当前位置:文档之家› 第五章 河道洪水演算及实时洪水预报

第五章 河道洪水演算及实时洪水预报

第五章   河道洪水演算及实时洪水预报
第五章   河道洪水演算及实时洪水预报

第五章 河道洪水演算及实时洪水预报

河道洪水演算,是以河槽洪水波运动理论为基础,由河段上游断面的水位、流量过程预报下游断面的水位、流量过程。本文着重介绍马斯京根洪水演算方法以及简化的水力学方法。 5.1 马斯京根演算法

马斯京根演算法是美国麦卡锡(G . T. McCarthy)于1938年在美国马斯京根河上使用的流量演算方法。经过几十年的应用和发展,已形成了许多不同的应用形式。下面介绍主要的演算形式。

该法将河段水流圣维南方程组中的连续方程简化为水量平衡方程,把动力方程简化为马斯京根法的河槽蓄泄方程,对简化的方程组联解,得到演算方程。 5.1.1 基本原理

该法的基本原理,就是根据入流和起始条件,通过逐时段求解河段的水量平衡方程和槽泄方程,计算出流过程。

在无区间入流情况下,河段某一时段的水量平衡方程为

122121)(21

)(21W W t O O t I I -=?+-?+ (5-1) 式中:1I 、2I 分别为时段初、末的河段入流量;1O 、2O 分别为时段初、末的河段出流量;1W 、2W 分别为时段初、末的河段蓄量。

河段蓄水量与泄流量关系的蓄泄方程,一般可概括为

)(O f W = (5-2)

式中:O 为河段任一流量O 对应的槽蓄量。

根据建立蓄泄方程的方法不同,流量演算法可分为马斯京根法、特征河长发等。马斯京根法就是按照马斯京根蓄泄方程建立的流量演算方法。 5.1.2 马斯京根流量演算方程

马斯京根蓄泄方程可写为

Q K O x xI K W '=-+=])1([ (5-3)

式中:K 为蓄量参数,也是稳定流情况下的河段传播时间;x 称为流量比重因子;

Q '为示储流量。

联立求解式(5-2)和(5-3),得到马斯京根流量演算公式为

1211202O C I C I C O ++= (5-4)

其中:

???

?

?

?

???

?+-?--=?+-+?=

?+--?=t Kx K t Kx K C t Kx K Kx t C t Kx K Kx t C 5.05.05.05.05.05.0210 (5-5) 1210=++C C C (5-6)

式中:0C 、1C 和2C 为马斯京根洪水演算方法的演算系数,,都是K 、x 和t ?的函数。对于某一河段而言,只要确定了K 、x 和t ?,便可求得0C 、1C 和2C 。于是,由入流过程)(t I 和初始条件,通过式(5-4),逐时段演算,就可得到出流过程

)(t O 。

马斯京根演算法的参数0C 、1C 和2C ,可以根据上、下游断面的实测流量过程,用最小二乘法计算出。

从式(5-5)可知,当Kx t 2?时,02

(1) 基本公式

为了避免出现负出流等不合理现象,保证上、下断面的流量在计算时段内呈线性变化和在任何时刻流量在时段内沿程呈线性变化,一般要求K t ≈?。1962年赵人俊教授提出了马斯京根分段连续演算法。将演算河段分成N 个子河段后,每个子河段参数L K 、L x 与未分河段时的参数K 、x 的关系为

N K

K L =

(5-7) )21(221x N

x L --= (5-8)

分段连续演算的每段推流公式仍是式(5-4),但其中的系数采用(5-7)和(5-8)

来代替。也可以利用马斯京根汇流系数来进行流量演算。

(2) 计算实例

黄河花园口至夹河滩河段长度为105.4km ,采用h 4=?t ,分3段进行演算,每段的马斯京根演算参数h 2.4=K ,1.0=x 。 通过马斯京根连续演算,将花园口1982年7月30日20时~8月4日16日时的流量过程演算到夹河滩。

由已知条件得到:4.105=L ,h 4=?t ,3=N ,h 2.4=K ,1.0=x 。 输入数据文件为 3 4.2 0.1 4

1982 7 30 20 8 4 16 30

1140 1650 4780 6240 6320 6190 5850 5580 5400 5580 5520 7020 8710 10400 11500 11400 13000 14500 15300 15200 15100 14300 13100 12800 11700 11100 10600 8670 7930 7350 输出文件为

1440 1444 1532 1965 2945 4174 5143 5666 5823 5770 5662 5619 5789 6359 7370 8616 9801 10818 11836 12929 13892 14519 14735 14543 14041 13391 12681 11942 11131 10175 5.1.4 非线性马斯京根演算法

(1) 基本演算公式

随着马斯京根法的应用,人们发现参数K 和x 不是常数,而是随流量变化的,从而人们开始了对非线性马斯京根方法的研究。

水量平衡方程为

122121)(21

)(21W W t O O t I I -=?+-?+ (5-9) 槽蓄方程为

])1([111111O x I x K W -+= (5-10) ])1([222222O x I x K W -+= (5-11)

把式(5-10)和(5-11)代入到(5-9)中,得到

1211202O C I C I C O ++= (5-12)

其中:

????

??

????+-?--=?+-+?=?+--?=t x K K t x K K C t x K K x K t C t

x K K x K t C 5.05.05.05.05.05.02221112

222111

222220 (5-13) 式中:0C 、1C 和2C 为非线性马斯京根洪水演算方法的演算系数,不是常数,

0C 是时段末2K 、2x 的函数,1C 和2C 都是时段初1K 、1x 2K 、2x 的函数。并且参数0C 、1C 和2C 之和不恒为1。

假定K 和x 分别与示储流量Q '呈线性关系,其形式为

B Q A x +'= (5-14) D Q

C K +'= (5-15)

式中:A 、B 、C 和D 都是常数。

O x xI Q )1(-+=' (5-16)

将式(5-14)代入(5-16)中,得到

)

(1)

(O I A O I B O Q ---+=

' (5-17)

已知1I 、2I 和1O ,计算2O 的步骤是:先假定一个2O (一般以1O 做初始值),

根据1I 、1O 、2I 和2O ,由式(5-16)计算出1Q '和2

Q '。再由式(-14)和(5-15)求出参数1x 、2x 、1K 和2K ,将它们代入式(5-13)求出0C 、1C 和2C ,由式(5-12)计算出

2O ,把计算的2O 与假定的2O 地初值比较,如果相差较大可用计算的2O 作初值再重新计算,直到前后两次计算值之差在容许范围内,一般迭代3~3次即可。

当K 、x 与示储流量Q '的关系不能用直线表示时,也可把式(5-14)配成(5-15)合适的非线性公式,再与式(5-16)联立求解,求出示储流量的计算公式。

(2) 实例

黄河花园口至夹河滩河段划分为3段,h 4=?t ,设每段的参数相同,并且K

和x与示储流量的关系为直线,当示储流量为5000s/

m3,参数3.0

K;

5

=

x h

=

当示储流量为20000s/

m3时,参数0

K。仍将花园口站1982年7

=

=

x,h5.4

月30日的洪水演算到夹河滩站。

输入数据文件为

3 4 100

5000 0.3 5 20000 0 4.5

5000 0.3 5 20000 0 4.5

5000 0.3 5 20000 0 4.5

流量过程同上节。

输出文件为

1440 1440 1440 1459 1827 3489 4948 5703 5948 5893 5727 5592 5601 5898 6854 8234 9608 10702 11723 12882 13902 14547 14758 14566 14078 13446 12762 12049 11310 10439 5.2 实时洪水预报校正方法

5.2.1 概述

实时洪水预报是一种在联机水情测报系统中,使用实时雨、水情及其它有关水文气象信息作为洪水预报模型输入,并不断根据新信息校正或改善原有模型参数,力争预报结果逐步逼近真值的洪水预报。与脱机洪水预报比较,实时洪水预报所使用的信息的质量一般较差。例如:实时洪水预报使用的遥测或报汛资料,一般就不及脱机洪水预报采用的整编水文资料完整、可靠;实时洪水预报采用的流量资料往往由水位流量关系求得,一般也不及脱机洪水预报中使用的实测流量资料精确;在蒸发计算中,脱机洪水预报可采用实测资料,而实时洪水预报因无实测资料可用只得用近似方法估算。此外,在脱机洪水预报中,预见期内的降雨是已知的,但在实时洪水预报中,预见期内的降雨量是未知的,因而两者在处理预见期内降雨时有所不同。

预报总是有误差的,对于实时洪水预报,由于上述种种原因,预报误差更不可忽视。预报误差可表现为系统误差,也可表现为随机误差,因此,在发布实时洪水预报之前,对预报值进行误差实时校正是十分必要的。

通常使用的实时校正方法有卡尔曼滤波法、递推最小二乘法、误差自回归法和自适应算法等。卡尔曼滤波法因对系统的状态变量进行最优估计,既可以达到最小方差,又不损失预见期,是一种比较理想的实时校正方法。在实时洪水预

报中可选择作为状态变量的有洪水预报模型的参数、预报对象和预报误差等。卡尔曼滤波实质上是一种线性无偏最小方差估计,可用于任何线性随机系统,并可综合处理模型误差和量测误差。但洪水预报系统通常不是线性随机系统,模型误差和量测误差通常也不是白噪声,这就限制了卡尔曼滤波法在实时校正中的应用。此外,使用此法时外推时段也不宜太长。递推最小二乘法是根据最新输入与输出信息,给现时预报误差一定的权重以校正模型参数来进行实时预报的,属于参数在线识别(也称动态识别),能反映预报时刻的参数状态。该法简单易行,但跟踪实时洪水预报系统的能力不强,灵敏性较差。不过这种动态识别方法是优于现行时不变模型的。误差自回归法是通过对输出的残差系列进行自回归分析,用前推若干个时刻的残差值作为实时校正系统的输入来推求当前时刻的输出误差,达到实时校正的目的的。该法不涉及实时洪水预报模型本身的结构或数学表达式,仅从误差序列着眼进行校正,故可与任何实时洪水预报模型配合,有广泛的适应性,其校正效果主要取决于误差序列的自相关性,自相关密切则校正效果好,否则效果较差,而且当预报值与预报误差为同一量级时,实时校正的效果可能会大大下降。自适应算法是指滤波器本身具有自动调整功能、可根据预报过程中模型所出现的偏差自动调整模型达到最优状态的一种算法。该法能细致地考虑噪声统计量的时变特性,是较为完善的滤波方法之一,有较好的发展前景。

应当指出,实时校正方法仅是对实时洪水预报产生的误差进行修正的一种技术方法。提高实时洪水预报精度的关键仍然在于建立一个能确切描述降雨径流形成规律和洪水波运动规律的洪水预报模型和获取精确、可靠的实时水文气象信息。

5.2.2 反馈模拟实时校正

由于流域特性和降水分布的复杂性和多变性,用降水径流或河道汇流作出的流量序列预报,有时误差很大。反馈模拟实时校正正是最大限度地利用了预见期内所获得的各种信息对后期预报值进行校正以提高预报精度的一种有效方法。

反馈模拟实时校正系统,不但能提高作业预报的能力,而且还能使作业预报获得较高的精度。该系统除具有输入、处理和输出三个基本要素外,还有反馈功能,即构成了一个完整的预报系统。

反馈就是一个系统把信息输出后,又将其作用结果以信息的方式返送回来,并对输入信息再输出,起到控制的作用。

一次降水过程,按照实用水文预报方案,计算机可以计算得到河流预报站的流量过程,并将逐渐出现实测流量过程。

已知实测流量),,2,1()(N i Q i ob =和预报流量),,2,1()(LAP i Q i f =。其中,

N 为实测流量数目,LAP 为预报流量数目。首先对实测流量和预报流量进行相

关分析,计算相关系数c R 和确定性系数y D 。

实测流量的平均流量为

N

Q

Q N

i i ob ob ∑==

1

)

( (5-18)

与实测流量对应的预报流量的平均流量为

N

Q

Q N

i i f f ∑==

1

)

( (5-19)

相关系数为

2

1

)(2

1

)

(1

)()

(]

[][)

)((∑∑∑===-?---=

N

i ob i ob N

i f i f N

i ob i ob f i f c Q Q Q Q

Q Q Q Q

R (5-20)

确定性系数为

2c y R D = (5-21)

实测流量相邻时刻的差值为

)1()()(--=i ob i ob i ob Q Q DQ (5-22)

式中:N i ,,3,2 =,其中0)1(=ob DQ

预报流量相邻时刻的差分为

)1()()(--=i f i f i f Q Q DQ (5-23)

式中:LAP i , ,3 ,2 =,其中0)1(=f DQ

相邻两个时段实测流量差值之和与预报流量差值之和的比值称为FACT 因子,其表达式为

)

1()()1()()1(--++=

-i f i f i ob i ob DQ DQ DQ DQ i FACT (5-24)

现以淮河王家坝站1980年6月24日~7月1日实测流量与预报流量为例,来计算FACT 因子。其计算结果见表5-1,取为21.245.0≤≤FACT 。

求),(j i F ,其表达式为

j

i FACT F j i 75.0),()(= (5-25)

式中:6,2,1 =j

表5-1 淮河王家坝站FACT 因子计算表

用0)(>i f D 和0)(

1. 涨水段反馈模拟实时校正

涨水段反馈模拟实时校正按下列判别式进行: (1) 如果0)6(≥+-N i ,且7>i ,则实时校正流量为

)()1()(i f i ob i ob DQ Q Q +=- (5-25)

(2) 如果0)6(<+-N i ,则实时校正系数FAC 为

i

N F F F FAC N i N i i -++++=---7)

,()5,5()6,6( (5-26)

FAC DQ Q Q i f i ob i ob ?+=-)()1()( (5-27)

2. 退水段反馈模拟实时校正

退水段反馈模拟实时校正计算公式为

)

1()1()()(--?

=i f i ob i f i ob Q Q Q Q (5-28)

5.2.3 计算实例

黄河潼关水文站1992年8月14日12时~15日12时(h 2=?t )的一次洪水的反馈模拟实时校正。输入文件为

4 13

3210 3370 3520 3800

3900 4100 4200 4220 4230 4250 4600 4590

4520 4130 4000 3800 3620

以上数据文件的第一行分别为实测流量个数N 、预报流量个数LAP 。第二行为N 个实测流量值,后面为LAP 个预报流量值。

输出文件为 0.88 0.77

3210 3370 3520 3800 3813 3835 4203 4194 4130 3773 3655 3472 3307

以上数据文件的第一行分别为实测流量和预报流量的相关系数和确定性系数。后面LAP 个数据为实时校正流量值。

图5-1 潼关站1992年8月洪水过程线

岸堤水库洪水预报及调洪演算软件使用说明书_图文(精)

岸堤水库雨洪资源解析 使 用 说 明 书 二〇一五年六月一日 作者:文华 :******** :fblwh150@163. 目录 第一章概述 (3 第二章功能简介 (5 第一节功能特点 (5 第二节软件画面 (6 第三节运算功能 (7 第四节气象云图及气象雷达 (13 第三章数学模型 (14 第一节洪水模型 (14

1、瞬时单位线 (14 2、CAMMADIST函数语法 (15 3、CAMMADIST函数应用 (16 4、流域洪水错时叠加 (17 第二节洪水传播 (18 第三节泄量模型 (19 1、闸门出流 (19 2、推求水面线 (21 3、闸门泄量 (22 第四节调洪演算 (22 第五节控运案 (23 第四章扩展性设计 (23 第五章调洪实例 (29 第六章课目攻关概况 (30 第七章使用说明书 (31 第一节洪水预报 (31 第二节调洪演算 (33 第三节其他计算 (33

附件课题研发小组成员....................................................................... 错误!未定义书签。 第一章概述 控制和预见洪水,让洪水变为一种资源,实现科学预见、动态管理、合理利用,是本课题的研究对象。 科学控制洪水,真正能够对洪水运用自如,其首要问题是准确解析、及时预报,掌握洪水动态。但目前实际应用中,对水库防洪兴利控制运用,还仅限于依靠库水位的变化,结合下游河道的承受能力,试探性的调节洪水,这种洪水调整模式,具有较大的盲目性,理论面的支撑相对不足。 当前,各水库防汛主体单位,均制定了相应的《水库控制运用案》。如岸堤水库防洪调度图(图1,但这些案的编制和批复仅表现为粗线条和原则性的界定,是在进行大量假定的基础上进行编制的,应用中的可操作性相对欠缺,在实践中仅具有指导意义。 (图1 洪水调度控制案的编制,偏离实际应用,存在的突出问题,主要表现在以下几个面: 1、假定了降雨的空间分配是均匀的,即整个流域降雨分布是均等的。但实际降雨,特别是流域面积稍大的水库,降雨的空间分布几乎不可能是均等。 2、事先拟定了24小时降雨在1日各时段上的雨量分配。但实际降雨在时段上的分配,是个随机的不确定因素。 3、控制运用案的编制,起调水位为汛中限制水位,但实际降雨前的库水位,却几乎不可能恰巧是汛中限制水位。 4、所有闸门同开度启用,与实际控制运用也不相符。

第五章 河道洪水演算及实时洪水预报

第五章 河道洪水演算及实时洪水预报 河道洪水演算,是以河槽洪水波运动理论为基础,由河段上游断面的水位、流量过程预报下游断面的水位、流量过程。本文着重介绍马斯京根洪水演算方法以及简化的水力学方法。 5.1 马斯京根演算法 马斯京根演算法是美国麦卡锡(G . T. McCarthy)于1938年在美国马斯京根河上使用的流量演算方法。经过几十年的应用和发展,已形成了许多不同的应用形式。下面介绍主要的演算形式。 该法将河段水流圣维南方程组中的连续方程简化为水量平衡方程,把动力方程简化为马斯京根法的河槽蓄泄方程,对简化的方程组联解,得到演算方程。 5.1.1 基本原理 该法的基本原理,就是根据入流和起始条件,通过逐时段求解河段的水量平衡方程和槽泄方程,计算出流过程。 在无区间入流情况下,河段某一时段的水量平衡方程为 122121)(21 )(21W W t O O t I I -=?+-?+ (5-1) 式中:1I 、2I 分别为时段初、末的河段入流量;1O 、2O 分别为时段初、末的河段出流量;1W 、2W 分别为时段初、末的河段蓄量。 河段蓄水量与泄流量关系的蓄泄方程,一般可概括为 )(O f W = (5-2) 式中:O 为河段任一流量O 对应的槽蓄量。 根据建立蓄泄方程的方法不同,流量演算法可分为马斯京根法、特征河长发等。马斯京根法就是按照马斯京根蓄泄方程建立的流量演算方法。 5.1.2 马斯京根流量演算方程 马斯京根蓄泄方程可写为 Q K O x xI K W '=-+=])1([ (5-3) 式中:K 为蓄量参数,也是稳定流情况下的河段传播时间;x 称为流量比重因子; Q '为示储流量。 联立求解式(5-2)和(5-3),得到马斯京根流量演算公式为

天然河道水面线计算的改进方法

天然河道水面线计算的一种改进方法 发表日期:2008-03-14作者:文峰竹来源:水工网评论 1条 本文章系网络收集转载,不代表本站观点,如果有谬误或者任何侵犯权益的地方,请联系QQ 31184 摘要:天然河道水面线的推算是水力学的经典问题,对于河道防洪、水库淹没有极其重要的意义。在大量采用电算后,程序算法选取的欠妥时会导致计算成果与实际情况不相符合。本文就天然水面线计算的基本公式出发,对常用的自下而上推算天然河道水面线的电算程序算法选择进行探讨,提出一种可行的预报—校正计算公式。 1、问题的由来 天然河道水面线的推算是水力学的经典问题,对于河道防洪、水库淹没有极其重要的意义。自上个世纪末以来,由于计算机的大量普及,天然河道水面线逐步由人工手算演变成程序电算,极大地提高了设计效率,把设计人员从繁琐、枯燥的数字计算中解放出来。但在计算程序算法选取欠妥也会出现一些问题,造成计算成果与实际情况产生了较大的出入,尤其是在坡降较陡的山区河道,有些程序(例如原PC1500程序集中的水面线计算程序)计算的水面线非常低,与实际情况相去甚远。本文就天然水面线计算的基本公式出发,对常用的自下而上推算天然河道水面线的电算程序算法选择进行探讨,提出一种可行的电算方法。 2、天然河道水面线基本方程的分析 天然河道水面线计算在水利工程中均采用能量法,基本方程为:z1 +=z2 +++ ()…………① 式中: Z1—上游断面的水位; Z2—下游断面的水位; v1—上游断面的流速; v2—下游断面的流速;

α1—上游断面的动能校正系数; α2—下游断面的动能校正系数; —河道平均局部阻力系数; Δs—河段的长度; —河道平均流量; K—流量模数; 将①式写成: z1 ++ -=z2 ++ …………② 式中,对于从下游向上游推算情况,式右边项均为已知项,为定值。令:f(z1)= z1 +()-…………③ 其中:=(K+ K)=(R+ R) 对③式,当z1→z0(河床高程),、R→0,→R(定值),→定值,()→+∞,故f(z1)→+∞,即z1→z0为③式的一条渐近线;当z1→+∞,、R→+∞,→+∞,→0,()→0,即f(z1)= z1为③式的一条渐近线。③式图形见图1。 比图1可见,按①式从下游向上游推算水面线时,一般情况下均会产生两个解,其中之一为假解。但在天然河道水面线计算的程序中,以采用不同步长反复计算零点的方法最为多见,这种方法在【文献1】中统称为瞎子爬山法。瞎子爬山法只能求解出其中一个解作为计算成果,不能判别真假解,导致在坡降较陡的山区河道中由于起爬点取值不当而求得假解,使计算成果与事实不符。 3、对天然河道水面线计算的改进 对于天然河道水面线的计算,可采用预报—校正法。将①式改写成: z1-=z2+[(+ )-(+ )]…………④ 式中,由于上下游河道断面水流流速差异不大,作为预报成果,[(+ ) -(+ )]可以先忽略,在校正时计入其影响。④式遂可改写成:

洪水预报系统——金水

4.7洪水预报系统 综合考虑招标书中的需求,我们推荐使用“中国洪水预报系统”作为本项目中的洪水预报软件。“中国洪水预报系统”是在财政部和国家防办的支持下,由水利部水利信息中心联合国内其他单位研制开发的洪水预报软件。系统结合我国的实际情况,基于统一的实时水情数据库、预报专用数据库和客户/服务器环境,采用规范、标准、先进的软硬件环境及模块化、开放性结构,建立常用预报模型和方法库,能方便地加入新的预报模型,快速地构造多种类的预报方案,具有人工试错和自动优选相耦合的模型率定系统,可用图形和表格方式干预任何过程的实时交互预报系统,提供通用的数据预处理模块和常用的实用模块,以及完整的预报系统管理功能。系统具有通用性强、功能全面、操作简便等特点,完全可以满足招标书中关于洪水预报软件的要求。 4.7.1洪水预报关键技术 要建设方便实用,预报精度满足要求的洪水预报系统,我们认为需要解决以下关键技术: 1)预报模型库的建立 预报模型是预报系统的核心,预报系统各模块均是围绕预报模型而开发,通用的洪水预报系统必具有通用的预报模型库,目前在实时洪水预报方面,比较实用的是确定性概念模型,按照模拟的对象不同可分为河道汇流模型、流域产流模型、流域汇流模型、经验模型等。 预报模型库要解决以下问题:一是通用的预报模型库标准数据接口。模型所需数据包括输入数据、输出数据、模型参数、模型状态等,不同种类模型需要不同种类数据,能否设计提出一通用的标准数据接口是建立预报模型库的关键;二是预报模型库的管理,主要是预报模型的调用、运行,以及修改和删除等功能;三是用户可任意在预报模型库中增加所开发的模型,即预报模型库具有很强的扩展性。 2)预报方案的构建

山洪灾害防治监测预警系统软件产品说明

山洪灾害监测预警软件产品说明 北京燕禹水务科技有限公司 二〇一〇年三月

目录 1软件产品总体结构 (1) 2软件产品逻辑结构 (2) 3软件产品运行环境 (4) 3.1软件服务端运行环境 (4) 3.2软件客户端运行环境 (4) 4软件产品性能 (4) 5防洪综合数据库说明 (5) 5.1数据库总体构成 (5) 5.2数据库分类说明 (5) 5.2.1空间数据库 (5) 5.2.2属性数据库 (6) 6数据接收处理软件功能说明 (8) 7山洪灾害监测预警系统应用软件功能说明 (8) 7.1决策支持软件功能 (8) 7.1.1基础信息管理 (9) 7.1.2实时汛情监视 (13) 7.1.3山洪灾害信息服务 (17) 7.1.4洪水预报分析 (19) 7.1.5预警发布 (22) 7.1.6预案管理 (24)

7.1.7报表管理 (25) 7.1.8系统管理 (25) 7.2乡镇灾情上报软件功能 (29) 7.2.1灾情填报 (29) 7.2.2灾情统计分析 (29) 7.3山洪灾害专用图形编辑软件功能 (30) 7.3.1添加要素 (31) 7.3.2移动要素 (31) 7.3.3删除要素 (31) 7.3.4专题图输出 (32) 8防洪综合数据库软件功能说明 (32) 8.1查询检索 (32) 8.2数据编辑 (32) 8.3数据导入导出 (33)

1软件产品总体结构 防办通过通信网络、计算机网络与雨量监测点、水位监测点、上下级防汛机构及水文、气象、国土等其它相关单位相连;需从外部获取的山洪灾害相关信息通过网络传输后经过接收处理进入防洪综合数据库。在防洪综合数据库的基础上建设基于山洪灾害监测预警系统应用软件(包括决策支持软件、乡镇灾情上报软件和专用图形编辑软件),实现基础信息查询、水雨情监测查询、气象国土信息服务、水情预报服务、预警发布服务、预警响应服务、系统管理等应用。防洪综合数据库软件实现防洪综合数据库的综合管理维护。

01第一章 天然河道水面线推算

第一章天然河道水面线推算 百图软件既可以处理一个糙率的单式断面天然河道,又可以处理二个或任意多个糙率的复式断面天然河道,也可以处理河道某处出现江心洲或分叉情况,还可以处理整条河道上,支流汇入或流出、过桥水头跌差等情况。 缓坡河道应从下游向上游推算,根据经验及《水力学》教材的介绍,当最下游断面的起始水位无法确定时,可用该断面附近的正常水深对应的水位作为起始水位。陡坡河道应从上游向下游推算,根据经验,当最上游断面的起始水位无法确定时,可用该断面的临界水深或略小于临界水深对应的水位作为起始水位。 实际工程中,一条长距离的河道可能是缓、陡坡交替变化的情况,此时应先画出河底的纵断面图。根据纵断面图,当人工能够分辨出缓、陡坡的分界点,可人工划分成单一的缓坡或陡坡分别进行推算。当人工不能够分辨出缓、陡坡的分界点时,可假定该整条河道为缓坡,选择整条河道从下游向上游推算,若软件一直能进行推算,说明该段为缓坡;若软件不能进行推算,说明该段为陡坡。软件运行终止的断面,即为缓、陡坡的分界点,按此方法判断出整条河道上的所有缓、陡坡的分界点,把整条河道划分成单一的缓坡或陡坡分别进行推算。

第一节 一个糙率天然河道水面线推算 一、现状天然河道水面线推算 根据下式,即华东水利学院编《水力学》(1999年版)式9.9,采用分段试算法,精确推算水位。 第一步、准备现状横断面数据文件 数据文件为txt 格式,在excel 中整理数据时必须另存为文本文件(制表符分隔)类型的txt 文件。 原始横断面测量成果表的内容格式如下: 横断测量成果表中,桩号允许带“+”或“-”,但不允许有其它非数字文本,程序通过加减号来识别桩号。起点距即是累距,零点桩的起点距为0。每个点的数据占一行,包括“起点距”、“高程”和“点注释”三项,中间用空 ? ? ? ? ? ? - + ? + + = + g v g v K l Q g v z g v z 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 1 ξ α α

洪水预报系统

一、洪水预报系统边界 防汛抗旱综合数据库 实时雨水情信息历史特征值信息水利工程特征参数 防洪调度系统水利工程调度成果主要河段调度成果 洪水预报系统软件平台洪水预报成果 数据汇集平台 预报成果共享 洪水预报系统边界 预报方案建设 模型方法库建设 天气雷达应用系统区域定量降水估算产品 二、洪水预报系统流程分析 不同工程运用方式模拟 不同调度方案对比 不同降雨模式预报模拟 预报效益评估 历史暴雨过程预报模拟 数值降雨风险评估 历史洪水对比分析 多成果优选 专家交互修正 抗暴雨能力预测 水资源预测 水位、流量关系转换 实时作业洪水预报 计算土湿等状态变量 整理提取历史数据 等时段化、归档 纠错、缺测插补 预报数据处理综合计算分析 洪水模拟 预测预报计算 防洪调度、会商、决策 要素计算 洪水预报业务流程图 三、预报方案编制业务流程 预报方案编制从业务内容上分为预报模型选择、预报方案编制和方案参数率定三个阶段,这三个阶段涵盖了预报方案的全部业务工作内容。预报方案构建子系统业务流程:

否是 否是 模型选择参数率定 方案定制 基础资料整理 暴 雨 洪 水 特 点 分 析 预 报 模 型 选 择 是 否 适 用 ? 模 型 软 件 开 发 预 报 方 案 定 义 预 报 方 案 属 性 设 置 历 史 资 料 收 集 入 库 历 史 资 料 分 析 处 理 预 报 模 型 选 择 是 否 最 优 ? 保 存 最 优 参 数 预报方案编制业务流程图 预报模型选择阶段的工作内容主要包括基础资料收集整理、暴雨洪水特点分 析、预报模型选择(模型适应性分析)、模型软件开发和预报方案定制等。 预报方案编制阶段的工作内容主要包括方案定义(预报方案的类型、输入、所使用的模型、预报方案的输出等)和方案属性设置(预报站码、时间步长、预热期、预见期等)。 方案参数率定阶段的工作内容主要包括历史资料收集入库、历史资料分析处理、模型参数率定等。模型参数率定的方法分为人工试算和自动优选两种。在实际操作过程中两者需结合使用。 四、预报模型和方法选择 短期洪水预报有三种基本类型,一是河段洪水预报,二是流域降雨径流预报,三是以上两者的集合。 河段洪水预报:根据河段上断面的水位或流量,推求下断面的水位或流量。 降雨径流预报:根据流域上一场降雨,推求流域出口断面流量过程线,称为流域降水径流预报。

设计洪水分析计算

设计洪水分析计算 1、洪水标准 依据《水利水电工程等级划分及洪水标准》(SL44-2006),确定该工程等级为五等,按20年一遇洪水标准设计,200年一遇洪水校核。 本水库上游流域面积为1.6平方千米,属于小于30平方千米范围,按《山东省小型水库洪水核算办法》(试行)进行洪水计算。 2、设计洪水推求成果 1、基本资料 流域面积F=1.6平方公里,干流长度L=2.1千米,干流平均比降j=0.02。 根据山东省小型水库洪水核算办法,查《山东省多年平均二十四小时暴雨等值线图》,该流域中心多年平均二十四小时暴雨H24=85毫米。 该水库水位、库容关系表如下:

设计溢洪道底高程177.84米,相应库容23.29万立米。 2、最大入库流量Q m计算 (1)、流域综合特征系数K 按下式计算K=L/j1/3F2/5 (2)、设计暴雨量计算 查《山东省最大二十四小时暴雨变差系数C v等值线图》,该流域中心C v=0.6,采用C s=3.5C v应用皮尔逊3型曲线K p值表得,20年一遇K p=2.20,200年一遇K p=3.62,则20年一遇最大24小时降雨量H24=2.2*85=187毫米,200年一遇最大24小时降雨量H24=3.62*85=307.7毫米。 (3)单位面积最大洪峰流量计算 经实地勘测,该工程地点以上流域属丘陵区,查泰沂山北丘陵区q m- H24-K关系曲线,得20年一遇单位面积最大洪峰流量及200年一遇单位面积最大洪峰流量q m。 (4)洪水总量及洪水过程线推求 已算得20年一遇最大24小时降雨量H24=187毫米及200年一遇最大24小时降雨量H24=307.7毫米,取其75%为P 。设计前期影响雨量P a取40毫米,计算P+P a,查P+P a与设计净雨h R关系曲线,得20年一遇及 00年一遇h R。 洪水总量按下式计算W=0.1*F*h R,由此可计算得20年一遇及200年一遇洪水总量W。

河道水面线推求及参数选取方法

设计洪水水面线推算 根据沿程比降、流量、建筑物及支流汇入情况,水面线分段进行推算。 (1)水面线推算的基本公式 水面线计算按明渠恒定非均匀渐变流能量方程,在相邻断面之间建立方程,采用逐段试算法从下游往上游进行推算。 具体如下: 式中: 1Z 、1V ——上游断面的水位和平均流速; 2Z 、2V ——下游断面的水位和平均流速; j f w h h h +=——上、下游断面之间的能量损失; l R C V h f 22=——上、下游断面之间的沿程水头损失; )22(2221g V g V h j -=ζ——上、下游断面之间的局部水头损失; ζ——局部水头损失系数,根据《水力计算手册》,由于断面逐渐扩大的ζ取 值0.333,桥渡处ζ取值0.05~0. 1。 C ——谢才系数; R ——水力半径; α——动能修正系数。 (2)河道糙率 河道的粗糙系数受到河床组成床面特性、平面形态及水流流态、植物、岸壁特性等影响,情况复杂,不易估计,本工程河道基本顺直,床面平整,经过整治的河床粗糙系 数可以采用《水工设计手册》第一卷P1-404介绍的当量粗糙系数x N xn n ∑=1当 ;设总湿周x 的各组成部分1x ,2x ,……N x 及所对应的粗糙系数分别为n 1,n 2……n N 。 1糙率的选取 河道糙率影响因素有河槽方面也有水流方面。河槽边壁及河床粗糙程度,滩地植被,河槽纵横形态的变化是主要因素。大洪水糙率小于小洪水糙率,若附近有大洪水资料时可采用河段附近现状河道纵横断面资料反推综合糙率;若河道纵横断面于大洪水有较大变化时应在河道原貌的基础上反推糙率;反推糙率实际上小于实际糙率。无资料时可根据经验参照水力计算手册确定,偏重于安全考虑,在河道整治工作中糙率适当选小些,在防洪规划中适当大一些。 2起推断面与起推水位的确定

河道洪水演算

河道洪水演算 流域上的降水在流域出口断面形成一次洪水过程, 它在继续流向下游的流动过程中,洪水过程线的形状会 发生不断的变化。如果比较天然河道上、下断面的流量 过程线,在没有区间入流的情况下,下断面的洪峰流量 将低于上断面的洪峰流量;下断面的洪水过程的总历时 将大于上断面的总历时;下断面的洪水在上涨过程中, 会有一部分流量增长率大于上断面。即是说,洪水在向 下游演进的过程中,洪水过程线的形状,将发生展开和 扭曲,如图3-21所示。 水力学的观点认为:在河流的断面内各个水质点 的流速各不相同而且随断面上流量的变化而变化。在 上断面流量上涨过程中,各水流质点的流速在不断增 大,下断面流量和水流质点的流速也在不断上涨。当 上断面出现洪峰流量时,上断面各水流质点的流速达 到最大值。由于上断面各水流质点不可能同时到达下 断面,故下断面的洪峰流量必然低于上断面的洪峰流 量。在涨洪阶段,由于各水流质点流速在加大,沿程都有部分水质点赶超上前一时段的水流质点,因此在涨洪段,下断面洪水上涨过程中的增加率要大于上断面,即峰前部分将发生扭曲(如图3-21),但下断面流量绝对值都小于同时刻的上断面流量。在落洪阶段,由于断面各水流质点的流速逐渐减小,沿程都有部分水质点落在后面,因而下断面的落洪历时将加大。但在下断面落洪期间,其流量一定大于同时刻上断面的流量。 即是认为在涨洪阶段,由于断面平均流速逐渐加大,后面的洪水逐渐向前赶,因而产生涨洪段的扭曲现象,落洪阶段,断面平均流速逐渐减小,后面的洪水断面逐渐拖后,因而拖长了洪水总历时。 马斯京根法流量演算 此法是1938年用于马斯京根(Muskingin)河上的流量演算法。这一方法在国内外的流量演算中曾获得广泛的应用。 对于一个河段来说,流量Q与河段的蓄水量S之间有着固定的关系,流量和河槽蓄水量之间的关系称为槽蓄曲线,槽蓄曲线反映河段的水力学特性。涨洪时河槽蓄水量大于稳定流时槽蓄量,落洪时河槽蓄水量小于稳定流时的槽蓄量,因此,在非稳定流的状态下,槽蓄量S和下游断面的流量间不是单值的对应关系。

定量降雨与实时洪水预报研究

附件2 论文中英文摘要 作者姓名:吴志勇 论文题目:定量降雨与实时洪水预报研究 作者简介:吴志勇,男,1979年01月出生,2003年09月师从于河海大学陆桂华教授,于2008年06月获博士学位。 中文摘要 基于实测降雨的传统洪水预报方法,预见期较短,难以完全满足防汛调度、洪水资源化应用等洪水管理的要求。预见期短已成为水文预报发挥更大效益的主要障碍。从研究与实践均表明,预见期的延长必须依赖有足够精度的定量降雨预报。本文以增长洪水预报预见期为主要目标,重点研究了引入降雨预见期的实时洪水预报技术,突出数值天气预报模式、陆面过程模型以及基于网格的流域汇流模型和实时洪水预报系统等方面问题的解决。 较长预见期的降雨预报必须基于全球数值天气预报模式。目前全球数值天气预报模式模拟范围覆盖全球,由于计算条件的限制,模式的网格往往较大,水平网格为25~100 km。相对于数值天气预报模式,流域洪水预报要求较小尺度下进行,如分布式水文模型采用的网格为0.01~1 km。因此,将大气数值模式和水文模型耦合进行洪水预报时,需解决它们之间的尺度问题。本文采用MC2模式(Mesoscale Compressible Community Model)作为动力尺度降解工具,进行了具有预见期长达96 h,空间分辨率达20 km和5 km的降雨预报研究。分析了预报区域范围大小、时空分辨率和物理过程参数化方案等关键要素的确定和协调问题,提出了考虑水汽源地影响的区域数值天气预报模式构建方法,建立了MC2多层自嵌套方案。选取了淮河流域1998年、2003年以及2005~2007年汛期资料对降雨预报进行了后预报和实时预报检验,结果表明,本文建立的MC2模式对淮河流域暴雨具有很好的预报能力,特别是对梅雨期强降雨预报,无论其雨带分布和结构,还是暴雨中心位置及强度,均能获得较高的预报精度。 陆面是陆气系统的重要组成部分,它控制着地表能量在感热和潜热间的分配,以及地表水分在蒸发和径流之间的分配,对全球和区域天气、气候有重要影响作用。本文引入CLASS (Canadian Land Surface Scheme)模型作为陆面过程模型与MC2模式耦合。原CLASS模型具有很强的模拟能量通量能力,但缺乏模拟重要的壤中流产流的机制。为此,本文提出了对CLASS的产流模块的改进方案。改进方案采用田间持水量阈值来实现壤中流的产生,引入了空间分布函数来表示土壤田间持水量在次网格内的变化。选用了1998和1999年淮河流域能量与水分循环试验(HUBEX)的观测资料,对改进前后的CLASS模型进行了点尺度和流域

洪水预报及水情服务系统维护项目

洪水预报及水情服务系统维护项目 招标文件 招标编号:0773-1741GNOA01752 中金招标有限责任公司 2017年6月 第一章投标邀请 1.中金招标有限责任公司(以下简称“招标机构”)受北京市水文总站委托(以 下简称“采购人”),对洪水预报及水情服务系统维护项目进行国内公开招 标,请合格的投标人前来参加本次招标活动。 2.招标编号:0773-1741GNOA01752 3.招标内容为: 技术服务项目名称单位数量 一预报模型增加及异常修改完善项1 二系统运行效率优化升级项1 三数据前处理和导入模块项1 四电话支持项1 五远程支持项1 六现场支持项1 七突发应急支持项1 八其他项1 九汛期值守项1 十wiski软件应用项1 总计 本次招标共一个包,投标人须以包为单位对包中全部内容进行投标,不得拆分,对一个包的部分投标将被拒绝。 4.采购预算:人民币93.276万元 5.投标人的资质和业绩要求: 1)投标人必须满足《中华人民共和国政府采购法》二十二条之规定: (一)具有独立承担民事责任的能力; (二)具有良好的商业信誉和健全的财务会计制度;

(三)具有履行合同所必需的设备和专业技术能力; (四)有依法缴纳税收和社会保障资金的良好记录; (五)参加政府采购活动前三年内,在经营活动中没有重大违法记录; (六)法律、行政法规规定的其他条件。 2)在中华人民共和国境内合法注册的,具有独立法人资格,营业执照有效;在法律上和财务上独立、合法运作并独立于采购人和采购代理机构之外; 3)投标人须符合《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库〔2016〕125号)的相关要求。 4) 投标人所投WISKI软件产品须获得软件厂商针对本项目的软件代理授 权书 5)必须购买招标文件并登记备案,未购买招标文件并登记备案的潜在投标人均无资格参加本次投标。 6)本次招标不接受联合体投标。 6.有兴趣的合格投标人可于2017年06月26日起至2017年07月03日之前 每天(节假日除外)上午9:30时至11:30时,下午14:00至16:30时(北京时间)在北京市海淀区西三环北路21号久凌大厦南楼15层查阅或购买招标文件,本招标文件售价为200.00元人民币/本,售后不退。购买或查阅招标文件时应持: 1)有效营业执照的原件及复印件(加盖公章); 2)组织机构代码证的原件及复印件(三证合一除外)(加盖公章); 3)税务登记证原件及复印件(三证合一除外)(加盖公章); 4)针对此项目出具的法定代表人授权委托书原件; 5)法定代表人身份证复印件(加盖公章); 6)被授权人身份证原件及复印件(加盖公章); 7)被授权人近六个月社保缴纳证明。 7.所有投标文件都应附有规定金额的投标保证金,并同投标文件一同递交。 投标保证金为人民币壹万伍仟元整。投标保证金应用人民币以下列形式提交:转账支票或电子汇票,致中金招标有限责任公司。注:确定为中小型

设计洪水计算

项目二:设计洪水计算 由流量资料推求设计洪水 一、填空题 1.洪水的三要素是指、、。 2.防洪设计标准分为两类,一类是、另一类是。 3.目前计算设计洪水的基本途径有三种,它们分别是、 、。 4.在设计洪水计算中,洪峰及各时段洪量采用不同倍比,使放大后的典型洪水过程线的洪峰及各历时的洪量分别等于设计洪峰和设计洪量值,此种放大方法称为。 5.在洪水峰、量频率计算中,洪峰流量的选样采用、时段洪量的选样采用。 6.连序样本是指。不连序样本是指 。 7.对于同一流域,一般情况下洪峰及洪量系列的C V值都比暴雨系列的C V值,这主要是洪水受_和影响的结果。 二、问答题 1.什么是特大洪水?特大洪水在频率计算中的意义是什么? 2.对特大洪水进行处理时,洪水经验频率计算的方法有哪两种?分别是如何进行计算的? 3.洪水频率计算的合理性分析应从几个方面进行考虑? 4.采用典型洪水过程线放大的方法推求设计洪水过程线,典型洪水过程线的选择原则是什么? 5.采用典型洪水过程线放大的方法推求设计洪水过程线的两种放大方法是什么?分别是如何计算的? 6.在洪水峰、量频率计算工作中,为了提高资料系列的可靠性、一致性和代表性,一般要进行下列各项工作,试在下表的相应栏中用“+”表明该项措施起作用,用“-”表明该项措施不起作用。

三、计算题 1.某水库坝址断面处有1958年至1995年的年最大洪峰流量资料,其中最大的三年洪峰流量分别为 7500 m3/s、 4900 m3/s和 3800 m3/s。由洪水调查知道,自1835年到1957年间,发生过一次特大洪水,洪峰流量为 9700 m3/s ,并且可以肯定,调查期内没有漏掉 6000 m3/s 以上的洪水,试计算各次洪水的经验频率,并说明理由。 2.某水文站根据实测洪水和历史调查洪水资料,已经绘制出洪峰流量经验频率曲线,现从经验频率曲线上读取三点(2080,5%)、(760,50%)、(296,95%),试按三点法计算这一洪水系列的统计参数。 3.已知设计标准P=1%洪水过程的洪峰、1天、3天洪量和典型洪水的相应特征值及其过程线(见表1和表2),试用同频率放大法推求P=1%的设计洪水过程线(保留三位有效数字,不需修匀)。 表1 设计洪水和典型洪水峰、量特征值 表2 典型洪水过程

横山水库洪水预报方案技术报告讲解

横山水库洪水预报方案技术报告 (江苏省水文水资源勘测局无锡分局盛龙寿) 1.基本情况 (1) 1.1流域概况 (1) 1.2工程概况 (1) 1.3水文站点 (2) 2.产流计算 (3) 2.1产流模型 (3) 2.2产流计算 (4) 3.汇流计算 (4) 3.1单位线率定 (4) 3.2汇流计算 (6) 4.方案精度 (7) 5.预报软件 (7) 5.1运行环境 (7) 5.2资料录入 (7) 5.3水库调洪 (8) 5.4输出成果 (9) 5.5调洪程序 (10) 附件:单位线率定图表 (11)

1.基本情况 1.1 流域概况 自然地理:横山水库位于江苏省宜兴市,是厔溪河水系的拦蓄工程。水库集水面积154.8km2,上游山高岭陡,南部主要为太华山区,最高海拔500m以上,地势由南向北减缓,平均高程300m以上,流域内有100多条纵横交错的涧水由南向北呈扇形汇合而下,主要来水有两处:一是来自宜兴的太华山、襄王岭、分介岭、唐盘山等;二是来自溧阳的金牛岭、同官岭、松岭等。两处水源约占横山水库总来水的60%和40%。流域干流全长13km,河道坡降6.58‰,水库周围为建德群火山岩、茅山群灰白、紫红、黄色砂岩,石质坚硬,渗水性小。流域内植被达98%以上,山上生长成片竹林及各种用材林,浓郁成荫。山地占80%,可耕地约占10%。 流域气象:平均年降雨量为1310mm,平均雨日135.6日,平均年水面蒸发约870mm,平均相对湿度为80.1%,平均风速3.0m/s,年平均气温15.7℃左右,属湿润的亚热带季风气候区。全年降水的50~60%集中于6~9月份,6、7月份冷暖气团在上空遭遇,常产生锋面低压和静止锋,形成连续阴雨的梅雨天气,7至9月多受热带风暴影响,易形成来势迅猛的特大暴雨。 1.2 工程概况 横山水库是无锡地区唯一的一座大(Ⅱ)型水库,也是江苏省六大水库之一。水库于1958年动工兴建,1969年9月基本竣工。经省水利厅、太湖局立项批复,横山水库除险加固工程于2001年10月开工建设,总投资9938万元,按100年一遇设计,2000年一遇校核。水库原设计以防洪、灌溉为主,兼顾水力发电、水产养殖等综合经营,现发展为防洪、供水为主,结合发电、水产养殖。 横山水库总库容1.12亿m3,2000年一遇校核洪水位40.36 m(镇江吴淞基

中小河流洪水预报系统

中小河流洪水预报系统 洪水预报子系统是中小河流洪水预报预警系统的重要组成部门。该系统要以其它系统提供的各类信息为基础,进行洪水预测、预报和分析计算,快速、准确的为防汛抗旱部门提供调度决策的科学依据。 1 功能 系统以实时雨水情数据库、历史洪水数据库、地理空间数据库、气象数据库等信息资源为基础,依托计算机网络环境,遵循统一的技术架构,具有系统管理、预报模型管理、预报方案管理、模型参数率定、实时交互式预报及自动预报、预报评估等功能。作业预报是整个系统的最主要的组成部分,其中自动预报功能和自动校正技术是中小河流山洪预警预报的必须具备的两个功能,因为中小河流洪水具有来势迅猛,突发性强,成灾快的特点,人工预报一般很难进行有效控制,同时自动校正技术使得自动预报避免计算机的累积误差达到人工交互式作业预报的优点。开发出适用于中小河流的洪水预报子系统,为中小河流的防洪、抗旱、会商提供依据,并且实现已有洪水预报和中小河流洪水预报的整合。 洪水预报子系统主要包括:系统管理、预报模型及预报方案管理、模型参数率定、实时预报及自动预报、模拟计算及历史数据验证等功能。

该系统一般情况下由省级中心和地市级分中心的专业人员操作执行,同时也可采取自动预报的方式执行。 2 框架 在省中心及各地市级中心采取胖客户端的方式建设部署洪水预报子系统。 图11-1 洪水预报子系统部署架构图 洪水预报子系统各项功能之间通过实时水情数据库和预报专用数据库实现数据的交换。预报软件平台洪水预报业务流程如图所示:

图11-2洪水预报子系统作业流程图 3技术实现 图11-3 洪水预报子系统功能示意图 1、定制预报方案,建立模型组合和流程关系等。对于同一预报断面可以有多种预报方案。 以水文站为控制划分预报区域。每个预报断面还可划分为若干个

洪水预报知识

洪水预报 来源:作者:发布日期:2011-04-07 洪水主要是指由暴雨引起江河水量迅猛增加及水位急剧上涨的自然现象,洪水特征一般用洪峰流量、洪峰水位和洪水过程线来描述。当流域发生暴雨时,在流域各处所形成的地面径流,都依其远近先后汇集于河道的出口断面处,当近处的地面径流到达该出口断面时,河水流量开始增加,水位相应上涨,这就是洪水起涨之时;随着流域远处的地表径流陆续流入河道,使流量和水位继续增涨,大部分高强度的地表径流汇集到出口断面时,河水流量增至最大值称为洪峰流量,其最高水位,称为洪峰水位。洪水流量由起涨到达洪峰流量以后逐渐下降,到暴雨停止以后的一定时间,河网中的水量均已流经出口断面时,河水流量及水位回落到接近于原来状态。即为洪水落尽之时。如在方格纸上以时间为横坐标,以江河的流量或水位为纵坐标,可以绘出洪水从起涨至峰顶到落尽的整个过程曲线,称为洪水过程线。一次降雨产生的径流量,称为一次洪水总量,可由一次洪水流量过程线与横坐标所包围的面积求得。一次洪水过程所经历的时间称为洪水总历时。 根据洪水形成和运动的规律,利用过去和实时水文气象资料,对未来一定时间内的洪水情况的预测,称洪水预报。这是水文预报中最重要的内容。洪水预报包括河道洪水预报、流域洪水预报、水库洪水预报等。主要预报项目有最高洪峰水位(或流量)、洪峰出现时间。洪水涨落过程、洪水总量等。 河道洪水预报,即预报沿防汛河段的各指定断面处的洪水位和洪水流量。天然河道中的洪水,以洪水波形态沿河道自上游向下游运动,各项洪水要素(洪水位、洪水流量等)先在河道上游断面出现,然后依次在下游各断面出现。因此,可利用河道中洪水波运动的规律,由上游断面的洪水位和洪水流量,来预报下游断面的洪水位和洪水流量。根据对洪水波运动的不同研究方法,可得出河道洪水预报的各种方法。常用的有相应水位(或相应流量)法和流量演算法。 流域洪水预报是根据径流形成的基本原理,直接从实时降雨预报流域出口断面的洪水总量和洪水过程。前者称径流量预报(亦称产流预报),后者称径流过程预报(亦称汇流预报)。流域洪水预报的预见期比河段预报要长些。在一些地区,没有发布河段预报的条件(如一条河上没有上、下游水情站)或预见期太短时,为满足防洪要求,宜采用流域洪水预报的方法。 流域洪水预报方法常用的有实用预报方案和流域水文模型。实用预报方案即用实测的雨洪资料建立起降雨径流经验相关图和由实测洪水过程线分析出来的经验单位过程线,对降水所形成的径流量及洪水过程进行预报。流域水文模型是从系统的角度来模拟降雨径流关系。以流域为系统,降雨过程作为系统的输入,经过系统的作用,流域出口流量过程作为系统的输出。因此,建立降雨径流模型,首先要建立模型的结构,并以数学方式表达,其次要用实测降雨径流资料来率定及调试模型参数。随着人们对流域上产、汇流过程认识的深入和计算机的发展,产生了大量的流域水文模型,较多的是用于水文预报方面,目前我国有代表性的是新安江模型(新安江模型是流域水文模型)。 水库洪水预报主要包括入库洪水预报、水库最高水位和最大出库流量及其出现时间的预报。由于水库大小不同、条件各异,运用方式各有特点,因此水库洪水预报方法和要求也不尽相同。这里不一一叙述了。

2014-大广坝水情测报系统升级改造技术方案.doc

国电海南大广坝发电有限公司 大广坝水情测报系统升级改造 技术协议 合同编号: 甲方:国电海南大广坝发电有限公司 乙方:中南勘测设计研究院有限公司

国电海南大广坝发电有限公司(以下简称甲方)、中南勘测设计研究院有限公司(以下简称乙方)的代表,就国电海南大广坝发电有限公司大广坝水情测报系统升级改造的有关技术问题进行了协商和讨论,达成如下技术协议。本协议生效后,即作为大广坝水情测报系统升级改造验收的技术依据,是商务合同的附件,与商务合同具有同等法律效力。 1 建设任务及供货范围 1.1 建设任务 建立起一个稳定可靠、功能完善、性能优化的水库调度自动化系统是大广坝水情自动测报系统升级改造的主要目的和任务,结合目前大广坝水情自动测报系统存在的问题,具体建设任务主要包括以下几个方面。 为提高遥测站的可靠性,具体从以下几方面入手: a) 在原有硬件设备的基础上,增加一套GSM通信系统,建立起有主备通信信道的遥测站; b) 系统支持主备数据库服务器冗余处理; c) 增加一口坝前水位井,并加装自动水位计一套; d) 增加卫星系统和超短波系统备品备件的配置,更换所有站点蓄电池; f) 开发水库调度自动化系统软件,完善中、短期洪水预报和洪水调度决策支持的功能,完善水能利用和发电计划安排合理性分析的功能,为水库调度提供科学合理的决策方案; 1.2 供货范围及工作进度 1.2.1供货范围 a) 所需提供的硬件设备 1) 增加一套GSM通信系统,站点包括1个中心站,4个水位(雨量)站和13个雨量站的配套设备。 2) 水位井及自动水位计的配套设备。 3) 配置卫星系统和超短波系统备品备件。

西津水库实时洪水预报模型(1).

西津水库实时洪水预报模型(1) 论文结合西津水库以上流域的地形地貌、水文气象特征及水库防汛调度的需,将洪水预报模型、河道洪水演进模型和实时校正模型相结合,建立了实时洪水预报模型。模型软件与水情自动测报系统于1998年初开发完成并投入应用后,由于能及时获取水、雨情信息,水库在防洪、发电和航运方面较为充分地发挥了综合利用效能,取得了明显的社会效益和经济效益。 关键词:预报模型洪水演进实时校正综合利用 1 流域概况 西津水库位于广西横县县城上游5 km 处的西津村,是一座以发电、通航为主兼顾灌溉效益的大型水利枢纽工程。水库坝址以上集水面积为80901km2,其中南宁以上集水面积为73301km2,占西津水库坝址以上集水面积的90.6%;南宁~西津集水面积为7600km2,占西津水库坝址以上集水面积的9.4%。南宁上游宋村处分为左江和右江,左江发源于越南大凉山,全长为523 km,集水面积为 31500km2,占南宁以上集水面积的43.0%,占西津水库坝址以上集水面积的38.9%;右江发源于云南省广南县,全长为629 km,集水面积为 37600 km2,占南宁以上集水面积的51.3%,占西津水库坝址以上集水面积的46.5%。流域水系及站网分布见图2所示。 2 预报思路 根据流域地形、地貌条件及所布设的水情遥测站网,按天然流域将全流域划分为11块即:百色以上、百色~田东、田东~下颜、下颜~南宁、龙州以上、宁明以上、新和以上、龙州+宁明+新和~崇左、崇左~扶绥、扶绥~南宁、南宁~西津。其中南宁~西津采用流域水文模型,其余主采用河道洪水演进模型。 3 模型概述 西津水库实时洪水预报模型由洪水预报模型、河道洪水演进模型和实时校正模型三部分组成。洪水预报模型:通过产流、汇流计算,预报部分流域的入库流量过程。河道洪水演进模型:根据选用的河道演进模型,计算洪水过程在主河道中的演进过程,并给出主控制站点的水位或流量。实时校正模型:根据选用的实时校正模型和计算与实测流量(或水位)过程从上游往下游逐级逐时段进行实时修正。模型计算流程见图1。 3.1 洪水预报模型

说明书-中小河流洪水预报系统使用说明书

中小河流洪水预报系统使用说明书 四川晨光信息自动化工程有限公司 版权所有不得翻印 二零一一年四月

目录 1. 概述 (4) 1.1. 硬件环境 (4) 1.1.1. 服务器 (4) 1.1.2. 工作站 (4) 1.1.3. 通信设备 (5) 1.2. 软件环境 (5) 1.2.1. 服务器 (5) 1.2.2. 工作站 (5) 2. 安装说明 (5) 2.1. 中小河流洪水预报系统安装 (5) 3. 使用说明 (7) 3.1. 运行本软件 (7) 3.2. 主窗口 (9) 3.3. 用户管理 (11) 3.4. 用户登录 (12) 3.5. 退出登录 (13) 3.6. 原始信息 (14) 3.7. 日志查询 (14) 3.8. 数据召测 (14) 3.9. RTU参数操作 (16) 3.10. 系统设置管理 (18) 3.10.1. 本地设置 (20) 3.10.2. 测站基本信息管理 (20) 3.10.3. RTU参数管理 (22) 3.10.4. 报警参数设置 (23) 3.10.5. 水位流量关系 (24) 3.11. 洪水预报参数管理 (27)

3.11.1. 洪水传播时间管理 (27) 3.11.2. 水文预报发布单位编码 (28) 3.12. 洪水预报 (30) 3.12.1. 降水量预报 (30) 3.12.2. 河道水情预报 (31) 3.13. 信息检索查询 (32) 3.13.1. 河道水情信息查询 (32) 3.13.2. 其它要素信息查询 (35) 3.13.3. 畅通率统计 (35) 3.13.4. 人工置数处理 (35) 3.14. 软件信息查询 (35) 3.15. 权限管理 (36) 3.16. 退出系统 (36)

水文河道整治

楚江青山桥河段治理工程设计水文计算 基本资料 1、设计资料 1.1、流域概况 楚江是湘江一级支流——沩水上的一级支流,其发源于宁乡县扇子排,流经宁乡县青山桥镇、流沙河镇、老粮仓镇以及横市镇,在横市镇的金棋村和望北峰村交界处汇入沩水。楚江流域降水较充沛,产流较丰富。 楚江流域集雨面积416Km2,河长49 Km,河流平均坡降3.26?,多年平均径流量 2.57亿m3。本次楚江河流治理工程河段位于宁乡县青山桥镇,治理河段总长 3.76Km,治理河段终端以上流域面积116.04Km2(其中1+764断面以上流域面积65.71Km2),河段平均坡降2.68?(其中1+764断面以上平均坡降 4.4?)。 1.2、气象 气温:楚江流域地处亚热带季风性湿润气候区,受季风影响大。冬季多为西伯利亚干冷气团控制,气候干燥寒冷;夏季为低纬海洋暖湿气团所盘据,温高湿重。在春夏之交,常处在冷暖气流交替的过渡地带。锋面和气旋活动频繁,造成阴湿多雨的梅雨天气。据宁乡县气象局的资料分析,多年平均气温为16.8℃,日照时数1700小时,相对湿度80%,无霜期272天。 降雨:地表径流由于受降水、蒸发等气候条件、地质地貌、森林植被和河流等下垫面因素影响,时空分布上也相应的不够均匀。流域多年平均降雨量1362.3mm,年降水量主要来自降雨。每当春夏之交,冷暖气团相互交替,降雨剧增,因此4~7月份降雨集中,8~9月转入干旱季节,12月降雨最少。降雨年际分配也不均匀,一般年雨量的变差为2~3倍。 风速:流域多年平均风速为2.5m/s,最大风速因地而异。 1.3、径流 径流的分布与降雨的分布基本相似。该流域多年平均径流量为2.57亿m3。径流的年内分配也不均匀,流域的汛期一般为4~9月。 1.4、洪水 楚江流域洪水主要由降雨形成,洪水时空变化与暴雨特性一致。年最大洪水多发生于每年4~8月,其中5、6两月出现次数最多。 1.5、水文资料 1.5.1水文站,楚江干流水文站仅有18年实测资料,资料系列较短,无代表性。

相关主题
文本预览
相关文档 最新文档