当前位置:文档之家› 函数单调性练习题

函数单调性练习题

函数单调性练习题
函数单调性练习题

,

函数单调性练习题

1. (1)已知函数f(x)=x 2

+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a

的取值范围是 .

(2)已知函数f(x)=x 2+2(a-1)x+2的递减区间是(-∞,4],则实数a 的取值范围是 .

(3)已知x ∈[0,1],则函数 的最大值为_______最小值为_________

2.讨论函数f(x)=

2

1x

ax

- (a≠0)在区间(-1,1)内的单调性. 解:设-1<x 1<x 2<1,则f(x 1)-f(x 2)=2111x ax --2

2

2

1x ax -=)1)(1()1)((22212121x x x x x x a --+- /

∵x 1,x 2∈(-1,1),且x 1<x 2,∴x 1-x 2<0,1+x 1x 2>0,(1-x 21)(1-x 22)>0 于是,当a >0时,f(x 1)<f(x 2);当a <0时,f(x

1)>f(x 2).

故当a >0时,函数在(-1,1)上是增函数;当a <0时,函数在(-1,1)上为减函数.

3.判断函数f (x )=-x 3

+1在(-∞,0)上是增函数还是减函数,并证明你的结论;如果x ∈(0,+∞),函数f (x )是增函数还是减函数

4. 已知:f (x )是定义在[-1,1]上的增函数,且f (x -1)

-1)求x 的取值范围.

~

5.设y=f (x )的单增区间是(2,6),求函数y=f (2-x )的单调区间.

|

x

x y --+=122上 在 又 — ) ,

(- ) ,

( 而 )上是增函数,

} , ( 在 则由已知得 解:令 ) 0 , :( 2 ) ( 0 4 6 ( 2 2 ) ( 6 2 ) ( ) ,

2 ) (

【 ; x x x t x x x : t t t f x x t

6.函数21

)(++=

x ax x f 在区间(-2,+∞)上是增函数,那么a 的取值范围是( ) ^

A.210<

1>a

<-1或a>1 >-2

解:f (x )=

ax +1x +2=a (x +2)+1-2a x +2=1-2a x +2

+a . 任取x 1,x 2∈(-2,+∞),且x 1

x 2+2

(1-2a )(x 2-x 1)

(x 1+2)(x 2+2)

.

∵函数f (x )=ax +1

x +2

在区间(-2,+∞)上为增函数,∴f (x 1)-f (x 2)<0.

∵x 2-x 1>0,x 1+2>0,x 2+2>0,∴1-2a <0,a >12. 即实数a 的取值范围是? ??

??12,+∞. 7.已知函数f (x )=?

????

x 2

+4x ,x ≥0,

4x -x 2

,x <0.若f (2-a 2

)>f (a ),则实数a 的取值范围是( )

A .(-∞,-1)∪(2,+∞)

B .(-1,2)

C .(-2,1)

D .(-∞,-2)∪(1,+∞)

~

解析:f (x )=?

????

x 2

+4x =(x +2)2

-4,x ≥0,

4x -x 2=-(x -2)2

+4,x <0,由f (x )的图象可知f (x )在(-∞,+∞)上

是单调递增函数,由f (2-a 2

)>f (a )得2-a 2

>a ,即a 2

+a -2<0,解得-2

8.已知f (x )在其定义域R +

上为增函数,f (2)=1,f (xy )=f (x )+f (y ),解不等式f (x )+f (x -2) ≤3

9.已知定义在区间(0,+∞)上的函数f(x)满足f()2

1

x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)的值;

(2)判断f(x )的单调性;

(3)若f(3)=-1,解不等式f(|x|)<-2.

,的单减区间是(-04)2(x f -∴3)2()4()8(2)2()2()4()()()(=+=∴=+=∴+=f f f f f f y f x f xy f 解:)2()2()(2x x f x f x f -=-+又)

8()2(2f x x f ≤-由题意有?????≤->->∴8

20

20R )(2x x x x x f 上的增函数为+ (]

42,解得∈x

(1)f(1) = f(1/1) = f(1) - f(1) = 0。

(2)当0 < x < y 时,y/x > 1,所以f(y) - f(x) = f(y/x) < 0 。故f 单调减。 (3)f(3) = -1,f(3) = f(9/3) = f(9) - f(3),f(9) = -2而 f (|x |)<-2 = f(9),且f 单调减,所以| x | > 9 x >9或x <-9

10.函数f(x)对任意的a 、b ∈R,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1. (1)求证:f(x)是R 上的增函数;

(2)若f(4)=5,解不等式f(3m 2

-m-2)<3.

(1)设x1,x2∈R ,且x1<x2, 则x2-x1>0,∴f(x2-x1)>1. f(x2)-f(x1)=f((x2-x1)+x1)-f(x1) -

=f(x2-x1)+f(x1)-1-f(x1)

=f(x2-x1)-1>0.

∴f (x2)>f(x1).即f(x)是R 上的增函数.

(2)∵f (4)=f (2+2)=f (2)+f (2)-1=5,∴f (2)=3,∴原不等式可化为f(3m2-m-2)<f(2), ∵f(x)是R 上的增函数,∴3m2-m-2<2, 解得-1<m < ,故解集为 . /

11.设f (x )的定义域为(0,+∞),且在(0,+∞)是递增的,)()()(y f x f y

x

f -=

(1)求证:f (1)=0,f (xy )=f (x )+f (y ); (2)设f (2)=1,解不等式2)3

1

(

)(≤--x f x f 。 (1)证明:)()()(y f x f y

x f -=,令x=y=1,则有:f (1)=f (1)-f (1)=0,

)()()]()1([)()1

()()1()(y f x f y f f x f y f x f y

x f xy f +=--=-==。

(2)解:∵)]3()1([)()3

1

(

)(---=--x f f x f x f x f )3()3()(2x x f x f x f -=-+=,

34?

?? ??

-34,1

∵2=2×1=2f (2)=f (2)+f (2)=f (4), ∴2)3

1

(

)(≤--x f x f 等价于:)4()3(2f x x f ≤-①, (

且x>0,x-3>0[由f (x )定义域为(0,+∞)可得

∵03)3(2

>-=-x x x x ,4>0,又f (x )在(0,+∞)上为增函数,

∴①41432

≤≤-?≤-?x x x 。又x>3,∴原不等式解集为:{x|3

12.已知函数f (x )=

3-ax

a -1

(a ≠1). (1)若a >0,则f (x )的定义域是________;

(2)若f (x )在区间(0,1]上是减函数,则实数a 的取值范围是________.

解析: "

(1)当a >0且a ≠1时,由3-ax ≥0得x ≤3a

,即此时函数f (x )的定义域是? ??

??-∞,3a ; (2)当a -1>0,即a >1时,要使f (x )在(0,1]上是减函数,则需3-a ×1≥0,此时1

当a -1<0,即a <1时,要使f (x )在(0,1]上是减函数,则需-a >0,此时a <0. 综上所述,所求实数a 的取值范围是(-∞,0)∪(1,3].

13. 定义在R 上的函数()y f x =,(0)0f ≠,当0x >时,()1f x >,且对任意的a b R ∈、

,有()()()f a b f a f b +=?. (1)求(0)f 的值;(2)求证:对任意的x R ∈,恒有()0f x >;(3)若2

()(2)1f x f x x ?->,求x 的取值范围.

解:(1)解:令0a b ==,则2

(0)(0).f f = 又(0)0f ≠,(0)1f =.

(2)证明:当0x <时,0x ->,∴()1f x -> ∵(0)()()1f f x f x =?-=,∴

1

()0()

f x f x =

>- 又0x ≥时, ()10f x ≥> ∴对任意的x R ∈,恒有()0f x >. (3)解:设12x x <,则210x x ->. ∴21()1f x x ->. 又1()0

f x >

∴ 1212111211()()()[()]()()()f x f x f x f x x x f x f x x f x -=--+=--? =121()[1()]0f x f x x --<

∴ 12()()f x f x <.∴ ()f x 是R 上的增函数. 由2

()(2)1f x f x x ?->,(0)1

f =得 2

(3)(0)f x x f ->.∴ 2

30x x ->,∴03x <<∴所求的x 的取值范围为(0,3)

14.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,

f (1)=-23

.

(1)求证:f (x )在R 上是减函数;

(2)求f (x )在[-3,3]上的最大值和最小值.

(1)解法一:∵函数f (x )对于任意x ,y ∈R 总有f (x )+f (y )=f (x +y ),

∴令x =y =0,得f (0)=0.再令y =-x ,得f (-x )=-f (x ).

在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).

又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)

解法二:设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2).

又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)

(2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3).而f (3)=3f (1)=-2,f (-3)=-f (3)=2.∴f (x )在[-3,3]上的最大值为2,最小值为-2.

复合函数单调性的判断

复合函数单调性的判断))((x g f y = 以上规律还可总结为:“同向得增,异向得减”或“同增异减”. 1求函数y=2 1log (4x-x 2)的单调区间. 2、 求函数()2 31x y =的单调性及最值 3.在区间(-∞,0)上为增函数的是 A. ) (log 21x y --= B.x x y -=1 C.y =-(x +1)2 D.y =1+x 2 3、求函数)12(log )(2 1+=x x f 的单调区间. 4、(1)函数3422)(-+-=x x x f 的递增区间为___________; (2)函数)34(log )(2 2 1-+-=x x x f 的递减区间为_________ 5、设函数)(x f 是减函数,且0)(>x f ,下列函数中为增函数的是 ( ) (A ))(1 x f y -= (B ))(2x f y = (C ))(log 2 1x f y = (D )2 )]([x f y =

7、下列函数中,在区间]0,(-∞上是增函数的是 ( ) (A )842+-=x x y (B ))(log 21x y -=(C )1 2+- =x y (D )x y -=1 20.函数 342-+-=x x y 的单调增区间是 A.[1,3] B.[2,3] C.[1,2] D.(-∞,2] 21.函数y= 在区间[4,5]上的最大值是_______,最小值是_______。 21.若函数f (x )在R 上是减函数,那么f (2x -x 2 )的单调增区间是 A.(-∞,1] B.[-1,+∞) C.(-∞,-1] D.[1,+∞) 31.函数y =log a 2(x 2 -2x -3)当x <-1时为增函数,则a 的取值范围是 A.a >1 B.-11或a <-1 例7.若f(x)=log a (3-ax)在[0,1]上是减函数,则a 的取值范围是_______。 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_____ 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_______。 分析如下: 令u=x 2-ax+3a ,y= u 。 因为y= u 在(0,+∞)上是减函数 ∴ f(x)= (x 2-ax+3a)在[2,+∞)上是减函数 u=x 2-ax+3a 在[2,+∞)上是增函数,且对任意x∈[2,+∞),都有u >0。

(完整版)函数的单调性练习题及答案

函数的单调性练习题 一 选择题: 1. 函数f (x )=x 2+2x-3的递增区间为 ( ) A .(-∞,-3] B .[-3,1] C .(-∞,-1] D .[-1,+∞) 2. 如果函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则实数a 的取值范围是( ) A.[-3,+∞) B.(-∞,-3] C.(-∞,5] D.[3,+∞) 3. 函数111 y x =-- ( ) A .在(-1,+∞)内是单调递增 B .在(-1,+∞)内是单调递减 C .在(1,+∞)内是单调递减 D .在(1,+∞)内是单调递增 4. 如果函数()f x kx b =+在R 上单调递减,则( ) A. 0k > B. 0k < C. 0b > D. 0b < 5. 在区间(,0)-∞上为增函数的是( ) A .2y x =- B .2y x = C .||y x = D .2y x =- 6. 函数2()2f x x x =-的最大值是( ). A. -1 B. 0 C. 1 D. 2 7. 函数y x =+ ). A. 0 B. 2 C. 4 D. 二 填空题: 8. 函数f (x )=2x 2一mx+3,在(一∞,一1)上是减函数,在[一1,+∞)上是增函数,则m=_______。 9.已知()x f 是定义在()2,2-上的减函数,并且()()0211>---m f m f ,则实数m 的取值范围______________。 三 解答题: 10. 利用单调函数的定义证明:函数)2,0(2)(在区间x x x f + =上是减函数.

11.已知定义在区间(0,+∞)上的函数()x f 满足()()2121x f x f x x f -=???? ??,且当1>x 时 ()0

专题:函数单调性、奇偶性、对称性、周期性.docx

专题:函数单调性、奇偶性、对称性、周期性 一、函数的单调性 1.单调函数与严格单调函数 设 f(x) 为定义在I上的函数,若对任何 x1 , x2I ,当 x1x2时,总有 (ⅰ ) f (x1) f ( x2) ,则称f (x)为I上的增函数,特别当且仅当严格不等式 f ( x1 ) f ( x2 ) 成立时称 f (x) 为I上的严格单调递增函数。 (ⅱ ) f (x1) f ( x2) ,则称f (x)为I上的减函数,特别当且仅当严格不等式 f ( x1 ) f ( x2 ) 成立时称 f (x) 为I上的严格单调递减函数。 2.函数单调的充要条件 ★若 f (x) 为区间I上的单调递增函数,x1、 x2为区间内两任意值,那么有: f (x1) f ( x2)或 x1x20(x1x2)[ f (x1) f (x2)] 0 ★若 f (x) 为区间I上的单调递减函数,x1、 x2为区间内两任意值,那么有: f (x1) x1 3.函数单调性的判断(证明 ) (1)作差法 (定义法 ) (2)作商法 4复合函数的单调性的判定f ( x2)或x 2 )[ f (x1)f (x2)] 0 x20(x1 对于函数 y f (u) 和 u g(x) ,如果函数u g( x) 在区间 (a, b) 上具有单调性,当x a, b 时 u m,n,且函数 y f (u)在区间 (m, n) 上也具有单调性,则复合函数y f ( g( x)) 在区间a,b具有单调性。 5.由单调函数的四则运算所得到的函数的单调性的判断 对于两个单调函数 f (x) 和 g( x) ,若它们的定义域分别为I 和 J ,且 I J: (1)当f (x)和g (x)具有相同的增减性时,函数F1 (x) f (x) g( x) 、 F2 (x) f ( x)g(x) 的增减性与 f ( x)(或g( x) )相同, F3 ( x) f (x) g( x) 、 F4 (x)f (x) ( g(x) 0)的增减性不能确定;g( x) (2)当f (x)和g (x)具有相异的增减性时,我们假设 f ( x) 为增函数, g ( x) 为减函数,那么: ① F1 (x) f (x)g( x) 、 F2 (x) f ( x) g( x) 的增减性不能确定; ② F3 ( x) f ( x)g(x) 、 F4 ( x)f ( x) (g( x)0) 为增函数, F5 (x) g( x) ( f ( x)0) 为减函数。 g (x) f (x) 二、函数的奇偶性 1.奇偶性的定义 如果对于函数 f ( x) 的定义域内的任意一个x ,都有 f ( x) f ( x) ,则称函数 f (x) 为偶函数;如果对于函数 f (x) 的定义域内的任

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单调性与导数测试题(附答 案) 选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是() A.b2-4ac0 B.b0,c0 C.b=0,c D.b2-3ac0 [答案] D [解析]∵a0,f(x)为增函数, f(x)=3ax2+2bx+c0恒成立, =(2b)2-43ac=4b2-12ac0,b2-3ac0. 2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是() A.(-,2) B.(0,3) C.(1,4) D.(2,+) [答案] D [解析]考查导数的简单应用. f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex, 令f(x)0,解得x2,故选D. 3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k =(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+) B.(-,2]

C.(-,-1)和(1,2) D.[2,+) [答案] B [解析]令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2]. 4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是() [答案] C [解析]当01时xf(x)0 f(x)0,故y=f(x)在(0,1)上为减函数 当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C. 5.函数y=xsinx+cosx,x(-)的单调增区间是() A.-,-2和0,2 B.-2,0和0,2 C.-,-2, D.-2,0和 [答案] A [解析]y=xcosx,当-x2时, cosx0,y=xcosx0, 当02时,cosx0,y=xcosx0. 6.下列命题成立的是() A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0

必修一函数的单调性专题讲解(经典)

第一章 函数的基本性质之单调性 一、基本知识 1.定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当 21x x <时,都有 ))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 重点 2.证明方法和步骤: (1) 取值:设21,x x 是给定区间上任意两个值,且21x x <; (2) 作差:)()(21x f x f -; (3) 变形:(如因式分解、配方等); (4) 定号:即0)()(0)()(2121<->-x f x f x f x f 或; (5) 根据定义下结论。 3.常见函数的单调性 时, 在R 上是增函数;k<0时, 在R 上是减函数 (2),在(—∞,0),(0,+∞)上是增函数, (k<0时),在(—∞,0),(0,+∞)上是减函数, (3)二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2- =的左侧单调减小,右侧单调增加; 当0

(完整版)函数的单调性与奇偶性练习题基础

1 函数单调性(一) (一)选择题 1.函数x x f 3 )(= 在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1 B .x y 2 = C .y =x 2-4x +5 D .y =|x -1|+2 3.设函数y =(2a -1)x 在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( ) A .必是增函数 B .不一定是增函数 C .必是减函数 D .是增函数或减函数 (二)填空题 5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______. 6.若函数x a x f = )(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)4 3(f 的大小关系是______。 *9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. (三)解答题 10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断: 甲说f (x )在定义域上是增函数; 乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。 11.已知函数.21 )(-= x x f (1)求f (x )的定义域; (2)证明函数f (x )在(0,+∞)上为减函数. 12.已知函数| |1)(x x f = . (1)用分段函数的形式写出f (x )的解析式;

2函数的单调性及其应用高三复习专题

函数的单调性 1.单调性与单调区间: 例1.下列函数中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x ”的是( ) A .()f x =1x B .()f x =2(1)x - C .()f x =x e D .()ln(1)f x x =+ 演变1.给定函数:①1 2y x =,②12 log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间 (0,1)上单调递减的函数序号是( ) A .①② B .②③ C .③④ D .①④ 例2.函数2()21 x f x x -= -的单调区间为__________ 演变1.函数25---=a x x y 在),1(+∞-上单调递增,则a 的取值范围是__________ 例3.函数267)(x x x f --=的单调递增区间为__________ 演变1. 函数()f x =__________ 例4.函数2()2||3f x x x =--的单调递增区间为__________ 演变1.函数|32|)(2--=x x x f 的单调递增区间为__________ 2.利用单调性求参数范围: 例1.已知函数2)1(22+-+=x a x y 在)4,(-∞上是减函数,则实数a 的取值范围是_______ 演变1.若ax x x f 2)(2+-=与1 )(+=x a x g 在区间[1,2]上都是减函数,则a 的取值范围是__________ 例2.已知函数(31)4(1)()log (1)a a x a x f x x x -+

高中数学函数单调性的判断方法

高中数学函数单调性的判断方法 单调性是函数的重要性质,它在数学中有许多应用,如我们常用求函数单调性的方法求函数的值域。那么,有哪些求函数单调性的方法呢? 方法一:定义法 对于函数f(x)的定义域I 内某个区间A 上的任意两个值12,x x (1)当12x x <时,都有12()()f x f x <,则说f(x)在这个区间上是增函数; (2)若当12x x <时,都有12()()f x f x >,则说f(x) 在这个区间上是减函数。 例如:根据函数单调性的定义,证明:函数 在 上是减函数。 要证明函数f (x )在定义域内是减函数,设任意1212,x x R x x ∈<且,则33221221212121()()()()f x f x x x x x x x x x -=-=-++,12x x <因为 210x x ->所以,且在1x 与2x 中至少有一个不为 0,不妨设20x ≠,那么222222121123()24 x x x x x x x ++=++0>,12()()f x f x >所以,故 ()f x 在 (,)-∞+∞上为减函数。 方法二:性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: 1. f(x)与c?f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; 2.当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; 3.当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 例如,已知f (x )在R 上是减函数,那么-5f (x )为____函数。 这道题很简单,我们根据单调性的性质,很容易就能判断它是增函数。 方法三:同增异减法(处理复合函数的单调性问题) 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域), 可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中, 若有两个函数单调性相同,则第三个函数为增函数;

高中数学必修一函数的性质单调性测试题含答案解析

函数的性质单调性 1.在区间(0,+∞)上不是增函数的函数是() 222xxyxyyyx+ 1 DC..B.A.==2=3+1 +=2+1 x2mxxfx+5在区间[-2,+∞]上是增函数,在区间-2.函数((-∞,-)=42) 上是减函数,f(1)等于(则) B.1 C.17 A.-7 D.25 fxyfx+5)的递增区间是 (( (-2,3)上是增函数,则)=3.函数 ()在区间A.(3,8) B.(-7,-2) C.(-2,3) D.(0,5) ax?1axf的取值范围是 ).函数上单调递增,则实数(()=-2,+∞在区间() 4x?211,+∞) C.(-2,+∞) D.(-∞,-1)∪(1) A.(0,B.( ,+∞) 22fxabfafbfxab]内(, ())=0]上单调,且在区间([) ()<5.已 知函数0()在区间[,,则方程 A.至少有一实根 B.至多有一实根 C.没 有实根 D.必有唯一的实根 22gxxgxfxxxf) (.已知函数)=( ))=8+2( 2--,那么函数,如果 (() 6 A.在区间(-1,0)上是减函数 B.在区间(0,1)上是减函数 C.在区间(-2,0)上是增函数 D.在区间(0,2)上是增函数 fxf(x|,1)是其图象上的两点,那么不等式上的增函数,A(0,-1).已知函数7、(B(3)是R+1)|<1的解集的补集是 A.(-1,2) B.(1,4) C.(-∞,-1)∪[4,+∞) D.(-∞,-1)∪[2,+∞) fxtftf(5=,都有)(5R的函数+(上单调递减,对任意实数)在区间(-∞,5)8.定 义域为tfff(13) <(9)(-1)-<),下列式子一定成立的是 A.fffffffff(9) <-(13)<(-1) <1)B.(13)<(13) D(9)<.(-1) C.((9)<f(x)?|x|和g(x)?x(2?x)的递增 区间依次是(.函数9 ) B. A. C. D )??[1,[0,????)),][0,,(??,0],(??1]??),(??,1[(??,0],1,??????a4?,?的取值范 围是(10.已知函数)在区间上是减函数,则实数221fx??xx?2a?aaaa≥.3 .D≤≤3 B.5 ≥-3 C A.fxabab≤0,则下列不等式中正确的是(∈R且+11.已知())在区间(-∞,+∞上是增函数,)、 fafbfafbfafbfafb) ()(+)≤A .(()+(≤-)-()+B()].-()+

高考数学专题:函数的单调性

高考数学函数的单调性复习教案 考纲要求:了解函数单调性的概念,掌握判断一些简单函数的单调性的方法 。 函数单调性可以从三个方面理解 (1)图形刻画:对于给定区间上的函数()f x ,函数图象如从左向右连续上升,则称函数在该区间上单调递增,函数图象如从左向右连续下降,则称函数在该区间上单调递减。 (2)定性刻画:对于给定区间上的函数()f x ,如函数值随自变量的增大而增大,则称函数在该区间上单调递增,如函数值随自变量的增大而减小,则称函数在该区间上单调递减。 (3)定量刻画,即定义。 上述三方面是我们研究函数单调性的基本途径 判断增函数、减函数的方法: ①定义法:一般地,对于给定区间上的函数()f x ,如果对于属于这个区间的任意两个自变量的值1x 、2x ,当21x x <时,都有()()21x f x f <〔或都有()()21x f x f >〕,那么就说()f x 在这个区间上是增函数(或减函数)。 与之相等价的定义:⑴()()02121>--x x x f x f ,〔或都有()()02 121<--x x x f x f 〕则说()f x 在这个区间上是增函数(或减函数)。其几何意义为:增(减)函数图象上的任意两点()()()()2211,,,x f x x f x 连线的斜率都大于(或小于)0。 ⑵()()()[]02121>--x f x f x x ,〔或都有()()()[]02121<--x f x f x x 〕则说()f x 在这个区间上是增函数(或减函数)。 ②导数法:一般地,对于给定区间上的函数()f x ,如果()0`>x f 那么就说()f x 在这个区间上是增函数;如果()0`a 且0≤b 。 (年广东卷)下列函数中,在其定义域内既是奇函数又是减函数的是

判断函数单调性的常见方法

判断函数单调性的常见方法 一、函数单调性的定义: 一般的,设函数y=f(X)的定义域为A,I?A,如对于区间内任意两个值X1、X2, 1)、当X1X2时,都有f(X1)>f(X2),那么就说y=f(x)在区间I上是单调减函数,I称为函数的单调减区间。 二、常见方法: Ⅰ、定义法:定义域判断函数单调性的步骤 ①取值: 在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1

=(x1-x2)(x12+x22+x1x2+1) =(x1-x2)[﹙x1+1/2x2﹚2+1+3/4x22] ∵x1、x2?(-∞,+∞),x10 故f(x1)-f(x2)<0,即f(x1)

三角函数的单调性测试题(人教A版)(含答案)

三角函数的单调性(人教A版) 一、单选题(共13道,每道7分) 1.下列四个命题中,正确的个数是( )(1)在定义域内是增函数;(2) 在第一、第四象限是增函数;(3)与在第二象限都是减函数;(4) 在上是增函数. A.1个 B.2个 C.3个 D.4个 答案:A 解题思路: 试题难度:三颗星知识点:正切函数的单调性 2.的单调递增区间是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:正弦函数的单调性 3.函数的一个单调递增区间为( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:余弦函数的单调性 4.在上,使为增函数,为减函数的区间为( ) A. B. C. D. 答案:A

解题思路: 试题难度:三颗星知识点:余弦函数的单调性 5.在上,使为增函数,为减函数的区间为( ) A. B.或 C. D.或 答案:A 解题思路: 试题难度:三颗星知识点:余弦函数的单调性 6.的单调递增区间是( )

A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:正切函数的单调性 7.关于函数,下列说法正确的是( ) A.在上递减 B.在上递增 C.在上递减 D.在上递减答案:C

解题思路: 试题难度:三颗星知识点:余弦函数的单调性 8.函数的最小正周期为,则( ) A.在上单调递减 B.在上单调递减 C.在上单调递增 D.在 上单调递增 答案:B 解题思路: 试题难度:三颗星知识点:正弦函数的单调性 9.使函数为增函数的区间是( )

A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:正弦函数的单调性 10.函数的单调递减区间为( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:余弦函数的单调性 11.已知函数,则在区间上的最大值与最小值

专题一:导数与函数的单调性

专题一:导数与函数的单调性 题型一:求函数的单调区间 1.函数()2 ln f x x x =的减区间为( ) A. ( B. ?+∞???? C. ?-∞ ?? D. ? ?? 2.设()f x '是函数()f x 的导函数,()f x '的图象如图所示,则()y f x =的图象是( ) A B C D 3.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图像可能是( ) A B C D 4. 判断函数2x y x e =-的单调性. 题型二: 含有参数的单调区间 1. 求函数()1x f x e ax =--的单调区

2. 求函数()21ln 2f x x ax =+的单调区间 3.讨论函数()()2112x f x x e ax =--的单调性 题型三:已知单调性求参数取值范围 1. 已知()1x f x e ax =--在区间[]-2,3为减函数,求a 的取值范围。 2. 已知()()3212+33 f x x bx b x =+++在R 上是单调递增函数,求b 的范围。若函数()f x 不是单调函数b 范围又是多少? 3.已知()2 1+x e f x ax =在R 是单调函数,求a 的取值范围 4.若函数()22ln f x x x =-在其定义域内的一个子区间()1,1k k -+内不是单调函数,求实数k 的取值范围 5.()()21ln 202 f x x ax x a =--≠存在单调递减区间,求a 的取值范围。

函数单调性方法和各种题型

(一)判断函数单调性的基本方法 Ⅰ、定义法: 定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明 Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出): 在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数 例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性 Ⅲ、图像法: 说明:⑴单调区间是定义域的子集 ⑵定义x 1、x 2 的任意性 ⑶代数:自变量与函数值同大或同小→单调增函数 自变量与函数相对→单调减函数 例3:y=|x2+2x-3| 练习:

(二) 函数单调性的应用 Ⅰ、利用函数单调性求连续函数的值域(最值) 根据增函数减函数的定义我们可得到如下结论: (1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。 (2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。 例1:求下列函数的值域 (1)y=x 2-6x+3, x ∈[-1,2] (2)y=-x 2+2x+2, x ∈[-1,4] 练习题: 1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在 [a,b]上的最小值是 ( ) 2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是 ( ) 3、( )有函数13+--=x x y 存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4 -44 -00 4 4、](()()的值域为 时,函数当1435,02+-=∈x x x f x ()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、????? ? ??????????? ?? 5、求函数y=-x-6+ 的值域 x -1

专题函数单调性的证明

函数单调性的证明 函数的单调性需抓住单调性定义来证明,这是目前高一阶段唯一的方法。 一、证明方法步骤为: ① 在给定区间上任取两个自变量1x 、2x 且1x <2x ② 将()1f x 与()2f x 作差或作商(分母不为零) ③ 比较差值(商)与0(1)的大小 ④ 下结论,确定函数的单调性。 在做差比较时,我们常将差化为积讨论,常用因式分解(整式)、通分(分式)、有理化(无理式)、配方等手段。 二、常见的类型有两种: (一)已知函数的解析式: 例1:证明:函数()1=x-1 f x 在x ∈(1,+∞)单调递减 例2:证明:函数()3 =x +x+1x f x R 在∈时单调递增 例3:证明:函数()x [1+f x ∞∈,)时单调递增 例4:讨论函数()1=x+ 1+x-1 f x ∞在(,)的单调性,并求最小值 例5:求函数()x+2= x-1 f x 的单调区间

练习:1、证明函数()a =x+a 0x f x ∞(>)单调递增 2、讨论函数()f x 的单调性 (二)抽象函数的单调性: 抽象函数的单调性关键是抽象函数关系式的运用,同时,要注意选择作差还是作商,这一点可观察题意中()f x 与0比较,应作差;与1比较,应作商。如下三例: 例1:已知函数f (x ) 满足x 、y ∈R 时,f (x +y )=f (x )+f (y ) 恒成立,且当x >0时,f (x )>0.证明:f (x )在R 上单调递增. 例2:已知函数f (x ) 满足x 、y ∈R 时,f (xy )=f (x )+f (y ) 恒成立,且当x >1时,f (x )>0.证明:f (x )在(0,+∞)上单调递增. 例3:已知函数f (x ) 满足x 、y ∈R 时,f (xy )=f (x )f (y ) 恒成立,且当x >1时,f (x )> 1.若f (x )≠0.证明:f (x )在(0,+∞)上单调递增. 练习: 1、已知函数()f x 对于任意的x 、y ∈R ,总有 ()()()()()2+=+y x 00=-.3 y 1f x f f x f x f ,且当>时,<; (1)求证:()f x 在R 上是减函数 (2)求()f x 在[-3,3]上的最大值与最小值

函数的单调性练习题

高一数学同步测试(6)—函数的单调性 一、选择题: 1.在区间(0,+∞)上不是增函数的函数是 ( ) A .y =2x +1 B .y =3x 2+1 C .y = x 2 D .y =2x 2 +x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数, 则f (1)等于 ( ) A .-7 B .1 C .17 D .25 3.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0, 2 1) B .( 2 1,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数 7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4) C .(-∞,-1)∪[4,+∞) D .(-∞,-1)∪[2,+∞) 8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5 -t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞ C .]1,(),,0[-∞+∞ D ),1[),,0[+∞+∞

函数奇偶性与单调性的综合应用 专题

函数奇偶性与单调性的综合应用 专题 【寄语:亲爱的孩子,将来的你一定会感现在拼命努力的自己!】 教学目标:1.掌握函数的单调性与奇偶性的概念以及基本性质;. 2.能综合运用函数的单调性与奇偶性来分析函数的图像或性质; 3.能够根据函数的一些特点来判断其单调性或奇偶性. 教学重难点:函数单调性的证明;根据单调性或奇偶性分析函数的性质. 【复习旧识】 1.函数单调性的概念是什么?如何证明一个函数的单调性? 2.函数奇偶性的概念是什么?如何证明一个函数的奇偶性? 3.奇函数在关于原点对称的区间上,其单调性有何特点?偶函数呢? 【新课讲解】 一、常考题型 1.根据奇偶性与单调性,比较两个或多个函数值的大小; 2.当题目中出现“2 121) ()(x x x f x f -->0(或<0)”或“)(x xf >0(或<0)”时,往往还是 考察单调性; 3.证明或判断某一函数的单调性; 4.证明或判断某一函数的奇偶性; 5.根据奇偶性与单调性,解某一函数不等式(有时是“)(x f >0(或<0)”时x 的取值围); 6.确定函数解析式或定义域中某一未知数(参数)的取值围.

二、常用解题方法 1.画简图(草图),利用数形结合; 2.运用奇偶性进行自变量正负之间的转化; 3.证明或判断函数的单调性时,有时需要分类讨论. 三、误区 1.函数的奇偶性是函数的整体性质,与区间无关; 2.判断函数奇偶性,应首先判断其定义域是否关于原点对称; 3.奇函数若在“0=x ”处有定义,必有“0)0(=f ”; 4.函数单调性可以是整体性质也可以是局部性质,因题而异; 5.运用单调性解不等式时,应注意自变量取值围受函数自身定义域的限制. 四、函数单调性证明的步骤: (1) 根据题意在区间上设 ; (2) 比较大小 ; (3) 下结论 . 函数奇偶性证明的步骤: (1)考察函数的定义域 ; 例1 设)(x f 是定义在(-∞,+∞)上的偶函数,且它在[0,+∞)上单调递增,若a =)3 1(log 2 f ,b =)2 1 (log 3 f ,c =)2(-f ,则a ,b ,c 的大小关系是( ) A .c b a >> B .a c b >> C .b a c >> D .a b c >> 【考点】函数单调性;函数奇偶性,对数函数的性质. 【解析】 因为log 2 3

相关主题
文本预览
相关文档 最新文档