当前位置:文档之家› (完整word版)高中数学-平面向量专题.doc

(完整word版)高中数学-平面向量专题.doc

(完整word版)高中数学-平面向量专题.doc
(完整word版)高中数学-平面向量专题.doc

第一部分:平面向量的概念及线性运算

一.基础知识自主学习

1.向量的有关概念

名称定义备注

向量既有又有的量;向量的大小叫做向量

平面向量是自由向量的(或称)

零向量长度为的向量;其方向是任意的记作 0

单位向量长度等于的非零向量 a 的单位向量为±

a 向量|a|

平行向量方向或的非零向量

0 与任一向量或共线共线向量的非零向量又叫做共线向量

相等向量长度且方向的向量两向量只有相等或不等,不能比

较大小

相反向量长度且方向的向量0 的相反向量为 0 2.向量的线性运算

向量运算定义法则 (或几何

运算律意义 )

加法求两个向量和的运算

求 a 与 b 的相反向量- b 减法的和的运算叫做 a 与 b

的差

(1)交换律:

a+ b= b+ a.

(2)结合律:

(a+ b)+ c= a+ (b+c).

a- b= a+ (- b)

法则

求实数λ与向量 a 的积的(1)|λa|= |λ||a|.

;λ(μa)=λμa;

数乘

(2)当λ>0 时,λa 的方向与 a 的方向

运算当λ<0 时,λa 的方向与 a 的方向;当λ (λ+μ)a=λa+μa;

=0 时,λa= 0. λ(a+ b)=λa+λb.

3.共线向量定理

向量 a(a≠0)与 b 共线的条件是存在唯一一个实数λ,使得 b=λa.

二.难点正本疑点清源

1.向量的两要素

向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,

即向量不能比较大小.

2.向量平行与直线平行的区别

向量平行包括向量共线 (或重合 )的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.

三.基础自测

→→→→

1.化简 OP- QP+ MS-MQ 的结果等于 ________.

2.下列命题:①平行向量一定相等;②不相等的向量一定不平行;③平行于同一个向量的两个向量是共线向量;

④相等向量一定共线.其中不正确命题的序号是_______.

→→→→→

3.在△ ABC 中, AB= c, AC= b.若点 D 满足 BD= 2DC ,则 AD = ________(用 b、 c 表示 ).

4.如图,向量a- b 等于 ()

A .- 4e1- 2e2

B .- 2e1-4e2

C. e1- 3e2 D . 3e1- e2

→→→

( ) 5.已知向量 a, b,且 AB= a+ 2b, BC=- 5a+ 6b,CD = 7a- 2b,则一定共线的三点是

A . A、 B、D

B .A、 B、C

C. B、 C、D D .A、 C、 D

四.题型分类深度剖析

题型一平面向量的有关概念

例 1给出下列命题:

→→

①若 |a|= |b|,则 a= b;②若 A,B,C,D 是不共线的四点,则AB= DC是四边形ABCD 为平行四边形的充要条件;③

若 a= b,b= c,则 a= c;④ a= b 的充要条件是|a|= |b|且a∥ b;⑤若 a∥ b,b∥c,则 a∥ c.其中正确的序号是________.

变式训练1判断下列命题是否正确,不正确的请说明理由.

(1)若向量 a 与 b 同向,且 |a|= |b|,则 a>b ;

(2)若 |a|= |b|,则 a 与 b 的长度相等且方向相同或相反;

(3)若 |a|= |b|,且 a 与 b 方向相同,则 a= b;

(4)由于零向量的方向不确定,故零向量不与任意向量平行;

(5)若向量 a 与向量 b 平行,则向量 a 与 b 的方向相同或相反;

→→

(6)若向量 AB与向量 CD是共线向量,则 A, B, C, D 四点在一条直线上;

(7)起点不同,但方向相同且模相等的几个向量是相等向量;

(8)任一向量与它的相反向量不相等

题型二平面向量的线性运算

例 2

→→→ 1

→ → 1 →→→→

如图,以向量 OA= a, OB= b 为边作 ?OADB , BM=BC, CN=CD,用 a、 b 表示 OM 、 ON、 MN.

3 3

变式训练

→ 2

→→2 △ABC 中, AD= AB,DE ∥BC 交 AC 于 E, BC 边上的中线 AM 交 DE 于 N.设 AB= a,AC= b,用 a、b

3

→ → → →→→

表示向量 AE、 BC、 DE 、 DN、 AM、 AN. 题型三平面向量的共线问题

例 3 设 e1 2

= 2e1

= e12

= 2e1

是两个不共线向量,已知 AB 2 , CD 2

, e - 8e , CB + 3e -e .

(1)求证: A、B、 D 三点共线;

(2)若 BF = 3e1- ke2,且 B、D 、 F 三点共线,求 k 的值.

变式训练3设两个非零向量 a 与 b 不共线,

→→→

(1)若 AB= a+ b, BC= 2a+8b, CD = 3(a-b).求证: A、 B、D 三点共线;

(2)试确定实数 k,使 ka+b 和 a+ kb 共线.

五.思想与方法

5.用方程思想解决平面向量的线性运算问题

试题:如图所示,在△

→ 1

→ 1

→→ABO 中, OC= OA, OD = OB, AD 与 BC 相交于点 M,设 OA= a,OB= b.试用 a 和 b

4 2

表示向量 OM .

六.思想方法感悟提高

方法与技巧

1.将向量用其它向量(特别是基向量)线性表示,是十分重要的技能,也是向量坐标形式的基础.

→→→→

2.可以运用向量共线证明线段平行或三点共线问题.如 AB∥ CD且 AB 与 CD 不共线,则 AB ∥CD ;若 AB∥ BC,则 A、B、C 三点共线.

失误与防范

1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量

是否也满足条件.要特别注意零向量的特殊性.

2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.

七.课后练习

1.给出下列命题:

①两个具有公共终点的向量,一定是共线向量;

②两个向量不能比较大小,但它们的模能比较大小; ③ λa = 0 (λ为实数 ),则 λ必为零;

④ λ, μ为实数,若 λa = μb ,则 a 与 b 共线. 其中错误命题的个数为 ()

A . 1

B . 2

C .3

D .4

2.若 A 、B 、C 、D 是平面内任意四点,给出下列式子: → → →

AD ;③ AC -

AB + CD = BC + DA ;② AC + BD = BC

→ → ) BD = DC + AB .其中正确的有 (

A . 0 个

B . 1 个

C .2 个

D . 3 个

3. 已知 O 、 A 、 B 是平面上的三个点,直线 AB 上有一点 C ,满足 2 AC

CB =0,则 OC 等于 (

)

A. 2OA → →

- OB B. OA + 2OB

2 OA - 1 → D. 1 2 →

C. 3OB

3 OA + 3OB 3

1

4.如图所示, 在△ ABC 中, BD =

DC ,AE = 3ED ,若 AB = a , AC =b ,则 BE 等于 ()

2

1 1

1 1

A. 3a +3b

B .- 2a + 4b

1 1

1 1 C.2a + 4b D .- 3a + 3b

,则四边形 ABCD 的形状是 (

5. 在四边形 ABCD 中, AB =a + 2b, BC =- 4a -b , CD =- 5a - 3b A .矩形 B .平行四边形 C .梯形 uuur D .以上都不对

uuur uuur

6. AB =8, AC = 5,则 BC 的取值范围是 __________.

7.给出下列命题:

①向量 AB 的长度与向量 →

BA 的长度与向量 BA 的长度相等; ②向量 a 与 b 平行,则 a 与 b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同; ④两个有公共终点的向量,一定是共线向量;

→ → ⑤向量 AB 与向量 CD 与向量 CD 是共线向量,则点 A 、 B 、 C 、 D 必在同一条直线上.

其中不正确的个数为 ____________ .

8.如图,在△ ABC 中,点 O 是 BC 的中点 .过点 O 的直线分别交直线 AB 、AC 于不同的两点 M 、

→ AB = mAM ,

→ AC = nAN ,则 m + n 的值为 ________.

9.设 a 与 b 是两个不共线向量,且向量 a +λb 与- (b -2a)共线,则 λ= ________.

→ → 10.在正六边形 ABCDEF 中, AB = a , AF = b ,求 AC, AD ,AE.

11.如图所示,△ ABC 中,点 M 是 BC 的中点,点 N 在边 AC 上,且 AN =2NC , AM 与 BN 相交于点的值.

12.已知点 G 是△ ABO 的重心, M 是 AB 边的中点 .

→ →

( 1)求 GA +GB +GO ;

→ 1 1 (2) 若 PQ 过△ ABO 的重心 G,且 AO = a, OB = b , OP = ma , OQ = nb ,求证:

+ = 3.

)

N. 若

P ,求 AP ∶ PM

第二部分:平面向量的基本定理及坐标表示

一.基础知识 自主学习

1.两个向量的夹角

定义

→ →

已知两个 向量 a ,b ,作 OA = a ,OB =b ,则∠ AOB

= θ叫做向量 a 与 b 的夹角 (如图 )

范围

向量夹角 θ的范围是

,

当 θ= 时 ,两向量共线,

当 θ=

时,两向量垂直,记作 a ⊥b.

2.平面向量基本定理及坐标表示

(1) 平面向量基本定理

如果 e 1,e 2 是同一平面内的两个

向量,那么对于这一平面内的任意向量

a ,

一对实数 λ1, λ2,

使 a =

.其中,不共线的向量 e 1, e 2 叫做表示这一平面内所有向量的一组

(2) 平面向量的正交分解及坐标表示 把一个向量分解为两个 的向量,叫做把向量正交分解. (3)平面向量的坐标表示

①在平面直角坐标系中,分别取与

x 轴、 y 轴方向相同的两个单位向量

i ,j 作为基底,对于平面内的一个向量

a ,

由平面向量基本定理可知,有且只有一对实数 x ,y ,使 a =xi + yj ,这样,平面内的任一向量

a 都可由 x ,y 唯一确定,

把有序数对

叫做向量 a 的坐标,记作 a =

,其中

叫做 a 在 x 轴上的坐标,

叫做 a 在 y 轴上的坐标.

→ →

②设 OA = xi +yj ,则向量 OA 的坐标 (x , y)就是 的坐标,即若 OA = (x ,y),则 A 点坐标为

,反之亦成

立. (O 是坐标原点 )

3.平面向量坐标运算

(1) 向量加法、减法、数乘向量及向量的模设 a = (x 1, y 1) ,b = (x 2, y 2),则 a + b = ,a - b =

λa=

,|a|=

.

(2) 向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.

②设 A(x 1 1

→ →

2 2

= , |AB .

, y ), B(x , y ),则 AB

|=

4.平面向量共线的坐标表示 :设 a = (x 1, y 1), b = (x 2, y 2),其中 b ≠ 0a.∥ b?

.

二.难点正本

疑点清源

1.基底的不唯一性

只要两个向量不共线, 就可以作为平面的一组基底, 对基底的选取不唯一, 平面内任意向量 a 都可被这个平面的一组基

底 e 1,e 2 线性表示,且在基底确定后,这样的表示是唯一的.

2.向量坐标与点的坐标的区别

→ a 唯一确定,此时点 A 的坐标与 a 的坐

在平面直角坐标系中,以原点为起点的向量 OA = a ,点 A 的位置被向量 标统一为 (x ,y),但应注意其表示形式的区别,如点 →

A(x , y),向量 a =OA = (x , y).

→ → → → →

当平面向量 OA 平行移动到 O 1 1时,向量不变即 O 1 A 1= OA = (x , y),但 O 1 1的起点 O 1 和终点 1

的坐标都发生了变

A

A A 化.

三.基础自测

1.已知向量a= (2,- 1), b=(- 1, m),c= (- 1,2),若 (a+b) ∥c,则 m= ________.

2.已知向量a= (1,2), b= (- 3,2),若 ka+ b 与 b 平行,则k= ________.

3.设向量 a= (1,- 3), b= (- 2,4), c=(- 1,- 2).若表示向量4a、 4b-2c、 2(a- c)、 d 的有向线段首尾相接能构成四边形,则向量 d= ____________.

→→

4.已知四边形 ABCD 的三个顶点 A(0,2), B(- 1,- 2), C(3,1) ,且 BC= 2AD ,则顶点 D 的坐标为()

A. 2,7

B. 2,-

1 2 2

C. (3,2) D. (1,3)

5.已知平面向量 a= (x,1), b=(- x, x2) ,则向量 a+ b()

A .平行于 y 轴

B .平行于第一、三象限的角平分线

C.平行于 x 轴 D .平行于第二、四象限的角平分线

四.题型分类深度剖析

题型一平面向量基本定理的应用

例 1

→→→ →如图,在平行四边形ABCD 中, M, N 分别为 DC,BC 的中点,已知 AM= c, AN= d,试用 c,d 表示 AB, AD.

→→→→

变式训练 1 如图, P 是△ ABC 内一点,且满足条件 AP+ 2BP+ 3CP= 0,设 Q 为 CP 的延长线与AB 的交点,令CP= p,→

试用 p 表示 CQ.

题型二向量坐标的基本运算

→→→→→

例2 已知 A(-2,4), B(3,- 1), C(- 3,- 4).设 AB= a,BC= b, CA= c,且 CM = 3c,CN=- 2b,

(1) 求 3a+ b- 3c;(2) 求满足 a= mb+ nc 的实数 m, n; (3) 求 M、 N 的坐标及向量 MN 的坐标.

变式训练 2 (1) 已知点 A、B、 C 的坐标分别为

→→ 1

A(2,- 4)、 B(0,6) 、 C(- 8,10),求向量 AB+ 2BC- AC的坐标;

2

1 1

(2) 已知 a= (2,1) , b= (- 3,4),求:① 3a+4b;② a- 3b;③2a-4b.

题型三平行向量的坐标运算

例 3平面内给定三个向量a= (3,2), b=(-1,2), c= (4,1),请解答下列问题:

(1) 求满足 a= mb+ nc 的实数 m, n; (2)若 (a+ kc)∥ (2b-a) ,求实数k;

(3) 若 d 满足 (d- c)∥ (a+ b),且 |d- c|= 5,求 d.

变式训练3已知a=(1,0),b=(2,1).

(1)求 |a+ 3b|; (2)当 k 为何实数时, ka- b 与 a+ 3b 平行,平行时它们是同向还是反向?

五.易错警示

8.忽视平行四边形的多样性致误

试题:已知平行四边形三个顶点的坐标分别为(- 1,0),(3,0) ,(1,- 5),求第四个顶点的坐标.

六.思想方法感悟提高

方法与技巧

1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解.

2.向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键,通过坐标运算可将一些几何问题转化为代数问题处理,从而向量可以解决平面解析几何中的许多相关问题.

3.在向量的运算中要注意待定系数法、方程思想和数形结合思想的运用.

失误与防范

1.要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大

小的信息.

1 1 2

2 ),则 a∥ b 的充要条件不能表示成x1

y1

,因为 x2 2

有可能等于0,所以应表示为 1 2

2.若 a=( x ,y ),b= (x ,y x2 y2 ,y x y y = 0.同时, a∥ b 的充要条件也不能错记为x x - y y = 0, x y - x y = 0 等.

- x2 1 1 21 2 1 1 2 2

七.课后练习

1.已知向量 a =(1,- 2), b =(1+ m,1- m),若 a ∥ b ,则实数 m 的值为 ( )

A .3

B .- 3

C . 2

D .- 2 2.已知平面向量 a = (1,2), b =(- 2, m) ,且 a ∥ b ,则 2a + 3b 等于 ( )

A .( -2,- 4)

B . (- 3,- 6)

C .(- 4,- 8)

D . (- 5,- 10)

3.设向量 a = (3, 3), b 为单位向量,且 a ∥ b ,则 b 等于 ( )

3 1 3 1 3 1

A.

2 ,- 2 或 - 2 , 2

B.

2 , 2

3

1

3 1

3 1

C. - 2 ,- 2

D. 2 , 2

- 2 ,- 2

4.已知向量 a = (1,- m),b = (m 2, m),则向量 a + b 所在的直线可能为 (

)

A . x 轴

B .第一、三象限的角平分线

C . y 轴

D .第二、四象限的角平分线

5.已知 A(7,1) 、B(1,4), 直线 y

1 →

ax 与线段 AB 交于 C,且 AC

2CB ,则实数 a 等于 ()

2

4

5

A . 2

B . 1

C. 5

D.3

1+ 1

的值等于 ________.

6.若三点 A(2,2) ,B(a,0), C(0, b) (ab ≠ 0)共线,则 a

b

7.已知向量 a =(1,2) ,b = (x,1), u = a +2b , v = 2a - b ,且 u ∥ v ,则实数 x 的值为 ________. 8.若向量 a ( x 3, x 2 3 x 4) 与 AB 相等,其中 A(1,2) , B(3 , 2) ,则 =

x ________.

9.若平面向量 a , b 满足 |a + b|= 1, a + b 平行于 y 轴, a = (2,- 1),则 b = ______________. 10. a = (1,2), b = (- 3,2),当 k 为何值时, ka +b 与 a - 3b 平行?平行时它们是同向还是反向?

11.三角形的三内角 A , B , C 所对边的长分别为 a , b , c ,设向量 m = (3c - b , a - b), n = (3a + 3b , c), m ∥n.

(1) 求 cos A 的值; (2) 求 sin(A +30°)的值.

12.在△ ABC 中, a 、 b 、c 分别是角 A 、 B 、 C 的对边,已知向量 m = (a , b),向量 n =(cos A , cos B),

向量 p = 2 2sin

B +

C , 2sin A ,若 m ∥ n , p 2

= 9,求证:△ ABC 为等边三角形. 2

第三部分:平面向量的数量积

一.基础知识 自主学习

1.平面向量的数量积

已知两个非零向量

a 和

b ,它们的夹角为 θ,则数量 _______叫做 a 和 b 的数量积 (或内积 ),记作 ________________.

规定:零向量与任一向量的数量积为

____.

两个非零向量 a 与 b 垂直的充要条件是

,两个非零向量 a 与 b 平行的充要条件是

.

2.平面向量数量积的几何意义

数量积 a ·b 等于 a 的长度 |a|与 b 在 a 的方向上的投影 _________的乘积.

3.平面向量数量积的重要性质

(1)e ·a = a ·e =

(2) 非零向量 a , b ,a ⊥ b? ;

(3) 当 a 与 b 同向时, a ·b =

当 a 与 b 反向时, a ·b =

, a ·a = a 2,|a|=

a ·a;

a ·

b (4)cos θ=

|a||b|

(5)|a ·b|____|a|| b|.

4.平面向量数量积满足的运算律

(1) a ·b=(交换律 );

(2)( λa )·b = =

(λ为实数 );

(3)( a + b) ·c =

.

5.平面向量数量积有关性质的坐标表示

设向量 a = (x 1, y 1), b = (x 2 , y 2),则 a ·b=

,由此得到 (1) 若 a = (x , y),则 |a|2

或|a|=

.

(2) 设 A (x 1

uuur

. ,y 1) ,B(x 2,y 2),则 A 、 B 两点间的距离 |AB|= AB =

(3) 设两个非零向量 a , b , a = ( x , y ), b = (x , y ),则 a ⊥b?

.

1

1

2

2

二.难点正本 疑点清源

1.向量的数量积是一个实数

两个向量的数量积是一个数量, 这个数量的大小与两个向量的长度及其夹角的余弦值有关, 在运用向量的数量积

解题时,一定要注意两向量夹角的范围.

2.数量积的运算只适合交换律、 加乘分配律及数乘结合律, 但不满足向量间的结合律, 即 (a ·b)c 不一定等于

a(b ·c).这

是由于 (a ·b)c 表示一个与 c 共线的向量,而 a(b ·c)表示一个与 a 共线的向量,而 c 与 a 不一定共线.

三.基础自测

1.已知向量 a 和向量 b 的夹角为 30°, |a|= 2, |b|= 3,则向量 a 和向量 b 的数量积 a ·b=

________.

2.在△ ABC 中, AB =3, AC=2, BC=

10 ,则 AB ·AC = ______.

- 9

4.已知 |a|= 6, |b|=3, a·b=- 12,则向量 a 在向量 b 方向上的投影是()

A .- 4B. 4C.- 2 D .2

5.已知向量a=(1,- 1), b=(1,2) ,向量 c 满足 (c+ b)⊥ a, (c- a)∥ b,则 c 等于()

A . (2,1)

B .(1,0)

3 1

C. 2,2 D. (0,- 1)

四.题型分类深度剖析

题型一求两向量的数量积

例1 (1) 在 Rt△ ABC 中,∠ C= 90°, AB= 5, AC=4,求AB·BC;

(2)若 a= (3,- 4) ,b= (2,1),试求 (a-2b) · (2a+3b).

变式训练 1 (1)若向量 a 的方向是正南方向,向量 b 的方向是正东方向,且|a|= |b|= 1,则 (- 3a) ·(a+ b)=______.

uuur → uuur

(2) 如图,在△ ABC 中, AD ⊥ AB,BC= 3 BD, | AD |= 1,则AC·AD等于 ()

3 3

A . 2 3B. 2 C. 3 D. 3

题型二求向量的模

例2 已知向量 a 与 b 的夹角为 120°,且 |a|= 4, |b|= 2,求: (1)|a+ b|; (2)|3a- 4b|; (3)(a- 2b) ·(a+b).

π

变式训练 2 设向量 a, b 满足 |a- b|= 2,|a|= 2,且 a- b 与 a 的夹角为3,则 |b|= ________.

题型三利用向量的数量积解决夹角问题

例 3已知a与b是两个非零向量,且|a|= |b|= |a- b|,求 a 与 a+ b 的夹角.

变式训练 3 设 n 和 m 是两个单位向量,其夹角是60°,求向量a= 2m+ n 与 b= 2n-3m 的夹角.

题型四平面向量的垂直问题

例 4 已知 a= (cos α, sin α), b= (cos β, sin β)(0< α<β<π).

(1)求证: a+ b 与 a- b 互相垂直;

(2) 若 ka+ b 与 a- kb 的模相等,求β-α.(其中k为非零实数)

uuur→uuur

→→

变式训练 4 已知平面内A、B、C 三点在同一条直线上,OA =(-2,m),OB=(n,1),OC=(5,-1),且OA⊥OB,求实数 m, n 的值.

五.答题规范

5.思维要严谨,解答要规范

试题:设两向量 e1、e2满足 |e1 |= 2,|e2|= 1,e1、e2的夹角为60°,若向量 2te1+7e2与向量 e1+te2的夹角为钝角,求实数 t 的取值范围.

六.思想方法感悟提高

方法与技巧

1.向量的数量积的运算法则不具备结合律,但运算律和实数运算律类似.如(a+ b)2=a2+2a·b+b2;

2 2

(λa+μb) ·(sa+ tb)=λs a+(λt+μs)a ·b+μt b(λ,μ, s, t∈ R).

2.求向量模的常用方法:利用公式|a|2= a2,将模的运算转化为向量的数量积的运算.

3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法技巧.

失误与防范

1. (1)0 与实数 0 的区别: 0a=0≠0, a+( -a)=0≠0,a·0=0≠0;

(2)0 的方向是任意的,并非没有方向,0 与任何向量平行,我们只定义了非零向量的垂直关系.

2. a·b=0 不能推出 a= 0 或 b= 0,因为 a·b=0 时,有可能 a⊥ b.

3.一般地, (a · b)c ≠ (b即·乘c)a法的结合律不成立.因a·b是一个数量,所以(a · b)c表示一个与 c 共线的向量,同理右

边 (b ·c)a表示一个与 a 共线的向量,

而 a 与 c 不一定共线,故一般情况下(a ·b)c ≠(b ·c)a. 4. a·b=a· c(a ≠不0)能推出 b= c.即消去律不成立.uuur uuur

5.向量夹角的概念要领会,比如正三角形ABC 中,〈AB,BC〉应为 120°,而不是 60°.

- 11

七.课后练习

1 1

()

1.设向量 a = (1,0), b =( , ),则下列结论中正确的是

2 2

A . |a|= |b|

B . a ·b= 2

2 C . a ∥ b D .a - b 与 b 垂直 2.若向量 a = (1,1), b = (2,5), c = (3, x),满足条件 (8a - b)·c = 30,则 x 等于 ( ) A . 6 B .5 C . 4 D . 3

3.已知向量 a ,b 的夹角为 60°,且 |a|=2, |b|= 1,则向量 a 与 a + 2b 的夹角等于 ( )

A . 150 °

B . 90°

C . 60°

D . 30°

uuur uuur

4.平行四边形 ABCD 中, AC 为一条对角线,若 AB = (2,4), AC = (1,3),则 AD BD 等于 (

)

A . 6

B .8

C .- 8

D .- 6

π

a = 2e 1

)

1

2

的单位向量,且向量 2

1

2

5.若 e 、e 是夹角为 3

+ e ,向量 b =- 3e +2e ,则 a ·b 等于 (

7 7

A . 1

B .- 4

C .- 2

D.2

π

6.若向量 a , b 满足 |a|=1 ,|b|= 2 且 a 与 b 的夹角为 3,则 |a + b|= ________.

7.已知向量 a ,b 满足 |a|= 3,|b|= 2, a 与 b 的夹角为 60°,则 a ·b=________,若 (a -mb)⊥ a ,则实数 m = ________. 8.设 a 、 b 、 c 是单位向量,且 a + b = c ,则 a ·c 的值为 ________. 9.(O 是平面 上一点, A 、 B 、C 是平面 上不共线的三点 .平面

内的动点 P 满足 OP OA (AB AC), uuur uuur uuur

若 λ=1

时, PA (PB PC ) 的值为 ______.

2

10.不共线向量 a , b 的夹角为小于 120 °的角,且 |a|= 1, |b|=2,已知向量 c = a + 2b ,求 |c|的取值范围.

11.已知平面向量 a = (1, x), b = (2x +3,- x), x ∈ R.

(1) 若 a ⊥ b ,求 x 的值; (2)若 a ∥b ,求 |a -b|.

12.向量 a = (cos 23 ,°cos 67 °),向量 b = (cos 68 ,°cos 22 °).

(1) 求 a ·b;(2)若向量 b 与向量 m 共线, u = a +m ,求 u 的模的最小值.

第四部分:平面向量应用举例

一.基础知识自主学习

1.向量在平面几何中的应用

平面向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相

似、长度、夹角等问题.

(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a∥ b? ? .

(2) 证明垂直问题,常用数量积的运算性质a⊥ b? ? .

(3) 求夹角问题,利用夹角公式cos θ=a·b =x1 x2+ y1y2

22 2 2 (θ为 a 与 b 的夹角 ).

|a||b| x1+ y1 x2+ y2

2.平面向量在物理中的应用

(1)由于物理学中的力、速度、位移都是,它们的分解与合成与向量的相似,可以用向量的知识来解决.

(2)物理学中的功是一个标量,这是力 F 与位移 s 的数量积.即W = F·s=|F|| s|cos θ(θ为 F 与 s 的夹角 ).

3.平面向量与其他数学知识的交汇

平面向量作为一种运算工具,经常与函数、不等式、三角函数、数列、解析几何等知识结合,当平面向量给出的

形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式.在此基础上,可以求解有关函数、不等式、三角函数、数列的综合问题.

此类问题的解题思路是转化为代数运算,其转化途径主要有两种:一是利用平面向量平行或垂直的充要条件;二

是利用向量数量积的公式和性质.

二.难点正本疑点清源

1.向量兼具代数的抽象与严谨和几何的直观,向量本身是一个数形结合的产物.在利用向量解决问题时,要注意数与形的结合、代数与几何的结合、形象思维与逻辑思维的结合.

2.要注意变换思维方式,能从不同角度看问题,要善于应用向量的有关性质解题.

三.基础自测

1.在平面直角坐标系xOy 中,四边形ABCD 的边 AB∥ DC , AD∥ BC.已知 A(- 2,0),B(6,8), C(8,6).则D 点的坐标为 ________.

2.已知平面向量α、β,|α|=1,|β|=2,α⊥ (α-2β),则|2α+β|的值是________.

y uuur 3.平面上有三个点A( - 2, y), B 0,2, C( x, y),若AB

uuur

⊥ BC ,则动点C的轨迹方程为_______________.

uuur

5,AC·CB等于 () 4.已知 A、 B 是以 C 为圆心,半径为5的圆上两点,且 | AB |=

5 5 5 3

5.某人先位移向量 a : “向东走 3 km ”,接着再位移向量 b : “向北走 3 km ”,则 a +b 表示

(

)

A .向东南走 3 2 km

B .向东北走 3 2 km

C .向东南走 3 3 km

D .向东北走 3 3 km

四.题型分类 深度剖析

题型一 向量在平面几何中的应用 例 1 如图,在等腰直角三角形 ABC 中,∠ ACB =90°, CA = CB , D 为 BC 的中点, E 是 AB 上的一点,且 AE = 2EB.

求证: AD ⊥ CE.

变式训练 1

在平面直角坐标系 xOy 中,已知点 A(- 1,- 2),B(2,3), C(- 2,- 1).

(1) 求以线段 AB 、 AC 为邻边的平行四边形的两条对角线

的长;

(2) →→ →

设实数 t 满足 (AB - tOC) ·OC = 0,求 t 的值.

题型二

平面向量在解析几何中的应用

uuuur

uuur →

3 →

例 2 已知点 P ( 0,-3),点 A 在 x 轴上,点 M 满足 PA AM =0 ,AM =-

MQ ,当点 A 在 x 轴上移动时,求动点 M

2

的轨迹方程.

变式训练 2 已知圆 C : (x-3) 2

+(y-3)

2

N 在线段 MA 的延长线上,

=4 及点 A ( 1,1), M 是圆上的任意一点,点 uuur →

且 MA = 2AN ,求点 N 的轨迹方程.

题型三 平面向量与三角函数 例 3 已知向量 a = (sin x , cos x), b = (sin x , sin x) ,c = (- 1,0).

π (1)若 x = 3,求向量 a 与 c 的夹角;

3π π

(2)若 x ∈ - 8 , 4 ,求函数 f(x) =a ·b 的最值;

2 (3) 函数 f(x)的图象可以由函数

y = 2 sin 2x (x ∈ R)的图象经过怎样的变换得到?

变式训练 3

已知 A(3,0) , B(0,3) , C(cos α, sin α).

若 uuur uuur =- 1,求 sin α+ π

的值; (2)

uuur uuur = ,且 α∈ , π),求 → uuur (1) AC ·

若 | OA

+ OC | 13 OB 与 OC 的夹角.

BC 4

(0

五.易错警示

9.忽视对直角位置的讨论致误

uuur uuur

试题:已知平面上三点

A 、

B 、

C ,向量 BC = (2- k,3), AC = (2,4).

(1) 若三点 A 、B 、 C 不能构成三角形,求实数

k 应满足的条件; (2)若△ ABC 为直角三角形,求 k 的值.

六.思想方法 感悟提高

方法与技巧

1. 向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解

决某些函数问题.

2. 以向量为载体,求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量

的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.

3. 有关线段的长度或相等,可以用向量的线性运算与向量的模.

4.用向量方法解决平面几何问题的步骤

(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;

(2)通过向量运算,研究几何元素之间的关系;

(3) 把运算结果 “翻译 ”成几何关系.

5.向量的坐标表示,使向量成为解决解析几何问题的有力工具,在证明垂直、求夹角、写直线方程时显示出了它的

优越性,在处理解析几何问题时,需要将向量用点的坐标表示,利用向量的有关法则、性质列出方程,从而使问

题解决.

失误与防范

1.向量关系与几何关系并不完全相同,要注意区别.例如:向量

2.加强平面向量的应用意识,自觉地用向量的思想和方法去思考问题.

uuur

AB →

∥ CD 并不能说明 AB ∥CD .

七.课后练习

1.已知△ ABC ,AB AC ,则一定有( )

A .AB⊥AC

B .AB = AC

C. ( AB + AC)⊥ ( AB - AC) D.AB + AC= AB - AC

2.点 P 在平面上做匀速直线运动,速度向量v= (4,- 3)( 即点 P 的运动方向与v 相同,且每秒移动的距离为|v|个单位 ) .设开始时点 P 的坐标为 ( - 10,10),则 5 秒后质点 P 的坐标为 ()

A . (- 2,4)

B .( -30,25)

C. (10,- 5) D. (5,- 10) uuur uuur uuur uuur uuur

3.平面上有四个互异点)

A、 B、 C、D ,已知 (DB DC 2DA) (AB AC) 0 ,则△ ABC 的形状是 (

A .直角三角形

B .等腰三角形

C.等腰直角三角形D.等边三角形uuur uuur

4.如图,△ ABC 的外接圆的圆心为 O,AB=2,AC=3,BC= 7 ,则AO BC等于( )

3 5

A. 2

B.2

C. 2 D. 3

5.平面上 O、 A、 B 三点不共线,设

OA a,OB ,则△ OAB 的面积等于 ( )

b

A. |a|2|b|2- (a·b)2

B. |a|2 |b|2+ (a·b)2

1

2 2- (a·b)2 1 2 2+ (a·b)2

C.2

D.2

|a| |b| |a| |b|

6.已知 |a|= 3, |b|=2,〈 a, b〉= 60°,则 |2a+ b|= ________.

7.河水的流速为 2 m/s,一艘小船想以垂直于河岸方向10 m/s 的速度驶向对岸,则小船的静水速度大小为________.

→→ →→

8.已知△ ABO 三顶点的坐标为A(1,0), B(0,2), O(0,0),P(x,y)是坐标平面内一点,且满足 AP·OA≤0,BP·OB≥0,则 OP·AB

的最小值为 ________.

uuur uuur 9.在△ ABC 中,角 A、B、 C 所对的边分别为a、 b、 c,若AB·AC=BA BC 10.如右图,在Rt△ABC 中,已知 BC=a,若长为 2a 的线段 PQ 以点 A 为中心,问

的值最大?并求出这个最大值.1,那么c=________.

→→PQ 与BC的夹角θ取何值时

BP·CQ

11.已知向量a= (sin θ, cos θ- 2sin θ), b= (1,2).

(1)若 a∥ b,求 tan θ的值; (2) 若 |a|= |b|,0<θ<π,求θ的值.

12.在△ ABC 中,角 A、B、 C 的对边分别为a、 b、 c,若AB·AC BA·BC =k (k∈R).

(1) 判断△ ABC 的形状; (2)若 c=2,求 k 的值.

2021年高中数学-平面向量专题

第一部分:平面向量的概念及线性运算 欧阳光明(2021.03.07) 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 的(或称) 平面向量是自由向量 零向量长度为的向量;其方向是任意的记作0 单位向量长度等于的 向量 非零向量a的单位向量为± a |a| 平行向量方向或的非零向量 0与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0的相反向量为0 2.向量的线性运算 向量运算定义法则(或几何 意义) 运算律 加法求两个向量和的运算(1)交换律: a+b=b+a. (2)结合律: (a+b)+c=a+(b+c). 减法求a与b的相反向量-b 的和的运算叫做a与b 的差 法则 a-b=a+(-b) 数乘求实数λ与向量a的积的 运算 (1)|λa|=|λ||a|. (2)当λ>0时,λa的方向与a的方向; 当λ<0时,λa的方向与a的方向;当λ =0时,λa=0. λ(μa)=λμa; (λ+μ)a=λa+μa; λ(a+b)=λa+λb. 向量a(a≠0)与b共线的条件是存在唯一一个实数λ,使得b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线

段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线(或重合)的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合. 三.基础自测 1.化简OP →-QP →+MS →-MQ → 的结果等于________. 2.下列命题:①平行向量一定相等;②不相等的向量一定不平行;③平行于同一个向量的两个向量是共线向量; ④相等向量一定共线.其中不正确命题的序号是_______. 3.在△ABC 中,AB →=c ,AC →=b.若点D 满足BD →=2DC →,则AD → =________(用b 、c 表示). 4.如图,向量a -b 等于() A .-4e1-2e2 B .-2e1-4e2 C .e1-3e2 D .3e1-e2 5.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是 () A .A 、B 、DB .A 、B 、C C .B 、C 、DD .A 、C 、D 四.题型分类深度剖析 题型一 平面向量的有关概念 例1 给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC → 是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a|=|b|且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c.其中正确的序号是________. 变式训练1 判断下列命题是否正确,不正确的请说明理由. (1)若向量a 与b 同向,且|a|=|b|,则a>b ; (2)若|a|=|b|,则a 与b 的长度相等且方向相同或相反; (3)若|a|=|b|,且a 与b 方向相同,则a =b ; (4)由于零向量的方向不确定,故零向量不与任意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反; (6)若向量AB →与向量CD → 是共线向量,则A ,B ,C ,D 四点在一条直线上; (7)起点不同,但方向相同且模相等的几个向量是相等向量; (8)任一向量与它的相反向量不相等 题型二 平面向量的线性运算 例2 如图,以向量OA →=a ,OB →=b 为边作?OADB ,BM →=13BC →,CN →=13 CD →,用a 、b 表示OM →、ON →、MN → . 变式训练2 △ABC 中,AD →=23 AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N.设AB →=a ,AC → =b ,用a 、b 表示向 量AE →、BC →、DE →、DN →、AM →、AN →. 题型三 平面向量的共线问题 例3 设e1,e2是两个不共线向量,已知AB →=2e1-8e2,CB →=e1+3e2,CD → =2e1-e2. (1)求证:A 、B 、D 三点共线; (2)若BF → =3e1-ke2,且B 、D 、F 三点共线,求k 的值.

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学平面向量知识点总结

高中数学必修4之平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a ;坐标表示法),(y x yj xi a 向 量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的, 0 与任意向量平行零向量a =0 |a |=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量 |0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的平移(即自 由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a 大 小相等,方向相同 ),(),(2211y x y x 2 12 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r (1)a a a 00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法

高中数学平面向量公式(精选课件)

高中数学平面向量公式1、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤

2、向量的数量积不满足消去律,即:由a?b=a? c (a≠0),推不出 b=c。 3、|a?b|≠|a|?|b| 4、由 |a|=|b| ,推不出a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b ∣=|a|?|b|?sin〈a,b>;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0。...文档交流仅供参考... 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积. a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c。 注:向量没有除法,“向量AB/向量CD”是没有意义的. 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

2019年爱云校西藏高考模拟高中数学试卷(12月份组卷)(四)

2019年爱云校西藏高考模拟高中数学试卷(12月份组卷)(四) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 设集合M ={m ∈Z|?3b >c B.b >c >a C.a >c >b D.c >b >a

高中数学平面向量doc

专题讲座 高中数学“平面向量” 一、整体把握“平面向量”教学内容 (一)平面向量知识结构图 (二)重点难点分析

本专题内容包括:平面向量的概念、运算及应用. 课标要求: 平面向量(约12课时) (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。(2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义。 ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。 ③了解向量的线性运算性质及其几何意义。 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义。 ②掌握平面向量的正交分解及其坐标表示。 ③会用坐标表示平面向量的加、减与数乘运算。 ④理解用坐标表示的平面向量共线的条件。 (4)平面向量的数量积

①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。 ②体会平面向量的数量积与向量投影的关系。 ③掌握数量积的坐标表达式,会进行平面向量数量积的运算。 ④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 (5)向量的应用 经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。 依据课标要求,并结合前面的分析可知:新概念、新运算的定义,向量运算和向量运算的几何意义是本专题的重点,平面向量基本定理是坐标表示(几何代数化)的关键,也是本专题教学的难点。 二、“平面向量”教与学的策略 (一)在概念教学中,依据概念教学的方法,建构概念知识体系 本专题的教学中,向量、向量的运算等都是新定义的概念,如何让这些概念的出现自然轻松,还能让学生迅速把握住本质,达成理解?不妨遵循概念教学的方法。 比如说:“向量的概念”教学中,可从力、位移等实例引入,进行抽象概括,形成向量的概念。之后,提出“温度、功是不是向量?”这样的问题,通过比较,对向量的概念进行辨析,在此基础上,抓住向量的两个要点:大小、方向进行拓展,按如下表格整理,将向量概念精致化。 概念辨析:

(完整word版)高中数学-平面向量专题.doc

第一部分:平面向量的概念及线性运算 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 平面向量是自由向量的(或称) 零向量长度为的向量;其方向是任意的记作 0 单位向量长度等于的非零向量 a 的单位向量为± a 向量|a| 平行向量方向或的非零向量 0 与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0 的相反向量为 0 2.向量的线性运算 向量运算定义法则 (或几何 运算律意义 ) 加法求两个向量和的运算 求 a 与 b 的相反向量- b 减法的和的运算叫做 a 与 b 的差 (1)交换律: a+ b= b+ a. (2)结合律: (a+ b)+ c= a+ (b+c). a- b= a+ (- b) 法则 求实数λ与向量 a 的积的(1)|λa|= |λ||a|. ;λ(μa)=λμa; 数乘 (2)当λ>0 时,λa 的方向与 a 的方向 运算当λ<0 时,λa 的方向与 a 的方向;当λ (λ+μ)a=λa+μa; =0 时,λa= 0. λ(a+ b)=λa+λb. 3.共线向量定理 向量 a(a≠0)与 b 共线的条件是存在唯一一个实数λ,使得 b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说, 即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线 (或重合 )的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.

数列高中数学组卷

SM数列高中数学组卷1 一.选择题(共1小题) 1.已知定义在R上的函数f(x)对任意的实数x1,x2满足f(x1+x2)=f(x1)+f (x2)+2,数列{a n}满足a1=0,且对任意n∈N*,a n=f(n),则f(2010)=()A.4012 B.4018 C.2009 D.2010 二.填空题(共4小题) 2.记集合P={ 0,2,4,6,8 },Q={ m|m=100a1+10a2+a3,且a1,a2,a3∈P },将集合Q中的所有元素排成一个递增的数列,则此数列的第68项是.3.在等差数列{a n}中,a1=3,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,公比为q,且b2+S2=12,. (Ⅰ)求a n与b n; (Ⅱ)求数列{c n}满足,求{c n}的前n项和T n. 4.已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为. 5.已知数列{a n}满足a1=1,a n+1=,则a n= 三.解答题(共25小题) 6.已知f(x)=(x﹣1)2,g(x)=4(x﹣1).数列{a n}中,对任何正整数n,﹣a n)g(a n)+f(a n)=0都成立,且a1=2,当n≥2时,a n≠1;设b n=a n 等式(a n +1 ﹣1. (Ⅰ)求数列{b n}的通项公式; (Ⅱ)设S n为数列{nb n}的前n项和,,求的值.7.设正项等比数列{a n}的首项a1=,前n项和为S n,且210S30﹣(210+1)S20+S10=0.(Ⅰ)求{a n}的通项;

(Ⅱ)求{nS n}的前n项和T n. 8.已知{a n}是等差数列,{b n}是等比数列,其中n∈N*. (1)若a1=b1=2,a3﹣b3=9,a5=b5,试分别求数列{a n}和{b n}的通项公式;(2)设A={k|a k=b k,k∈N*},当数列{b n}的公比q<﹣1时,求集合A的元素个数的最大值. 9.已知数列{a n}是公差为d(d≠0)的等差数列,数列{b n}是公比为q的(q∈R)的等比数列,若函数f(x)=x2,且a1=f(d﹣1),a5=f(2d﹣1),b1=f(q﹣2),b3=f(q). (1)求数列{a n}和{b n}的通项公式; (2)设数列{c n}的前n项和为S n,对一切n∈N*,都有 成立,求S n. 10.已知函数f(x)=x2+2x. (Ⅰ)数列a n满足:a1=1,a n+1=f'(a n),求数列a n的通项公式; (Ⅱ)已知数列b n满足b1=t>0,b n+1=f(b n)(n∈N*),求数列b n的通项公式;(Ⅲ)设的前n项和为S n,若不等式λ<S n对所有的正整数n恒成立,求λ的取值范围. 11.设等比数列{a n}的前n项和为S n=2n+1﹣2;数列{b n}满足6n2﹣(t+3b n)n+2b n=0(t∈R,n∈N*). (1)求数列{a n}的通项公式; (2)①试确定t的值,使得数列{b n}为等差数列; ②在①结论下,若对每个正整数k,在a k与a k+1之间插入b k个2,符到一个数列{c n}.设T n是数列{c n}的前n项和,试求满足T m=2c m+1的所有正整数m.12.已知函数f (x)=log a x (a>0且a≠1),若数列:2,f (a1),f (a2),…,f (a n),2n+4 (n∈N﹡)为等差数列. (1)求数列{a n}的通项公式a n; (2)若a=2,b n=a n?f (a n),求数列{b n}前n项和S n; (3)在(2)的条件下对任意的n∈N﹡,都有b n>f ﹣1(t),求实数t的取值范

高中数学平面向量习题及答案

第二章 平面向量 一、选择题 1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ). A .AB 与AC 共线 B .DE 与CB 共线 C .与相等 D .与相等 2.下列命题正确的是( ). A .向量与是两平行向量 B .若a ,b 都是单位向量,则a =b C .若=,则A ,B ,C , D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同 3.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足=α OA +β OB ,其中 α,β∈R ,且α+β=1,则点C 的轨迹方程为( ). A .3x +2y -11=0 B .(x -1)2+(y -1)2=5 C .2x -y =0 D .x +2y -5=0 4.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( ). A . 6 π B . 3 π C . 23 π D . 56 π 5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则=( ). A .λ(+),λ∈(0,1) B .λ(+),λ∈(0,22 ) C .λ(-),λ∈(0,1) D .λ(-),λ∈(0, 2 2) 6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则=( ). A .+ B .- C .+ D .+ 7.若平面向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( ). (第1题)

高三数学复习微专题之平面向量篇矩形大法教师

一、 知识清单 1. 极化恒等式:如图,+=AD AB AC 2 ① -=CB A B A C ②,则: ①2 +②2 得:AC AD BC AB +=+242 2 22 ;①2-②2 得:AC AD BC AB ?=-4422 推广:AC AB AC BC AB AB AC cosA ?=?=?+-2 222 速记方法:?==-+-a b a b a b 4()()22,=++=+-a b a b a b 2 ()()2222 2. 矩形大法:如图,由极化恒等式可得 +=+PO BD 2PD PB 42 2 22①+=+PO AC 2 PA PC 422 22 ② 因为BD=AC ,所以PD PB PA PC +=+2222, 速记方法:矩形外一点到矩形对角顶点的平方和相等。 推广1:若ABCD 为平行四边形,则有PA PC PD PB =+-+-AC 2 )(BD 2 2 2 2 22 =-?= -AC AM BC 4 422 =4 1 0,且对于边AB 上任一点P ,恒有?≥?PB PC P B PC 00 。则( ) A.∠=ABC 90 B. ∠=BAC 90 C.=AB AC D. =AC BC 解析:D 为BC 中点,由极化恒等式有:?=-PC PD BC 4 PB 422 则当PD 最小时,PB ????? ?PC ????? 最小, 所以过D 作AB 垂线,垂足即为P 0,作AB 中点E ,则CE ⊥AB ,即AC=BC 。 3. 已知向量a b e ,,是平面向量,e 是单位向量. ?-++===b e a b a b a ()12,3,0,求-a b 的范围? 解析:由?-++=b e a b a ()10,得-?-=e b e a ()()0 如图,===OA a OB b OE e ,, ,构造矩形ACBE ,由矩形大法有 +=+OE OC OA OB 222 2,则=OC ==∈-+=-+-AB CE OC OE OC OE a b [,] [2 3 1,231] 高三数学复习微专题之平面向量篇 第三讲:极化恒等式与矩形大法 解析:由极化恒等式有:AB 16推广2:若P 为平面外一点,上述性质仍成立。二、典型例题1.(2019浙江模拟卷)在?ABC 中,M 是BC 的中点,AM =3,BC =10,则A B A ? C =_________. 2.(2019山东模拟)在?ABC 中,P 0是边AB 上一定点,满足P B AB

排列组合高中数学组卷

排列组合高中数学组卷 一.选择题(共9小题) 1.(2016?衡阳校级一模)3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有() A.90种B.180种C.270种D.540种 2.(2016?黄冈校级自主招生)方程3x2+y2=3x﹣2y的非负整数解(x,y)的组数为()A.0 B.1 C.2 D.3 3.(2016?新余二模)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为()A.120 B.240 C.360 D.480 4.(2016?内江四模)4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有() A.24种B.36种C.48种D.60种 5.(2016?邯郸一模)现有6个白球、4个黑球,任取4个,则至少有两个黑球的取法种数是() A.90 B.115 C.210 D.385 6.(2016?成都校级模拟)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有()个. A.324 B.216 C.180 D.384 7.(2016?湖南校级模拟)某中学拟安排6名实习老师到高一年级的3个班实习,每班2人,则甲在一班、乙不在一班的不同分配方案共有() A.12种B.24种C.36种D.48种 8.(2016?陕西模拟)某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有() A.3种B.6种C.9种D.18种 9.(2016?福建模拟)四位男生和两位女生排成一排,男生有且只有两位相邻,则不同排法的种数是() A.72 B.96 C.144 D.240 二.填空题(共3小题) 10.(2016?黄冈校级自主招生)若p和q为质数,且5p+3q=91,则p=, q=. 11.(2016?黄冈校级自主招生)设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是. 12.(2016?绵阳模拟)从数字0、1、2、3、4、5这6个数字中任选三个不同的数字组成的三位偶数有个.(用数字作答) 三.解答题(共4小题) 13.(2016?新余三模)如图,四棱锥P﹣ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分别是AC,PB的中点. (1)证明:EF∥平面PCD;

(完整版)高中数学平面向量专题训练

高中数学平面向量专题训练 一、选择题: 1、若向量方程23(2)0x x a --=r r r r ,则向量x r 等于 A 、65 a r B 、6a -r C 、6a r D 、65 a -r 2、两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为a r 和b r ,那么下列命题中错误的一个是 A 、a r 与b r 为平行向量 B 、a r 与b r 为模相等的向量 C 、a r 与b r 为共线向量 D 、a r 与b r 为相等的向量 3、AB BC AD +-=u u u r u u u r u u u r A 、AD u u u r B 、CD uuu r C 、DB u u u r D 、DC u u u r 4、下列各组的两个向量,平行的是 A 、(2,3)a =-r ,(4,6)b =r B 、(1,2)a =-r ,(7,14)b =r C 、(2,3)a =r ,(3,2)b =r D 、(3,2)a =-r ,(6,4)b =-r 5、若P 分AB u u u r 所成的比为4 3 ,则A 分BP u u u r 所成的比为 A 、7 3 - B 、3 7 - C 、73 D 、 3 7 6、已知(6,0)a =r ,(5,5)b =-r ,则a r 与b r 的夹角为 A 、045 B 、060 C 、0135 D 、0120 7、已知i r ,j r 都是单位向量,则下列结论正确的是 A 、1i j ?=r r B 、22 i j =r r C 、i r ∥j i j ?=r r r D 、0i j ?=r r 8、如图,在四边形ABCD 中,设AB a =u u u r r ,AD b =u u u r r , BC c =u u u r r ,则DC =u u u r A 、a b c -+r r r B 、()b a c -+r r r C 、a b c ++r r r D 、b a c -+r r r 9、点),0(m A )0(≠m ,按向量a r 平移后的对应点的坐标是)0,(m ,则向量a r 是 C B A D

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高中数学平面向量知识点总结及常见题型(供参考)

平面向量 一.向量的基本概念与基本运算 1 ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB 几何表示法 AB ,a ;坐标表示法,(y x yj xi a =+= 向 量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ? |a |=0 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量?|0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的平移(即 自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a =大 小相等,方向相同),(),(2211y x y x =?? ?==?2 12 1y y x x 2 求两个向量和的运算叫做向量的加法 设,AB a BC b ==,则a +b =AB BC +=AC (1)a a a =+=+00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:

高中数学经典高考难题集锦(解析版)

2015年10月18日杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程. 2.(2010?模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

高中数学经典高考难题集锦解析版

2015年10月18日姚杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x 轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共 点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理 由. 7.(2009?天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C 外切,圆D与y 轴交于A、B两点,定点P的坐标为(﹣3,0). (1)若点D(0,3),求∠APB的正切值; (2)当点D在y轴上运动时,求∠APB的最大值; (3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由. 8.(2007?海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P (0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.

相关主题
文本预览
相关文档 最新文档