当前位置:文档之家› 复数的向量表示(一) 教案示例

复数的向量表示(一) 教案示例

复数的向量表示(一) 教案示例
复数的向量表示(一) 教案示例

复数的向量表示(一)·教案示例

目的要求

1.掌握复数的几何表示法,理解复平面、实轴、虚轴等概念的意义.

2.理解共轭复数的概念,了解共轭复数的几个简单性质.

内容分析

1.如图5-1,复数的几何表示就是指用复平面内的点Z(a,b)来表示复数z=a+bi.其中复数z=a+bi中的z,书写时用小写,复平面内的点Z(a,b)中的Z,书写时用大写.

建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴.复平面除了是用来表示复数的平面这一特点之外,其他与直角坐标系是一样的.比如它也有四个象限,在此平面内也可研究曲线方程、曲线性质等.

因为任何一个复数z=a+bi,都是由一个有序实数对(a,b)唯一确定,所以复数集与复平面内所有的点所成的集合是一一对应的.比如点(a,0)与实数a对应,点(0,b)

与纯虚数bi对应,点(a,b)与复数a+bi对应.

2.当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.共轭复数有许多有用的性质,随着后续学习,我们会逐步体会到应用这些性质来解题的优越性.

由共轭复数的定义,我们可以得到:

(4)互为共轭复数的两个复数在复平面内对应的点关于实轴对称.

3.本课补充了三道例题.例1是为巩固共轭复数和复数相等的定义等知识而设计的.例2涉及复数的几何表示及解析几何等有关知识,其难点是解一元二次不等式组.估计部分学生会有些困难,教学中,教师要根据实际情况对学生进行启发和指导.例3涉及共轭复数的性质及解析几何中曲线与方程等有关知识,解题的关键是将问题化归成学生熟悉的问题——解析几何中动点轨迹问题.

教学过程

1.复习提问

(1)虚数单位i的两个规定的内容是什么?

(2)填空:

复数z的代数形式是________;当________时,z为实数;当________时,z为虚数;当________时,z为纯虚数;z的实部为________;虚部为________.

(3)已知(x +3y)+(2x -10y)i =5-6i ,其中x ,y ∈R ,求x 与y .

(4)任意一个复数z =a +bi 与一个有序实数对(a ,b)之间有什么对应关系?

2.提出复平面等有关概念

在复习问题(4)的基础上,指出:任何一个复数z =a +bi 都可以由一个有序实数对(a ,b)唯一确定.而有序实数对(a ,b)与平面直角坐标系中的点是一一对应的.由此,可以建立复数集与平面直角坐标系中的点集之间的一一对应.

这时,提出复平面、实轴、虚轴等概念,并结合实例对这些概念进行一一说明. 由此可知,复数集C 和复平面内所有的点所组成的集合是一一对应的,即

这就是复数的几何意义.这时提醒学生注意复数z =a +bi 中的字母z 用小写字母表示,点Z(a ,b)中的Z 用大写字母表示.

3.课堂练习

教科书中课后练习第2、3题.

4.提出共轭复数的概念

(1)当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,虚部不为0的两个共轭复数也叫做互为共轭虚数.

(2)z z a bi 复数的共轭复数用表示,即如果=+,那么z z a bi =-

(3)Z z Z 52在复平面内,如果点表示复数,点表示复数,那么点和

点关于实轴对称,如图-所示.Z z Z

(4)z R z z (5)z {}z z 0z 0(6)(z)z 复数∈=.

复数∈纯虚数+=,且≠.=.

??

5.讲解例题.

例1 已知复数x 2+x -2+(x 2-3x +2)i(x ∈R)是4-20i 的共轭复数,求x 的值. 分析:根据互为共轭复数的定义,已知复数为4+20i .由复数相等的定义,可列出关于x 的两个方程,这两个方程的公共解就是所求x 的值.

解:因为4-20i 的共轭复数是4+20i ,根据复数相等的定义,可得

x x 24 x 3x 220 22+-=,①-+=.②????

? 方程①的解是x =-3或x =2;方程②的解是x =-3或x =6.

所以x =-3.

例2 实数x 分别取什么值时,复数z =x 2+x -6+(x 2-2x -15)i 对应的点Z 在(1)第三象限?(2)第四象限?(3)直线x -y -3=0上?

分析:因为x 是实数,所以x 2+x -6、x 2-2x -15也是实数.若复数z =a +bi ,则当a <0,且b <0时,复数z 对应的点在第三象限;当a >0,且b <0时,复数z 对应的点在第四象限;当a -b -3=0时,复数z 对应的点在直线x -y -3=0上.

解:(1)当实数x 满足

x x 60x 2x 15022+-<,--<.????

? 即-3<x <2时,点Z 在第三象限.

(2)当实数x 满足

x x 60x 2x 15022+->,--<.????

? 即2<x <5时,点Z 在第四象限.

(3)当实数x 满足

(x 2+x -6)-(x 2-2x -15)-3=0.

即x =-2时,点Z 在直线x -y -3=0上.

例3 已知复数3x +2y +(x 2+y 2-1)i(x ,y ∈R)的共轭复数是它本身,试在复平面内画出复数z =x +yi 对应的点Z 构成的图形.

分析:由条件求出x 、y 满足的曲线方程,就可得出点Z 在复平面内构成的图形. 解:因为x 、y ∈R ,所以3x +2y 、x 2+y 2-1都是实数.由题设及共轭复数的定义,得

x 2+y 2=1.

即点Z(x ,y)的坐标满足方程x 2+y 2=1.因此,点Z 构成的图形是一个以原点为圆心,以1为半径的单位圆,如图5-3所示.

6.课堂练习

教科书中的课后练习第1、4、5题.

7.归纳总结

本小节内容包括复平面、共轭复数的概念,复数的几何表示等内容.教师对这些内容作一次简明扼要的概述.

布置作业

教科书习题5.2第2、5题.

向量概念教学反思

向量概念教学反思 向量概念教学反思 向量是近代数学中重要和基本的数学概念之一,是沟通代数、几何与三角函数的一种工具。通过向量的学习,要求学生学会用向量方法解决某些简单的几何问题、力学问题与其他一些实际问题,运用数学思想、方法和知识,发展运算能力和解决实际问题的能力。课标规定为一个课时,下面从以下几个方面谈谈对这节课的反思:第一、引入形象生动,通过故事及动画引入激发学生的学习兴趣,了解学习向两的必要性,同时很好地突出了向量中“数”和“形”两层含义;贴近学生最近发展区。 第二、本节课概念较多,在处理教材时,我采用向量的有关概念到两个特殊向量,再到两种特殊关系进行讲解,条理清晰,一目了然。在讲解向量相关概念的时候,针对学生实际,列举简单实例对数量与向量的概念进行区别、辨析。讲解两个特殊向量与两个特殊关系时,通过分析判断,讲解清楚透彻。其中,对定义中的几个关键问题的解读非常到位,如:单位向量、平行向量等,都一一剖析,帮助学生深刻理解定义。师生互动较好,学生能很好地掌握向量的概念。 第三、问题设置层层递进,更方便于学生理解和掌握。通过对概念讲解、分析、思考、讨论,很好地引导学生针对问题进行思考、讨论,进一步解决问题,达到鼓励学生的良好效果,点评适宜,能及时落实所学知识。

平面向量该章节内容理论性强,抽象,解题方法独特。用学生的.话说:有些解法真有点“横空出世”,很难想到。平面向量虽然有一点难度,但给培养学生抽象思维能力,养成一个良好的分析问题的习惯提供良好的条件。在教学中,充分发挥学生的主体作用,显得犹为重要。否则就会变成老师唱独角戏。 第四:根据学生的特点和教学内容,来多角度,多层次的选择练习题。(口答,笔答,判断,选择,解答)为了活跃课堂气氛,还选择了问答接龙,抢答等形式。 这节课严谨流畅的同时,我认为还有以下方面有待提高: 1、在面向全体学生方面做得还不够,如果有更多的学生参与到教学中来,整个数学课堂将更加精彩 2、教学经验不足,调节课堂气氛的能力还要加强练习。 3、数学教学不要局限于单纯的知识教学,同时也要进行思想道德教育,教书育人是不分的。 教学是一门艺术,我深深感到自己的功力还欠火候,每一个建议对我来说都是一笔财富,我会吸收并利用在以后的课中。我希望在今后的教学中能够通过自己的努力来不断的修炼和完善自己。

高中数学讲义 第四章 平面向量与复数(超级详细)

高中数学复习讲义第四章平面向量与复数 【知识图解】 Ⅰ.平面向量知识结构表 Ⅱ.复数的知识结构表 【方法点拨】 由于向量融形、数于一体,具有几何形式与代数形式的“双重身份”,使它成为了中学数学知识的一个重要交汇点,成为联系众多知识内容的媒介。所以,向量成为了“在知识网络交汇处设计试题”的很好载体。从高考新课程卷来看,对向量的考查力度在逐年加大,除了直接考查平面向量外,将向量与解析几何、向量与三角等内容相结合,在知识交汇点处命题,既是当今高考的热点,又是重点。 复习巩固相关的平面向量知识,既要注重回顾和梳理基础知识,又要注意平面向量与其他知识的综合运用,渗透用向量解决问题的思想方法,从而提高分析问题与综合运用知识解决问题的能力,站在新的高度来认识和理解向量。 1.向量是具有大小和和方向的量,具有“数”和“形”的特点,向量是数形结合的桥梁,在处理向量问 题时注意用数形结合思想的应用. 2.平面向量基本定理是处理向量问题的基础,也是平面向量坐标表示的基础,它表明同一平面内任意向 量都可以表示为其他两个不共线向量的线性组合. 3.向量的坐标表示实际上是向量的代数形式,引入坐标表示,可以把几何问题转化为代数问题解决. 4.要了解向量的工具作用,熟悉利用向量只是解决平面几何及解析几何中的简单问题的方法.

第1课 向量的概念及基本运算 【考点导读】 1. 理解平面向量和向量相等的含义,理解向量的几何表示. 2. 掌握向量的加法、减法、数乘的运算,并理解其几何意义. 3. 了解平面向量基本定理及其意义. 【基础练习】 1.出下列命题:①若=a b ,则=a b ;②若A 、B 、C 、D 是不共线的四点,则DC AB =是四边形为平行四边形的充要条件;③若,==a b b c ,则=a c ;④=a b 的充要条件是=a b 且//a b ;⑤若//a b , //b c ,则//a c 。其中,正确命题材的序号是②③ 2. 化简AC -u u u r BD +u u u r CD -u u u r AB u u u r 得0 3.在四边形ABCD 中,=a +2b ,BC =-4a -b ,CD =-5a -3b ,其中a 、b 不共线,则四边形ABCD 为梯形 4.如图,设点P 、Q 是线段AB 的三等分点, 若OA u u u r =a ,OB u u u r =b ,则OP u u u r =21 33 +a b , OQ u u u r =12 33+a b (用a 、b 表示) 【范例导析】 例1 .已知任意四边形ABCD 的边AD 和BC 的中点分别为E 、F , 求证:2AB DC EF +=u u u r u u u r u u u r . 分析:构造三角形,利用向量的三角形法则证明. 证明:如图,连接EB 和EC , 由EA AB EB +=u u u r u u u r u u u r 和EF FB EB +=u u u r u u u r u u u r 可得,EA AB EF FB +=+u u u r u u u r u u u r u u u r (1) 由ED DC EC +=u u u r u u u r u u u r 和EF FC EC +=u u u r u u u r u u u r 可得,ED DC EF FC +=+u u u r u u u r u u u r u u u r (2) (1)+(2)得, 2EA ED AB DC EF FB FC +++=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r (3) ∵E 、F 分别为AD 和BC 的中点,∴0EA ED +=u u u r u u u r r ,0FB FC +=u u u r u u u r r , 代入(3)式得,2AB DC EF +=u u u r u u u r u u u r 点拨:运用向量加减法解决几何问题时,需要发现或构造三角形或平行四边形. 例1

复数的向量表示(一) 教案示例

复数的向量表示(一)·教案示例 目的要求 1.掌握复数的几何表示法,理解复平面、实轴、虚轴等概念的意义. 2.理解共轭复数的概念,了解共轭复数的几个简单性质. 内容分析 1.如图5-1,复数的几何表示就是指用复平面内的点Z(a,b)来表示复数z=a+bi.其中复数z=a+bi中的z,书写时用小写,复平面内的点Z(a,b)中的Z,书写时用大写. 建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴.复平面除了是用来表示复数的平面这一特点之外,其他与直角坐标系是一样的.比如它也有四个象限,在此平面内也可研究曲线方程、曲线性质等. 因为任何一个复数z=a+bi,都是由一个有序实数对(a,b)唯一确定,所以复数集与复平面内所有的点所成的集合是一一对应的.比如点(a,0)与实数a对应,点(0,b) 与纯虚数bi对应,点(a,b)与复数a+bi对应. 2.当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.共轭复数有许多有用的性质,随着后续学习,我们会逐步体会到应用这些性质来解题的优越性. 由共轭复数的定义,我们可以得到: (4)互为共轭复数的两个复数在复平面内对应的点关于实轴对称. 3.本课补充了三道例题.例1是为巩固共轭复数和复数相等的定义等知识而设计的.例2涉及复数的几何表示及解析几何等有关知识,其难点是解一元二次不等式组.估计部分学生会有些困难,教学中,教师要根据实际情况对学生进行启发和指导.例3涉及共轭复数的性质及解析几何中曲线与方程等有关知识,解题的关键是将问题化归成学生熟悉的问题——解析几何中动点轨迹问题. 教学过程 1.复习提问 (1)虚数单位i的两个规定的内容是什么? (2)填空: 复数z的代数形式是________;当________时,z为实数;当________时,z为虚数;当________时,z为纯虚数;z的实部为________;虚部为________.

向量的概念及表示优秀教案培训资料

向量的概念及表示 执教:张亮点评:孔凡海 【教学目标】 一、通过对实例的引入,了解向量概念产生的实际背景; 二、理解平面向量和向量相等的概念; 三、掌握向量的几何表示; 四、了解向量的长度、零向量、单位向量、平行向量等概念。 【重点难点】 重点:向量的概念和向量的几何表示; 难点:向量概念的理解 【点评】 知识技能,数学思考,问题解决,情感态度。目标明确有效,重点突出。为组织、引导学生开展有效学习活动奠定了方向。 向量是近代数学中重要和基本的数学概念之一,是沟通代数、几何的工具。向量由大小和方向两个因素确定,大小反映了向量数的特征,方向反映了向量形的特征,向量是集数形于一身的数学概念,是数学中数形结合思想的典型体现。向量之所以有用,关键是它具有一套良好的运算性质。由于向量的几何性质,以及向量、点、序偶之间的对应关系,于是,可以把图形的基本结构转化为向量运算,把图形的基本性质转化为向量的运算律,这就是几何问题代数化处理。这样,几何中添线、补图等技巧让位于代数中的通法,也就是作为思辩数学的几何问题让位于作为算法数学的代数问题。 【教学过程】 一、设置情境 情景在如图所示的情景中,猫能否追上老鼠? 合作探究看下面哪些量是与众不同的: (1)线段的长度(2)物体的质量 (3)物体的体积(4)物体所受重力 (前三个都是数量,即只有大小,而物体所受重力是矢量,既有大小又有方向)

【点评】 根据学生的生活经验,通过问题、设疑来创设思维的情境,引起认识的需要;通过揭露矛盾来引发思考,激发学习的兴趣。通过学生活动,感知数学,进行意义建构。 物理中的力、速度、加速度以及几何中的有向线段等概念是向量概念的原型。由物理上的位移、速度等引入向量概念,贴近学生已有的经验,比较自然,也体现了“最近发展区”原理的运用。 二、探索研究 问题一情景中向我们呈现了一个新的量,那么我们怎样用数学的形式对这一量进行描述呢? 1.向量的定义 既有大小又有方向的量叫向量。 师:你还能举出一些向量的例子吗? 师:在这一概念中你认为关键词有哪些? 板书向量的二要素大小和方向 师:我们怎样用符号来表示向量呢?重力加速度是一个向量,那么在物理中我们是用什么表示它的呢? 2.向量的表示方法 ①几何表示法——向量常用有向线段表示 师:那么有向线段是怎样表示向量的大小和方向呢? 有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。 以A为起点、B为终点的向量记为:。大小记为:││ 板书有向线段的三要素起点、终点、长度。 ②字母表示法:可表示为 练习1.温度有零上和零下之分,温度是向量吗?为什么? 2.向量和同一个向量吗?为什么? 师:我们只是用有向线段来表示向量,那么有向线段是向量吗?向量是有向线段吗? 【点评】

复数与向量的关系

重视复平面上复数与向量的联系作用 平面向量与复数是高中数学的重要内容,联系紧密,联系是在复平面进行的。随着知识的发展,相互对应相互促进是联系的主要体现。复数中的概念、运算等在向量中可以作出几何解释;向量的运算,可以对应有关的复数运算.复数与向量的这种联系,只要我们需要,可以将它们组合起来,在计算推理中发挥它们的联系作用,将是一件高效快乐的事情. 一 复数商与内积的联系 复数运算,向量运算之间的许多联系,在现有课本里是可以学习到的,下面我们来看复数商与内积的联系. 例1 复数z 1=a 1+b 1i, z 2=a 2+b 2i ,它们的三角式分别为z 1=|z 1|(cos θ1+isin θ1), z 2=|z 2|(cos θ2+isin θ2),对应的向量分别是1oz =(a 1,b 1)、2oz =(a 2,b 2). 然后复数作商: 代数式作商: 21z z =2221122121||)()(z i b a b a b b a a -++;-------------(1) 三角式作商: 21z z =| || |21z z [cos(θ1-θ2)+isin(θ1-θ2)],------(2) 比较(1)(2)式,可得 ||||21z z [cos(θ1-θ2)]=222121||z b b a a +, ……(3) ||||21z z [sin(θ1-θ2)]=222112| |z b a b a -………(4) 则从中可得下列变式: (1) 复数对应向量间的夹角余弦公式: cos(θ1-θ2| |||212121oz oz ? ,( 我們总可以适当选择θ1、θ2的主值范围,使得|θ 1-θ2 |∈),0[π,所以1oz 与2oz 的夹角就是|θ1-θ2|). (2) 向量内积: 1oz ·2oz =a 1a 2+b 1b 2=|1oz |·|oz 2|cos(θ1-θ2). 若对(4)取绝对值得到:|1oz ×2oz |=|a 1b 2 -a 2b 1|=|1|oz |·2|oz |sin(θ1-θ2)|, 这是空间xoy 平面上向量)0,,(),0,,(2121b b a a ==叉积的绝对值,是以线段oz 1、oz 2为邻边的平行四边形的面积公式. 复数商运算式中,隐含着向量间的夹角公式,向量的内积,平行四边形面积的公式. 若复数代数式i y x z i y x z 222111,-=+=的三角式分别是)sin (cos 1111θθi r z +=,

最新向量空间的定义教案(50分钟)

向量空间的定义教案 (50分钟)

“向量空间的定义”教案(50分钟) I 教学目的 1、使学生初步掌握向量空间的概念。 2、使学生初步了解公理化方法的含义。 3、使学生初步尝试现代数学研究问题的特点。 II 教学重点 向量空间的概念。 Ⅲ 教学方式 既教知识,又教思想方法。 Ⅳ 教学过程 第六章 向量空间 §6.1 定义和例子 一、向量空间概念产生的背景 1)αββα+=+ 数 a+b, ab; 2))()(γβαγβα++=++ 几何向量 αβα a ,+; 3)αα=+0 多项式 f(x)+g(x),af(x); 4)0='+αα 函数 f(x)+g(x),af(x); 5)βαβαa a a +=+)( 矩阵 A+B ,aA; 6)αααb a b a +=+)( …… 7))()(ααb a ab = 8)αα=1 二、向量空间的定义 定义1 令F 是一个数域,F 中的元素用小写拉丁字母a,b,c,…来表示。令V 是一个非空集合,V 中元素用小写希腊字母 ,,,γβα来表示。把V 中的元素叫做向量,而把F 中的元素叫做数(标)量,如果下列条件被满足,就称V 是F 上的向量空间: 1 在V 中定义了一个加法,对于V 中任意两个向量βα,,有唯一确定的向量与它们对应,这个向量叫做βα与的和,并且记作βα+。

即若,,V V ∈∈βα则V ∈+→βαβα),(。 2 有一个数量与向量的乘法,对于F 中每一个数a 和v 中每一个向量α有v 中唯一确定的向量与它们对应,这个向量叫做a 与α的积,并且记作αa 。 即V a a V F a ∈→∈∈ααα),(,,。 3 向量的加法和数与向量的乘法满足下列算律: 1)αββα+=+; 2))(γβαγβα++=++; 3)在V 中存在一个零向量,记作0,它具有以下性质:对于V 中每一个向量 α,都有αα=+0; 4)对于V 中每一向量α,在V 中存在一个向量α',使得0=+'αα,这样的α'叫做α的负向量。 5)βαβαa a a +=+)(; 6)ba a b a +=+αα)(; 7))()(ααb a ab =; 8)αα=1。 注1:定义1称为公理化定义,以公理化定义为基础进行研究的方法称为公理化方法。 公理化方法???形式以理化方法 实质公理化方法 注2:数域F 称为基础域。 三、向量空间的例子 例1 解析几何里,V 2或V 3对于向量的加法和实数与向量的乘法来说作成实数域上的向量空间。 例2 M mn (F )对于矩阵的加法和数乘来说作成F 上的向量空间。 特别,},,2,1,|),,,{(21n i F a a a a F i n n =∈=关于矩阵加法和数乘构成的F 上的向量空间称为F 上的n 元列空间。

复数的向量表示

复数的向量表示 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 教学目标 掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量; 理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系; 掌握复数的模的定义及其几何意义; 通过学习复数的向量表示,培养学生的数形结合的数学思想; 通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法. 教学建议 一、知识结构

本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式. 二、重点、难点分析 本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离.

三、教学建议 1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视. 2.理解并掌握复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系 如图所示,建立复平面以后,复数与复平面内的点形成—一对应关系,而点又与复平面的向量构成—一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形成—一对应关系.因此,我们常把复数说成点Z或说成向量.点、向量是复数的另外两种表示形式,它们都是复数的几何表示. 相等的向量对应的是同一个复数,复平面内与向量相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与

向量的概念及表示教案设计

向量的概念及表示教案设计 学习目标: 1、了解向量的实际背景,理解平面向量的概念和向量的几何表示; 2、掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念. 重、难点分析: 向量概念的引入及表示向量;向量、零向量、单位向量、相等向量、共线向量等概念的理解. 学习内容: 一、问题情景: 阅读下列材料,回答问题 战国后期,魏国国力渐衰,可是魏王想出兵攻伐赵国.谋臣季梁前来劝阻伐赵。 季梁为了打动魏王,来了个现身说法。季梁说:”今天我在来此的路上,遇见一个人坐车朝北而行,告诉臣说‘我想要去楚国。’臣说’楚国在南方,为什么要朝北走?’那人的回答是: ‘我的马好,跑得快。’ ‘我的路费多着呢。’ ‘我的马夫最会赶车。’ 问题①你觉得故事中的这个人最终得到的结果是什么? 问题②是什么原因导致了这个结果? 问题③我们在物理课中学过哪些与方向有关的量? 问题④它们有什么共同特点?如何表示? 二、新课讲授 学生本节课要弄清楚的问题: 1.什么是向量; 2.如何表示向量,什么是向量的模?

3.有哪些特殊的向量? 4.向量间有什么特殊的关系? (一)向量的概念及表示 向量的定义:既有大小又有方向的量。 双向活动:请同学们指出哪些量是有大小有方向的量,哪些是只有大小没有方向的量。(二)平面向量及基本概念的学习 1.数量与向量有何区别? 2.向量的表示:(1)几何法表示 (2)字母表示 (3)向量的模: 4.零向量和单位向量 (1)长度为零的向量为量向量。记作:;0的方向是任意的。 注意1:与0有何区别? (2)长度为1个单位长的向量称为单位向量。 注意2:零向量和单位向量都只限制了长度。 动动手: 右图中线段AB长度为1,请以点O为起点,作一个单位向量,把你作出来的结果跟旁边的同学进行比较,你有何发现? A 探究:同一个平面上同一起点的所有单位向

复数的向量表示数学教案

复数的向量表示数学教案 教学目标 (1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量; (2)理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系; (3)掌握复数的模的定义及其几何意义; (4)通过学习复数的向量表示,培养学生的数形结合的数学思想; (5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法. 教学建议 一、知识结构 本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式. 二、重点、难点分析 本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离. 三、教学建议 1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视. 2.理解并掌握复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系 如图所示,建立复平面以后,复数与复平面内的点形成―一对应关系,而点又与复平面的向量构成―一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形

向量的概念及表示教案(1)

向量的概念及表示 教学目标: 理解向量的概念,掌握向量的几何表示,了解零向量、单位向量、平行向量、相等向量等概念,并会辨认图形中的相等向量或作出与某一已知向量相等的向量. 教学重点: 向量概念、相等向量概念、向量几何表示. 教学难点: 向量概念的理解. 教学过程: Ⅰ.课题导入 在现实生活中,我们会遇到很多量,其中一些量在取定单位后用一个实数就可以表示出来,如长度、质量等. 还有一些量,如我们在物理中所学习的位移,是一个既有大小又有方向的量,这种量就是我们本章所要研究的向量. 向量是数学中的重要概念之一,向量和数一样也能进行运算,而且用向量的有关知识还能有效地解决数学、物理等学科中的很多问题,在这一章,我们将学习向量的概念、运算及其简单应用. 而这一节课,我们将学习向量的有关概念. Ⅱ.讲授新课 这一节,大家通过自学来熟悉相关内容,然后我们通过概念辨析例题来检验大家自学的效果. 1.向量的概念: (我们把既有大小又有方向的量叫向量) 2.向量的表示方法: ①用有向线段表示; ②用字母a 、b 等表示; ③用有向线段的起点与终点字母:AB →. 3.零向量、单位向量概念: ①长度为0的向量叫零向量,记作0; ②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都是只限制大小,不确定方向. 4.平行向量定义: ①方向相同或相反的非零向量叫平行向量; ②我们规定0与任一向量平行. 说明:(1)综合①、②才是平行向量的完整定义; (2)向量a 、b 、c 平行,记作a ∥b ∥c. 5.相等向量定义: 长度相等且方向相同的向量叫相等向量. 说明:(1)向量a 与b 相等,记作a =b ;

平面向量概念教案

平面向量概念教案 一.课题:平面向量概念 二、教学目标 1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。 2、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。 3、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣 三.教学类型:新知课 四、教学重点、难点 1、重点:向量及其几何表示,相等向量、平行向量的概念。 2、难点:向量的概念及对平行向量的理解。 五、教学过程 (一)、问题引入 1、在物理中,位移与距离就是同一个概念不?为什么? 2、在物理中,我们学到位移就是既有大小、又有方向的量,您还能举出一些这样的量不? 3、在物理中,像这种既有大小、又有方向的量叫做矢量。

在数学中,我们把这种既有大小、又有方向的量叫做向量。而把那些只有大小,没有方向的量叫数量。 (二)讲授新课 1、向量的概念 练习1 对于下列各量: ①质量②速度③位移④力⑤加速度⑥路程⑦密度⑧功⑨体积⑩温度 其中,就是向量的有:②③④⑤ 2、向量的几何表示 请表示一个竖直向下、大小为5N的力,与一个水平向左、大小为8N的力(1厘米表示1N)。思考一下物理学科中就是如何表示力这一向量的? (1)有向线段及有向线段的三要素 (2)向量的模 (4)零向量,记作____; (5)单位向量 练习2 边长为6的等边△ABC中,=__,与相等的还有哪些?

总结向量的表示方法: 1)、用有向线段表示。 2)、用字母表示。 3、相等向量与共线向量 (1)相等向量的定义 (2)共线向量的定义 六.教具:黑板 七.作业 八.教学后记

复数的各类表达形式

复数的各类表达形式 一、代数形式 表示形式:表示一个复数 复数有多种表示形式,常用形式z=a+bi 叫做代数形式。 二、几何形式 点的表示形式:表示复平满的一个点 在直角坐标系中,以x为实轴,y为虚轴,O为原点形成的坐标系叫做复平面,这样所有复数都可以复平面上的点表示被唯一确定。 复数z=a+bi 用复平面上的点z(a,b )表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。 三、三角形式 表示形式 复数z=a+bi化为三角形式,z=r(cosθ+sinθi)。式中r=∣z∣=√(a^2+b^2),是复数的模(即绝对值);θ是以x轴为始边,射线OZ为终边的角,叫做复数的辐角,记作argz,即argz=θ=arctan(b/a)。这种形式便于作复数的乘、除、乘方、开方运算。 四、指数形式 表示形式 将复数的三角形式z=r( cosθ+isinθ)中的cosθ+isinθ换为exp(iθ),复数就表为指数形 式z=rexp (iθ) 。

向量 在数学与物理中,既有大小又有方向的量叫做向量(亦称矢量),在数学中与之相对的是数量,在物理中与之相对的是标量。 向量的运算法则 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 OB+OA=OC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y)b=(x',y') 则a-b=(x-x',y-y'). 如图:c=a-b 以b的结束为起点,a的结束为终点。

完整word版平面向量的概念教案导学案4

平面向量的概念 一、教学目的 1、理解向量的有关概念及向量的几何表示. 2、理解共线向量、相等向量的概念. 3、正确区分向量平行与直线平行 二、教学重点 1、理解向量的有关概念及向量的几何表示 2、理解共线向量、相等向量的概念 三、教学难点 1、理解共线向量、相等向量的概念. 2、正确区分向量平行与直线平行 四、教学过程 1.向量的概念 定义:既有大小,又有方向的量叫做向量. 2.向量的表示 (1)有向线段:带有方向的线段叫做有向线段.包含三个要素:起点、方向、长度. →(2)几何表示:用有向线段表示,此时有向线段的方向就是向量的方向.向量AB的大小就是向量的长度(或称模),记作______. (3)字母表示:通常在印刷时,用黑体小写字母a,b,c,…表示向量,书写时,→→→可写成带箭头的小写字母a,b,c,…. 共线向量不一定是相等向量,而相等向量一定是共线向量

思考尝试 1.思考判断(正确的打“√”,错误的打“×”) (1)若a=b,b=c,则a=c.() (2)若a∥b,则a与b的方向一定相同或相反.() →→(3)若非零向量AB∥CD,那么AB∥CD.() (4)向量的模是一个正实数.() ) (.下列各量中不是向量的是:2. A.位移B.力 D .质量C.速度 3.设e,e是两个单位向量,则下列结论中正确的是() 21A.e=e B.e∥e2121D .以上都不对C.|e|=|e| 214. 向量a与任一向量b平行,则a一定是________. →5.如图,已知B、C是线段AD的两个三等分点,则与AB相等的向量有 ________. 类型1向量的概念 例1、给出下列命题: →→①若AB=DC,则A、B、C、D四点是平行四边形的四个顶点; →→②在?ABCD中,一定有AB=DC; ③若a=b,b=c,则a=c; ④若a∥b,b∥c,则a∥c. 其中所有正确命题的序号为________. 归纳 1.明确向量的长度、方向及零向量、平行向量、相等向量的概念及内涵,是正确判断此题的依据. 2.向量的相等具有传递性,但向量的平行不具有传递性,即“若a∥b,b∥c,则a∥c,”是错误的.当b=0时,a,c可以是任意向量,但若b≠0,则必有a

平面向量与复数

平面向量与复数 [A 组——“12+4”限时提速练] 一、选择题 1.(2016·全国乙卷)设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( ) A .-3 B .-2 C .2 D .3 解析:选A 由题意知(1+2i)(a +i)=a -2+(1+2a )i ,则a -2=1+2a ,解得a =-3,故选A . 2.(2016·全国丙卷)若z =4+3i ,则z |z | =( ) A .1 B .-1 C .45+35 i D .45-35 i 解析:选D ∵z =4+3i ,∴z =4-3i ,|z |=42+32=5, ∴z |z |=4-3i 5=45-35i. 3.(2016·武汉调研)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则OA ―→+OB ―→+OC ―→+OD ―→ 等于( ) A .OM ―→ B .2OM ―→ C .3OM ―→ D .4OM ―→ 解析:选D 因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以OA ―→+OC ―→ =2OM ―→,OB ―→+OD ―→=2OM ―→,所以OA ―→+OB ―→ +OC ―→+OD ―→=4OM ―→ ,故选D . 4.(2016·全国丙卷)已知向量BA ―→=????12,32,BC ― →=????32,12,则∠ABC =( ) A .30° B .45° C .60° D .120° 解析:选A 因为BA ―→=????12,32,BC ― →= ????32,12, 所以BA ―→·BC ―→ =34+34=32 .

复数与平面向量

一.复数小题 (一)命题特点和预测:7年7考,每年1题,主要考查复数的实部、虚部、共轭复数、纯虚数等概念、复数的加减乘除运算、复数的摸、复数相等的充要条件等知识,有时与简易逻辑结合,难度为基础题,18年仍将继续考查复数的有关概念与运算,难度仍为送分题. (二)历年试题比较: :若复数满足,则 :若复数满足,则 :若复数满足,则 :若复数,则. ... )设是实数,则 满足= ) ( C. ..

下面是关于复数 的四个命题: 复数 .-. 【解析与点睛】 (2017年)【解析】令 ,则由得,所以, 故正确; 当时,因为 ,而 知,故不正确; 当时,满足 ,但 ,故 不正确; 对于 ,因为实数的共轭复数是它本身,也属于实数,故 正确,故选B. (2016年)【解析】因为 所以 故选 B.

(三)命题专家押题 已知复数满足: 已知为虚数单位,复数的虚部为,则实数( B. C. D. ,则 已知复数满足是的共轭复数,则 若复数满足则其共轭复数 下面是关于复数的四个命题::;:;: 的共轭复数为的虚部为,其中真命题为( D. , 在复平面内对应的点关于轴对称,且,则复数复数

D. 已知复数(为虚数单位)给出下列命题:① ;② 的虚部为. C. 已知复数满足 为虚数单位),则 __________【详细解析】 1.【答案】C 4.【答案】C 【解析】由题意得,∴,∴ .选C . 5.【答案】A 【解析】∵=1﹣i ,∴z= ,∴,则在复平面内对应的

点的坐标为(),位于第一象限,故选:A. 6.【答案】C 【解析】因为的虚部为,所以是真命题,故选C. 7.【答案】D 【解析】由题意可得,,所以,对应点坐标(0,-1),选D. 8.【答案】C 二.平面向量小题 (一)命题特点和预测:分析近7年的高考题发现,7年7考,每年1题,主要考查平面向量的线性运算、平面向基本定理、平面向量向量数量积及利用数量积处理垂直、夹角和长度问题,多数为基础题,个别年份以三角形、四边形、梯形、圆等平面图形为载体,考查平面向量基本定理与平面向量数量积及其应用,难度为中档难度,18年高考在考查知识点方面、题型、难度方面仍将保持稳定,可能适度创新. (二)历年试题比较:

【高3数学】12-复数的向量表示及复数的三角形式

复数的向量表示及复数的三角形式 基础概念 一、基础知识概述 由于解方程的需要,我们引进了复数和及其四则运算,并建立了复数集C 和复平面内所有的点构成的集合之间的一一对立,我们还学过向量及其运算,在些基础上,我们现在一起来学习复数的向量表示、复数的三角形式及其运算、复数的指数形式、复数的运算的几何意义. 二、重点知识归纳及讲解 1、复数的向量表示: 复数集C 与复平面内的向量集合OZ (O 为原点)一一对应. 说明: (1)零向量表示复数0,相等的向量表示同一个复数; (2)向量OZ 的模r 就是复数bi a Z +=(a 、R b ∈)的模,即2 2||||b a r bi a Z += =+=. 2、复数的三角形式及运算: (1)复数的幅角:设复数bi a Z +=对应向量OZ ,以x 轴的正半轴为始边,向量OZ 所在的射线(起点为O )为终边的角θ,叫做复数Z 的辐角,记作ArgZ ,其中适合πθ20<≤的辐角θ的值,叫做辐角的主值,记作Z arg . 说明: 不等于零的复数Z 的辐角有无限多个值,这些值中的任意两个相差π2的整数倍. (2)复数的三角形式:)sin (cos θθi r +叫做复数bi a Z +=的三角形式,其中02 2 ≥+= b a r ,r a = θcos ,r b = θsin . 说明: 任何一个复数bi a Z +=均可表示成)sin (cos θθi r +的形式.其中r 为Z 的模,θ为Z 的一个辐角. (3)复数的三角形式的运算: 设)sin (cos θθi r Z +=,)sin (cos 1111θθi r Z +=,)sin (cos 2222θθi r Z +=.则 1)乘法:)]sin()[cos(21212121θθθθ+++=?i r r Z Z ;

向量的概念--教学设计

8.1 向量的概念 【教学目标】 1.知识目标: ○1能理解向量的概念,并能用两种方法表示向量; ○2明确向量的长度(模)、零向量、单位向量的概念; ○3掌握平行向量、共线向量和相等向量的概念,能根据图形判定向量是否平行(共线)、相等. 2.能力目标: 培养学生数形结合的能力,学会用类比和分类讨论的方法解决问题的能力.3.情感目标: 培养学生学以致用的科学探索精神. 【教学重点】 1.向量概念的引入,会表示向量. 2.理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念. 【教学难点】 1. “数”与“形”的结合思想 2. 平行(共线)向量和相等向量区别和联系. 【教学设计】 从“拔河比赛中作用力的大小及方向”“猫追老鼠”等实际问题引入概念.这样的导入即能吸引学生的注意力,又能帮助学生理解向量是既有大小又有方向的量。

向量不同于数量,数量是只有大小的量,而向量既有大小、又有方向.教材中用有向线段来直观的表示向量,有向线段的长度叫做向量的模,有向线段的方向表示向量的方向.数量可以比较大小,而向量不能比较大小,记号“a>b”没有意义,而“︱a︱>︱b︱”才是有意义的. 课堂教学安排

授新课 例题解 思考:0与0的含义与书写区别. 单位向量:长度等于1个单位长度的向量,叫做单位 向量. 思考:单位向量是否一定相等? 单位向量的大小是否一定相等? (三)、(重难点)向量之间的关系(方向) 4、平行向量定义: ①方向相同或相反的非零向量叫平行向量,记作 a//b。 ②我们规定0与任一向量平行 5共线向量与平行向量关系: 平行向量就是共线向量,这是因为任一组平行向量都 可移到同一直线上. 这样的设计使得学 生养成自学以及总 结的能力 概念的讲解 通过借助多媒体课 件的演示,讲解平行 向量、相等向量、共 线向量的概念 例1的设置考察了 学生对平行向量和 共线向量的理解 a r r r 记//b ://c 做 r r r 共向量 a,b,c为线 a r r r //b//c

平面向量概念教学设计

篇一:平面向量概念教案 平面向量概念教案 一.课题:平面向量概念 二、教学目标 1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。 2、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。 3、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣 三.教学类型:新知课 四、教学重点、难点 1、重点:向量及其几何表示,相等向量、平行向量的概念。 2、难点:向量的概念及对平行向量的理解。 五、教学过程 (一)、问题引入 1、在物理中,位移与距离是同一个概念吗?为什么? 2、在物理中,我们学到位移是既有大小、又有方向的量,你还能举出一些这样的量吗? 3、在物理中,像这种既有大小、又有方向的量叫做矢量。 在数学中,我们把这种既有大小、又有方向的量叫做向量。而把那些只有大小,没有方向的量叫数量。 (二)讲授新课 1、向量的概念 练习1 对于下列各量: ①质量②速度③位移④力⑤加速度⑥路程⑦密度⑧功⑨体积⑩温度 其中,是向量的有:②③④⑤ 2、向量的几何表示 请表示一个竖直向下、大小为5n的力,和一个水平向左、大小为8n的力(1厘米表示1n)。思考一下物理学科中是如何表示力这一向量的? (1)有向线段及有向线段的三要素 (2)向量的模 (4)零向量,记作____; (5)单位向量 练习2 边长为6的等边△abc中,=__,与相等的还有哪些? 总结向量的表示方法: 1)、用有向线段表示。 2)、用字母表示。 3、相等向量与共线向量 (1)相等向量的定义 (2)共线向量的定义 六.教具:黑板 七.作业 八.教学后记 篇二:平面向量的实际背景及基本概念教学设计 平面向量的实际背景及基本概念教学设计

平面向量与复数汇总

第四章平面向量与复数 【知识图解】 Ⅰ.平面向量知识结构表 Ⅱ.复数的知识结构表 【方法点拨】 由于向量融形、数于一体,具有几何形式与代数形式的“双重身份”,使它成为了中学数学知识的一个重要交汇点,成为联系众多知识内容的媒介。所以,向量成为了“在知识网络交汇处设计试题”的很好载体。从高考新课程卷来看,对向量的考查力度在逐年加大,除了直接考查平面向量外,将向量与解析几何、向量与三角等内容相结合,在知识交汇点处命题,既是当今高考的热点,又是重点。 复习巩固相关的平面向量知识,既要注重回顾和梳理基础知识,又要注意平面向量与其他知识的综合运用,渗透用向量解决问题的思想方法,从而提高分析问题与综合运用知识解决问题的能力,站在新的高度来认识和理解向量。 1.向量是具有大小和和方向的量,具有“数”和“形”的特点,向量是数形结合的桥梁,在处理向量问 题时注意用数形结合思想的应用. 2.平面向量基本定理是处理向量问题的基础,也是平面向量坐标表示的基础,它表明同一平面内任意向 量都可以表示为其他两个不共线向量的线性组合. 3.向量的坐标表示实际上是向量的代数形式,引入坐标表示,可以把几何问题转化为代数问题解决. 4.要了解向量的工具作用,熟悉利用向量只是解决平面几何及解析几何中的简单问题的方法. 第1课向量的概念及基本运算 【考点导读】 1.理解平面向量和向量相等的含义,理解向量的几何表示. 2.掌握向量的加法、减法、数乘的运算,并理解其几何意义.

3. 了解平面向量基本定理及其意义. 【基础练习】 1.出下列命题:①若=a b ,则=a b ;②若A 、B 、C 、D 是不共线的四点,则=是四边形为平行四边形的充要条件;③若,==a b b c ,则=a c ;④=a b 的充要条件是=a b 且//a b ;⑤若//a b , //b c ,则//a c 。其中,正确命题材的序号是②③ 2. 化简AC - BD + CD - AB 得0 3.在四边形ABCD 中,=a +2b ,=-4a -b ,=-5a -3b ,其中a 、b 不共线,则四边形ABCD 为梯形 4.如图,设点P 、Q 是线段AB 的三等分点, 若OA =a ,OB =b ,则OP =21 33 +a b , OQ =12 33+a b (用a 、b 表示) 5.设12,e e 是不共线的向量,已知向量121212AB 2,CB 3,CD 2=+=+=- e ke e e e e ,若A,B,D 三点共线,求k 的值为8k =- 【范例导析】 例1. 如图,ABCD 中,,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,=b ,试以a 、b 为基底表示DE 、BF 、CG 分析:本题可以利用向量的基本运算解决. 解:11 22 =-=+-=+-=- DE AE AD AB BE AD a b b a b 1122 =-=+-=+-=- BF AF AB AD DF AB b a a b a G 是△CBD 的重心,111 ()333 ==-=-+ CG CA AC a b 点拨: 利用一直向量表示未知向量的依据是平面向量基本定理,在解题中,应尽可能地转化到平行四边形 或三角形中,结合向量的加减法、数乘运算解决. 例2.已知任意四边形ABCD 的边AD 和BC 的中点分别为E 、F , 求证:2AB DC EF += . 分析:构造三角形,利用向量的三角形法则证明. 证明:如图,连接EB 和EC , 由EA AB EB += 和EF FB EB += 可得,EA AB EF FB +=+ (1) 例1 例2

相关主题
文本预览
相关文档 最新文档