应用手段,同时正是由于单片嵌入式系统的广泛应用和不断发展,也大大推动了嵌入式系统技术的快速发展。因此对于电子、通信、工业控制、智能仪器仪表等相关专业的学生来讲,深入学习和掌握单片嵌入式系统的原理与应用,不仅能对自己所学的基础知识进行检验,而且能够培养和锻炼自己的问题分析、综合应用、和动手实践的能力,掌握真正的专业技能和应用技术。

2.1.3 单片机的发展

1970 年微型计算机研制成功后,随后就出现了单片机。美国Inter 公司在1971 年

推出了4 位单片机4004;1972 年推出了雏形8 位单片机8008。特别是在1976 年推出MCS-48单片机以后的三十年中,单片机的发展和其相关的技术经历了数次的更新换代。其发展速度大约每三四年要更新一代、集成度增加一倍、功能翻一番。

单片机的发展大致可分为四个阶段。

第一阶段(1976 年-1978 年):初级单片机阶段。以Inter 公司MCS-48 为代表。这个系列的单片机内集成有8 位CPU、I/O 接口、8 位定时器/计数器,寻址范围不大于4K 字节,简单的中断功能,无串行接口。

第二阶段(1978 年-1982 年):单片机完善阶段。在这一阶段推出的单片机其功能有较大的加强,能够应用于更多的场合。这个阶段的单片机普遍带有串行I/O 口、有多级中断处理系统、16 位定时器/计数器,片内集成的RAM、ROM 容量加大,寻址范围可达64K 字节。一些单片机片内还集成了A/D 转换接口。这类单片机的典型代表有Inter 公司的MCS-51、Motorola 公司的6801 和Zilog 公司的Z8 等。

第三阶段(1982 年-1992 年):8 位单片机巩固发展及16 位高级单片机发展阶段。在此阶段,尽管8 位单片机的应用已广泛普及,但为了更好满足测控系统的嵌入式应用的要求,单片机集成的外围接口电路有了更大的扩充。这个阶段单片机的代表为8051 系列。许多半导体公司和生产厂以MCS-51 的8051 为内核,推出了满足各种嵌入式应用的多种类型和型号的单片机。其主要技术发展有:

(1)外围功能集成。满足模拟量直接输入的ADC 接口;满足伺服驱动输出的PWM;保证程序可靠运行的程序监控定时器WDT(俗称看门狗电路)。

(2)出现了为满足串行外围扩展要求的串行扩展总线和接口,如SPI、I2C Bus、单总线(1-Wire)等。

(3)出现了为满足分布式系统,突出控制功能的现场总线接口,如CAN Bus 等。(4)在程序存储器方面广泛使用了片内程序存储器技术,出现了片内集成EPROM、EEPROM、FlashROM 以及MaskROM、OTPROM 等各种类型的单片机,以满足不同产品的开发和生产的需要,也为最终取消外部程序存储器扩展奠定了良好的基础。与此同时,一些公司面向更高层次的应用,发展推出了16 位的单片机,典型代表有Inter 公司的MCS-96 系列的单片机。

第四阶段(1993 年-现在):百花齐放阶段。现阶段单片机发展的显著特点是百花齐放、技术创新,以满足日益增长的广泛需求。其主要方面有:

(1)单片嵌入式系统的应用是面对最底层的电子技术应用,从简单的玩具、小家电;到复杂的工业控制系统、智能仪表、电器控制;以及发展到机器人、个人通信信息终端、机顶盒等。因此,面对不同的应用对象,不断推出适合不同领域要求的,从简易性能到多全功能的单片机系列。

(2)大力发展专用型单片机。早期的单片机是以通用型为主的。由于单片机设计生

产技术的提高、周期缩短、成本下降,以及许多特定类型电子产品,如家电类产品的巨大的市场需求能力,推动了专用单片机的发展。在这类产品中采用专用单片机,具有低成本、资源有效利用、系统外围电路少、可靠性高的优点。因此专用单片机也是单片机发展的一个主要方向。

(3)致力于提高单片机的综合品质。采用更先进的技术来提高单片机的综合品质,如提高I/O 口的驱动能力;增加抗静电和抗干扰措施;宽(低)电压低功耗等。

2.1.4 单片机的发展趋势

单片嵌入式系统的核心――单片机,正朝着多功能、多选择、高速度、低功耗、低价格、扩大存储容量和加强I/O 功能等方向发展。其进一步的发展趋势是多方面的。(1)全盘CMOS 化。CMOS 电路具有许多优点,如极宽的工作电压范围;极佳的低功耗及功耗管理特性等。CMOS 化已成为目前单片机及其外围器件流行的半导体工艺。

(2)采用RISC 体系结构。早期的单片机大多采用CISC 结构体系,指令复杂,指令代码、周期数不统一;指令运行很难实现流水线操作,大大阻碍了运行速度的提高。采用RISC 体系结构和精简指令后,单片机的指令绝大部分成为单周期指令,而通过增加程序存储器的宽度(如从8 位增加到16 位),实现了一个地址单元存放一条指令。在这种体系结构中,很容易实现并行流水线操作,大大提高了指令运行速度。(3)多功能集成化。单片机在内部已集成了越来越多的部件,这些部件不仅包括一般常用的电路,如:定时/计数器,模拟比较器,A/D 转换器,D/A 转换器,串行通信接口,WDT电路,LCD 控制器等,还有的单片机为了构成控制网络或形成局部网,内部含有局部网络控制模块CAN 总线,以方便地构成一个控制网络。为了能在变频控制中方便使用单片机,形成最具经济效益的嵌入式控制系统。有的单片机内部设置了专门用于变频控制的脉宽调制控制电路PWM。

(4)片内存储器的改进与发展。目前新型的单片机一般在片内集成两种类型的存储器:随机读写存储器SRAM,做为临时数据存储器存放工作数据用;只读存储器ROM,做为程序存储器存放系统控制程序和固定不变的数据。片内存储器的改进与发展的方向是扩大容量、ROM数据的易写和保密等。

(5)ISP、IAP 及基于ISP、IAP 技术的开发和应用。ISP(In System Programmable)称为在线系统可编程技术。随着微控制器在片内集成EEPROM、FlashROM 的发展,导致了ISP技术在单片机中的应用。首先实现了系统程序的串行编程写入(下载),使得不必将焊接在PCB 印刷电路板上的芯片取下,就可直接将程序下载到单片机的程序存储器中,淘汰了专用的程序下载写入设备。其次,基于ISP 技术的实现,使模拟仿真开发技术重新兴起。在单时钟、单指令运行的RISC 结构的单片机中,可实现PC 机通过串行电缆对目标系统的在线仿真调试。在ISP 技术应用的基础上,又发展

了IAP(In Application Programmable)技术,也称在应用可编程技术。利用IAP 技术,

实现了用户可随时根据需要对原有的系统方便的在线更新软件、修改软件,还能实现对系统软件的远程诊断、远程调试和远程更新。

(6)实现全面功耗管理。采用CMOS 工艺后,单片机具有极佳的低功耗和功耗管

理功能。

(7)以串行总线方式为主的外围扩展。目前,单片机与外围器件接口技术发展的一个重要方面是由并行外围总线接口向串行外围总线接口的发展。采用串行总线方式为主的外围扩展技术具有方便、灵活、电路系统简单、占用I/O 资源少等特点。

(8)单片机向片上系统SOC 的发展。SOC(System On Chip)是一种高度集成化、固件化的芯片级集成技术,其核心思想是把除了无法集成的某些外部电路和机械部分之外的所有电子系统电路全部集成在一片芯片中。现在一些新型的单片机(如AVR 系列单片机)已经是SOC 的雏形,在一片芯片中集成了各种类型和更大容量的存储器,更多性能更加完善和强大的功能电路接口,不仅减小了系统的体积和成本,而且也大大提高了系统硬件的可靠性和稳定性。

2.2 单片嵌入式系统的结构与应用领域

系统的核心控制芯片要与一些外围芯片、器件和控制电路机构有机的连接在一起,构成了实际的单片机系统,进而再嵌入到应用对象的环境体系中,作为其中的核心智能化控制单元而构成典型的单片嵌入式应用系统,如洗衣机、空调、智能仪器、智能仪表等等。

单片嵌入式系统的结构通常包括三大部分:既能实现嵌入式对象各种应用要求的单片机、全部系统的硬件电路和应用软件。

1.单片机:单片机是单片嵌入式系统的核心控制芯片,由它实现对控制对象的测控、系统运行管理控制和数据运算处理等功能。

2.系统硬件电路:根据系统采用单片机的特性以及嵌入对象要实现的功能要求而配备的外围芯片、器件所构成的全部硬件电路。通常包括以下几部分:基本系统电路。提供和满足单片机系统运行所需要的时钟电路、复位电路、系统

供电电路、驱动电路、扩展的存储器等。

前向通道接口电路。应用系统面向对象的输入接口,通常是各种物理量的测量传

感器、变换器输入通道。根据现实世界物理量转换成电量输出信号的类型,如模拟电压电流、开关信号、数字脉冲信号等的不同,接口电路也不同。常见的有传感器、信号调理器、模/数转换器ADC、开关输入、频率测量接口等。

后向通道接口电路。应用系统面向对象的输出控制电路接口。根据应用对象伺服

和控制要求,通常有数/模转换器DAC、开关量输出、功率驱动接口、PWM 输出控

制等。

人机交互通道接口电路。人机交互通道接口是满足应用系统人机交互需要的电路,有键盘、拨动开关、LED 发光二极管、数码管、LCD 液晶显示器、打印机等多种输入输出接口电路。

数据通信接口电路。数据通信接口电路是满足远程数据通信或构成多机网络应用系统的接口。通常有RS232、PSI、I2C、CAN 总线、USB 总线等通信接口电路。3.系统的应用软件:系统应用软件的核心就是下载到单片机中的系统运行程序。整个嵌入式系统全部硬件的相互协调工作、智能管理和控制都由系统运行程序决定。它可认为是单片嵌入式系统核心的核心。

第3章 AVR 单片机简介及芯片介绍

3.1 AVR 单片机简介

3.1.1 AVR 系列单片机

ATMEL 公司的AVR 单片机有三个系列的产品。为满足不同的需求和应用,ATMEL 公司对AVR 单片机的内部资源进行了相应的扩展和删减,推出了tinyAVR、low power AVR 和megaAVR,分别对应低、中、高三个不同档次数十种型号的产品

三个系列的所有型号的AVR 单片机,其内核都是相同的,指令系统兼容。只是在内部资源的配备(存储器容量的大小等)、以及片内集成的外围接口的数量和功能上有所不同。

tinyAVR 系列的AVR 内部的资源相对少一些,引脚也少。适合应用在家用电器、简单的控制方面的应用,如:空调、冰箱、微波炉、烟雾报警器等。

mega 系列单片机的性能不仅优越,同时也有非常好的性能价格比。引脚数最少(28 个引脚)的ATmega8,目前在我国国内市场上的价格不超过10 元人民币,却有1K 的SRAM、8K 的Flash、512 个字节的E2PROM,2 个8 位和1 个16 位共3 个超强功能的定时器/计数器,以及USART、SPI、8 路10 位ADC、WDT、RTC、ISP、IAP、TWI(I2C)、片内高精度RC 振荡器等多种功能的接口和特性。

ATmega2560 是目前AVR 中配置最全、功能最强的一款。它的引脚数最多(100 个引脚),在片内集成了8K 字节的SRAM、256K 字节的Flash、4K 字节的EEPROM,支持64K 空间的外部并行扩展,2 个8 位和4 个16 位共6 个超强功能的定时器/计数器,以及4 路USART、SPI、多路10 位ADC、WDT、RTC、ISP、IAP、TWI(I2C)、片内高精度RC 振荡器等多种功能的接口和特性,适合高档电子产品的应用。

AVR 采用了RISC 结构,其在速度、内存容量、外围接口的集成化程度、以及向串行扩展,更适合使用高级语言编程的等众多的特性,以及其所使用的开发技术和防真调试技术等方面,都充分体现出和代表了当前单片嵌入式系统发展的趋势。也正是由于这些显著特点,和具有极高的性价比,使得AVR 得到广泛的应用,在短时间内成为市场上的主流芯片之一。

3.1.2单片机的基本组成结构

单片机嵌入式系统的核心部件是单片机,其结构特征是将组成计算机的基本部件集成在一块晶体芯片上,构成一片具有特定功能的单芯片计算机—单片机。一片典型单片机芯片内部的基本组成结构如图2-1 所示。

图3-1典型单片机的基本组成结构

3.1.3 单片机基本单元与作用

下面分别对单片机芯片中所集成的各个组成部分予以简要介绍。

1.MCU 单元(Microcontroller Unit)

MCU 单元部分包括了CPU、时钟系统、复位、总线控制逻辑等电路。CPU 是按照面向测控对象、嵌入式应用的要求设计的,其功能有进行算术、逻辑、比较等运算和操作,并将结果和状态信息与存储器以及状态寄存器进行交换(读/写)。时钟和复位电路实现上电复位、信号控制复位,产生片内各种时钟及功耗管理等。总线控制电路则产生各类控制逻辑信号,满足MCU 对内部和外部总线的控制。其中,内部总线用以实现片内各单元电路的协调操作和数据传输,而外部总线控制用于单片机外围扩展的操作管理。

2. 片内存储器

单片机的存储器一般分成程序存储器和数据存储器,它们往往构成相互独立的两个存储空间,分别寻址,互不干扰。在这一点上,与通用计算机系统的结构是不同的。

通用计算机系统通常采用“Von-Neumann”结构,在这种结构体系中采用了单一的数据总线用于指令和数据的存取,因此数据和指令是存放在同一个存储空间中的,CPU 使用同一条数据总线与数据和程序进行交换,如在计算机原理课程中介绍的8086/8088。而单片机的内部结构通常使用“Harvard”体系结构,在这种体系中采用分开的指令

和数据总线,以及分开的指令和数据地址空间。单片机采用Harvard 双(多)总线结构的优点是,指令和数据空间完全分开,分别通过专用的总线同CPU 交换,可以实

现对程序和数据的同时访问,提高了CPU 的执行速度和数据的吞吐率。

3.程序存储器

程序存储器用于存放嵌入式系统的应用程序。由于单片机嵌入式系统的应用程序在开发调试完成后不需要经常改变,因此单片机的程序存储器多采用只读型ROM 存储器,用于永久性的存储系统的应用程序。为适应不同产品、用户和不同场合的需要,单片机的程序存储器有以下几种不同形式:

①ROMLess 型。该种形式的单片机片内没有集成程序存储器,使用时必须在单片机外部扩展一定容量的EPROM 器件。因此,使用这种类型的单片机就必须使用并行扩展总线,增加芯片,增加了硬件设计的工作量。

②EPROM 型。单片机片内集成了一定数量的EPROM 存储器用于存放系统的应用程序。这类单片机芯片的上部开有透明窗口,可通过约15 分钟的紫外线照射来擦除存储器中的程序,再使用专用的写入装置写入程序代码和数据,写入次数一般为几十次。

③MaskROM 型。使用种类型的单片机时,用户要将调试好的应用程序代码交给单片机的生产厂家,生产商在单片机芯片制造过程的掩膜工艺阶段将程序代码掩膜到程序存储器中。这种单片机便成为永久性专用的芯片,系统程序无法改动,适合于大批量产品的生产。

④OTPROM 型。这种类型的单片机与MaskROM 型的单片机有相似的特点。生产商提供新的单片机芯片中的程序存储器可由用户使用专用的写入装置一次性编程写入

程序代码,写入后也无法改动了。

⑤FlashROM 型。这是一种可供用户多次擦除和写入程序代码的单片机。它的程序存储器采用快闪存储器(FlashMemory),现在可实现大于1 万次的写入操作。

内部集成FlashROM 型单片机的出现,以及随着Flash 存储器价格的下降,使得使用FlashROM 的单片机正在逐步淘汰使用其它类型程序存储器的单片机。由于FlashROM 可多次擦除(电擦除)和写入的特性,加上新型的单片机又采用了在线下载ISP技术(In SystemProgram--既无需将芯片从系统板上取下,直接在线将新的程序代码写入单片机的程序存储器中。),不仅为用户在嵌入式系统的设计、开发和调试带来了极大的方便,而且也适用于大批量产品的生产,并为产品的更新换代提供了更广阔的空间。

4. 数据存储器

单片机在片内集成的数据存储器一般有两类:随机存储器RAM 和电可擦除存储器EEPROM。

①随机存储器RAM。在单片机中,随机存储器RAM 是用来存储系统程序在运行期间的工作变量和临时数据的。一般在单片机内部集成一定容量(32 字节至512 字节或更多)的RAM。这些小容量的数据存储器以高速RAM 的形式集成在单片机芯片内部,作为临时的工作存储器使用,可以提高单片机的运行速度。

②电可擦除存储器EEPROM。一些新型的单片机,在芯片中还集成了电可擦除存储器型EEPROM 的数据存储器。这类数据存储器用于存放一些永久或比较固定的系统参数,如放大倍率、电话号码、时间常数等。EEPROM 的寿命大于10 万次,具有掉电后不丢失数据的特点,并且通过系统程序可以随时修改,这些特性都给用户设计开发产品带来极大的方便和想象空间。

5. 输入/输出(I/O)端口

为了满足嵌入式系统“面向控制”的实际应用需要,单片机提供了数量众多、功能强、使用

①并行总线输入/输出端口(并型I/O 口)。用于外部扩展和扩充并行存储器芯片或

并行I/O 芯片等使用,包括数据总线、地址总线和读写控制信号等。灵活的输入/输出端口,简称I/O。端口的类型可分为以下几种类型:

②通用数字I/O 端口。用于外部电路逻辑信号的输入和输出控制。

③片内功能单元的输入/输出端口。如:定时器/计数器的计数脉冲输入,外部中断源信号的输入等。

④串行I/O 通信口。用于系统之间或与采用专用串行协议的外围芯片之间的连接和交换数据。如:UART 串行接口(RS-232),I2C 串行接口,SPI 串行接口,USB 串行口等。

⑤其它专用接口。一些新型的单片机还在片内集成了某些专用功能的模拟或数字的I/O端口,如A/D 输入、D/A 输出接口,模拟比较输入端口,脉宽调制(PWD)输出端口等。更有的单片机还将LCD 液晶显示器的接口也集成到单片机芯片中了。

为了减少芯片引脚的数量,又能提供更多性能的I/O 端口给用户使用,大多数的单片机都采用了I/O 端口复用技术,既某一端口,它即可作为一般通用的数字I/O 端口使用,也可作为某个特殊功能的端口使用,用户可根据系统的实际需要来定义使用。这样就为设计开发提供了方便,大大拓宽了单片机的应用范围。

6. 操作管理寄存器。

操作管理寄存器也是单片机芯片中的重要组成部分之一。它的功能是管理、协调、控制和操作单片机芯片中的各功能单元的使用和运行。这类寄存器的种类有:状态寄

存器、控制寄存器、方式寄存器、数据寄存器等等。

3.1.4 AVR 单片机的主要特点

AVR 单片机吸取了PIC 及8051 等单片机的优点,同时在内部结构上还作了一些重大改进,其主要的优点如下:

1.程序存储器为价格低廉、可擦写1 万次以上、指令长度单元为16 位(字)的FlashROM (即程序存储器宽度为16 位,按8 位字节计算时应乘2)。而数据存贮器为8 位。因此AVR 还是属于8 位单片机。

2.采用CMOS 技术和RISC 架构,实现高速(50ns)、低功耗(μA)、具有SLEEP(休眠)功能。AVR 的一条指令执行速度可达50ns(20MHz),而耗电则在1uA~2.5mA 间。AVR 采用Harvard结构,以及一级流水线的预取指令功能,即对程序的读取和数据的操作使用不同的数据总线,因此,当执行某一指令时,下一指令被预先从程序存储器中取出,这使得指令可以在每一个时钟周期内被执行。

3.高度保密。可多次烧写的Flash 且具有多重密码保护锁定(LOCK)功能,因此可低价快速完成产品商品化,且可多次更改程序(产品升级),方便了系统调试,而且不必浪费IC 或电路板,大大提高了产品质量及竞争力。

4.工业级产品。具有大电流10~20mA(输出电流)或40mA(吸电流)的特点,可直接驱动LED、SSR 或继电器。有看门狗定时器(WDT)安全保护,可防止程序走飞,提高产品的抗干扰能力。

超功能精简指令。具有32 个通用工作寄存器(相当于8051 中的32 个累加器),克服了单一累加器数据处理造成的瓶颈现象。片内含有128-4K 字节SRAM,可灵活使用指令运算,适合使用功能很强的C 语言编程,易学、易写、易移植。

5.程序写入器件时,可以使用并行方式写入(用编程器写入),也可使用串行在线下载(ISP)、在应用下载(IAP)方法下载写入。也就是说不必将单片机芯片从系统板上拆下拿到万用编程器上烧录,而可直接在电路板上进行程序的修改、烧录等操作,方便产品升级,尤其是对于使用SMD 表贴封装器件,更利于产品微型化。

6.通用数字I/O 口的输入输出特性与PIC 的HI/LOW 输出及三态高阻抗HI-Z 输入类同,同时可设定类同与8051 结构内部有上拉电阻的输入端功能,便于作为各种应用特性所需(多功能I/O 口),AVR 的I/O 口是真正的I/O 口,能正确反映I/O 口的输入/输出的真实情况。

7.单片机内集成有模拟比较器,可组成廉价的A/D 转换器。

8.像8051 一样,有多个固定中断向量入口地址,可快速响应中断,而不是像PIC 一样所有中断都在同一向量地址,需要以程序判别后才可响应,这会浪费且失去控制时机的最隹机会。

9.同PIC 一样,带有可设置的启动复位延时计数器。AVR 单片机内部有电源上电启动计数器,当系统RESET 复位上电后,利用内部的RC 看门狗定时器,可延迟MCU 正式开始读取指令执行程序的时间。这种延时启动的特性,可使MCU 在系统电源、外部电路达到稳定后再正式开始执行程序,提高了系统工作的可靠性,同时也可节省外加的复位延时电路。

10.具有多种不同方式的休眠省电功能和低功耗的工作方式。

11.许多AVR 单片机具有内部的RC 振荡器,提供1/2/4/8MHz 的工作时钟,使该类单片机无需外加时钟电路元器件即可工作,非常简单和方便。

12.有多个带预分频器的8 位和16 位功能强大的计数器/定时器(C/T),除了实现普通的定时和计数功能外,还具有输入捕获、产生PWM 输出等更多的功能。

13.性能优良的串行同/异步通讯USART 口,不占用定时器。可实现高速同/异步通信。

14.Mega8515 及Mega128 等芯片具有可并行扩展的外部接口,扩展能力达64KB。

15.工作电压范围宽2.7V~6.0V,具有系统电源低电压检测功能,电源抗干扰性能强。

16.有多通道的10 位A/D 及实时时钟RTC。许多AVR 芯片内部集成了8 路10 位A/D 接口,如:mega8、mega16等。

17.AVR 单片机还在片内集成了可擦写10 万次的EEPROM 数据存储器,等于又增加了一个芯片,可用于保存系统的设定参数、固定表格和掉电后的数据的保存。即方便了使用,减小了系统的空间,又大大提高了系统的保密性。

3.2 ATmega16 单片机

3.2.1 AVR 单片机的内核结构

为了提高MCU 并行处理的运行效率,AVR 单片机采用了程序存储器和数据存储器使用不同的存储空间和存取总线的Harvard 结构。算术逻辑单元(ALU)使用单级流水线操作方式对程序存储器进行访问,在执行当前一条指令的同时,也完成了从程序存储器中取出下一条将要执行指令的操作,因此执行一条指令仅需要一个时钟周期。

在32 个通用工作寄存器中,有6 个寄存器可以合并成为3 个16 位的,用于对数据存储器空间进行间接寻址的间接地址寄存器(存放地址指针),以实现高效的地址计算。这3 个16 位的间接地址寄存器称为:X 寄存器,Y 寄存器和Z 寄存器。其中Z 寄存器还能作为间接

寻址程序存储器空间的地址寄存器,用于在Flash 程序存储器空间进行查表等操作。AVR 的算术逻辑单元(ALU)支持寄存器之间,立即数与寄存器之间的算术与逻辑运算功能,以及单一寄存器操作。每一次运算操作的结果将影响和改变状态寄存

单片机原理及应用技术苏家建曹柏荣汪志锋课后习题参考答案

单片机原理及应用技术苏家建 课后习题参考答案 第三章MCS-51指令系统 3-1 MCS-51指令系统有哪几种寻址方式?按功能分类有哪几种指令? 3-2 设A=0FH,R0=30H,片内RAM的(30H)=0AH, (31H)=0BH, (32H)=0CH,下列程序段运行后的结果? MOV A,@R0 ;A=0AH MOV @R0,32H ;(30H)=0CH MOV 32H,A ;(32H)=0AH MOV R0,#31H ;R0=31H MOV A,@R0;A=(31H)=0BH 3-3 (1)R0的内容传送到R1 MOV A,R0 MOV R1,A (2)内部RAM 20H单元的内容传送到A MOV A,20H (3)外部RAM 30H单元的内容传送到R0 MOV R1,#30H MOVX A,@R1 MOV R0,A (4) 外部RAM 30H单元的内容传送到内部RAM 20H单元 MOV R1,#30H MOVX A,@R1 MOV 20H,A (5) 外部RAM 1000H单元的内容传送到内部RAM 20H单元 MOV DPTR,#1000H MOVX A,@DPTR MOV 20H,A (6)程序存储器ROM 2000H单元的内容传送到R1 MOV DPTR,#2000H CLR A MOVC A,@A+DPTR MOV R1,A (7) RAM 2000H单元的内容传送到内部RAM 20H单元 MOV DPTR,#2000H MOVX A,@DPTR MOV 20H,A (8) RAM 2000H单元的内容传送到外部RAM 30H单元 MOV DPTR,#2000H MOVX A,@DPTR MOV R0,#30H MOVX @R0,A (9) RAM 2000H单元的内容传送到外部RAM 1000H单元

基于51单片机的温度控制系统

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

毕业论文设计 基于51单片机的温度控制系统

摘要 在日常生活中温度在我们身边无时不在,温度的控制和应用在各个领域都有重要的作用。很多行业中都有大量的用电加热设备,和温度控制设备,如用于报警的温度自动报警系统,热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,这些都采用单片机技术,利用单片机语言程序对它们进行控制。而单片机技术具有控制和操作使用方便、结构简单便于修改和维护、灵活性大且具有一定的智能性等特 点,可以精确的控 制技术标准,提高了温控指标,也大大的提高了产品的质量和性能。 由于单片机技术的优点突出,智能化温度控制技术正被广泛地采用。本文介绍了基于单片机AT89C51 的温度控制系统的设计方案与软硬件实现。采用温度传感器DS18B20 采集温度数据,7段数码管显示温度数据,按键设置温度上下限,当温度低于设定的下限时,点亮绿色发光二极管,当温度高于设定的上限时,点亮红色发光二极管。给出了系统总体框架、程序流程图和Protel 原理图,并在硬件平台上实现了所设计功能。 关键词:单片机温度控制系统温度传感器

Abstract In daily life, the temperature in our side the ever-present, the control of the temperature and the application in various fields all have important role. Many industry there are a large number of electric heating equipment, and the temperature control equipment, such as used for alarm automatic temperature alarm systems, heat treatment furnace, used to melt metal crucible resistance furnace, and all kinds of different USES of temperature box and so on, these using single chip microcomputer, using single chip computer language program to control them. And single-chip microcomputer technology has control and convenient in operation, easy to modify and maintenance of simple structure, flexibility is large and has some of the intelligence and other characteristics, we can accurately control technology standard to improve the temperature control index, also greatly improve the quality of the products and performance. Because of the advantages of the single chip microcomputer intelligent temperature control technology outstanding, is being widely adopted. This paper introduces the temperature control based on single chip microcomputer AT89C51 design scheme of the system and the hardware and software implementation. The temperature sensor DS18B20 collection temperature data, 7 period of digital pipe display, the upper and lower limits of temperature button when temperature below the setting of the lower limit, light green leds, when the temperature is higher than the set on the limit, light red leds. Given the system framework and program flow chart and principle chart, and in Protel hardware platform to realize the function of the design. Keywords:SCM Temperature control system Temperature sensors

基于单片机的温度测量系统设计

基于STC单片机的温度测量系统的研究 摘要:本文针对现有温度测量方法线性度、灵敏度、抗振动性能较差的不足,提出了一种基于STC单片机,采用Pt1000温度传感器,通过间接测量铂热电阻阻值来实现温度测量的方案。重点介绍了,铂热电阻测量温度的原理,基于STC实现铂热电阻阻值测量,牛顿迭代法计算温度,给出了部分硬件、软件的设计方法。实验验证,该系统测量精度高,线性好,具有较强的实时性和可靠性,具有一定的工程价值。 关键词:STC单片机、Pt1000温度传感器、温度测量、铂热电阻阻值、牛顿迭代法。 Study of Temperature Measurement System based on STC single chip computer Zhang Yapeng,Wang Xiangting,Xu Enchun,Wei Maolin Abstract:A method to achieve temperature Measurement by the Indirect Measurement the resistance of platinum thermistor is proposed. It is realized by the single chip computer STC with Pt1000temperature sensor.The shortcomings of available methods whose Linearity, Sensitivity, and vibration resistance are worse are overcame by the proposed method. This paper emphasizes on the following aspects:the principle of temperature measurement by using platinum thermistor , the measurement of platinum thermistor’s resistance based on STC single chip computer, the calculating temperature by Newton Iteration Method. Parts of hardware and software are given. The experimental results demonstrate that the precision and linearity of the method is superior. It is also superior in real-time character and reliability and has a certain value in engineering application. Keywords: STC single chip computer,Pt1000temperature sensor,platinum thermistor’s resistance,Newton Iteration Method 0 引言 精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。 目前在国内,应用最广泛的测温方法有热电偶测温、集成式温度传感器、热敏电阻测温、铂热电阻测温四种方法。 (1) 热电偶的温度测量范围较广,结构简单,但是它的电动势小,灵敏度较差,误差较大,实际使用时必须加冷端补偿,使用不方便。 (2) 集成式温度传感器是新一代的温度传感器,具有体积小、重量轻、线性度好、性能稳定等优点,适于远距离测量和传输。但由于价格相对较为昂贵,在国内测温领域的应用还不是很广泛。 (3) 热敏电阻具有灵敏度高、功耗低、价格低廉等优点,但其阻值与温度变化成非线性关系,在测量精度较高的场合必须进行非线性处理,给计算带来不便,此外元件的稳定性以及互换性较差,从而使它的应用范围较小。 (4)铂热电阻具有输出电势大、线性度好、灵敏度高、抗振性能好等优点。虽然它 的价格相对于热敏电阻要高一些,但它的综合性能指标确是最好的。而且它在0~200°C范

单片机原理及应用总结

单片机原理及应用 第一章绪论 1.什么叫单片机?其主要特点有哪些? 在一片集成电路芯片上集成微处理器、存储器、I/O接口电路,从而构成了单芯片微型计算机,即单片机。 特点:控制性能和可靠性高、体积小、价格低、易于产品化、具有良好的性价比。 第二章80C51的结构和原理 1.80C51的基本结构 a.CPU系统 ●8位CPU,含布尔处理器; ●时钟电路; ●总线控制逻辑。 b.存储器系统 ●4K字节的程序存储器 (ROM/EPROM/FLASH,可外扩 至64KB); ●128字节的数据存储器(RAM,可 外扩至64KB); ●特殊功能寄存器SFR。 c.I/O口和其他功能单元 ●4个并行I/O口; ●2个16位定时/计数器; ●1个全双工异步串行口; ●中断系统(5个中断源,2个优先 级) 2.80C51的应用模式 a.总线型单片机应用模式 ◆总线型应用的“三总线”模式; ◆非总线型应用的“多I/O”模式 3.80C51单片机的封装和引脚 a.总线型DIP40引脚封装 ●RST/V PO:复位信号输入引脚/备用 电源输入引脚; ●ALE/PROG:地址锁存允许信号 输出引脚/编程脉冲输入引脚;●EA/V PP:内外存储器选择引脚/片 内EPROM编程电压输入引脚;●PSEN:外部程序存储器选通信号 输出引脚 b.非总线型DIP20封装的引脚 ●RST:复位信号输入引脚 4.80C51的片内存储器 增强型单片机片内数据存储器为256 字节,地址范围是00H~FFH。低128字节的配情况与基本型单片机相同。高128字节一般为RAM,仅能采用寄存器间接寻址方式询问。注意:与该地址范围重叠的特殊功能寄存器SFR 空间采用直接寻址方式询问。 5.80C51的时钟信号 晶振周期为最小的时序单位。一个时钟周期包含2个晶振周期。晶振信号12分频后形成机器周期。即一个机器周期包含12个晶振周期或6个时钟周期。 6.80C51单片机的复位 定义:复位是使单片机或系统中的其他部件处于某种确定的初始状态。 a.复位电路 两种形式:一种是上电复位;另一种是上电与按键均有效的复位。 b.单片机复位后的状态 单片机的复位操作使单片机进入初始化状态。初始化后,程序计数器 PC=0000H,所以程序从0000H地址单元开始执行。 特殊功能寄存器复位后的状态是确定的。P0~P3为FFH,SP为07H,SBUF 不定,IP、IE和PCON的有效位为0,其余的特殊功能寄存器的状态为00H.相应的意义为: ●P0~P3=FFH,相当于各口锁存器已 写入1,此时不但可用于输出,也 可以用于输入; ●SP=07H,堆栈指针指向片内RAM

单片机原理与应用技术教学大纲

《单片机原理与应用技术》教学大纲 一、课程名称 单片机原理与应用技术 二、先修课程 电子技术类基础课程和微机应用类基础课程 三、课程性质与任务 课程性质: 本课程是高职高专电子类相关专业的的一门专业课程。本大纲可作为(高中后大专、对口单招、五年制高职)层次学生的教学参考。 课程的任务: 它以MCS-51单片机为例,详细介绍片内结构、工作原理、接口技术和单片机在各领域中的应用。为学生进一步学习微机在智能仪表、工业控制领域中的应用技术奠定必要的基础。 四、课程教学目标 1、知识目标 (1)熟练掌握单片机内部硬件结构、工作原理及指令系统,掌握程序的设计基本方法,能够较熟练地设计常用的汇编语言源程序; (2)掌握单片机的接口技术,熟悉常用的外围接口芯片及典型电路。 (3)熟悉设计、调试单片机的应用系统的一般方法,具有初步的软、硬件设计能力。 (4)能够熟练地掌握一种单片机开发系统的使用方法。 2、能力目标 初步具备应用单片机进行设备技术改造、产品开发的能力。 五、教学内容 第一章微机基础知识 (一)教学目的 熟悉微处理器、微型机和单片机的概念及组成。掌握计算中常用数制及数制间的转换,了解BCD码和ASCII码。熟悉数据在计算机中的表示方法。 (二)教学重点与难点 重点:

计算中常用数制及数制间的转换。 难点: 微处理器、微型机和单片机的概念及组成,微机的工作过程 (三)教学内容 1、微处理器、微机和单片机的概念; 2、微机的工作过程。 (四)本章小结 1、数制有二进制、十进制、十六进制等。 2、计算机系统中常包含有地址总线、数据总线、控制总线 3、微处理器是由运算器、控制器两部组成 4、单片机是由输入、输出、接口电路、时钟电路、存储器、运算器、控 制器几部分组成 (五)思考题 1、试用计算机汇编语言指令完成12*34+56÷7-8的计算步骤? 第二章 MCS-51单片机的结构和原理 (一)教学目的 熟悉MCS- 51单片机内部结构、引脚功能以及单片机执行指令的时序;掌握单片机存储器结构和输入/输出端口结构特点。掌握堆栈的使用。 (二)教学重点与难点 重点: 1、8051的存储器配置及特点; 2、21个特殊功能寄存器(SFR)的功能; 3、堆栈的概念; 4、复位电路。 难点: 1、MCS- 51单片机内部结构; 2、CPU时序。 (三)教学内容

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

单片机原理与应用技术实验报告(实验项目:发光二极管闪烁)

***数学计算机科学系实验报告 专业:计算机科学与技术班级:实验课程:单片机原理与应用技术姓名:学号:实验室:硬件实验室 同组同学: 实验时间:2013年3月20日指导教师签字:成绩: 实验项目:发光二极管闪烁 一实验目的和要求 1.使用单片机的P1.5口做输出口,使该位发光二极管闪烁。 2.掌握单片机使用。 二实验环境 PC机一台,实验仪器一套 三实验步骤及实验记录 1.在pc机上,打开Keil C。 2.在Keil C中,新建一个工程文件,点击“Project->New Project…”菜单。 3.选择工程文件要存放的路径 ,输入工程文件名 LED, 最后单击保存。 4. 在弹出的对话框中选择 CPU 厂商及型号。 5.选择好 Atmel 公司的 89c51 后 , 单击确定。 6.在接着出现的对话框中选择“是”。 7.新建一个 C51 文件 , 点击file菜单下的NEW,或单击左上角的 New File快捷键。 8.保存新建的文件,单击SAVE。 9.在出现的对话框中输入保存文件名MAIN.C,再单击“保存”。 10.保存好后把此文件加入到工程中方法如下 : 用鼠标在 Source Group1 上单击右键 , 然后再单击 Add Files to Group ‘Source Group 1'。 11.选择要加入的文件 , 找到 MAIN.C 后 , 单击 Add, 然后单击Close。 12.在编辑框里输入代码如下: #include "reg51.h" //包含头文件 sbit led=P1^5; //表示用led等效于P1^5, P1^0就是指头文件里定义的P1寄存器的第5BIT #define uchar unsigned char #define uint unsigned int

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

《单片机原理及应用》教学大纲

《单片机原理及应用》教学大纲 大纲说明 课程代码:3335014 总学时:48学时(讲课40学时,实验8学时) 总学分:3 课程类别:专业模块选修课 适用专业:机械设计制造及其自动化专业、电气工程及自动化专业 预修要求:数字电子技术、模拟电子技术、电路、计算机基础、微机原理、汇编语言 一、课程的性质、目的、任务: 性质:是机电一体化专业的专业必修课。是一门面向应用的、具有很强实践性与综合性的课程。 目的:通过学习利于改善学生的知识结构,使其获得利用单片机解决某些工程技术问题所需的知识,为学习后续课程及在今后工作中利用单片机实现电器控制、过程控制、信息处理和管理奠定必要的基础。 任务:通过学习要求学生掌握单片机的工作原理,了解有关单片机的基本知识,掌握该单片机的指令系统及汇编语言设计的基本方法,掌握单片机的基本功能及典型接口技术,获得相关领域内应用单片机的初步能力。 二、课程教学的基本要求: 原理部分以讲授为主;程序设计提倡多读程序、多写、多上机;硬件接口应在掌握了硬件的工作原理的基础上结合实验提高动手能力;教学手段应多样化避免单调的教学模式;实验环节重点学习单片机的硬件组成、工程应用及系统开发;课后作业的主要目的是掌握本章的学习要点,巩固前面所学的内容,为下一章学习做好准备;考试采用闭卷理论考试,结合实验和平时成绩,在内容上尽量体现单片机的基本常识性问题,结合实际,做到质、量结合。 三、大纲的使用说明: 本课程的先修课程为:《电路》《电子技术》《计算机基础》《程序设计》《微机原理》;电子机械专业学生应掌握大纲所要求的大部分内容;课程可根据总课时数而定。 大纲正文 第一章绪论学时:1学时(讲课1学时实验0学时)本章讲授要点:有关微型机的基本知识,包括分类、结构和组成,以及单片机的结构、典型产品及应用,单片机应用系统开发。 重点:单片机的特点、开发方式。 难点:单片机开发方式。 §1.1 电子计算机的发展概述 §1.2 单片机的发展过程及产品近况 §1.3 单片机的特点及应用领域

基于单片机水温控制系统

基于单片机水温控制系统 摘要:随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。本设计以保质、节能、安全和方便为基准设计了一套电热壶水温控制系统,能实现在40℃~90℃X围内设定控制温度,且95℃时高温报警,十进制数码管显示温度,在PC机上显示温度曲线等功能,并具有较快响应与较小的超调。整个系统核心为SPCE061A,前向通道包括传感器及信号放大电路,按键输入电路;后向通道包括三部分:LED显示电路,上位机通信电路以及控制加热器的继电器驱动电路。利用SPCE061A的8路10位精度的A/D转换器,完成对水温的实时采样与模数转换,通过数字滤波消除系统干扰,并对温度值进行PID运算处理,以调节加热功率大小。同时在下位机上通过数码管显示当前温度,通过USB接口传送信息至上位机,可以直接在PC端观察温度的变化曲线,并根据需要进行相应的数据分析和处理,由此完成对水温的采样和控制。通过验证取得了较满意的结果。

关键词:码分多址、walsh扩频、pn扩频、电路设计、程序设计、仿真 目录 1 引言1 1.1水温控制系统概述1 1.2本设计任务和主要内容2 2 基于单片机水温控制系统设计过程2 2.1水温控制系统总体框图2 2.2总体方案论证3 2.3 各部分电路方案论证4 2.4键盘及数字显示结合5 2.5温度设定和传送电路6 3硬件电路设计与计算6 3.1 温度采样和转换电路6 3.2 温度控制电路8 3.3 单片机控制部分9 3.4键盘及数字显示部分9 参考文献9

水温控制在工业及日常生活中应用广泛,分类较多,不同水温控制系统的控制方法也不尽相同,其中以PID控制法最为常见。单片机控制部分采用AT89C51单片机为核心,采用软件编程,实现用PID算法来控制PWM波的产生,进而控制电炉的加热来实现温度控制。然而,单纯的PID算法无法适应不同的温度环境,在某个特定场合运行性能非常良好的温度控制器,到了新环境往往无法很好胜任,甚至使系统变得不稳定,需要重新改变PID 调节参数值以取得佳性能。 本文首先用PID算法来控制PWM波的产生,进而控制电炉的加热来实现温度控制。然后在模型参考自适应算法MRAC基础上,用单片机实现了自适应控制,弥补了传统PID控制结构在特定场合下性能下降的不足,设计了一套实用的温度测控系统,使它在不同时间常数下均可以达到技术指标。此外还有效减少了输出继电器的开关次数,适用于环境参数经常变化的小型水温控制系统。

单片机原理及应用习题答案

思考与练习题1 1.1单项选择题 (1)单片机又称为单片微计算机,最初的英文缩写是( D ) A.MCP B.CPU C.DPJ D.SCM (2)Intel公司的MCS-51系列单片机是( C )的单片机。 A.1位 B.4位 C.8位 D.16位 (3)单片机的特点里没有包括在内的是( C ) A.集成度高 B.功耗低 C.密封性强 D.性价比高 (4)单片机的发展趋势中没有包括的是( B ) A.高性能 B.高价格 C.低功耗 D.高性价比 (5)十进制数56的二进制数是( A ) A.00111000B B.01011100B C.11000111B D.01010000B (6)十六进制数93的二进制数是( A ) A.10010011B B.00100011B C.11000011B D.01110011B (7)二进制数11000011的十六进制数是( B ) A. B3H B.C3H C.D3H D.E3H (8)二进制数11001011的十进制无符号数是( B ) A. 213 B.203 C.223 D.233 (9)二进制数11001011的十进制有符号数是( B ) A. 73 B.-75 C.-93 D.75 (10)十进制数29的8421BCD压缩码是( A ) A.00101001B B.10101001B C.11100001B D.10011100B (11)十进制数-36在8位微机中的反码和补码是( D ) A.00100100B、11011100B B.00100100B、11011011B C.10100100B、11011011B D.11011011B、11011100B (12)十进制数+27在8位微机中的反码和补码分别是( C ) A.00011011B、11100100B B.11100100B、11100101B C.00011011B、00011011B D.00011011B、11100101B (13)字符9的ASCII码是( D ) A.0011001B B.0101001B C.1001001B D.0111001B (14)ASCII码1111111B的对应字符是( C ) A. SPACE B.P C.DEL D.{ (15)或逻辑的表达式是( B ) A.A?B=F B. A+B=F C. A⊕B=F D.(A?B)=F (16)异或逻辑的表达式是( C ) A.A?B=F B. A+B=F C. A⊕B=F D.(A?B)=F (17)二进制数10101010B与00000000B的“与”、“或”和“异或”结果是( B ) A.10101010B、10101010B、00000000B B.00000000B、10101010B、10101010B C.00000000B、10101010B、00000000B D.10101010B、00000000B、10101010B (18)二进制数11101110B与01110111B的“与”、“或”和“异或”结果是( D ) A.01100110B、10011001B、11111111B B.11111111B、10011001B、01100110B C.01100110B、01110111B、10011001B D.01100110B、11111111B、10011001B (19)下列集成门电路中具有与门功能的是( D ) A.74LS32 B.74LS06 C.74LS10 D.74LS08

基于单片机的温度控制系统设计

基于单片机的温度控制系统设计 摘要:这次综合设计,主要是设计一个温度控制系统,用STC89C52单片机控制,用智能温度传感器DS18B20对温度进行采集,用LCD1602液晶显示屏将采集到的温度显示出来。系统可以有效的将温度控制在设定的范围内。如果实际温度超出了控制范围,则系统会有自动的提示信号,并且相应的继电器会动作。我们的实际生活离不开对温度的控制,在很多情况下我们都要对我们所处的环境进行温度检测,然后通过一定的措施进行调节,从而达到我们自己想要的温度,使我们的生活环境更加适宜。 关键字:单片机;液晶显示屏;温度传感器;继电器;提示信号 Abstract:This integrated design is the design of a temperature control system. A smart temperature sensor DS18B20 is used to collect temperature and a LCD1602 Liquid Screen is used to display the collected temperature. The system controlled by STC89C52 can effectively control the temperature within the setting limits. If the actual temperature exceeds the setting range, the system will automatically give signal, and the corresponding Relay will take related actions. It is necessary for us to control the temperature because in many situations the temperature around us is not proper for us. So we need to detect it and take some actions to adjust it to the temperature we want to make the environment around us better. Key Words:DS18B20;LCD1602;STC89C52;Relay;Signal 引言

单片机原理及应用作业答案

作业答案0-1 绪论 1.单片机是把组成微型计算机的各功能部件即(微处理器(CPU))、(存储器(ROM和RAM))、(总线)、(定时器/计数器)、(输入/输出接口(I/O口))及(中断系统)等部件集成在一块芯片上的微型计算机。 2.什么叫单片机其主要特点有哪些 解: 将微处理器(CPU)、存储器(存放程序或数据的ROM和RAM)、总线、定时器/计数器、输入/输出接口(I/O口)、中断系统和其他多种功能器件集成在一块芯片上的微型计机,称为单片微型计算机,简称单片机。 单片机的特点:可靠性高、便于扩展、控制功能强、具有丰富的控制指令、低电压、低功耗、片内存储容量较小、集成度高、体积小、性价比高、应用广泛、易于产品化等。 第1章 MCS-51单片机的结构与原理 15. MCS-51系列单片机的引脚中有多少根I/O线它们与单片机对外的地址总线和数据总线之间有什么关系其地址总线和数据总线各有多少位对外可寻址的地址空间有多大 解: MCS-51系列单片机有4个I/O端口,每个端口都是8位双向口,共占32根引脚。每个端口都包括一个锁存器(即专用寄存器P0~P3)、一个输入驱动器和输入缓冲器。通常把4个端口称为P0~P3。在无片外扩展的存储器的系统中,这4个端口的每一位都可以作为双向通用I/O端口使用。在具有片外扩展存储器的系统中,P2口作为高8位地址线,P0口分时作为低8位地址线和双向数据总线。 MCS-51系列单片机数据总线为8位,地址总线为18位,对外可寻址空间为64KB。25. 开机复位后,CPU使用的是哪组工作寄存器(R0-R n)它们的地址是什么CPU如何确定和改变当前工作寄存器组(R0-R n) 解: 开机复位后,CPU使用的是第0组工作寄存器。它们的地址是00H-07H。CPU通过对程序状态字PSW中RS1和RS0的设置来确定和改变当前工作寄存器组。 27. MCS-51单片机的时钟周期、机器周期、指令周期是如何定义的当主频为12MHz的时候,一个机器周期是多长时间执行一条最长的指令需要多长时间 解:

单片机原理及应用实验报告

单片机原理实验报告 专业:计算机科学与技术 学号: :

实验1 计数显示器 【实验目的】 熟悉Proteus仿真软件,掌握单片机原理图的绘图方法 【实验容】 (1)熟悉Proteus仿真软件,了解软件的结构组成与功能 (2)学习ISIS模块的使用方法,学会设置图纸、选元件、画导线、修改属性等基本操作 (3)学会可执行文件加载及程序仿真运行方法 (4)理解Proteus在单片机开发中的作用,完成单片机电路原理图的绘制【实验步骤】 (1)观察Proteus软件的菜单、工具栏、对话框等基本结构 (2)在Proteus中绘制电路原理图,按照表A.1将元件添加到编辑环境中(3)在Proteus中加载程序,观察仿真结果,检测电路图绘制的正确性 表A.1

Switches&Relays BUT BUTTON 【实验原理图】 【实验源程序】 #include sbit P3_7=P3^7; unsigned char x1=0;x2=0 ; unsigned char count=0; unsigned char idata buf[10]= {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; void delay(int time) { int k,j;

for(;time<0;time--) for(k=200;k>0;k--) for(j=500;j<0;j--); } void init() { P0=buf[x1]; delay(10); P2=buf[x2]; delay(10); } void main() { init(); while(1) { x1=count/10; x2=count%10; P0=buf[x1]; delay(10);

单片机温度测控系统

单片机课程设计报告 题目:单片机温度测控系统 设计要求 系统要求实现温度的测量控制 转换精度:8位 转换范围:0℃——+128℃ 转换误差:≤1摄氏度 设计目的 通过采用单片机实现系统功能的设计实习,要达到理论上巩固既学知识,实践上丰富设计经验,并通过设计过程中暴露出来的一些问题,达到优化知识结构、丰富动手思维能力。同时,通过对设计中遇到的各种未知知识及设计技巧的学习和解决,更好的培养学生的自学能力。通过以分组的形式,来培养学生的团结互助,相互学习补充。这样,不仅在学习上达到的学生间、知识间的融合,更增进了学生的融洽,为即将步入社会的大四学生打下良好的基础。 设计思想 框图:

说明:该测量系统由单片机实现烧水锅炉各功能的控制。 锅炉具有自动加水,沸水控制,加热控制等功能。初始化单片机时系统进入锅炉加水功能,当水位达到上限水位时,锅炉产生一个中断脉冲中断单片机,跳出加水,进入单片机控制锅炉加热功能,当锅炉中水的温度达到80度时,降低加热电压,并允许使用锅炉中的水。当锅炉中的水用至低于下限水位时,锅炉同样会产生一个中断脉冲中断单片机,回复前面过程,再次进行加水控制,如此达到单片机控制热水锅炉的温度测控功能。其中,系统还设置有温度的三级加热控制。当温度高于80度时,控制由全电压加热转到半电压加热;当温度高于100度时,又会控制停止加热,即割断加热线路;当温度由高温再次降到90度以下时,系统又会重新启动半电压加热,如此反复控制。 各电路的设计 锅炉示意电路:

器时表高电平,水未淹没水位传感器时取低电平,这样当高水位有效时传感器产生的是上升沿,为了产生下降沿,在它的输出端接入了一个反相器。三级加热则是会产生三个级别的加热,分别是全压加热、半压加热和不加热,如图,D1和D2是控制加热电源的双向晶闸管,它们的功能如下:

单片机原理与应用技术实验报告(实验项目:定时器)

*****数学计算机科学系实验报告 专业:计算机科学与技术班级:实验课程:单片机原理与应用技术 姓名:学号:实验室:硬件实验室 同组同学: 实验时间:2013年3月20日指导教师签字:成绩: 实验项目:定时器 一实验目的和要求 定时器0实现1s定时,流水灯显示上的数据每秒加1。 二实验环境 PC机一台,实验仪器一套 三实验步骤及实验记录 1.在pc机上,打开Keil C。 2.在Keil C中,新建一个工程文件,点击“Project->New Project…”菜单。 3.选择工程文件要存放的路径 ,输入工程文件名 M, 最后单击保存。 4. 在弹出的对话框中选择 CPU 厂商及型号。 5.选择好 Atmel 公司的 89c51 后 , 单击确定。 6.在接着出现的对话框中选择“是”。 7.新建一个 C51 文件 , 点击file菜单下的NEW,或单击左上角的 New File快捷键。 8.保存新建的文件,单击SAVE。 9.在出现的对话框中输入保存文件名MAIN.C,再单击“保存”。 10.保存好后把此文件加入到工程中方法如下 : 用鼠标在 Source Group1 上单击右键 , 然后再单击 Add Files to Group ‘Source Group 1'。 11.选择要加入的文件 , 找到 MAIN.C 后 , 单击 Add, 然后单击Close。 12.在编辑框里输入代码如下: #include "reg51.h" //包含头文件 sbit LE1=P2^0; //位选573锁存器使能 sbit LE2=P2^1; //段选573锁存器使能 #define uchar unsigned char #define uint unsigned int

《单片机原理及应用》实验报告

《单片机原理及应用》 实验报告 2017/2018 学年第1 学期 系别计算机学院 专业软件工程 班级17软件工程班 姓名XXXXXX 学号8888888888 授课老师******

实验一:流水灯实验 1.实验目的 (1)学习编译和仿真环境使用 (2)学习P3口的使用方法 (3)学习延时子程序的编写 2实验内容 (1)通过对P3口地址的操作控制8位LED流水点亮,从而认识单片机的接口;(2)通过改变并行口输出电平控制LED灯的点亮与否,通过延时程序控制亮灯时间。 3.实验运行结果图 4.源代码 //流水灯实验 #include //包含单片机寄存器的头文件 sfr x=0xb0; //P3口在存储器中的地址是b0H,通过sfr可定义8051内核单片机 //的所有内部8位特殊功能寄存器,对地址x的操作也就是对P1口的

操作 /**************************************** 函数功能:延时一段时间 *****************************************/ void delay(void) { unsigned char i,j; for(i=0;i<255i++) for(j=0;j<255j++) ; //利用循环等待若干机器周期,从而延时一段时间 } /***************************************** 函数功能:主函数 ******************************************/ void main(void) { while(1) { x=0xfe; //第一个灯亮 delay(); //调用延时函数 x=0xfd; //第二个灯亮 delay(); //调用延时函数 x=0xfb; //第三个灯亮 delay(); //调用延时函数 x=0xf7; //第四个灯亮 delay(); //调用延时函数 x=0xef; //第五个灯亮 delay(); //调用延时函数 x=0xdf; //第六个灯亮

基于单片机的温度测量系统

基于51单片机的温度测量系统 来源:微计算机信息作者:赵娜赵刚于珍珠郭守清 摘要: 单片机在检测和控制系统中得到广泛的应用, 温度则是系统常需要测量、控制和保持的一个量。本文从硬件和软件两方面介绍了AT89C2051单片机温度控制系统的设计,对硬件原理图和程序框图作了简洁的描述。 关键词: 单片机AT89C2051;温度传感器DS18B20;温度;测量 引言 单片机在电子产品中的应用已经越来越广泛,并且在很多电子产品中也将其用到温度检测和温度控制。为此在本文中作者设计了基于atmel公司的AT89C2051的温度测量系统。这是一种低成本的利用单片机多余I/O口实现的温度检测电路, 该电路非常简单, 易于实现, 并且适用于几乎所有类型的单片机。 一.系统硬件设计 系统的硬件结构如图1所示。 1.1 数据采集 数据采集电路如图2所示, 由温度传感器DS18B20采集被控对象的实时温度, 提供给AT89C2051的P3.2口作为数据输入。在本次设计中我们所控的对象为所处室温。当然作为改进我们可以把传感器与电路板分离,由数据线相连进行通讯,便于测量多种对象。 DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出,支持3V~5.5V的电压范围,使系统设计更灵活、方便;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。以上特点使DS18B20非常适用于远距离多点温度检测系统。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20使电压、特性有更多的选择,让我们可以构建适合自己的经济的测温系统。如图2所示DS18B20的2脚DQ为数字信号输入/输出端;1脚GND为电源地;3脚VDD为外接供电电源输入端。 AT89C2051(以下简称2051)是一枚8051兼容的单片机微控器,与Intel的MCS-51完全兼容,内藏2K的可程序化Flash存储体,内部有128B字节的数据存储器空间,可直接推动LED,与8051完全相同,有15个可程序化的I/O点,分别是P1端口与P3端口(少了P3.6)。 1.2 接口电路 图2 单片机2051与温度传感器DS18B20的连接图 接口电路由ATMEL公司的2051单片机、ULN2003达林顿芯片、4511BCD译码器、串行EEPROM24C16(保存系统参数)、MAX232、数码管及外围电路构成, 单片机以并行通信方式

相关主题
文本预览
相关文档 最新文档