当前位置:文档之家› 基于层片分割算法弧齿锥齿轮及准双面齿轮五轴数控切削仿真

基于层片分割算法弧齿锥齿轮及准双面齿轮五轴数控切削仿真

基于层片分割算法弧齿锥齿轮及准双面齿轮五轴数控切削仿真
基于层片分割算法弧齿锥齿轮及准双面齿轮五轴数控切削仿真

文章编号:1004-2539(2011)03-0007-04

基于层片分割算法弧齿锥齿轮及准双面齿轮五轴数控切削仿真

李敬财1,2徐文丽2李清1李琳1王太勇1

(1天津大学,天津300072)

(2天津石油职业技术学院,天津301607)

摘要针对目前的弧齿锥齿轮及准双面齿轮切削仿真系统独立性差、仿真速度慢、精度低等问题,提出了层片分割算法,以该算法为核心开发出了五轴数控弧齿锥齿轮及准双面齿轮仿真系统。介绍了层片分割仿真核心算法实现的原理和弧齿锥齿轮及准双面齿轮仿真系统的整体结构、各个模块的作用以及实现的流程,给出了仿真实例。

关键词弧齿锥齿轮及准双面齿轮齿面成型切削仿真层片分割求交运算

Development of Five Axis Nu merical Control Simulation System

of the Forming Process of Spiral Bevel Gear and Hypoid Gear

based on Slice Algorithm

Li Jingcai1,2Xu Wenli2Li Qing1Li Lin1Wang Taiyong1

(1Colle ge of M echanical Engineeri ng,Tianjin Univers ity,Ti anjin300072,China)

(2Ti anjin Petroleum Vocational and technical college,Tianjin301607,China)

Abstract In order to solve the problems e xisting in geometric simulation of spiral bevel gear and hypoid gear cutting process,such as slow speed,low precision and lack of independence,slice algorithm is presented.The five

a xis numerical control simulation system of the forming process of gear.s tooth surface is developed based on the slice

algorithm.Basic idea of slice algorithm,structure and func tion of the system module,and the process of realization of the simulation system is introduced,an example is presented.

Key words Spiral bevel gear and hypoid gear Forming process of tooth faces Visual simulation Slice algo-rithm Intersection calculation

0引言

弧齿锥齿轮及准双面齿轮作为典型的复杂曲面,广泛应用于航空等领域。为降低成本,优化齿形设计和提高加工效率,在弧齿锥齿轮及准双面齿轮制造领域广泛采用数字化制造技术,尤其是对高精度或者大模数弧齿锥齿轮及准双面齿轮,弧齿锥齿轮及准双面齿轮切削仿真系统是弧齿锥齿轮及准双面齿轮数字化制造的关键环节。在给定刀具、齿坯、机床型号及对应的加工调整参数情况下,利用计算机在虚拟环境中对弧齿锥齿轮及准双面齿轮进行虚拟加工,不仅可以验证机床调整参数的合理性,还可以为数字化的TC A(齿面接触分析)、有限元分析等分析工作提供精确的弧齿锥齿轮及准双面齿轮数字化模型。1目前弧齿锥齿轮及准双面齿轮仿真系统存在问题

1.1需增强仿真系统的独立性

目前,很多弧齿锥齿轮及准双面齿轮加工仿真系统是建立在已有的三维造型仿真软件基础之上的,这在无形中增加了软件的使用成本,降低了软件的开放程度[1]1-3[2]215-218[3]59-63[4]。为改善这一情况,需要研究工作基于基本的编程软件进行。根据弧齿锥齿轮及准双面齿轮的加工特点,从最基本的齿面成型过程仿真算法的核心开始进行研究,从而脱离已有三位造型软件功能的限制和开放程度的束缚。

1.2提高仿真结果的精确度

利用目前已有的仿真软件以及仿真方法所/加工0出的弧齿锥齿轮及准双面齿轮模型精度仍然较低,无

法为后续的TC A 等提供足够精确的模型,因而无法实现整个生产过程的真正的数字化制造。因此,需要寻找一种行之有效的办法来提高仿真结果的精确度。1.3 增强仿真系统的高效性

现有的弧齿锥齿轮及准双面齿轮仿真系统的仿真速度过慢,仿真过程的切削效率很低[1]1-3[2]215-218

因此,需要从仿真的核心算法开始,提高整个仿真系统的运行速度,实现真正的实时切削仿真。同时在仿真过程中需要使用户可以根据自己的意图影响仿真的过程,使仿真系统在使用时变得更加人性化。

2 弧齿锥齿轮及准双面齿轮切削仿真

系统核心算法)))层片分割法

针对以上弧齿锥齿轮及准双面齿轮切削仿真中存在的仿真速度慢、精度低、过程不稳定以及缺乏独立性等问题,提出了基于/层片切割0的齿面成型过程仿真

算法。

图1 小轮层片分割

该算法的核心思想是先将被加工零件进行适当的层片分割得到分割特征集(如图1所示)。为得到每一层片上的小轮齿面点,需要将每一层圆锥,用直线来表示(如图2所示,图中R c 、u 3、A 、H j 表示该层圆锥上的直线参数),在加工的每个时刻,将刀具与被加工零件的分割特征进行求交计算(如图3所示),并对相邻两加工时刻的计算结果进行取舍(如图4所示),从而得到每一离散加工时刻的弧齿锥齿轮及准双面齿轮齿面数据点。需要注意的是求交计算涉及到非线性方程组的求解。在加工完毕后得到最终的齿面加工结果,算法整体流程如图4所示。

基于该算法我们对采用五轴加工的弧齿锥齿轮及准双面齿轮小轮切削仿真得到的小轮齿面精度进行了验证,仿真齿面模型点的坐标相对于理论齿面点坐标误差小于10-6

mm 。

此外需要说明的是本文中的弧齿锥齿轮及准双面齿轮切削仿真是在五轴弧齿锥齿轮及准双面齿轮虚拟机床上进行的,文中未给出五轴加工弧齿锥齿轮及准双面齿轮的理论及公式以及其推导过程,相关内容详

见参考文献[1]1-3和文献[3]59-63;此外由于刀盘加工

过程中转速很高,所以实际加工中的铣刀盘尽管是由刀齿组成,但可以采用锥面替代[5]。

图4 相邻加工时刻点的取舍示意图

图5 层片分割算法实现流程

3 弧齿锥齿轮及准双面齿轮五轴切削

仿真系统开发

弧齿锥齿轮及准双面齿轮加工过程较复杂,加工所使用的刀具一般为专用刀具,加工机床也与通用加工机床有所区别,并且加工出来的齿面为空间复杂曲面。所有的这些因素导致使用通用方法进行切削过程的布尔运算变得十分困难。所以,虽然整个仿真系统的结构与五轴数控加工中心仿真系统的结构有所类似,但也有所区别,在一定意义上具有一定的特殊性。如图6所示是本文所涉及的弧齿锥齿轮及准双面齿轮切齿仿真系统的总体结构。

图6 仿真系统结构图

整个仿真系统基于虚拟现实技术,建立在Windows 平台下,采用VC 作为编程工具、OpenGL 作为标准图形库,通过Matlab 和VC 混合编程实现复杂运算的快速求解。在虚拟环境下模拟弧齿锥齿轮及准双面齿轮的切削过程,并通过输入和输出接口实现人机交互。仿真系统主要由3部分构成:输入模块、三维显示模块、核心算法及输出模块。如图7为仿真系统的实现流程

图。

图7 仿真系统实现流程图

在进行仿真之前,首先要通过参数输入模块输入所需要的刀具和齿坯的参数,以建立仿真的基本环境。再输入机床调整参数并选择相应的机床,通过运动转换模块将传统的机床调整参数转换为数控程序,以便在仿真过程中控制机床各部件、刀具和齿坯的相对运动。需要不断地读取数控程序,并判断在每一加工位置上刀具与齿坯是否有重叠区域,即是否进入了加工位置。再建立刀具的数学模型以及坐标转换模型,如果当前所处位置为加工位置,则对齿坯进行层片分割后求取刀具切削面与层片分割后的特征的交点。求得当前位置刀具与齿坯的交点后,与上一位置刀具和齿坯的交点相比较和取

舍,最终得到当前切削时刻的齿面数据点。每进入一个

切削位置,对弧齿锥齿轮及准双面齿轮模型进行一次三维重构。切削完成后,将所得到的精确的齿面数据点输出。加工开始仿真环境如图8所示。

图8 仿真环境

4 实际算例

对给定参数的准双曲面齿轮,采用层片分割算法对大轮和小轮进行切齿仿真。表1为准双曲面齿轮齿坯数据,表2为准双曲面齿轮大轮和小轮采用HFT 法给出的加工调整参数。图9所示为大轮切削仿真过程和结果,图10所示为小轮切削仿真过程和结果。

表1 准双曲面齿轮齿坯数据

齿坯参数小轮大轮齿数1037模数9.73-轴交角/(b )90-节锥角/(b )17b 34c 72b 2c 面锥角/(b )22b 5c 72b 59c 根锥角/(b )16b 39c 67b 26c 设计螺旋角/(b )45b 9c 32b 41c 齿面宽/mm

59.4854全齿高/mm 18.6618.42旋向

左旋

右旋

表2 机床调整参数表调整参数小轮凹面小轮凸面大轮径向刀位/mm 141.1237145.0724-刀倾角/(b )17.1418.30-刀转角/(b )321.8301.59-垂直轮位/mm 28.698636.6543-轮坯安装角/(b )358.52355.9767.23轴向轮位修正值/mm

-4.0833 4.4738-床位/mm 30.623151.08330切削滚比

3.489811

3,689470

-

续 表

调整参数

小轮凹面小轮凸面

大轮角向刀位/mm 75.8767.08

-水平刀位/mm -77.6534垂直刀位/mm -129.4356刀尖点直径/mm 300.48299.72304.8?(4.33/2)

压力角/(b )

14

3522.5

图9 大轮加工仿真结果

图10 小轮加工仿真结果

5 结束语

将作者提出的基于层片分割切削仿真算法应用到

弧齿锥齿轮及准双面齿轮切削仿真中,很好地解决了目前弧齿锥齿轮及准双面齿轮切削仿真中存在独立性差、仿真速度慢、精度低等问题;该算法也可应用于其他复杂曲面切削仿真中。

[1] 熊越东,王太勇,张威.弧齿锥齿轮及准双面齿轮数控铣齿加工过

程几何仿真研究[J].组合机床与自动化加工技术,2006(8):1-3.[2] 纪玉坤,曹利新.基于UG 的五轴数控机床加工仿真[J].计算机

仿真,2006(1):215-218.

[3] 张威.准双曲面齿轮数控加工理论与仿真研究[D].天津:天津大

学,2007:59-63.

[4] 唐进元,蒲太平,颜海燕.弧齿锥齿轮及准双面齿轮双重双面法多

轴联动数控加工计算机仿真研究[J].制造技术与机床,2008(2):25-29.

[5] Litivin F.L.Gear Geometry and Applied Theory[M ].Chicago:Uni versity

of Illi nois,2004:636-639.收稿日期:20100901

基金项目:国家/8630高技术研究发展计划资助项目(2007AA0402005)和

天津大学博士点基金(20060056016)天津市科技支撑计划重点项目(08ZCKFGX00900)

作者简介:李敬财(1973-),男,黑龙江七台河人,工学博士,讲师

(上接第6页)

生成的数控程序作相应修改,输入到立式加工中心,加

工出余弦齿轮如图8所示,通过对比可以得出:加工后的余弦齿轮齿形与余弦齿轮的实体模型基本一致。

3 结束语

从齿轮几何学和数控加工理论入手,运用滚铣两步加工新方法来实现余弦齿轮的加工,避免了专用刀具的设计加工,大大节约了成本,为各种新型特殊齿形的创成加工提供了一种新的思路。

(1)利用Matlab 对滚削加工的数学模型编程求解,并就滚削后的变位渐开线齿轮和余弦齿轮进行了对比,滚削后的变位渐开线齿轮能完全包裹余弦齿轮,且后续加工余量较小。

(2)利用Pro/E 中NC 模块,对余弦齿轮数控铣削过程进行了加工仿真,并在数控加工中心上进行了实例加工,得出在铣削加工过程中无过切和欠切现象,证明了该方法是切实可行的。

[1] Komori T,Ari ga Y,Nagata S.A new gear profile havi ng zero relative

curvature at many c ontact poi nts[J].Transacti ons of the ASME,Journal of Mechanis ms,Trans mis sions,and Automation in Desi gn,1990,112(3):430-436.

[2] 张光辉,许洪斌,龙慧.分阶式双渐开线齿轮[J].机械工程学报,

1995,31(6):47-52.

[3] Luo S M,Wu Y,Wang J,et al.The generati on principle and mathe mat-i

cal models of a novel gear drive[J].Mechanis m and Mac hine Theory,2008,43(12):1543-1556.

[4] Litvin F L,Fuentes A.Gear Geometry and Applied Theory[M ].Second

Edition New York:Cambridge Universi ty Press,2004:87-88.收稿日期:20100902 收修改稿日期:20101019基金项目:国家自然科学基金(50975242)

福建省自然科学基金(2009J01268)教育部新世纪优秀人才支持计划厦门市科技计划项目(3502Z20093038)

作者简介:徐攀(1985-),男,湖南湘潭县人,硕士

图像分割算法开题报告

图像分割算法开题报告 摘要:图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,并在医学、工业、军事等领域得到了广泛应用。近年来具有代表性的图像分割方法有:基于区域的分割、基于边缘的分割和基于特定理论的分割方法等。本文主要对基于自动阈值选择思想的迭代法、Otsu法、一维最大熵法、二维最大熵法、简单统计法进行研究,选取一系列运算出的阈值数据和对应的图像效果做一个分析性实验。 关键字:图像分割,阈值法,迭代法,Otsu法,最大熵值法 1 研究背景 1.1图像分割技术的机理 图像分割是将图像划分为若干互不相交的小区域的过程。小区域是某种意义下具有共同属性的像素连通集合,如物体所占的图像区域、天空区域、草地等。连通是指集合中任意两个点之间都存在着完全属于该集合的连通路径。对于离散图像而言,连通有4连通和8连通之分。图像分割有3种不同的方法,其一是将各像素划归到相应物体或区域的像素聚类方法,即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘像素,然后再将边缘像素连接起来构成边界的方法。 图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,两者是紧密关联的。图像分割在一般意义下十分困难的,目前的图像分割处于图像的前期处理阶段,主要针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。 1.2数字图像分割技术存在的问题

虽然近年来对数字图像处理的研究成果越来越多,但由于图像分割本身所具有的难度,使研究没有大突破性的进展,仍然存在以下几个方面的问题。 现有的许多种算法都是针对不同的数字图像,没有一种普遍适用的分割算法。 缺乏通用的分割评价标准。对分割效果进行评判的标准尚不统一,如何对分割结果做出量化的评价是一个值得研究的问题,该量化测度应有助于视觉系统中的自动决策及评价算法的优劣,同时应考虑到均质性、对比度、紧致性、连续性、心理视觉感知等因素。 与人类视觉机理相脱节。随着对人类视觉机理的研究,人们逐渐认识到,已有方法大都与人类视觉机理相脱节,难以进行更精确的分割。寻找到具有较强的鲁棒性、实时性以及可并行性的分割方法必须充分利用人类视觉特性。 知识的利用问题。仅利用图像中表现出来的灰度和空间信息来对图像进行分割,往往会产生和人类的视觉分割不一致的情况。人类视觉分割中应用了许多图像以外的知识,在很多视觉任务中,人们往往对获得的图像已具有某种先验知识,这对于改善图像分割性能是非常重要的。试图寻找可以分割任何图像的算法目前是不现实,也是不可能的。人们的工作应放在那些实用的、特定图像分割算法的研究上,并且应充分利用某些特定图像的先验知识,力图在实际应用中达到和人类视觉分割更接近的水平。 1.3数字图像分割技术的发展趋势 从图像分割研究的历史来看,可以看到对图像分割的研究有以下几个明显的趋势。 对原有算法的不断改进。人们在大量的实验下,发现一些算法的效

基于MATLAB的图像阈值分割技术

基于MATLAB 的图像阈值分割技术 摘要:本文主要针对图像阈值分割做一个基于MATLAB 的分析。通过双峰法,迭代法以及OUTS 法三种算法来实现图像阈值分割,并且就这三种算法做了一定的分析和比较,在加椒盐的图片上同时进行三种实验,做出比较,最终得出实践结论。 关键词:图像分割 MATLAB 阈值分割 算法 引言:图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提.同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准,图像阈值分割即是其中的一种方法。 阈值分割技术因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术,已被应用于很多的领域,在很多图像处理系统中都是必不可少的一个环节。 1、阈值分割思想和原理 若图像中目标和背景具有不同的灰度集合:目标灰度集合与背景灰度集合,且两个灰度集合可用一个灰度级阈值T 进行分割。这样就可以用阈值分割灰度级的方法在图像中分割出目标区域与背景区域,这种方法称为灰度阈值分割方法。 在物体与背景有较强的对比度的图像中,此种方法应用特别有效。比如说物体内部灰度分布均匀一致,背景在另一个灰度级上也分布均匀,这时利用阈值可以将目标与背景分割得很好。如果目标和背景的差别是某些其他特征而不是灰度特征时,那么先将这些特征差别转化为灰度差别,然后再应用阈值分割方法进行处理,这样使用阈值分割技术也可能是有效的 设图像为f(x,y),其灰度集范围是[0,L],在0和L 之间选择一个合适的灰度阈值T ,则图像分割方法可由下式描述: 这样得到的g(x,y)是一幅二值图像。 (一)原理研究 图像阈值分割的方法有很多,在这里就其中三种方法进行研究,双峰法,迭代法,以及OUTS 法。 方法一:双峰法 T y x f T y x f y x g ≥<),(),(10){,(

关于图像分割算法的研究

关于图像分割算法的研究 黄斌 (福州大学物理与信息工程学院 福州 350001) 摘要:图像分割是图像处理中的一个重要问题,也是一个经典难题。因此对于图像分割的研究在过去的四十多年里一直受到人们广泛的重视,也提山了数以千计的不同算法。虽然这些算法大都在不同程度上取得了一定的成功,但是图像分割问题还远远没有解决。本文从图像分割的定义、应用等研究背景入手,深入介绍了目前各种经典的图像分割算法,并在此基础比较了各种算法的优缺点,总结了当前图像分割技术中所面临的挑战,最后展望了其未来值得努力的研究方向。 关键词:图像分割 阀值分割 边缘分割 区域分割 一、 引言 图像分割是图像从处理到分析的转变关键,也是一种基本的计算机视觉技术。通过图像的分割、目标的分离、特征的提取和参数的测量将原始图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能,因此它被称为连接低级视觉和高级视觉的桥梁和纽带。所谓图像分割就是要将图像表示为物理上有意义的连通区域的集合,也就是根据目标与背景的先验知识,对图像中的目标、背景进行标记、定位,然后将目标从背景或其它伪目标中分离出来[1]。 图像分割可以形式化定义如下[2]:令有序集合表示图像区域(像素点集),H 表示为具有相同性质的谓词,图像分割是把I 分割成为n 个区域记为Ri ,i=1,2,…,n ,满足: (1) 1,,,,n i i j i R I R R i j i j ===??≠ (2) (),1,2,,i i i n H R True ?== (3) () ,,,i j i j i j H R R False ?≠= 条件(1)表明分割区域要覆盖整个图像且各区域互不重叠,条件(2)表明每个区域都具有相同性质,条件(3)表明相邻的两个区域性质相异不能合并成一个区域。 自上世纪70年代起,图像分割一直受到人们的高度重视,其应用领域非常广泛,几乎出现在有关图像处理的所有领域,并涉及各种类型的图像。主要表现在: 1)医学影像分析:通过图像分割将医学图像中的不同组织分成不同的区域,以便更好的

图像的阈值分割及边缘检测技术

数字图像处理实验报告 题目:图像的阈值分割及边缘检测技术 班级: 姓名: 学号:

图像的阈值分割及边缘检测技术 一、实验目的 1、了解图像的分割技术,掌握图像的全局阈值分割技术并通过MATLAB实现; 2、了解图像的边缘检测,掌握梯度算子图像边缘检测方法。 二、实验内容 1、基于直方图的全局阈值图像分割方法; 2、Edge命令(roberts,perwitt,sobel,log,canny),实现边缘检测。 三、实验原理 1、全局阈值是最简单的图像分割方法。其中,直方图法的原理如下:想做出图 像的直方图,若其直方图呈双峰且有明显的谷底,则可以讲谷底点所对应的灰度值作为阈值T,然后根据该阈值进行分割,九可以讲目标从图像中分割出来。这种方法是用于目标和背景的灰度差较大且直方图有明显谷底的情况。 2、用于边缘检测的梯度算子主要有Roberts算子、Prewitt算子、Sobel算子。 这三种检测算子中,Roberts算子定位精度较高,但也易丢失部分边缘,抗噪声能力差,适用于低噪声、陡峭边缘的场合。Prewitt算子、Sobel算子首先对图像做平滑处理,因此具有一定的抑制噪声的能力,但不能排除检测结果中的虚假边缘,易出现多像素宽度。

四、实验步骤 1、全局阈值分割: ①读取一张图像; ②生成该图像的直方图; ③根据直方图双峰产生的低谷估计阈值T; ④依次读取图像各个点的像素,若大于阈值,则将像素改为255,若小于 阈值,则将该像素改为0; 实验代码如下: I=imread('cameraman.tif'); %读取一张图像 subplot(221);imshow(I); %显示该图像 subplot(222);imhist(I); %生成该图像的直方图 T=60; %根据直方图估计阈值T为60 [m,n]=size(I); %取图像的大小为【m,n】 for i=1:m %依次读取图像各个点的像素,若大于阈 值,则将像素改为255,若小于阈值, 则将该像素改为0 for j=1:n if I(i,j)>=T I(i,j)=255; else I(i,j)=0; end end

基于阈值的图像分割方法--论文

课程结业论文 课题名称基于阈值的图像分割方法姓名 学号 学院 专业电子信息工程 指导教师副教授 年6月12日

学院课程结业论文诚信声明 本人郑重声明:所呈交的课程结业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担 目录 摘要 (1) 关键词 (1) ABSTRACT (2) KEY WORDS (2) 引言 (3) 1基于点的全局阈值选取方法 (4) 1.1最大类间交叉熵法 (5) 1.2迭代法 (6)

2基于区域的全局阈值选取方法 (7) 2.1简单统计法 (8) 2.3 直方图变化法 (9) 3局部阈值法和多阈值法 (10) 3.1水线阈值算法 (11) 3.2变化阈值法 (12) 4仿真实验 结论 (12) 参考文献 (13) 附录 基于阈值的图像分割方法 摘要:图像分割多年来一直受到人们的高度重视,至今这项技术也是趋于成熟,图像分割方法类别也是不胜枚举,近年来每年都有上百篇有关研究报道发表。图像分割是由图像处理进到图像分析的关键环节,是指把图像分成各具特性的区域并提取出有用的目标的技术和过程。在日常生活中,人们对图片的要求也

是有所提高,在对图像的应用中,人们经常仅对图像中的某些部分感兴趣,这 些部分就对应图像中的特定的区域,为了辨识和分析目标部分,就需要将这些 有关部分分离提取出来,因此就要应用到图像分割技术。 关键词:图像分割;阈值;matlab Based onthresholding for image segmentation methods Abstract:Image segmentation is a indispensable part of image processing and analysis, have important practical significance.It is according to the needs of image processing and analysis of the image into each area and extract the characteristic of technology and process of interested target.Image segmentation methods and types have a lot of different categories, some segmentation operation can be directly applied to all images, while others can only apply to special image.The purpose of this paper is to through the collection of image segmentation method based on threshold related information, analysis the advantages and disadvantages of various segmentation algorithm, using the MATLAB tools to threshold segmentation algorithm is studied. Keywords:image segmentation; The threshold value; matlab

图像分割算法研究与实现

中北大学 课程设计说明书 学生姓名:梁一才学号:10050644X30 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 图像分割算法研究与实现 指导教师:陈平职称: 副教授 2013 年 12 月 15 日

中北大学 课程设计任务书 13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 学生姓名:焦晶晶学号:10050644X07 学生姓名:郑晓峰学号:10050644X22 学生姓名:梁一才学号:10050644X30 课程设计题目:信息处理综合实践: 图像分割算法研究与实现 起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:陈平 系主任:王浩全 下达任务书日期: 2013 年12月15 日

课程设计任务书 1.设计目的: 1、通过本课程设计的学习,学生将复习所学的专业知识,使课堂学习的理论知识应用于实践,通过本课程设计的实践使学生具有一定的实践操作能力; 2、掌握Matlab使用方法,能熟练运用该软件设计并完成相应的信息处理; 3、通过图像处理实践的课程设计,掌握设计图像处理软件系统的思维方法和基本开发过程。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): (1)编程实现分水岭算法的图像分割; (2)编程实现区域分裂合并法; (3)对比分析两种分割算法的分割效果; (4)要求每位学生进行查阅相关资料,并写出自己的报告。注意每个学生的报告要有所侧重,写出自己所做的内容。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 每个同学独立完成自己的任务,每人写一份设计报告,在课程设计论文中写明自己设计的部分,给出设计结果。

图像阈值分割技术研究

图像阈值分割技术研究 一、 研究目的 图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提.同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准,图像阈值分割即是其中的一种方法。 阈值分割技术因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术,已被应用于很多的领域,在很多图像处理系统中都是必不可少的一个环节。 二、 研究思路 阈值分割图像的基本原理描述如下:利用图像中要提取的目标物与其背景在灰度特性上的差异,把图像视为具有不同灰度级的两类区域(目标和背景)的组合,选取一个合适的阈值,以确定图像中每个像素点应该属于目标区域还是背景区域,从而产生对应的二值图像。 即:()()()? ??≥<=.,1. ,0,T y x I T y x I j i B 三、 研究内容 (一)原理研究 图像阈值分割的方法有很多,在这里就其中三种方法进行研究,迭代法, OUTS 法,以及双峰法。 方法一:迭代法 方法原理: 开始时候选择一个阈值作为初始估计值,然后按着某种策略不断得改进这个估计值,直到满足给定的准则为止。 (1) 求出图像最大灰度值Max 和最小灰度值Min ,初始阈值估计值 T 0.=(Max+Min)*0.5. (2) 用T 0将图像分割为目标和前景。图像分成两组像素:Z 1由所有灰度值大 于或等于T 0的像素组成,而Z 0由所有灰度值小于T 0的像素组成。 (3) 分别求出两者区域中的所有像素计算平均灰度值a 1和a 2。 (4) 计算新的阈值T1=(a 1+a 2)*0.5. (5) 如果|T i+1-T i |<0.5,则退出循环,T i+1即为所求阈值;否则,将T i+1复制给 T i ,重复(2)~(5)。 源程序:

基于阈值的灰度图像分割

对以CPT算法为主的灰度阈值化方法的研究 目录: 第一章:绪论 第二章:图像的预处理 第三章:图像分割概述 第四章:灰度阈值化图像分割方法 第五章:CPT算法及其对它的改进 第六章:编程环境及用PhotoStar对改进的CPT算法和其他算法的实现 第七章:实验结果与分析 第一章:绪论 1.1数字图像处理技术的发展 人类传递信息的主要媒介是语音和图像。据统计,在人类接受的信息中,听觉信息占20%,视觉占60%,其他如味觉、触觉、嗅觉总的加起来不过占20%。所以,作为传递信息的重要媒体和手段——图像信息是十分重要的。【5】对于图像信息的处理,即图像处理当然对信息的传递产生很大影响。 数字图像处理技术起源于20世纪20年代,当时通过海底电缆从伦敦到纽约传输了一幅图片,它采用了数字压缩技术。1964年美国的喷气处理实验室处理了太空船“徘徊者七号”发回的月球照片,这标志着第三代计算机问世后数字图像处理概念得到应用。其后,数字图像处理技术发展迅速,目前已成为工程学、计算机科学、生物学、医学等领域各学科之间学习和研究的对象。 经过人们几十年的努力,数字图像处理这一学科已逐渐成熟起来。人们总是试图把各个学科应用到数字图像处理中去,并且每产生一种新方法,人们也会尝试它在数字图像处理中的应用。同时,数字图像处理也在很多学科中发挥着它越来越大的作用。 1.2图像分割概述和本论文的主要工作 图像分割的目的是把图像空间分成一些有意义的区域,是数字图像处理中的重要问题,是计算机视觉领域低层次视觉问题中的重要问题,同时它也是一个经典的难题。几十年来,很多图像分割的方法被人们提出来,但至今它尚无一个统一的理论。 图像分割的方法很多,有早先的阈值化方法、最新的基于形态学方法和基于神经网络的方法。 阈值化方法是一种古老的方法,但确是一种十分简单而有效的方法,近几十年人们对阈值化方法不断完善和探索,取得了显著的成就,使得阈值化方法在实际应用中占有很重要的地位。 本文将主要对图像分割的阈值化方法进行探讨。在对阈值化方法的研究过程中,本人首先将集中精力对效果比较好的阈值化方法进行探讨,并对其存在的不足加以改进,从而作出性能优良的计算机算法;由于目前很多方法各有其特点,所以将对具有不同特点的图像用不同的方法处理进行研究。在论文正文部分还将其应用到实践中去,并对其加以评价。 第二章:图像的预处理 2.1图像预处理的概述 由于切片染色和输入光照条件及采集过程电信号的影响,所采集的医学图

数字图像灰度阈值的图像分割技术matlab

1.课程设计的目的 (1)使学生通过实验体会一些主要的分割算子对图像处理的效果,以及各 种因素对分割效果的影响 (2)使用Matlab软件进行图像的分割 (3)能够进行自行评价各主要算子在无噪声条件下和噪声条件下的分割 性能 (4)能够掌握分割条件(阈值等)的选择 (5)完成规定图像的处理并要求正确评价处理结果,能够从理论上做出合 理的解释 2.课程设计的要求 (1)能对图像文件(bmp,jpg,tiff,gif)进行打开,保存,退出等功能操作 (2)包含功能模块:图像的边缘检测(使用不同梯度算子和拉普拉斯算子)(3)封闭轮廓边界 (4)区域分割算法:阈值分割,区域生长等

3.前言 3.1图像阈值分割技术基本原理 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准]5[。 在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。本文着重研究基于阈值法的图像分割技术。 若图像中目标和背景具有不同的灰度集合:目标灰度集合与背景灰度集合,且两个灰度集合可用一个灰度级阈值T进行分割。这样就可以用阈值分割灰度级的方法在图像中分割出目标区域与背景区域,这种方法称为灰度阈值分割方法。 在物体与背景有较强的对比度的图像中,此种方法应用特别有效。比如说物体内部灰度分布均匀一致,背景在另一个灰度级上也分布均匀,这时利用阈值可以将目标与背景分割得很好。如果目标和背景的差别是某些其他特征而不是灰度特征时,那么先将这些特征差别转化为灰度差别,然后再应用阈值分割方法进行处理,这样使用阈值分割技术也可能是有效的

图像分割常用算法优缺点探析

图像分割常用算法优缺点探析 摘要图像分割是数字图像处理中的重要前期过程,是一项重要的图像分割技术,是图像处理中最基本的技术之一。本文着重介绍了图像分割的常用方法及每种方法中的常用算法,并比较了各自的优缺点,提出了一些改进建议,以期为人们在相关图像数据条件下,根据不同的应用范围选择分割算法时提供依据。 关键词图像分割算法综述 一、引言 图像分割决定了图像分析的最终成败。有效合理的图像分割能够为基于内容的图像检索、对象分析等抽象出十分有用的信息,从而使得更高层的图像理解成为可能。目前图像分割仍然是一个没有得到很好解决的问题,如何提高图像分割的质量得到国内外学者的广泛关注,仍是一个研究热点。 多年来人们对图像分割提出了不同的解释和表达,通俗易懂的定义则表述为:图像分割指的是把一幅图像分割成不同的区域,这些区域在某些图像特征,如边缘、纹理、颜色、亮度等方面是一致的或相似的。 二、几种常用的图像分割算法及其优缺点 (一)大津阈值分割法。 由Otsu于1978年提出大津阈值分割法又称为最大类间方差法。它是一种自动的非参数非监督的门限选取法。该方法的基本思路是选取的t的最佳阈值应当是使得不同类间的分离性最好。它的计算方法是首先计算基于直方图而得到的各分割特征值的发生概率,并以阈值变量t将分割特征值分为两类,然后求出每一类的类内方差及类间方差,选取使得类间方差最大,类内方差最小的t作为最佳阈值。 由于该方法计算简单,在一定条件下不受图像对比度与亮度变化的影响,被认为是阈值自动选取的最优方法。该方法的缺点在于,要求得最佳阈值,需要遍历灰度范围0—(L-1)内的所有像素并计算出方差,当计算量大时效率会很低。同时,在实际图像中,由于图像本身灰度分布以及噪声干扰等因素的影响,仅利用灰度直方

图像分割方法综述

图像分割方法综述 摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点, 本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。同时也对图像分割未来的发展趋势进行了展望。 关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法 Abstract: Image segmentation is a classic problem in computer vision,and become a hot topic in the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation. Key words: image segmentation; regional growing; active contour; clustering analysis genetic algorithm 1 引言 图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。本文根据图像发展的历程,从传统的图像分割方法、结合特定工具的图像分割方法、基于人工智能的图像分割方法三个由低到高的阶段对图像分割进行全面的论述。 2 传统的图像分割方法 2.1 基于阀值的图像分割方法 阀值分割法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。阀值分割法的基本原理是通过设定不同的特征阀值,把图像像素点分为具有不同灰度级的目标区域和背景区域的若干类。它特别适用于目标和背景占据不同灰度级范围的图,目前在图像处理领域被广泛应用,其中阀值的选取是图像阀值分割中的关键技术。 灰度阀值分割方法是一种最常用的并行区域技术,是图像分割中应用数量最多的一类。图像若只用目标和背景两大类,那么只需要选取一个阀值,此分割方法称为单阀值分割。单阀值分割实际上是输入图像f到输出图像g的如下变换:

基于灰度直方图的图像分割阈值自适应选取方法

中北大学 毕业设计(论文)任务书 学院、系: 专业: 学生姓名:车永健学号: 设计(论文)题目:基于灰度直方图的图像分割阈值自适应选取方法 起迄日期: 2015年3月9日~2015年6月20日设计(论文)地点: 指导教师:郭晨霞 系主任: 发任务书日期:2015年 2 月25 日

任务书填写要求 1.毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在系的负责人审查、系领导签字后生效。此任务书应在毕业设计(论文)开始前一周内填好并发给学生; 2.任务书内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,不得随便涂改或潦草书写,禁止打印在其它纸上后剪贴; 3.任务书内填写的内容,必须和学生毕业设计(论文)完成的情况相一致,若有变更,应当经过所在专业及系主管领导审批后方可重新填写; 4.任务书内有关“学院、系”、“专业”等名称的填写,应写中文全称,不能写数字代码。学生的“学号”要写全号(如020*******,为10位数),不能只写最后2位或1位数字; 5.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年3月15日”或“2004-03-15”。

毕业设计(论文)任务书

毕业设计(论文)任务书 3.对毕业设计(论文)课题成果的要求〔包括毕业设计(论文)、图纸、实物样品等): 1、论文一份; 2、程序代码及图像结果; 3、英文翻译一份。 4.毕业设计(论文)课题工作进度计划: 起迄日期工作内容 2015年 3月 9 日~ 3 月20日 4 月 1 日~ 4月 20 日 4 月 21 日~ 5月 10 日 5 月 11 日~ 6月 15 日 6 月 16 日~ 6月 19 日查找资料,完成开题报告; 学习有关知识,方案确定,完成中期报告;完善算法并仿真验证; 撰写、修改、评阅毕业论文; 论文答辩 学生所在系审查意见: 系主任: 年月日

kmeans图像分割算法

he = imread('f:\3.jpg'); % 读入图像 imshow(he), title('H&E image'); text(size(he,2),size(he,1)+15,... 'Image courtesy of Alan Partin, Johns Hopkins University', ... 'FontSize',7,'HorizontalAlignment','right'); cform = makecform('srgb2lab'); % 色彩空间转换 lab_he = applycform(he,cform); ab = double(lab_he(:,:,2:3)); % 数据类型转换 nrows = size(ab,1); % 求矩阵尺寸 ncols = size(ab,2); % 求矩阵尺寸 ab = reshape(ab,nrows*ncols,2); % 矩阵形状变换 nColors = 3; % 重复聚类3次,以避免局部最小值 [cluster_idx cluster_center] = kmeans(ab,nColors,'distance','sqEuclidean', ... 'Replicates',3); pixel_labels = reshape(cluster_idx,nrows,ncols); % 矩阵形状改变 imshow(pixel_labels,[]); % 显示图像 title('image labeled by cluster index'); % 设置图像标题 segmented_images = cell(1,3); % 细胞型数组 rgb_label = repmat(pixel_labels,[1 1 3]); % 矩阵平铺 for k = 1:nColors color = he; color(rgb_label ~= k) = 0;

图像分割阈值选取技术综述

图像分割阈值选取技术综述 中科院成都计算所刘平2004-2-26 摘要 图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要地领域之一,它是对图像进行视觉分析和模式识别地基本前提.阈值法是一种传统地图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛地分割技术.已被应用于很多地领域.本文是在阅读大量国内外相关文献地基础上,对阈值分割技术稍做总结,分三个大类综述阈值选取方法,然后对阈值化算法地评估做简要介绍. 关键词 图像分割阈值选取全局阈值局部阈值直方图二值化 1.引言 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交地区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显地不同[37].简单地讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理.图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要地领域之一,它是对图像进行视觉分析和模式识别地基本前提.同时它也是一个经典难题,到目前为止既不存在一种通用地图像分割方法,也不存在一种判断是否分割成功地客观标准. 阈值法是一种传统地图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛地分割技术.已被应用于很多地领域,例如,在红外技术应用中,红外无损检测中红外热图像地分割,红外成像跟踪系统中目标地分割;在遥感应用中,合成孔径雷达图像中目标地分割等;在医学应用中,血液细胞图像地分割,磁共振图像地分割;在农业项目应用中,水果品质无损检测过程中水果图像与背景地分割.在工业生产中,机器视觉运用于产品质量检测等等.在这些应用中,分割是对图像进一步分析、识别地前提,分割地准确性将直接影响后续任务地有效性,其中阈值地选取是图像阈值分割方法中地关键技术. 2.阈值分割地基本概念 图像阈值化分割是一种最常用,同时也是最简单地图像分割方法,它特别适用于目标和背景占据不同灰度级范围地图像[1].它不仅可以极大地压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前地必要地图像预处理过程.图像阈值化地目地是要按照灰度级,对像素集合进行一个划分,得到地每个子集形成一个与现实景物相对应地区域,各个区域内部具有一致地属性,而相邻区域布局有这种一致属性.这样地划分可以通过从灰度级出发选取一个或多个阈值来实现. 阈值分割法是一种基于区域地图像分割技术,其基本原理是:通过设定不同地特征阈值,把图像像素点分为若干类.常用地特征包括:直接来自原始图像地灰度或彩色特征;由原始灰度或彩色值变换得到地特征.设原始图像为f(x,y>,按照一定地准则在f(x,y>中找到特征值T,将图像分割为两个部分,分割后地图像为 若取:b0=0<黑),b1=1<白),即为我们通常所说地图像二值化. <原始图像)<阈值分割后地二值化图像) 一般意义下,阈值运算可以看作是对图像中某点地灰度、该点地某种局部特性以及该点在图像中地位置地一种函数,这种阈值函数可记作 T(x,y,N(x,y>,f(x,y>> 式中,f(x,y>是点(x,y>地灰度值;N(x,y>是点(x,y>地局部邻域特性.根据对T地不同约束,可以得到3种不同类型地阈值[37],即 点相关地全局阈值T=T(f(x,y>> (只与点地灰度值有关> 区域相关地全局阈值T=T(N(x,y>,f(x,y>> (与点地灰度值和该点地局部邻域特征有关> 局部阈值或动态阈值T=T(x,y,N(x,y>,f(x,y>> (与点地位置、该点地灰度值和该点邻域特征有关> 图像阈值化这个看似简单地问题,在过去地四十年里受到国内外学者地广泛关注,产生了数以百计地阈值选取方法[2-9],但是遗憾地是,如同其他图像分割算法一样,没有一个现有方法对各种各样地图像都能得到令人满意地结果,甚至也没有一个理论指导我们选择特定方法处理特定图像. 所有这些阈值化方法,根据使用地是图像地局部信息还是整体信息,可以分为上下文无关(non-

基于图的快速图像分割算法

Efficient graph-based image segmentation 2.相关工作 G=(V ,E),每个节点V i v 对应图像中一个像素点,E 是连接相邻节点的边,每个边有对应有一个权重,这个权重与像素点的特性相关。 最后,我们将提出一类基于图的查找最小割的分割方法。这个最小割准则是最小化那些被分开像素之间的相似度。【18】原文中叫Component,实质上是一个MST,单独的一个像素点也可以看成一个区域。 预备知识: 图是由顶点集(vertices )和边集(edges )组成,表示为,顶点,在本文中即为单个的像素点,连接一对顶点的边具有权重,本文中的意义为顶点之间的不相似度,所用的是无向图。 树:特殊的图,图中任意两个顶点,都有路径相连接,但是没有回路。如上图中加粗的边所连接而成的图。如果看成一团乱连的珠子,只保留树中的珠子和连线,那么随便选个珠子,都能把这棵树中所有的珠子都提起来。如果,i 和h 这条边也保留下来,那么h,I,c,f,g 就构成了一个回路。 最小生成树(MST, minimum spanning tree ):特殊的树,给定需要连接的顶点,选择边权之和最小的树。上图即是一棵MST 。 本文中,初始化时每一个像素点都是一个顶点,然后逐渐合并得到一个区域,确切地说是连接这个区域中的像素点的一个MST 。如图,棕色圆圈为顶点,线段为边,合并棕色顶点所生成的MST ,对应的就是一个分割区域。分割后的结果其实就是森林。 边的权值: 对于孤立的两个像素点,所不同的是颜色,自然就用颜色的距离来衡量两点 的相似性,本文中是使用RGB 的距离,即

基于阈值的图像分割方法研究与实现

本科毕业设计 (2011届) 题目基于阈值的图像分割方法研究与实现 摘要 本毕业设计主要研究基于Hough变换的图像结构提取方法,通过MATLAB语言编程来实现两种典型的图像阈值分割算法(最大类间方差法和迭代法),并对这两种算法进行比较分析。其主要工作步骤如下: 首先介绍数字图像处理和图像分割的基本理论知识。接着对几种图像分割方法进行了介绍。然后了解图像阈值化原理,并在此基础上对两种典型的图像阈值分割算法(最大类间方差法和迭代法)的原理进行了介绍。最后通过MATLAB语言编程实现这两种算法,分别得到这两种算法的分割性能,并对这两种算法的分割性能进行比较。结果表明在大多数情况下,最大类间方差法比迭代法更稳定。 关键词:数字图像处理;阈值化;最大类间方差法;迭代法;直方图

ABSTRACT The main aim of this thesis is to analyze image segmentation method based on thresholding, then implement two typical algorithms (Otsu method and Iterative method) by MATLAB language programming, and compare the two algorithms. Its main work procedure is as follows: First the basic theories of digital image processing and image segmentation are introduced. Then several image segmentation algorithms are introduced. Based on knowing the theory of image thresholding, we introduce the theory of two typical algorithms (Otsu method and Iterative method). Finally through MATLAB language programming, we can get the segmentation performance of the two algorithms respectively, and compare the two algorithm’s segmentation performance. The result shows that Otsu method is more stable than Iterative method in most cases. Key words:digital image processing; thresholding; Otsu method; Iterative method; image histogram.

几种图像分割算法在CT图像分割上的实现和比较

第20卷第6期2000年12月北京理工大学学报JOurnaI Of Beijing InStitute Of TechnOIOgy VOI.20NO.6Dec.2000 文章编号21001-0645(2000)06-0720-05几种图像分割算法在CT 图像分割上的 实现和比较 杨 加19吴祈耀19田捷29杨骅2(1-北京理工大学电子工程系9北京1000 1;2-中国科学院自动化研究所9北京1000 0)摘要2对目前几种在图像分割领域得到较多应用的交互式分割 区域生长分割以及阈值 分割算法进行了探讨9并且结合实际CT 片图例分别进行分割实验研究9得到较为满意和 可用性强的结果.实验表明2阈值分割对于CT 切片的效果最好;区域生长分割适宜于对面 积不大的区域进行分割9分割效果较好;基于动态规划的交互式分割算法比较复杂9计算时 间较长9但对于边缘较平滑的区域9同样具有较好的实际效果.几种算法的评估为其在CT 图像分割上的实际应用提供了科学依据. 关键词2图像分割算法;CT 图像分割;交互式分割;阈值分割;区域生长分割 中图分类号2TN 911-73文献标识码2A 收稿日期220000625 基金项目2国家自然科学基金资助项目(69 43001);国家 63 计划项目作者简介2杨加9男91975年生9硕士生. 图像分割可以分解为两个任务9即识别(recOgnitiOn )和描绘(deIineatiOn ).识别的目的在于确定目标物体的大致位置并区别于图像中的其它物体;而描绘的任务在于精确定义和刻画图像中目标物体的区域或边缘的空间范围.人的识别能力通常强于计算机算法9另一方面9计算机算法的描绘能力则优于操作者(人).因此既能利用操作者强大的识别能力9又能利用计算机算法的描绘能力的交互式图像分割则越来越受到人们的关注.在医学领域中9图像分割是病变区域提取 特定组织测量以及实现三维重建的基础9因此图像分割技术在医学图像处理中具有十分重要的意义[1].作者探讨了3种目前在图像分割上得到较多实际应用的分割算法9并结合实际CT 片图例进行了实验研究9得到较为满意和可用性强的结果;最后对这几种方法进行了评估9为这些算法在CT 图像分割上的实际应用提供了科学依据. 1 交互式分割算法1-1基本理论及算法描述 动态规划方法最早应用于图像边缘跟踪[2].可以将图像边缘检测看作一个优化问题[3]9并将其表述为找出一目标函数V =V (I 19I 29I 39~9I H )的最优值M (如取最小值min )9得V 取最优值时的一组自变量值(I 19I 29I 39I 49~9I H 9).若变量离散9目标函数没有特定规律可循时9则该问题将包括一个极大的解空间.如果这个目标函数能够描述成如下形式2 V =V (I 19I 29I 39~9I N )=V 0(I 09I 1)+V 1(I 19I 2)+~+V H-1(I H-19I H )

图像分割方法总结

医学图像分割理论方法概述 医学图像分割就是一个根据区域间的相似或不同把图像分割成若干区域的过程。目前,主要以各种细胞、组织与器官的图像作为处理的对象,图像分割技术主要基于以下几种理论方法。 1.基于统计学的方法 统计方法是近年来比较流行的医学图像分割方法。从统计学出发的图像分割方法把图像中各个像素点的灰度值看作是具有一定概率分布的随机变量,观察到的图像是对实际物体做了某种变换并加入噪声的结果,因而要正确分割图像,从统计学的角度来看,就是要找出以最大的概率得到该图像的物体组合。用吉布斯(Gibbs)分布表示的Markov随机场(MRF)模型,能够简单地通过势能形式表示图像像素之间的相互关系,因此周刚慧等结合人脑MR图像的空间关系定义M arkov随机场的能量形式,然后通过最大后验概率 (MAP)方法估计Markov随机场的参数,并通过迭代方法求解。层次MRF采用基于直方图的DAEM算法估计标准有限正交混合( SFNM)参数的全局最优值,并基于MRF先验参数的实际意义,采用一种近似的方法来简化这些参数的估计。林亚忠等采用的混合金字塔Gibbs随机场模型,有效地解决了传统最大后验估计计算量庞大和Gibbs随机场模型参数无监督及估计难等问题,使分割结果更为可靠。 2.基于模糊集理论的方法 医学图像一般较为复杂,有许多不确定性和不精确性,也即模糊性。所以有人将模糊理论引入到图像处理与分析中,其中包括用模糊理论来解决分割问题。基于模糊理论的图形分割方法包括模糊阈值分割方法、模糊聚类分割方法等。模糊阈值分割技术利用不同的S型隶属函数来定义模糊目标,通过优化过程最后选择一个具有最小不确定性的S函数,用该函数表示目标像素之间的关系。这种方法的难点在于隶属函数的选择。模糊C均值聚类分割方法通过优化表示图像像素点与C各类中心之间的相似性的目标函数来获得局部极大值,从而得到最优聚类。Venkateswarlu等改进计算过程,提出了一种快速的聚类算法。 2. 1 基于模糊理论的方法模糊分割技术是在模糊集合理论基础上发展起来的,它可以很好地处理MR图像内在的模糊性和不确定性,而且对噪声不敏感。模糊分割技术主要有模糊阈值、模糊聚类、模糊边缘检测等。在各种模糊分割技术中,近年来模糊聚类技术,特别是模糊C - 均值( FCM)聚类技术的应用最为广泛。FCM是一种非监督模糊聚类后的标定过程,非常适合存在不确定性和模糊性特点的MR图像。然而, FCM算法本质上是一种局部搜索寻优技术,它的迭代过程采用爬山技术来寻找最优解,因此容易陷入局部极小值,而得不到全局最优解。近年来相继出现了许多改进的FCM分割算法,其中快速模糊分割( FFCM)是最近模糊分割的研究热点。FFCM算法对传统FCM算法的初始化进行了改进,用K - 均值聚类的结果作为模糊聚类中心的初值,通过减少FCM的迭代次数来提高模糊聚类的速度。它实际上是两次寻优的迭代过程,首先由K - 均值聚类得到聚类中心的次最优解,再由FCM进行模糊聚类,最终得到图像的最优模糊分割。

相关主题
文本预览
相关文档 最新文档