当前位置:文档之家› 电力系统次同步振荡产生原因分析及对策

电力系统次同步振荡产生原因分析及对策

电力系统次同步振荡产生原因分析及对策
电力系统次同步振荡产生原因分析及对策

电力系统次同步振荡产生原因分析及对策

作者姓名

(单位名称,省份城市邮政编码)

摘要:在电网中串联补偿电容可以提高输电能力和稳定性,但也可能发生次同步振荡(SSO,Subsynchronous Oscillation)运行状态。发电机组以低于同步频率的振荡频率运行,严重影响机组的安全运行,对于电力系统的稳定性及其不利。本文分析了电力系统次同步振荡产生的原因和影响,在此基础上,阐述了解决次同步振荡问题的具体步骤。并探讨了有效抑制次同步振荡的保护方法,对于降低次同步振荡现象对电网安全的影响,提高电力系统的安全性和稳定性具有积极的意义。

关键词:次同步;振荡;输电;抑制;可控串补

发生机电扰动时,汽轮机驱动转矩与发电机电磁制动转矩之间失去平衡,使轴系这个弹性质量系统产生扭转振动[1-2]。引起扭振的原因包括机械扰动与电气扰动。机械扰动指不适当的进汽方式、调速系统晃动、快控汽门等。电气扰动分为两类:一类是次同步谐振(SSR,Subsynchronous Resonance)及次同步振荡(SSO,Subsynchronous Oscillation) ;另一类指各种急剧扰动如短路、自动重合闸、误并列等。

一电力系统次同步振荡产生的原因及抑制步骤

(1)次同步振荡产生原因

通过串联电容的形式进行补偿可以提高输电线路的输送能力,优化输电线路间的功率分布,并可以增加电力系统的稳定性,是交流输电系统中广泛采用的方法[3-4]。但这种方法也可能引发电力系统中的电气系统或汽轮发电机组以小于同步频率的振动频率进行能量交换,称为次同步振荡(SSO)。诱发次同步振荡的原因包括串联电容、稳定器的加装、励磁系统、直流输电等。次同步谐振会造成汽轮机或发电机的轴系长时间呈现低振幅扭振的状态,又因为发电机或汽轮机的转子具有较大的惯性,轴系具有灵敏的低阶扭转模态特性,所以发电机或汽轮机会出现低周高应力的机电共振,对发电机组的安全运行造成严重的威胁。次同步振荡在交流输电系统和直流输电系统中的形成原理不同,在交流输电系统由于又谐振回路的存在所以称为次同步谐振(SSR),主要从异步发电效应、暂态力矩放大作用和机电扭振相互作用三个角度进行描述和分析。其中,发电机扭振时最重要的一种影响,长时间的机电扭振的存在会加剧发电机组的疲劳损耗。也会产生隐性故障,一旦发展成机电材料破损,将会造成恶性事故,对电力系统的安全稳定运行带来极大的威胁。

(2)抑制步骤

对于次同步振荡的问题可以通过三个步骤加以解决。第一步是通过对系统进行分析,选择合适的运行方式。由汽轮发电机轴系扭振监测系统对发电机组的各种电气扰动下的轴系扭振进行实时路波,分析机组轴系的模态、阻尼以及扭振对轴系造成的损失。从而由阻尼值是收敛还是发散决定不同的运行方式下是否存在次同步振荡或次同步谐振。第二步是对次同步振荡进行抑制或消除。具体的办法是提高发电机组的阻尼来抑制或消除次同步振荡。例如,可以通过发电机端阻尼控制系统(GTSDC)对发电机组定子电流进行控制达到提高阻尼的效果;还可以通过次同步阻尼控制系统,根据系统的具体控制要求,向电力系统或发电机组提高次同步电流,使发电机组增加与次同步扭振相适应的次同步阻尼扭矩,达到抑制次同步振荡的作用。第三步是建立发电机组扭振保护系统(TSR),实时连续地监视汽轮发电机轴系的转速情况,并及时进行分析。当轴系的疲劳值达到极限或者当轴系被激发特征频率的扭振、振幅逐步发散可能对机组安全构成威胁时,进行保护跳闸、告警及联动。

二次同步振荡监测与抑制措施

(1)轴系参数的监测与分析

对汽轮发电机的轴系参数进行实时监测是十分必要的。汽轮发电机轴系参数监测系统如图1所示。其中,在线阻尼监测及分析预警系统可以实时监测汽轮发电机轴系次同步振荡的相关数据信息。并通过专家系统对发电机组扭振模态频率和阻尼变化情况进行分析和自动识别。如果扭振模态频率或阻尼值超过阈值就发出警告信息,监控人员可以根据提示信息进行相应处理。阻尼在线监测及实时预警模块,通过对发电机轴系次同步谐振信号的实时监测,自动辨识机组扭振模态频率和阻尼情况,当频率与阻尼超过限值时,进行告警,是阻尼和频率测量的重要分析工具。汽轮发电机组轴系扭振监测装置监测装置(TMU),可以对各种机械或电气扰动下的轴系扭振进行测量,能够掌握发电机组的状态及损失情况;还能够测量发电机的转速、频率、电压电流等参数为计算和专家系统分析提高依据;而专家系统可以根据以上模块测量的轴系参数计算分析机组的运行状态和疲劳程度,根据预设的报警阈值在出现异常扭振时进行扭振低限或高限告警,便于对次同步振荡的抑制提供基础信息和消除依据。

图1 汽轮发电机轴系参数监测系统

(2)发电机端阻尼控制系统(GTSDC)抑制

发电机端阻尼控制系统(GTSDC)的作用是按照电路系统的需求,根据此同步振荡的具体情况,进行次同步电流补偿。这样可以对次同步振荡引起的发电机轴系扭振力矩进行抑制。该补偿电流是由电力电子变流器产生幅值和相位都可以调整的电流源。该补偿电流的补偿大小通过阻尼控制器采集的发电机轴系扭振的动态反馈信号进行计算获得。发电机端阻尼控制系统可以大大减小发电机组扭振保护系统的切机频率,抑制次同步振荡造成的不利影响。

(3)发电机组扭振保护系统(TSR)抑制

图2 发电机组扭振保护系统原理图

发电机组扭振保护系统(TSR)如图2所示。当次同步振荡对发电机组的运行安全造成巨大影响时,该系统可以进行起动,通过事故告警或保护跳闸及采取切除机组的形式抑制次同步振荡。主要监测的参数是发电机的轴系转速、轴系的寿命疲劳定值、次同步振荡的幅度。将相关事故机组切除后,电力系统中的负阻尼状况消失。再通过原动机的配合可以使转矩在短时间内减小,从而可以避免次同步振荡和轴系扭振影响扩大。对于剩余的在线机组,切除机组将改变系统结构和等效串补度,一定程度上能增强在线机组的模态阻尼,有利于抑制次同步振荡。

三结束语

对于电力系统次同步振荡的抑制,要考虑到不同的系统结构、运行方式、发电机组情况、负载情况、补偿的运行方式等具体的情况,结合现场的实验进行有效治理,对可控串补的控制参数针对电网和发电厂两个方面进行监控和优化。在电网和发电厂中,通过采取固定串补、可控串补,电厂侧采取SEDC、TSR等多种组合方案并用,共同达到抑制电网次同步谐振(SSR)和次同步振荡(SSO)的目的,保障交流或直流输电系统的安全稳定可靠运行。

参考文献:

[1] 张帆,徐政.采用SVC抑制发电机次同步谐振的理论与实践[J]. 高电压技

术,2007,33(4):26-31.

[2] 武云生,韩俊彪.应用静止无功补偿器抑制发电机次同步振荡的研究[J]. 电力设

备,2008,9(2):49-52.

[3] 文劲宇,孙海顺,等.电力系统的次同步振荡问题[J].电力系统保护与控制,2008,36(12):1-4.

[4] 刘取.电力系统稳定性及发电机励磁控制[M]. 北京:中国电力出版社,2007.

电力系统次同步振荡.

第8章HVDC引发SSO的机理及抑制 8.1 概述 由HVDC输电系统引起电力系统SSO的原因可以归纳为三种情况: (1)与HVDC的辅助控制器相关; (2)与HVDC系统的不正常运行方式相关; (3)与HVDC系统的电流控制器相关。 第一种情况可以通过改造辅助控制器来消除隐患,第二种情况尽管难以预测,但在实际工程中很少碰到,可以通过规范系统的运行来解决,第三种情况较为常见,可以通过在HVDC 控制器中做些改变加以解决,如加入SSDC。本文重点讨论由HVDC电流控制器引发的SSO 问题。 实际经验表明,次同步振荡基本上只涉及汽轮发电机组,尤其是30万千瓦以上的大容量机组。水轮发电机组转子的惯量比汽轮机要大得多,且水轮机的水轮上具有黏性阻尼,故其转子的固有阻尼很高,不易发生次同步振荡。对于汽轮发电机组,HVDC系统也只有在一系列不利因素同时作用时,才可能产生次同步振荡不稳定。这些不利因素主要包括:(1)汽轮发电机组与直流输电整流站之间的距离很近; (2)该汽轮发电机组与交流大电网的联系很薄弱; (3)该汽轮发电机组的额定功率与HVDC系统输送的额定功率在同一个数量级上。 其中,汽轮发电机组与交流系统大电网之间联系的强弱对其能否发生次同步振荡起着非常重要的作用。常规电力负荷的特性随频率而变化,它们对发电机组次同步振荡有一定的阻尼作用,但当发电机与大电网的联系较弱时,这个阻尼基本上不起作用。此外,若HVDC 系统所输送的功率大部分由附近的汽轮发电机组供应,则功率振荡通常发生在整流站和这些发电机组之间,当HVDC的额定功率与附近发电机组的额定容量相差不大时,振荡情况较严重。 在逆变站附近的汽轮发电机组一般不会发生次同步振荡,因为它们并不向直流输电系统提供有功功率,而只是与逆变站并列运行,向常规负荷供电。HVDC系统中的次同步振荡与HVDC运行工况、控制方式、控制参数、输送功率、直流线路参数,以及发电机同直流输电线的耦合程度等因素有关。 8.2 次同步电气量在交直流侧间的传递关系分析 HVDC换流器具有离散采样和调制的特性,可以用开关函数法对其进行分析。对换流器进行开关函数分析后,可以得到系统的次同步电气量在发电机组转子、交流网络、HVDC 直流侧系统之间的相互传递关系。 当交流侧电压中有频率为ωm的次同步分量时,经过换流器调制作用后在直流电压中将存在显著的频率为(ω0-ωm)的分量,其中ω0为系统的额定频率;反之,当直流电流中存在次同步频率为ωr的纹波分量时,经过换流器调制作用后在交流侧相电流中将存在显著的频率为(ω0±ωr)的分量。 发电机组转子与交流网络的次同步分量是通过定、转子磁场的相对运动产生的。转子上频率为ωs的扰动会在定子侧感应出与ωs互补的次同步(ω0-ωs)分量和超同步(ω0+ωs)分量。对

次同步振荡、同步振荡、异步振荡、低频振荡及其区别上课讲义

次同步振荡、同步振荡、异步振荡、低频振荡及其区别一、次同步振荡(SSR,SubsynchronousResonance):发电机经补偿度较高的串补线路接入系统或者直流输电、静止无功补偿装置控制装置参数设置不当时,较易出现网络的电气谐振频率与大型汽轮发电机轴系的自然扭振频率接近的情况,造成发电机大轴扭振、破坏大轴,由于振荡频率低于同步频率,该现象称为次同步振荡。 二、同步振荡:当发电机输入或输出功率变化时,功角δ将随之变化,但由于机组转动部分的惯性,δ不能立即达到新的稳态值,需要经过若干次在新的δ值附近振荡之后,才能稳定在新的δ下运行。 同步振荡主要现象: (1)机组和线路电流、功率指示周期性变化,但波动较小,发电机有功出力不过零; (2)发电机机端和500kV母线电压表指示波动较小; (3)系统及发电机频率变化不大,全系统频率未出现—局部升高、另一局部降低现象; (4)发电机轰鸣声较小,导叶开度无明显变化。 有关机械量、电气量出现摆动,以平均值为中心振荡,不过零;振荡周期稳定清晰接近不变,摆动频率低,一般在0.2-2.0Hz;指针式仪

表摆动平缓无抖动,机组振动较小;用视角可以估算振荡周期;中枢点电压保持较高水平,一般不低于80%;同步振荡出现时各机组仍保持同步运行,频率基本相同。 处理方法: (1)已经振荡的发电厂可不待调度指令立即增加发电机励磁提高电压,但不得危及设备安全,必要时可适当降低发电机有功。 (2)处于送端的机组适当降低有功出力,处于受端的机组增加有功出力。 (3)若正在进行线路或主变停运等操作时,应立即暂停操作。(4)尽快查找并去除振荡源。着重了解本厂是否存在强迫振荡源(如发电机组非同期并网、发电机组调速器、励磁调节器有异常等)。若有,应立即消除调速器或励磁调节器的故障(故障励磁调节器可暂时倒备励)。如一时无法消除,则解列发电机组。 (5)在采取以上措施后,应报告调度值班人员,听侯调度指令。 三、异步振荡:发电机因某种原因受到较大的扰动,其功角δ在0-360°之间周期性地变化,发电机与电网失去同步运行的状态。

电力系统次同步振荡产生原因分析及对策

电力系统次同步振荡产生原因分析及对策 作者姓名 (单位名称,省份城市邮政编码) 摘要:在电网中串联补偿电容可以提高输电能力和稳定性,但也可能发生次同步振荡(SSO,Subsynchronous Oscillation)运行状态。发电机组以低于同步频率的振荡频率运行,严重影响机组的安全运行,对于电力系统的稳定性及其不利。本文分析了电力系统次同步振荡产生的原因和影响,在此基础上,阐述了解决次同步振荡问题的具体步骤。并探讨了有效抑制次同步振荡的保护方法,对于降低次同步振荡现象对电网安全的影响,提高电力系统的安全性和稳定性具有积极的意义。 关键词:次同步;振荡;输电;抑制;可控串补 发生机电扰动时,汽轮机驱动转矩与发电机电磁制动转矩之间失去平衡,使轴系这个弹性质量系统产生扭转振动[1-2]。引起扭振的原因包括机械扰动与电气扰动。机械扰动指不适当的进汽方式、调速系统晃动、快控汽门等。电气扰动分为两类:一类是次同步谐振(SSR,Subsynchronous Resonance)及次同步振荡(SSO,Subsynchronous Oscillation) ;另一类指各种急剧扰动如短路、自动重合闸、误并列等。 一电力系统次同步振荡产生的原因及抑制步骤 (1)次同步振荡产生原因 通过串联电容的形式进行补偿可以提高输电线路的输送能力,优化输电线路间的功率分布,并可以增加电力系统的稳定性,是交流输电系统中广泛采用的方法[3-4]。但这种方法也可能引发电力系统中的电气系统或汽轮发电机组以小于同步频率的振动频率进行能量交换,称为次同步振荡(SSO)。诱发次同步振荡的原因包括串联电容、稳定器的加装、励磁系统、直流输电等。次同步谐振会造成汽轮机或发电机的轴系长时间呈现低振幅扭振的状态,又因为发电机或汽轮机的转子具有较大的惯性,轴系具有灵敏的低阶扭转模态特性,所以发电机或汽轮机会出现低周高应力的机电共振,对发电机组的安全运行造成严重的威胁。次同步振荡在交流输电系统和直流输电系统中的形成原理不同,在交流输电系统由于又谐振回路的存在所以称为次同步谐振(SSR),主要从异步发电效应、暂态力矩放大作用和机电扭振相互作用三个角度进行描述和分析。其中,发电机扭振时最重要的一种影响,长时间的机电扭振的存在会加剧发电机组的疲劳损耗。也会产生隐性故障,一旦发展成机电材料破损,将会造成恶性事故,对电力系统的安全稳定运行带来极大的威胁。 (2)抑制步骤 对于次同步振荡的问题可以通过三个步骤加以解决。第一步是通过对系统进行分析,选择合适的运行方式。由汽轮发电机轴系扭振监测系统对发电机组的各种电气扰动下的轴系扭振进行实时路波,分析机组轴系的模态、阻尼以及扭振对轴系造成的损失。从而由阻尼值是收敛还是发散决定不同的运行方式下是否存在次同步振荡或次同步谐振。第二步是对次同步振荡进行抑制或消除。具体的办法是提高发电机组的阻尼来抑制或消除次同步振荡。例如,可以通过发电机端阻尼控制系统(GTSDC)对发电机组定子电流进行控制达到提高阻尼的效果;还可以通过次同步阻尼控制系统,根据系统的具体控制要求,向电力系统或发电机组提高次同步电流,使发电机组增加与次同步扭振相适应的次同步阻尼扭矩,达到抑制次同步振荡的作用。第三步是建立发电机组扭振保护系统(TSR),实时连续地监视汽轮发电机轴系的转速情况,并及时进行分析。当轴系的疲劳值达到极限或者当轴系被激发特征频率的扭振、振幅逐步发散可能对机组安全构成威胁时,进行保护跳闸、告警及联动。

电力系统低频振荡

第36卷第22期电力系统保护与控制Vol.36 No.22 2008年11月16日Power System Protection and Control Nov. 16, 2008 电力系统低频振荡 郭权利 (沈阳工程学院电气工程系,辽宁 沈阳 110136) 摘要:由于系统缺乏阻尼或系统负阻尼引起的输电线路上的功率波动频率一般在 0.1~2.0 Hz之间,通常称之为低频振荡。随着电力系统规模的不断扩大和快速励磁系统的大量应用,电网的低频振荡问题越来越引起人们的关注。低频振荡影响电力系统稳定性和继电保护装置的可靠性。介绍了低频振荡的一些概念、各种机理、研究现状、常用的分析方法和控制方法,并对以后的工作重点做了进一步的阐述。 关键词: 低频振荡;频率波动;负阻尼;分析方法 Low Frequency Oscillation in Power System GUO Quan-li (Electrical Engineering Department,Shenyang Institute of Engineering,Shenyang 110136,China) Abstract: Because of the lack of damping system or negative damping system on the transmission line caused power fluctuations generally between 0.1-2.0 Hz, usually called as low-frequency oscillations. With the development of the size of the power system and large applicationl of the rapid excitation system, the low-frequency oscillation (LFO) of the power system are causing for more and more concern. And low-frequency oscillation affect the stability of the power system and the reliability of the relay device. This text introduces the concept of low-frequency oscillations, all kinds of mechanism and research status, analysis and control methods, and elaborate the focus of the work for a further step. Key words: low-frequency oscillation; frequency fluctuating; negative damping; analysis method 中图分类号: TM711 文献标识码: A 文章编号: 1674-3415(2008)22-0114-03 0 引言 低频振荡产生的原因是由于电力系统的负阻尼效应,常出现在弱联系、远距离、重负荷输电线路上,在采用快速、高放大倍数励磁系统的条件下更容易发生。系统缺乏阻尼甚至阻尼为负,对应发电机转子间的相对摇摆,表现在输电线路上就出现功率波动,由系统缺乏阻尼或系统负阻尼引起的输电线路上的功率波动频率一般在 0.1~2.0 Hz之间,通常称之为低频振荡(又称功率振荡,机电振荡)。一般来说,电力系统振荡模式可分为两种类型:地区振荡模式和区域振荡模式,若系统低频振荡频率很低(0.1~0.5 Hz),则一般认为属互联系统区域间振荡模式。而如果振荡较高,在1 Hz以上,则认为是本地或区域间机组间的振荡模式[1]。对于地区振荡模式,振荡频率较高,参与的机组较少,因而只要在少数强相关机组上增加阻尼,就能显著地增加振荡模式的阻尼。对于区域振荡模式,振荡频率较低,参与的机组较多,因而只有在多数参与机组上增加阻尼,才能显著地增加振荡模式的阻尼。显然,抑制区域振荡模式的低频振荡要比抑制地区振荡模式的低频振荡更加复杂和困难,所以,系统运行中更容易发生区域振荡模式的低频振荡。 由于低频振荡影响着系统的安全稳定运行,并对继电保护装置动作行为产生相当大的影响,因而本文从低频振荡的一些概念和当前研究状况分析,总结了当前分析低频振荡问题的方法和进一步的研究方向。 1 低频振荡的负阻尼机理 电力系统受到扰动时,会发生发电机转子间的相对摇摆,表现在输电线上就会出现功率波动。如果扰动是暂时的,在扰动消失后,可能出现两种情况:一是发电机转子间的摇摆很快平息,二是发电机转子间的摇摆平息的很慢甚至持续增长,若振荡幅值持续增长,以致破坏了互联系统之间的静态稳定,最终将使互联系统解列。产生后者情况的原因是系统缺乏阻尼或者系统阻尼为负,现象表现为受

电网次同步振荡对保护装置的影响

电网次同步振荡对保护装置的影响 发表时间:2019-04-01T11:49:09.707Z 来源:《电力设备》2018年第29期作者:谐波[导读] 摘要:伴随着国民经济的迅猛发展和人民生活水平的不断提高,人们对电力供应的依赖程度加深,对电力的需求越来越大。 (囯网新疆电力有限公司哈密供电公司新疆哈密 839000)摘要:伴随着国民经济的迅猛发展和人民生活水平的不断提高,人们对电力供应的依赖程度加深,对电力的需求越来越大。且随着电力系统的不断改革,分布式电网的应用改变了传统配电网模式,推动了配电网的更新与发展,但在一定程度上增加了配电网运行难度。大量电力电子器件的应用会引起电力系统中次同步振荡现象,严重影响了电力系统的运行稳定性。本文简单分析了电力系统次同步振荡现象 及相关的抑制措施。 关键词:电力系统;同步振荡;抑制措施近年来,电网建设规模不断扩张,供电难度和设备负荷随之提高,越来越多的分布式新能源接入配电网。分布式新能源具有环保的优点,应用在电力系统中可以满足社会发展对于电力的需求,有效降低电力运输过程中的损耗,提高供电质量,对我国电力事业的发展有重要的意义。分布能源系统模型高维性、运行方式的不确定性、元件的强非线性、扰动的随机性,使得电力系统稳定现象多变,稳定机理十分复杂,电力系统动态机理与控制越来越困难。此外,由于电网的运行形式不断变化,规模越来越大,大量电力电子设备及系统的应用会使电网呈现不稳定的运行状态,产生低于基波的次同步振荡现象,其安全稳定运行面临严峻挑战。 一、概述电力系统次同步振荡 1基本概念 通过串联电容的形式进行无功补偿可以提高输电线路的输送能力,优化输电线路间的功率分布,并提高电力系统的稳定性,是交流输电系统中广泛采用的方法。但这种方法也可能引发电气系统或汽轮发电机组以小于同步频率的振动频率进行能量交换,称为次同步振荡。在电力系统运行中,针对电网的运行状态,在不同带宽频率下,控制的环节有所不同,如图1所示,在额定频率附近,属于电网同步和电流控制环节,当电力系统受到扰动后,系统平衡点偏移,在这种运行状态下,电网与发电机组之间存在一个或多个低于系统同步频率的频率,在该频率下进行显著能量交换,因而出现次同步谐振现象。 2产生机理 次同步振荡在交流输电系统和直流输电系统中的产生机理不同,在交流输电系统由于有谐振回路的存在所以称为次同步谐振,主要从发电机效应、暂态力矩放大作用和机电扭振相互作用三个角度进行描述和分析。第一,发电机效应,假设发电机转子以常速旋转,由于转子的转速高于由次同步电流分量引起的旋转磁场的转速,在次同步频率下从电枢终端分析,转子电阻呈负值,当这个视在负值电阻超过电枢和电网在次同步频率下的等效电阻的总和时,就会发生电气自振荡,这种自激振荡认为是由过电压和过电流引起的;第二,暂态力矩放大作用,当系统发生干扰时,电磁转矩就会施加于发电机转子上,使发电机轴段承受转矩压力,串联电容补偿输电系统中的干扰,会造成电磁转矩振荡,如果此频率接近于任何转子段的自然振荡频率,会导致转子转矩远远大于无串补系统的三相故障转矩;第三,扭转相互作用,设发电机转子在一个扭转频率fm下发生振荡,fm能导出电枢电压分量频率fem,其表达式为fem=fo+fm,当其中的次同步频率分量接近电气谐振频率fer时,电枢电流产生一个磁场,该磁场能产生使发电机转子振荡加强的转矩,这使次同步电压分量导致的次同步转矩得以维持。 二、分析次同步振荡对保护装置的影响 1电力系统振荡是由于系统和发电机并列运行时失去了同步,不能稳定运行,就形成了电力系统震荡,对保护装置造成影响。从而可能造成电网大面积停电,严重的使系统瓦解。根据发生振荡时电力系统是否稳定,可以分为同步振荡和非同步振荡,同步振荡指系统稳定在有限时间内衰减后达到新的平衡;非同步振荡指不稳定系统产生的振荡导致系统和发电机同步运行受到破坏。现在电网结构和发电机组越来越庞大,还出现了低频振荡和次周期振荡。 2同步振荡异常时,各级保护自动装置动作,会产生海量的报警信息,这些装置动作信息不加选择地涌入监控报警系统,如果同时出现了多种故障并伴随有保护和断路器的拒动、误动时,警报信息在传输中也可能会发生丢失,问题就会变得异常复杂, 三、加强电力系统次同步振荡抑制措施,减少对保护装置的影响 1应用滤波器 第一,应用无源滤波器,该滤波器主要由电感元件、电容元件以及电阻元件组成,这种滤波器一般装设在次同步振荡源的附近交流侧,由L、C元件构成谐振回路,当谐振频率与高次谐波电流频率相匹配时,可以阻止该高次谐波流入电网,其优点是投资较小、维护方便、结构简单等,是同步振荡抑制以及无功补偿的主要措施;第二,应用有源滤波器,有源滤波器产生与振荡波形一致、方向相反的电流,输入需要治理的网络,进而抵消非线性负荷产生的振荡电流,使得电网中仅含基波电流,随着PWM控制技术、全控型半导体器件的成熟和基于瞬时无功理论的检测理论的提出,有源电力滤波器得到了迅速发展。 2提高阻尼 电力系统次同步振荡是一种振荡失稳现象,增加振荡模态的阻尼是一种有效的抑制手段,如采用FACTS装置、SSDC和附加励磁阻尼控制器,均是在此基础上对次同步振荡进行控制和抑制。此外,励磁系统阻尼器针对汽轮发电机的扭转振荡来调制系统的输出。来自转子振荡的信号移相放大之后,通过励磁系统控制增加系统的有效阻尼来抑制次同步振荡。对于电网与发电机组转子之间相互作用产生的次同步振荡现象,除增加阻尼外,还可在电路中附加阻塞滤波器、旁路阻尼滤波器、线路滤波器和动态滤波器等,通过阻断相应的次同步电气量通道也能有效地抑制次同步振荡。 3应用轴系扭振保护装置当次同步振荡对发电机组的运行安全造成巨大影响时,可以应用轴系扭振保护装置,通过事故告警、保护跳闸及采取切除机组的形式抑制次同步振荡。轴系扭振保护装置监测的参数是发电机的轴系转速、轴系的寿命疲劳定值、次同步振荡的幅度。将相关事故机组切除后,电力系统中的负阻尼状况消失,再通过原动机的配合可以使转矩在短时间内减小,从而避免次同步振荡和轴系扭振影响扩大。对于剩余的在线机组,切除机组将改变系统结构和等效串补度,一定程度上能增强在线机组的模态阻尼,有利于抑制次同步振荡。 4应用可控串联补偿装置

次同步谐振方案

次同步谐振方案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

中电普安电厂2×660MW新建工程次同步谐振保护方案 编写:(编写人会签) 审核:(编写人会签) 审定: 批准: 日期:二〇一六年七月

一、概述 普安电厂两台机组双回线路33KM接入兴仁换流站,由于兴仁换流站为整流站,故电网中的包含很多谐波分量,有可能存在低于工频的谐波分量,这些谐波分量可能在某个频段与电网及普安电厂发电机变压器组产生电气谐振。当这些谐振的频率与发电机组轴系的固有扭振频率互补时(此时这两个频率之和等于系统的同步频率)或者说汽轮机发电机组轴系的自然扭振(普安自然扭振见表1)与折算到转子侧的电气谐振回路的自然振荡频率非常接近时,就会引起大轴的共振。电网和汽轮发电机组的耦合就会产生相互激励,当这种激励可以抵消和超过机械和电磁振荡中的所有阻尼和电阻消耗的能量时,就会在系统中产生次同步振荡,机组轴系将处于扭振状态,产生疲劳损耗,疲劳累计将严重影响转子的机械性能和寿命,严重时可导致大轴产生裂纹,损伤,甚至螺栓剪断、大轴断裂。 二、技术路线 1970年代美国Mohave电厂连续发生两次汽轮发电机组轴系出现严重损伤的事故,该事故由机网交互作用的次同步振荡引起汽轮发电机轴系出现次同步扭振,进而因大轴疲劳损伤。事故发生之后,引起业界的高度重视,经过大量研究,明确了在长距离输电系统中使用电容串补或者高压直流输电的情况下,电源端的汽轮发电机组有可能存在扭振的风险。 这些年,随着我国电力建设的快速发展,大批煤电能源基地电源点的重点项目已经完成或正在进行。其中不少工程都存在次同步振荡及扭振的问题,典型的有:盘南电厂、发耳电厂(贵广直流),绥中电厂(东北-华北联网高岭背靠背工程),呼伦贝尔电厂、伊敏电厂、鄂温克电厂(呼辽直流),云南威信电厂、镇雄电厂(溪洛渡直流),等等,都由于直流输电而存在不同程度的次步振荡及扭振问题。普安电厂与盘南、发耳同是接入兴仁换流站,面临情况基本类同。 普安电厂两台机组双回线路33km接入兴仁换流站,当直流输电控制方式及控制参数不当时,会造成机网系统在某些次同步频率段出现阻尼很低或者阻尼为负的恶劣情况。在这种情况下,如果出现扰动,则很有可能激发出次同步振荡。特别是电气谐振频率与轴系固有扭振频率互补时,扭振难以平息,危害很大。比如,假设电网系统的次同步振荡频率为30Hz,则30Hz的次同步电流(尽管这个量可能不大)会在发电机三相绕组中产生对应于30Hz的旋转磁场,它与发电机的转子形成20Hz的转差频率,在定子旋转磁场和转子旋转磁场的共同作用下,除了同步力矩之外,同时叠加了20Hz的次同步力矩。如果这个 20Hz的频率恰好十分接近汽轮发电机组轴系的某一阶固有扭振模态频率时,大

振荡电路的原理

高频放大器 使用高频功率放大器的目的是放大高频大信号使发射机末级获得足够大的发射功率。 高频放大器的工作状态是由负载阻抗Rp、激励电压vb、供电电压VCC、VBB等4个参量决定的。如果VCC、VBB、vb 3个参变量不变,则放大器的工作状态就由负载电阻Rp决定。此时,放大器的电流、输出电压、功率、效率等随Rp而变化的特性,就叫做放大器的负载特性。 原理 放大电路所需的通频带由输入信号的频带来确定,为了不失真地放大信号,要求放大电路的通频带应大于信号的频带。如果放大电路的通频带小于信号的频带,由于信号的低频段或高频段的放大倍数下降过多,放大后的信号不能重现原来的形状,也就是输出信号产生了失真。这种失真称为放大电路的频率失真,由于它是线性的电抗元件引起的,在输出信号中并不产生新的频率成分,仅是原有各频率分量的相对大小和相位发生了变化,故这种失真是一种线性失真。 For personal use only in study and research; not for commercial use 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻变换和选频滤波功能。高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 本级振荡电路 本级振荡电路图 本级振荡电路采用改进型晶体振荡电路(克拉伯振荡电路),振荡频率由晶振决定,为6MHz,三极管的静态工作点由RP0控制,集电极电流ICQ,一般取0.5mA~4mA,ICQ过大会产生高次谐波,导致输出波形失真。调节RP1可使输出波形失真较小、波形较清晰,RP2用来调节本振信号的幅值,以便得到适当幅值的本振信号作为载波。 混频器 工作频率 混频器是多频工作器件,除指明射频信号工作频率外,还应注意本振和中频频率应用范围。

次同步谐振

次同步谐振 定义1:交流输电系统采用串联电容补偿后,其电气系统固有频率可能会与汽轮发电机轴系的自然扭振频率形成谐振关系,此时如系统受到扰动,电气系统与汽轮发电机轴系之间可能会产生的次同步频率功率交换。 定义2:当有串联电容补偿的电力系统受到扰动发生电感电容谐振时,其谐振频率与汽轮发电机组的轴系扭振某一振型的频率之和接近或等于系统的同步频率时发生的谐振。调整直流输电的功率,或有串联补偿装置的电力系统重合闸时也有可能引起次同步谐振(汽轮发电机轴系会与电力系统功率控制设备,如高压直流输电系统,静止无功补偿系统等,发生相互作用,产生的低于同步频率的振荡。)。 次同步谐振(SubSynchrous Resonance SSR)物理概念比较复杂。当高压远距离输电采用串联电容补偿时,电容量C与线路的电感量L组成一个固有谐振频率。 F=1/(2πLC) 此频率一般低于50Hz。发电机定子也出现频率为的三相自激电流,在气隙中产生频率为的旋转磁场。此旋转磁场的转速,低于主磁场的同步转速。气隙中两个磁场同时存在对轴系产生一个交变扭矩,其频率为: ft=f-fs 式中ft——交变扭矩的频率; f——电网频率; fs——串联电容补偿固有频率。 如果轴系的自然扭振频率fv 正好等于交变扭矩频率ft,即fv=ft=f-fs或fv+fs=f,此时,发电机组轴系的自然扭振频率fv 与串联补偿产生的电磁谐振频率fs 相加恰好等于电网频率f0 ,相互“激励”,形成“机一电谐振”。因为fs 低于电网频率,所以叫“次同步谐振”。 1、次同步振荡原理 交流输电系统中采用串联电容补偿是提高线路输送能力、控制并行线路之间的功率分配和增强电力系统暂态稳定性的一种十分经济的方法。但是,串联电容补偿可能会引起电力系统的次同步谐振(SSR,SubsynchronousResonance),进而造成汽轮发电机组的轴系损坏。次同步谐振产生的原因和造成的影响可以从三个不同的侧面来加以描述,即异步发电机效应(IGE,InductionGeneratorEffect)、机电扭振互作用(TI,

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

电力系统振荡的原因及危害知识讲解

电力系统振荡的原因 及危害

电力系统振荡的原因及危害 1前言 XXXX公司是装机容量为2×600MW的新建大型火力发电厂,它同原有XXXX公司的2×500MW俄罗斯汽轮机组构成一个电源点,经三条500KV 线路向系统送电,地处京津唐负荷中心,对电网稳定起着重要的支撑作用。作为京津唐电网最大的发电机组,其发电机励磁系统性能的优劣对华北电网的稳定运行具有举足轻重的影响。 根据国家十五计划实现全国联网的要求,华北电网规定,新建大型发电机组励磁系统应有系统稳定措施并调整好后才能并网运行,为此我厂先后完成了对3#、4#机组的电力系统稳定器(PSS)定值整定和试验工作,实验效果明显。应国家电力调度中心要求,2003年6月18日,在华北电力调度局方式处的组织下PSS正式投入运行。 2低频振荡产生原因分析及危害性 电力系统低频振荡在国内外均有发生,通常出现在远距离、重负荷输电线路上,或者互联系统的弱联络线上,在采用快速响应高放大倍数励磁系统的条件下更容易出现。随着电力电子技术的快速发展,快速励磁调节器的时间常数大为减少,这有效地改善了电压调节特性,提高了系统的暂态稳定水平。但由于自动励磁调节器产生的附加阻尼为负值,抵消了系统本身所固有的正阻尼,使系统的总阻尼减少或成为负值,以至系统在扰动作用后的功率振荡长久不能平息,甚至导致自发的低频振荡,低频振荡的频率一般在0.2-2Hz之间。(风险管理世界 低频振荡会引起联络线过流跳闸或系统与系统或机组与系统之间的失步而解列,严重威胁电力系统的稳定。解决低频振荡问题成为电网安全稳定运行的重要课题之一。 3PSS原理及其作用 为了既能利用高放大倍数的励磁调节器又能避免其负阻尼效应,人们对传统励磁系统进行了改进。对一个可能引起负阻尼的励磁调节器,向其中注入某些附加控制信号,使之可以提供正的阻尼,平息振荡,这就是PSS最基本的原理。PSS作为一种附加励磁控制环节,即在励磁电压调节器中,通过引入附加信号,产生一个正阻尼转矩,去克服励磁调节器引起的负阻尼,控制量可以采用电功率偏差(△P)、机端电压频率偏差(△f)、过剩功率(△Pm)、和发电机

电力系统次同步振荡分析

电力系统次同步振荡(Power system synchronization oscillation) 产生机理和条件 次同步震荡基本概念:大型汽轮发电机组的转子轴系具有弹性,由于机械和电气的相互作用, 在特定条件下会自发振荡。输电线路的串联电容补偿、直流输电、电力系统稳定器的不当加装, 发电机励磁系统、可控硅控制系统、电液调节系统的反馈作用等,均有可能诱发、导致次同步 振荡(SSO)现象。有时也发生在发电机非同期并列或系统发生不对称短路等大扰动后的暂态过 程中。 根据次同步谐振产生的原因可从4个方面加以描述: 1)感应发电机效应:假设发电机转子以常速旋转,由于转子的转速高于由次同步电流分量引起 的旋转磁场的转速,在次同步频率下从电枢终端看去转子电阻呈负值。当这个视在负值电阻超 过电枢和电网在次同步频率下的等效电阻的总和时,就会发生电气自振荡,这种自激振荡认为 是由过电压和过电流引起的。 2)扭转相互作用:设发电机转子在一个扭转频率fm下发生振荡,fm能导出电枢电压分量频率fem,其表达式为fem=fo+fm,当其中的次同步频率分量接近电气谐振频率fer时,电枢电流产生一个 磁场,该磁场能产生使发电机转子振荡加强的转矩,这使次同步电压分量导致的次同步转矩得 以维持。如果次同步频率分量和转子转速增量的相位相同,而且等于或超过转子固有机械阻尼 转矩时,就会使轴系的扭振加剧。电气和机械系统之间的相互作用就被认为是扭转相互作用。 3)暂态力矩放大作用:当系统发生干扰时,电磁转矩就会施加于发电机转子上,使发电机轴段 承受转矩压力。串联电容补偿输电系统中的干扰,会造成在fo-fer频率下的电磁转矩振荡。如 果此频率接近于任何转子段的自然振荡频率fn,会导致转子转矩远远大于无串补系统的三相故 障转矩,这是由电气和机械自然频率之间的振荡引起的,称为暂态转矩放大效应。 4)由电气装置引起的次同步振荡:最初发现HVDC及其控制系统会引起汽轮发电机组的轴系扭振, 随后发现其他如电力系统稳定器(PSS)、静止无功补偿器(SVC)、汽轮机高速电液调速系统、 电机调速用换流器等有源快速控制装置在一定条件下均可能引起汽轮发电机组次同步振荡。一 般地说,任何对次同步频率范围内的功率和速度变化响应灵敏的装置,都是潜在的次同步振荡 激发源,而由此引起的发电机组次同步扭振问题统称为“装置引起的次同步振荡”。 归纳成两类次同步震荡产生原因分析: ●交流输电产生次同步震荡的原因分析 输电系统为了提高输电能力和增加瞬态稳定性,有时在电网中串联补偿电容,使整个电网形成 R-L-C 回路,此回路将发生次同步谐振。次同步谐振是电力系统的一种运行状态,在这种状态下, 电气系统与汽轮发电机组以低于同步频率的某个或多个网机(电网或电机)联合系统的自然振 荡频率交换能量。由次同步谐振导致的感应发电机效应,可能出现负阻尼,使次同步电气振荡 不衰减或增强。当次同步电气振荡频率e f 与机组轴系某阶扭振固有频率n f 互相耦合,即 e n N f + f = f (N f 为工频),将产生次同步机电谐振。 ●直流输电产生次同步振荡的原因分析 高压直流输电(HVDC)引起SSO 的原因在于直流控制器的作用。发电机转子上微小的机械扰动, 将引起换相电压尤其是其相位的变化。在等间隔触发的HVDC 系统中,换相电压相位的偏移,

新能源电力系统次同步振荡问题研究综述

新能源电力系统次同步振荡问题研究综述 发表时间:2019-05-05T17:10:09.640Z 来源:《电力设备》2018年第31期作者:刘智全 [导读] 摘要:随着我国电力电子技术的不断向前发展,新能源这个名词对我们来说越来越熟悉,甚至在我们的日常生活当中随处可见,它的广泛应用给我们带来了积极影响,例如推动我国科技发展的水平与速度,彻底改变了人民群众的日常生活。 (广州电力建设有限公司广东广州 510000) 摘要:随着我国电力电子技术的不断向前发展,新能源这个名词对我们来说越来越熟悉,甚至在我们的日常生活当中随处可见,它的广泛应用给我们带来了积极影响,例如推动我国科技发展的水平与速度,彻底改变了人民群众的日常生活。新能源电力系统就是一个很好的体现,然而在当今社会,新能源电力系统的组成结构在不断的变化,变得越来越复杂。正因如此,新能源电力系统的次同步振荡问题也层出不穷,而引发这些问题的根源、它们的呈现形式、严重层次以及解决方法是每一个电力企业乃至全世界都高度重视的。所以本篇文章就是针对新能源电力系统次同步振荡出现的问题展开研究,并对其提出可靠的意见和相关的措施。 关键词:新能源电力系统;次同步振荡问题;研究;建议与措施 引言: 电力系统当中的次同步振荡其实就是一个专业用语,它是维持整个电力系统稳定性的重要因素之一。电力系统次同步振荡的危险系数极高,其中最为常见的、也是最严重的问题就是发电机的有关轴系会因为各种各样的影响因素从而遭到损坏,例如因为经常承担很大的转矩致使发动机长期处于一种非常劳累的状态下,从而缩短其的工作年限,甚至可能会导致发电机出现裂痕、毁坏的情况。因此我们必须高度重视电力系统次同步振荡中存在的问题并且不断的完善。 一、我国新能源电力系统次同步振荡的发展状况 在电力系统次同步振荡当中最容易发生的情况就是失去稳定性,而这一问题的发生往往是会影响整个电力系统的正常工作,从而造成重大的安全事故,因此有关的学术团体与工业行业针对这一系列的现象展开了激烈的研究与讨论,例如在1973年国际电力协会成立了次同步振荡的研究小组,引起了一股热潮。但是不得不承认,在当今社会,我国的发电主要还是依靠电力、水力,随着科学技术的不断更新与创造,电力行业正在接收着严峻的考验,我国电力系统次同步振荡的问题、形式需要进行重新梳理与定义。而电力系统的次同步振荡形式主要分为以下几种:第一种就是电力系统当中的次同步振荡,它是在整个电力系统的工作过程当中受到影响后而出现的一种非正常的机械振动状况,这时候电力系统的发动机与电网正在进行低频的能量互换。第二种就是电力系统当中的次同步谐振,它主要包括汽轮发电机的感应能力以及次同步振荡的相互作用力。第三种就是由于电力系统中次同步振荡的装置情况而产生的汽轮发电机轴系与电网之间相互连接、作用。第四种就是新能源电力系统的次同步振荡,这种新型的次同步振荡现象最早诞生是在2009年的美国。 二、我国关于新能源电力系统次同步振荡问题的研究分析 我国新能源电力系统次同步振荡的问题一直都是上升趋势,原有的问题不仅没有得到良好的解决,还增加了许多新问题,出现了许多新情况。对此我综合了我们国家当前电力系统次同步振荡问题的表现形式与特点,提出了以下几点问题:第一点就是电力系统中发电机轴系的抗疲劳能力,这一问题曾经在我国内蒙古地区多次出现大规模发电机严重疲劳工作的现象。第二点就是电力系统当中对于次同步振荡问题的风险评估能力,这一环节对于电网的实施规划有着不可缺少的重要作用,与此同时也是次同步振荡影响措施实施的根本事实。第三点就是次同步振荡的快慢和广度,这是影响电力系统同步振荡问题的关键因素,合理的监管、控制这一问题给电力系统次同步振荡带来了前所未有的考验。 图1 直流功率于电气阻尼系数的影响 三、我国新能源电力系统次同步振荡问题相关的方法措施 我国对于电力系统次同步振荡问题常用的方法有两大类型,其中第一种类型是可以快速、有效的识别所有可能发生振荡的发电机,第二种则是可以通过次同步振荡的特征形象对其做出定性、定量的评价,最后呈现出精准的数据分析,但是使用这种方法的前提条件就是必须保证次同步振荡原始凭据的真实、可靠。具体的方法有以下几种: 第一种就是利用电力系统次同步振荡的频率来考察发动机是否可以进行正常的工作,这其中是否存在着危险因素和异常,但是它也存在着一定的弊端,那就是它没有考虑其他因素,只能利用转子扰动的频率来猜测发动机组对整个电力系统的影响,如果发动机组具有其他方面的问题,它是不能够排查出来的。第二种就是对直流输电系统制定合理的计划,分析出所有可能会引起电力系统次同步振荡的问题,这种方法相对来说是比较单一的,通过这种方法就可以判断出次同步振荡的稳定性是否良好。第三种就是运用一些线性化的道具模型,准确的计算出电力系统中每一个子系统的特征值,以及相关的变量和因子,这种方法的优点在于它可以快速的找出与发动机扭动有关的质量板块,以此来进行全方位的控制和检查,例如在次同步振荡存在危险系数的情况下,迅速的进行分析检测,然后采取有效的措施,能够合理的预防危险情况的发生。除此之外,它也有一定的缺陷,那就是对整个电力系统的检测与描述只能够采用正规的渠道和网络,很难掌握多个电力系统的具体状况。第四种就是利用数学和数值来对电子系统进行全方位的排查,这种方法的优点就是它能够把每一个子系统划分得很细致,还能够准确的模仿发电机的动作、每一个系统的问题和毛病,灵活的得出每一时间变化的适时情况,缺点是它需要很长一段时间来模仿系统的运行状况,来确定次同步振荡是否安全稳定,但是这一要求在实际情况当中是很难做到的。

电力系统振荡的结果及处理方式

电力系统振荡的结果及处理方式 2012/7/13 15:35:41 当发生短路或突然有大负荷切除或投入时,发电机与大系统之间的功角会发生变化,发电机的输出功率就会沿着发电机的功角特性曲线来回摆动,这就是电力系统的振荡。 电力系统振荡的结果有两种:一个是发电机的输出功率和负载能重新在一个点上实现平衡,经过一段时间的振荡后重新达到稳定,保持同步运行。一个是发电机的输出功率和负载能无法再在任何一个点上实现平衡,从而导致发电机失去同步。 发电机的原动机输入力矩突然变化,如:水轮机调速器不正常动作;系 统发生突然短路;大机组或大容量线路突然变化等。通常,短路是引起 系统振荡,破坏稳定运行的主要原因。 电力系统振荡的预防:预防是多方面的,有继电保护上的要求,如快速切断故障线路;也有运行操作上的要求,如避免使发电机的容量大于被 投入空载线路的充电功率,避免发电机带空载线路启动和以全电压向空载线路合闸;也有设计上的考虑,如避免发生发电机的次同步共振。 系统振荡有多种:异步振荡、同步振荡、低频振荡 异步振荡——其明显特征是,系统频率不能保持同一个频率,且所有电气量和机械量波动明显偏离额定值。如发电机、变压器和联络线的电流表,功率表周期性地大幅度摆动;电压表周期性大幅摆动,振荡中心的

电压摆动最大,并周期性地降到接近于零;失步的发电厂间的联络的输 送功率往复摆动;送端系统频率升高,受端系统的频率降低并有摆动。 引起电力系统异步振荡的主要原因: 1、输电线路输送功率超过极限值造成静态稳定破坏; 2、电网发生短路故障,切除大容量的发电、输电或变电设备,负荷瞬间 发生较大突变等造成电力系统暂态稳定破坏; 3、环状系统(或并列双回线)突然开环,使两部分系统联系阻抗突然增大,引启动稳定破坏而失去同步; 4、大容量机组跳闸或失磁,使系统联络线负荷增大或使系统电压严重下降,造成联络线稳定极限降低,易引起稳定破坏; 5、电源间非同步合闸未能拖入同步。 异步系统振荡的一般现象: (1)发电机,变压器,线路的电压,电流及功率周期性的剧烈摆动,发 电机和变压器发出有节奏的轰鸣声。 (2)连接失去同步的发电机或系统的联络线上的电流和功率摆动得最大。电压振荡最激烈的地方是系统振荡中心,每一周期约降低至零一次。(3)失去同期的电网,虽有电气联系,但仍有频率差出现,送端频率高,受端频率低并略有摆动。 同步振荡——其系统频率能保持相同,各电气量的波动范围不大,且振荡在有限的时间内衰减从而进入新的平衡运行状态。 低频振荡——在电力系统中,发电机经输电线路并列运行时,在负荷突变等小扰动的作用下,发电机转子之间会发生相对摇摆,这时电力系统

相关主题
文本预览
相关文档 最新文档