当前位置:文档之家› 自动避障机器人

自动避障机器人

自动避障机器人
自动避障机器人

自动避障机器人教案

认识“等待(超声波传感器)”模块。首先在流程控制类找到等待模块,选择“超声波传感器”,点击“更改”,选择“距离(厘米)”。

设置这个模块为“方向1,量10”。超声波传感器默认的是4号端口,搭建的时候确保安装正确。此时“等待(超声波传感器)”模块就设定好了。

在流程控制类找到等待模块,选择“超声波传感器”,点击“比较”,选择“距离(厘米)”。

设置这个模块为“比较类型4,阀值10”。超声波传感器默认的是4号端口,搭建的时候确保安装正确。此时“等待(超声波传感器)”模块就设定好了。

编程机器人检测障碍物的程序,机器人前进,行驶至距障碍物10cm处转向,避开障碍物。

(15分钟)

如何让机器人遇到障碍物时倒退20cm后转向,避开障碍物继续前行?

五、课堂总结(4分钟)

1、学到了什么?

认识了超声波传感器,认识循环模块。会运用循环模块,实现程序反复执行。学习“等待(超声波)模块的用法,学会使用超声波传感器解决问题。设计一个装有超声波传感器的机器人,并编写使机器人检测到障碍物后及时转向,避开障碍物的程序。

2012年数学建模机器人避障问题

机器人避障问题 摘要 本文主要运用直线逼近法等规律来解决机器人避障问题.对于问题一:要求最短路径运用直线逼近法证得圆弧角三角形定理,得出结论:若一大圆弧角三角形完全包括另一小圆弧角三角形,则该三角形曲线周长必大于小的三角形周长.那么可知机器人在曲线过弯时,选择最小半径可满足路径最短,即为10个单位半径,通过观察可得可能的所有曲线,通过仅考虑直线段的大致筛选选出总长较小、长度相近(之差小于100)的曲线,然后利用平面几何知识对相关切点,进而求出各直线、曲线的长度,求和可得最段路线.对于问题二:通过对机器人过弯规律2 1.0100 e 1)(ρ ρ-+= =v v v 的分析可知,当过弯 半径13ρ=时,机器人速度达最大速度为50=v 个单位/秒,再大就无变化了,那么可分两种情况考虑:1)当13ρ>时,过弯速度无变化,但由圆弧角三角形定理可知,此时随着ρ的不断变大,其路线总长不断变大,这时ρ越小O A →所用时间最短;2)当13ρ≤时,统计计算ρ分别为10、11、12、13时,过弯速度v 也不断变化,计算所用时间发现随ρ不断变大,O A →所用时间越短,此时当13ρ=时,时间最短.综合上述可知:当 13ρ=时,时间最短. 关键词: 质点机器人 安全范围 直线逼近法 圆弧角三角形定理 10单位半径

1 问题重述 在一个800×800的平面场景中,在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动,其中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物, 物的距离至少超过10个单位).规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径.机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位.为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位. 机器人直线行走的最大速度为50=v 个单位/秒.机器人转弯时,最大转弯速度为 2100.11 0()(1e ) v v v ρρ--==+,其中ρ是转弯半径.如果超过该速度,机器人将发 生侧翻,无法完成行走. 下面建立机器人从区域中一点到达另一点的避障最短路径和最短时间路径的数学模型.对场景图中4个点O(0, 0),A(300, 300),B(100, 700),C(700, 640),具体计算: (1) 机器人从O(0, 0)出发,O→A 、O→B 、O→C 和O→A→B→C→O 的最短路径. (2) 机器人从O (0, 0)出发,到达A 的最短时间路径. 2 问题分析 2.1问题一: 该问题要求路径最短,即不要求速度与时间,则可认为以最小半径10的圆过弯. 如图2.1所示:由圆弧角三角形定理(简单证明见模型准备5.3)可知过弯时,只有采用10单位半径过弯时,才会使得过弯路径最短,因此解决问题一的过弯拐角问题均采用10单位半径过弯路径. 2.2问题二: 由于O→A 过程中,机器人至少要经过一

机器人避障问题——国家一等奖论文 推荐

D题机器人避障问题 摘要 本文综合运用分析法、图论方法、非线性规划方法,讨论了机器人避障最短路径和最短时间路径求解问题。 针对问题一,首先,通过分析,建立了靠近障碍物顶点处转弯得到的路径最短、转弯时圆弧的半径最小时和转弯圆弧的圆心为障碍物的顶点时路径最短、转弯在中间目标点附近时,中间目标点位于弧段中点有最短路径的三个原理,基于三个原理,其次对模型进行变换,对障碍物进行加工,扩充为符合条件的新的区域并在转弯处圆角化构成障碍图,并通过扩充的跨立实验,得到切线和圆弧是否在可避障区的算法,第三,计算起点、中间目标点和最终目标点和各圆弧及圆弧之间的所有可避障切线和圆弧路径,最后给这些定点赋一个等于切线长度或弧度的权值构成一个网络图,然后利用Dijkstra算法求出了O-A、O-B,O-C的最短路径为O-A:471.0372个单位,O-B:853.7001个单位,O-C:1086.0677个单位;对于需要经中间目标点的路径,可运用启发规则分别以相邻的目标点作为起点和终点计算,确定路径的大致情况,在进一步调整可得到O-A-B-C-O的最短路径为2748.699个单位。 针对问题二,主要研究的是由出发点到达目标点A点的最短时间路径,我们在第一问的基础上考虑路径尽可能短且圆弧转弯时的圆弧尽量靠近障碍物的顶点,即确定了圆弧半径最小时的圆弧内切于要确定的圆弧时存在最小时间路径,建立以总时间最短为目标函数,采用非线性规划模型通过Matlab编程求解出最短时间路径为最短时间路程为472.4822个单位,其中圆弧的圆心坐标为(81.430,209.41),最短时间为94.3332秒。圆弧两切点的坐标分别为(70.88,212.92)、(77.66,219.87)。 关键字:Dijkstra算法跨立实验分析法非线性规划模型

自动避障小车设计

自动避障小车 技术报告 前言 设计背景:在科学探索和紧急抢险中经常会遇到对与一些危险或人类不能直接到达的地域的探测,这些就需要用机器人来完成。而在机器人在复杂地形中行进时自动避障是一项必不可少也是最基本的功能。因此,自动避障系统的研发就应运而生。 我们的自动避障小车就是基于这一系统开发而成的。随着科技的发展,对于未知空间和人类所不能直接到达的地域的探索逐步成为热门,这就使机器人的自动避障有了重大的意义。我们的自动避障小车就是自动避障机器人中的一类。自动避障小车可以作为地域探索机器人和紧急抢险机器人的运动系统,让机器人在行进中自动避过障碍物。

目录 一、设计目标: (3) 二、方案设计: (4) 2.1直流调速系统 (4) 2.2检测系统 (4) 三硬件设计 (5) 3.1、SPCE061A单片机最小系统 (5) 3.1.1.SPCE061A时钟电路 (8) 3.1.2.PLL锁相环 (9) 3.1.3.看门狗Watchdog (9) 3.1.4.低电压复位(LVR) (10) 3.1.5.I/O端口 (10) 3.1.6.时基与定时器 (11) 3.1.7.SPCE061A的定时器/计数器 (11) 3.1.8.ADC、DAC (12) 3.2、超声波传感器 (12) 四软件设计 (16) 4.1软件设计各模块 (16) 4.2速度控制 (17) 4.3障碍物检测 (17) 4.4看门狗 (17) 4.5基频中断 (18)

4.6程序设计流程图 (19) 五:测试数据、测试结果分析及结论 (19) 程序附录 (21) 1.主程序: (21) 2.中断程序 (24) 3、测距程序 (28) 一、设计目标: 1.小车从无障碍地区启动前进,感应前进路线上的障碍物 后,能自动避开障碍物。 2.根据障碍物的位置选择下一步行进方向,选择左拐还是右 拐,若障碍物在左边则自动右拐,若障碍物在右边则左拐,若障碍物在正前方可任意选择左拐或者是右拐,以达到避开障碍物的目的。 3.通过利用单片机内时钟源的控制设定左拐和右拐的时间, 从而能持续前进。 4.为达到速度的可控性,需设置两个独立按键对小车进行控 速。

小车自动避障与路径规划

第3章系统总体结构及工作原理 该系统主要以超声波测距为基本测距原理,并在相应的硬件和软件的支持下,达到机器人避障的效果。 3.1机器人总体硬件设计 3.1.1传感器的分布要求 为了全方位检测障物的分布状况,并及时为机器人系统提供全面的数据,可将所需的八个传感器均匀排列在机器人周围,相邻每对传感器互成45度角。为了避免相互干扰,八个传感器以程序运行周期为周期,进行循环测距。传感器排列示意图如下: 图3.1.1 传感器分布图

图3.1.2 硬件设计总体框架图 上图为支持机器人运行实用程序的硬件部分的总体设计框架图,由负责相关任务的同学提供。在超声波信号输入单片机以后,由存储在单片机中的主程序调用避障子程序,根据输入信号执行避障指令,并使相关数据返回主程序,转而提供给电机和LED显示器的驱动程序使用,最后,由电机执行转向指令,结果则显示在LED显示器上。

图3.1.3 软件总体框架图 由上图可知,本文作者负责的超声波避障程序为软件总体设计中的子程序部分。在主程序运行过程中,若调用超声波避障程序,机器人在自行轨迹规划后,将程序处理所得数据送给电机处理成立程序,控制电机动作。具体的避障程序设计将在第4章进行。 3.2超声波测距原理 测距原理:超声波是指频率高于20KHz的机械波。为了以超声波作为检测

手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。[8]超声波测距的原理一般采用渡越时间法TOF(time of flight)。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离,即:[8] D=ct/2 其中D为传感器与障碍物之间的距离,以m计,c为超声波速度,这里以340m/s计,t为超声波从发送到接收的总时间,以s计。据此原理可以用超声波传感器测得的距离为避障程序提供所需的数据。[8] 第4章轨迹规划算法的实现方案 4.1轨迹规划算法的层次化设计 根据上述材料分析,可以将机器人轨迹规划算法设计分为基础控制层、行为控制层和坐标计算层,三个层次进行。 4.1.1基础控制层设计 基础控制层可定义为基本行为层,这层算法的任务是寻找目标点,并确保机器人可以顺利到达指定目标位。在确定目的地位置的情况下,为了达到上述目的,计算机必须对机器人的方位进行时实计算。应用人工势场法原理,可以将目标点设为引力极,牵引机器人运动。对此动作建立相应的模型,可以使用建立平面坐标作为虚拟势场的方法来给机器人定义方位,将机器人关于目标点的时实偏角作为虚拟引力方向,以确定机器人下一步所需转过的角度,并时实检测,是否已到达目的地,若已到达,则可认为虚拟引力此刻为0,并发出信号控制程序终止运行总体程序。 由此,可确定基础控制层所需的各参数: (1)机器人的时实坐标x, y值,由专门的坐标计算层提供,为了提高精 确度,可以采用厘米为单位制。 (2)机器人的速度v,测量后设为定值使用。 (3)周期T,直接设置为定值使用。 (4)偏转角de,可通过机器人与横坐标之间的夹角pe,减去机器人到目 标点连线与横坐标的夹角E得到。

避障机器人设计报告

开放性实验报告 ——避障机器人设计 系别:智能科学与技术 姓名:唐继鹏 姚武浩 姜飞鹏 郑光旭 指导老师:袁立行、王曙光、亢红波时间:2011.9.16——2012.4.28

目录 1 系统功能介绍 (1) 2 设计任务与要求 (1) 3 系统硬件设计 (1) 3.1系统总体设计框图 (1) 3.2寻线模块(ST188) (2) 3.3电机控制模块 (3) 3.4单片机最小模块 (4) 3.5数码管显示模块 (6) 4 系统软件实现 (7) 4.1 设计思路 (7) 4.2 软件程序流程图 (8) 4.3程序代码见附录Ⅰ (8) 5 调试结果 (8) 6 实验总结 (9) 附录Ι (10) 附录Ⅱ (18) 附录Ⅲ (19)

1 系统功能介绍 本设计以单片机作为控制核心,电路分为最小系统模块,黑线检测模块,电机驱动模块,数码管显示模块。黑线检测模块采用反射式关电传感器st188,并且接相应的三级管来规划传感器的输出,当输出高电平为正常情况。电机为伺服电机,给定脉宽为1.5ms的信号电机保持不动,给定脉宽为1.7ms的信号电机正向转到给定脉宽为1.3ms的信号电机逆向转到。数码管动态显示机器人行进过程所用的时间。 2 设计任务与要求 ◆熟悉51系列单片机的原理及应用。 ◆掌握ST188设计电路和传感器的使用。 ◆掌握直流电机的驱动方法。 ◆掌握动态数码管显示的方法。 ◆设计机器人的硬件电路及软件程序。 ◆制作机器人的硬件电路,并调试软件,最后实现机器人的自动测量黑线。 3 系统硬件设计 3.1系统总体设计框图 该系统中51单片机作为主微控芯片,其外多个I/O口作为通用I/O口接受传感器的信号并输出相应的控制信号。 系统硬件总体设计框图如下图3.1-1所示。

高教社杯数学建模D题机器人避障问题论文

机器人避 障问题 摘要 本文研究了机器人避障最短路径和最短时间路径的问题。主要研究了在一个区域中存在12个不同形状障碍物,由出发点到达目标点以及由出发点经过途中的若干目标点到达最终目标点的多种情形,寻找出一条恰当的从给出发点到目标点的运动路径使机器人在运动中能安全、无碰撞的绕过障碍物而使用的路径和时间最短。由于规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径,机器人不能折线转弯。所以只要给定的出发点到目标点存在至少一个障碍物,我们都可以认为最短路径一定是由线和圆弧所组成,因此我们建立了切线圆结构,这样无论路径多么复杂,我们都可以将路径划分为若干个这种切线圆结构来求解。在没有危险碰撞的情况下,圆弧的半径越小,路径应该越短,因此我们尽量选择最小的圆弧半径以达到最优。对于途中经过节点的再到达目标点的状况,我们采用了两种方案,一种是在拐点和节点都采用最小转弯半径的形式,另一种是适当扩大拐点处的转弯半径,使得机器人能够沿直线通过途中的目标点。然后建立了最优化模型对两种方案分别进行求解,把可能路径的最短路径采用穷举法列举出来,用lingo 工具箱求解得出了机器人从O(0,0)出发,O→A、O→B、O→C 和O→A→B→C→O 的最短路径;利用matlab 中的fminbnd 函数求极值的方法求出了机器人从O(0,0)出发,到达A 的最短时间路径。本文提出一种最短切线圆路径的规划方法,其涉及的理论并不高深,只是应用了几何知识和计算机程序、数学工具计算,计算简易,便于实现,能搞提高运行效率。 问题一 O→A 最短路径为:OA L =471.0372 O→B 最短路径为:=1OB L 853.8014 O→C 最短路径为:4OC L =1054.0 O→A→B→C→O 最短路径为: 问题二机器人从O(0,0)出发,到达A 的最短时间路径: 最短时间是94.5649,圆弧的半径是11.5035,路径长4078 .472=OA L 关键词最短路径;避障路径;最优化模型;解析几何;数学工具 一、问题重述 图1是一个800×800的平面场景图,在原点O(0,0)点处有一个机器人,它只能在该平面场景范围内活动。图中有12个不同形状的区域是机器人不能与之发生碰撞的障碍

(完整word版)智能避障机器人设计开题报告

课题名称智能避障机器人设计 课题来源教师拟定课题类型EX 指导教师XXX 学生姓名XXX 学号XXX 专业XXX 一、调研资料的准备 智能避障机器人设计不仅是对所学理论知识的综合运用,同时也是锻炼了实际操作能力和自学创新能力。本次设计包含了硬件电路设计和软件电路。在硬件电路设计中我首先在图书馆和网络上查阅了一些关于智能避障机器人设计的相关电路图以及原理知识,同时参考了童诗白老先生的模拟电子技术基础,阎石的数字电子技术基础中的存储器部分,徐科军主编的传感器与检测技术中的传感器部分;在软件设计中主要参考了张毅刚的单片机原理及应用;在电路仿真中参考了赵景波所编的Prote199SE应用与实例教程;在整体电路设计中参考了万方数据和中国知网。 二、设计目的 在科学探索和紧急抢险中经常会遇到对与一些危险或人类不能直接到达的地域的探测,这些就需要用机器人来完成。而在机器人在复杂地形中行进时自动避障是一项必不可少也是最基本的功能。因此,自动避障系统的研发就应运而生。我们的自动避障小车就是基于这一系统开发而成的。 随着生产自动化的发展需要,机器人的智能化与集成度越来越高,已经越来越广泛的应用到生产生活中。伴随的科技水平的提高,机器人的能够使用的传感器种类也越来越多,其中红外线传感器已经成为机器人自动行走和驾驶的重要部件。此系统是基于红外传感器的系统,即运用红外传感器实现对前方障碍物的检测。 红外传感器的典型应用领域为自主式智能导航系统,机器人要实现自动避障功能就必须要感知障碍物,对障碍物的感知相当于给机器人一个视觉功能。在现在生活中,例如在一些火宅或者一些自然灾害的现场,经常需要进入到对一些危险或人类不能直接到达的地方进行观察,采集数据,这些就需要用机器人来完成。而在机器人在上述等环境中行进时自动避障是一项必不可少也是最基本的功能。因此,自动避障系统的研发就应运而生。自动避障小车可以作为困难环境检测机器人和紧急抢险机器人的运动系统,让机器人在行进中自动避过障碍物,帮助人们完成相应的任务。

机器人避障问题论文

机器人避障问题 【摘要】 本文主要是对机器人在一个平面区域内通过不同障碍物到指定目标点进行研究,通过建立机器人与障碍物的最小安全距离的禁区模型,进而建立从区域一点到另一点的最短距离、最短时间的数学模型。在最优转弯顶点为障碍物,最优转弯半径为安全距离10的基础上,把路径概括为基本的三种数学模型。利用穷举的算法找出最短路径和最短时间。 针对区域中从一点到另一点避障的最优路径问题,把障碍物划分为有顶点和无顶点两大类。首先本文证明对于有顶点障碍物,机器人以障碍物顶点为圆心且转弯的圆弧半径为10时路径最优,我们还注意到在某些路径中适当增加圆的半径可以把曲线路线转换为直线路径,进一步优化行进路径;对于无顶点障碍物通过论证找出以障碍物圆心为转弯圆心,以障碍物半径与安全距离的和为转弯半径的最优转弯圆弧。其次本文将寻找最短路径的的问题转换为最短路径的优选问题。本文巧妙的将优化模型转变为研究不与障碍物边界相交、不与圆弧相交的路线中的最优解的问题。在这个数学模型的基础上进行相应的改善并且使用穷举的算法找出最优路径。 针对不同的目标点,我们将机器人的行进分为单目标点和多目标点两种情况针对多目标点问题,由于机器人不能直线转向,所以在经过目标点时,应该提前转向,且中间目标点应该在转弯弧上。因此先建立优化模型(模型三)对行进时中间目标点处转弯圆弧圆心搜索求解。求出中间目标点转弯圆心后,用把中间目标点的圆心看做“障碍物”的办法把问题转化为单目标点问题。然后根据模型二和模型一利用MATLAB软件编程求得了O→A、O→B、O→C、O→A→B→A→C的最短路径,最短路径长分别为 471.0372、857.6778、1094.5、2799.0121,其中O-->A的最短路径对应圆弧的圆心坐标为(80,210);O→B的最短路径对应圆弧的圆心坐标:(60,300)、(150,435)、(220、470)、(220,530)、(150,600);O→C经过的圆心:(230,60)、(410,100)、(500,200)、(720,520), (720,600);对于多目标点问题利用模型三进行分割求解得到O→A→B→C→O最短路径对应圆心坐标(80,210)、(307.7715)、(306.2932)、(220,530)、(150,600)、(109.8478,701.7379)、(270,680)、(370,680)、(430,680)、(540,730)、(670,730)、(709.7933)、(642.0227)、(720,600)、(720,520)(500,200),(410,100),(230,60)。对于最短时间路径问题,根据转弯半径和速度的关系,在问题一求出的最短路径的模型的基础上,进行路线优化,建立以最短时间为目标的非线性规划模型,利用lingo 求解最短时间获得了机器人从O点出发,到达A的最短时间路径,求得最短时间路径下转弯半径为12.9885 ,同时最短时间路径时间长为94.2283个单位,路径长为471.129个单位。相应圆弧的圆心坐标为(82.1414,207.9153)。 关键词:机器人避障覆盖法穷举法非线性规划

机器人避障问题

精心整理 机器人避障问题 摘要 本文研究了在一个800800?平面场景里,机器人通过直线和圆弧转弯,绕过障碍物,到达目标点的问题,解决了到达目标点路径最短,以及到达A 点时间最短的问题。文章将路径划分为若干个这种线圆结构来求解。对于途中经过节点的再到达目标点的状况,我们采用了在拐点和节点最小转弯半径的形式. O A →O →B O →C O →A →B 10个单位为50=v 对场景图中4(1)(2)1.出发,分别做圆的切线,直到终点。对于经过路径中的目标点的问题,我们采用最小转弯模式,建立优化模型,最终求的最短路径。 2.问题二要求从起始点到达A 点所用的时间最短,从题意以及生活经验可得,拐弯半径越大,所用时间越短,拐弯半径越小,所用时间越大。半径最小不低于10,取最大值时机器人应刚好未碰到4、6三角形,可通过几何解法计算出来,并对时间进行优化处理。 三、模型假设 假设机器人可以抽象成点来处理 假设机器人的能源充足,且在整个行走过程中无故障发生 四,符号说明

】 5(为起点,,OA 圆弧的切点,角度 1OO A ∠=,11OO M ∠=,11AO N ∠=,111M O N θ∠=.设这段路程机器人的总路程为L. 解法如下: 如上图可得有以下关系: 1 AOO ?在中: 在11Rt OO M ?: 222arccos(2b c a bc α+-=

在11Rt AO N 中: 所以: 从而可得: 结果如下: 机器人行走路线 1OM =1N A 弧11M N = 224.7221; b= 237.6973 c= O 同理了解 比较可得, O 从上面绕到到目标点A 的距离最短,最短路径为471.0372。

6种让机器人实现避障的方法分享

6种让机器人实现避障的方法分享 在传感器避障领域,采用单一的传感器测量的效果并不理想,在实际应用中往往需要采用其他类型的传感器进行补偿,才能实现对周围环境的探测的最佳效果。当然,这就产生了多传感器信息的融合处理的问题,增大了信息处理的工作量和难度。 那么,除了这种传感器避障方法,还有很多的其他方法融合处理多种传感器信息,让全自主机器人实现完美避障,比如人工势场法避障控制法、模糊逻辑控制避障控制法、人工神经网络避障控制法、栅格法避障控制法以及声波避障控制法等。 人工势场避障控制法 人工势场避障控制法,是一种比较简单又新颖的做法,是另一种仿生学,仿照物理学中电势和电场力的概念,建立机器人工作空间中的虚拟势场,按照虚拟势场力方向,实现局部路径规划。 通过构造目标位姿引力场和障碍物周围斥力场共同作用的人工势场,来搜索势函数的下降方向,然后寻找无碰撞路径。 听起来很玄乎,但是早已经有应用产品了,Khatib曾应用于移动机器人的导航上。但是并没有得到大规模应用。 因为即使对于简单环境很有效,但是都是在静态的研究中得出的,而没有考虑障碍物的速度和加速度的影响,所以在动态避障控制中,人工势场法避障控制不是很理想。因为在复杂的多障碍环境中,不合理的势场数学方程容易产生局部极值点,导致机器人未到达目标就停止运动,或者产生振荡、摆动等现象。 另外,传统的人工势场法着眼于得到一条能够避障的可行路径,还没有研究出什么最优路径。 模糊逻辑控制避障法 模糊逻辑控制避障法出现得并不晚,1965年美国的一位教授就提出过模糊逻辑的概念。1974年,英国伦敦大学一位教授利用模糊控制语句组成的模糊控制器控制锅炉和气轮机的运行获得成功,开始将模糊数学应用于自动控制领域,包括机器人领域。 由于不必创建可分析的环境模型,目前模糊逻辑方法在解决机器人避开障碍物问题上己经有了大量的研究工作。另一个独特优点也让用专家知识调整规则成为可能,因为规则库的每条规则具有明确的物理意义。

机器人避障问题的最短路径分析

机器人避障问题的最短路径分析 摘要 本论文研究了机器人避障最短路径和最短时间路径的问题。主要讨论了在一个区域中存在12个障碍物,由出发点到达目标点以及由出发点经过若干目标点最终到达出发点的两种情况。采用传统的避障方法——切线图法。建立了线圆结构,这样任何路径,我们都可以将路径划分为若干个这种线圆结构来求解。对于途中经过节点再到达目标点的状况,我们采用在转弯点和节点都采用最小转弯半径,以节点为切点的形式。然后建立了最优化模型,利用MATLAB软件对方案进行求解。 问题一:把路径分解成若干个线圆结构来求解,然后把可能的最短路径采用穷举法列举出来,最终得出最短路径: A O→最短路径为:471.0 O→最短路径为:869.5 B O→最短路径为:1093.3 C 对于O → → →我们将A、B、C看作切点,同样采用线圆结构 C B A O→ 计算。 O→ → → →最短路径为:2827.1 A O C B 问题二:考虑避障路径和转弯速度,我们建立时间与路径之间的模型,用MATLAB软件求出最优解。当转弯半径为11.5的时候,可以得出最短时间为:T=94.3 关键词最优化模型避障路径线圆结构切线图法

一、问题重述 本文是求一个机器人在800×800的平面场景图中避开障碍物,建立从原点O(0, 0)点处出发达到终点的最短路径和最短时间路径的模型。即求:1、O→A 、O→B 、O→C 和O→A→B→C→O 的最短路径。2、O →A 的最短时间路径。 机器人在行走时的要求是:1、它只能在该平面场景范围内活动2、图中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物(障碍物的分布如图1)3、障碍物外指定一点为机器人要到达的目标点(要求目标点与障碍物的距离至少超过10个单位)。4、规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。5、为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞。 机器人直线行走的最大速度为50=v 个单位/秒。机器人转弯时,最大转弯速 度为2 1.0100 e 1)(ρρ-+==v v v ,其中ρ是转弯半径。 已知场景图中4个点O(0, 0),A(300, 300),B(100, 700),C(700, 640)。图中各个点 的坐标见下表。 图1 编号 障碍物名称 左下顶点坐标 其它特性描述 1 正方形 (300, 400) 边长200 2 圆形 圆心坐标(550, 450),半径70 3 平行四边形 (360, 240) 底边长140,左上顶点坐标(400, 330)

智能避障机器人设计文献综述

智能避障机器人设计文献综述 1 前言 我们从广泛意义上理解所谓的智能机器人,它给人的最深刻的印象是一个独特的进行自我控制的“活物”。其实,这个自控“活物”的主要器官并没有像真正的人那样微妙而复杂。智能机器人具备形形色色的内部信息传感器和外部信息传感器,如视觉、听觉、触觉、嗅觉。除具有感受器外,它还有效应器,作为作用于周围环境的手段。这就是筋肉,或称自整步电动机,它们使手、脚、长鼻子、触角等动起来。 机器人技术自上个世纪中叶问世以来,经历四十多年发展已取得长足进步,成为提高产业竞争力方面极为重要的战略高技术。目前,机器人关键技术日臻成熟,应用范围迅速扩展,作为计算机、自动控制、传感器、先进制造等领域技术集成的典型代表,面临巨大产业发展机会。国内外业界专家预测,智能机器人将是21世纪高技术产业新的增长方向。2003至2006年间,全球智能服务机器人以每年40%左右的速度迅速增长。当代机器人专家现已达成了共识:作为计算机技术及现代IT综合技术的一个必然延伸,机器人技术完全可能遵循“摩尔定律”,以前所未有的速度实现突破。智能机器人将成为继家电、个人电脑之后、第三个以超常规速度走向我们日常生活的产品。 如今知识工程、计算机科学、机电一体化和工业一体化等许多领域都在讨论智能系统,人们要求系统变得越来越智能化。显然传统的控制观念是无法满足人们的需求,而智能控制与这些传统的控制有机的结合起来取长补短,提高整体的优势更好的满足人们的需求。随着人工智能技术、计算机技术、自动控制技术的迅速发展,智能控制必将迎来它的发展新时代。计算机控制与电子技术的融合为电子设备智能化开辟了广阔前景。因此,智能技术的研究、应用都是非常有意义而且有很高市场价值的[1]。 智能机器人,也称轮式智能小车,是一种以汽车电子为背景,涵盖控制、

基于弹性绳索拉伸的机器人避障问题

基于弹性绳索拉伸的机器人避障问题 摘要 本文研究了机器人避障的相关问题。在一个已知区域中存在12个障碍物,使用基于弹性绳索拉伸的方法,求解了由出发点到目标点的最短路径和最短时间路径。我们在禁区顶点以最小转弯半径转向为最优的前提下,对障碍物进行了加工,即将限定区域向外扩展并将顶点圆角化。那么最短路径就由两部分组成:一部分是平面上的直线段,另一部分是限定区域上部分弧构成。由于最短路径一定是由直线线段和圆弧做组成,而弹性绳索紧贴障碍物时,弹性绳索与直线线段和圆弧重合,并且弹性绳索有自然缩短的趋势,弹性绳处于紧绷状态,此时弹性绳长就是最短路径。 问题一,将绳索系与起点和终点,使用拉伸弹性绳索的方法,找到所有符合要求的绳索连结成的路径并计算路径长度,最终最短的绳长即为所求。由于符合要求的路径可能比较多,我们又使用了尺规作图进行简化了以及一般情况下的Dijkstra求解最短路径的方法。 最终求得: O→A最短路径长度为471.037 O→B最短路径长度为 853.13 O→C最短路径长度为1092.82 O→A→B→C→O最短路径长度为2714.31 问题二,由于机器人转弯时所行走的速度和转弯半径有关。而当转弯半径最小时相应的速度也最小。就必须平衡转弯半径和转弯时速度的这一对矛盾。本文通过极限状态的求解,计算出可能的最短时间路径。 关键字:最短路径切线长弧长

一、问题的重述 图1是一个800×800的平面场景图,在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动。图中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物,障碍物的数学描述如下表: 编号 障碍物名称 左下顶点坐标 其它特性描述 1 正方形 (300, 400) 边长200 2 圆形 圆心坐标(550, 450),半径70 3 平行四边形 (360, 240) 底边长140,左上顶点坐标(400, 330) 4 三角形 (280, 100) 上顶点坐标(345, 210),右下顶点坐标(410, 100) 5 正方形 (80, 60) 边长150 6 三角形 (60, 300) 上顶点坐标(150, 435),右下顶点坐标(235, 300) 7 长方形 (0, 470) 长220,宽60 8 平行四边形 (150, 600) 底边长90,左上顶点坐标(180, 680) 9 长方形 (370, 680) 长60,宽120 10 正方形 (540, 600) 边长130 11 正方形 (640, 520) 边长80 12 长方形 (500, 140) 长300,宽60 在图1的平面场景中,障碍物外指定一点为机器人要到达的目标点(要求目标点与障碍物的距离至少超过10个单位)。规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞,若碰撞发生,则机器人无法完成行走。 机器人直线行走的最大速度为50=v 个单位/秒。机器人转弯时,最大转弯速度为 2 1.0100 e 1)(ρρ-+==v v v ,其中ρ是转弯半径。如果超过该速度,机器人将发生侧 翻,无法完成行走。 请建立机器人从区域中一点到达另一点的避障最短路径和最短时间路径的数学模型。对场景图中4个点O(0, 0),A(300, 300),B(100, 700),C(700, 640),具体计算: (1) 机器人从O(0, 0)出发,O→A 、O→B 、O→C 和O→A→B→C→O 的最短路径。 (2) 机器人从O (0, 0)出发,到达A 的最短时间路径。 注:要给出路径中每段直线段或圆弧的起点和终点坐标、圆弧的圆心坐标以及机器人行走的总距离和总时间。

机器人避障问题的解题分析(建模集训)

机器人避障问题的解题分析 摘要:本文对2012年全国大学生数学建模竞赛D题机器人避障问题进行了全面分析,对最短路的设计进行了理论分析和证明,建立了机器人避障最短路径的几何模型,对最短时间路径问题通过建立非线性规划模型,有效地解决了转弯半径、圆弧圆心位置和行走时间等问题。 关键词:机器人避障;最短路径;Dijkstra算法;几何模型;非线性规划模型 1 引言 随着科学技术的进步和计算机技术的发展,机器人的应用越来越广泛,在机器人的应用中如何使机器人在其工作范围内为完成一项特定的任务寻找一条安全高效的行走路径,是人工智能领域的一个重要问题。本文主要针对在一个场景中的各种静态障碍物,研究机器人绕过障碍物到达指定目的地的最短路径问题和最短时间问题。 本文以2012年“高教社”杯全国大学生数学建模竞赛D题“机器人避障问题”为例进行研究。假设机器人的工作范围为800×800的平面正方形区域(如图1),其中有12个不同形状的静态障碍物,障碍物的数学描述(如表1): 图1 800×800平面场景图

表1 在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动,机器人不能与障碍物发生碰撞,障碍物外指定一点为机器人要到达的目标点。规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞,若碰撞发生,则机器人无法完成行走。机器人直线行走的最大速度为50=v 个单位/秒。机器人转弯时,最大转弯速度为2 1.0100 e 1)(ρρ-+==v v v (ρ是转弯 半径)。如果超过该速度,机器人将发生侧翻,无法完成行走。 场景图中有4个目标点O(0, 0),A(300, 300),B(100, 700),C(700, 640),下面我们将研究机器人从O(0, 0)出发,求O→A、O→B、O→C和O→A→B→C→O的最短路径,以及机器人从O(0, 0)出发,到达A 的最短时间路径问题。 2 静态避障问题中机器人行走最短路径的分析 2.1 行走路径的设计 在本例中障碍物有4种不同形状:矩形、平行四边形、三角形和圆形。考虑到机器人

移动机器人常用传感器及相关避障技术介绍

移动机器人常用传感器及相关避障技术介绍 移动机器人是机器人的重要研究领域,人们很早就开始移动机器人的研究。世界上第一台真正意义上的移动机器人是斯坦福研究院(SRI)的人工智能中心于1966年到1972年研制的,名叫Shakey,它装备了电视摄像机、三角测距仪、碰撞传感器、驱动电机以及编码器,并通过无线通讯系统由二台计算机控制,可以进行简单的自主导航。Shakey的研制过程中还诞生了两种经典的导航算法:A*算法(the A* search algorithm)和可视图法(the visibility graph method)。虽然Shakey只能解决简单的感知、运动规划和控制问题,但它却是当时将AI应用于机器人的最为成功的研究平台,它证实了许多通常属于人工智能(AriTIficial Intelligence,AI)领域的严肃的科学结论。从20世纪70年代末开始,随着计算机的应用和传感技术的发展,以及新的机器人导航算法的不断推出,移动机器人研究开始进入快车道。 移动机器人智能的一个重要标志就是自主导航,而实现机器人自主导航有个基本要求避障。下面让我们来了解一下移动机器人的避障,避障是指移动机器人根据采集的障碍物的状态信息,在行走过程中通过传感器感知到妨碍其通行的静态和动态物体时,按照一定的方法进行有效地避障,最后达到目标点。 实现避障与导航的必要条件是环境感知,在未知或者是部分未知的环境下避障需要通过传感器获取周围环境信息,包括障碍物的尺寸、形状和位置等信息,因此传感器技术在移动机器人避障中起着十分重要的作用。避障使用的传感器主要有超声传感器、视觉传感器、红外传感器、激光传感器等。 移动机器人避障常用的传感器 1、激光传感器 激光测距传感器利用激光来测量到被测物体的距离或者被测物体的位移等参数。比较常用的测距方法是由脉冲激光器发出持续时间极短的脉冲激光,经过待测距离后射到被测目标,回波返回,由光电探测器接收。根据主波信号和回波信号之间的间隔,即激光脉冲从

可避障机器人设计报告

可避障机器人设计报告 姓名*** 班级机械设计制造及其自动化1班学号3011201*** 任课教师洪鹰 2014年12 月16 日

目录 一、概述??????????????????????????????????????????????3 二、方案设计?????????????????????????????????????????4 1、硬件设计?????????????????????????????????????4 1.1避障基本方法?????????????????????????????4 1.2主控芯片选择?????????????????????????????4 1.3电源设计??????????????????????????????????5 1.4电机选择?????????????????????????????????5 2、主程序设计??????????????????????????????????5 三、总结??????????????????????????????????????????????7

一、概述 机器人是一类能够自动完成某项功能的机械系统,机器人通过传感器和执行机构与外界进行信息物理和交互,处理器负责处理传感器采集来的信息并将相应的控制命令送给执行机构执行。机器人因其对环境的强适应性,使得他在很多领域取代了人的劳动,将人从繁重、危险的环境中解放出来。机器人广泛应用于工业生产、科学研究、危险品处理乃至国防领域。而我这次设计的应该是最基础的一种机器人——自动避障机器人,它能通过传感器感知外部环境,实现避障。

机器人避障问题的MATLAB解法探析

机器人避障问题的MATLAB解法探析 摘要:本文对2012年全国大学生数学建模竞赛D题“机器人行走避障问题”,给出了利用matlab这一数学软件进行求解的方法,并对该方法的优缺点进行了分析。 关键词:机器人避障matlab 2012年全国大学生数学建模竞赛D题“机器人行走避障问题”如下: 在一个800×800的平面场景图中,原点O(0,0)点处有一个机器人,它只能在该平面场景范围内活动。图中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物。规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。机器人不能折线转弯,转弯路径由与直线路径相切的圆弧组成,每个圆弧的半径最小为10个单位。为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位。计算机器人从O(0,0)出发,O→A、O→B、O→C和O→A→B→C→O的最短路径。 一、问题的分析 为达到要求,我们按照以下原则选择路径: (1)在障碍物拐点处的圆弧半径为临界半径个单位; (2)因为直线速度大于转弯速度,所以在不转弯的地方尽可能走直线; 按照上述原则,我们选取以下步骤求最短路径: (1)穷举出起始点与目标点的所有可能直线路径,判断出最短直线路径; (2)针对上述最短直线路径,在障碍物拐点处加入弧线转弯,然后计算实际最短行走路径。 二、问题的求解 按照上述步骤,逐步求最短路径: (1)首先画出O到A允许行走所有直线路线,如图所示。 (2)计算出各节点到下一节点的距离作为权值给各条边赋权,可以求解出最优直线路径。用MATLAB软件,程序如下: sets: cities/O,B1,B2,C1,C2,A/; roads(cities,cities)/O,B1 O,B2 O,C1 B1,A B1,C2 C1,B1 C1,B2 B2,C2 B2,A C2,A /:w,x; data: w= 224.7 237.7 100 237.7 150 150 150 150 250 114; n=@size(cities); min=@sum(roads:w*x); @for(cities(i)|i #ne# 1 #and# i #ne# n: @sum(roads(i,j):x(i,j))=@sum(roads(j,i):x(j,i))); @sum(roads(i,j)|i #eq# 1:x(i,j))=1; end 计算出结果(只列出有用部分): Global optimal solution found. Total solver iterations:0 Variable Value Reduced Cost

小学六年级信息技术上册 第5课 自动避障机器人名师教案 粤教版

自动避障机器人 课题自动避障机器人单元 5 学科信息技术年级 学习目标1.认识红外避障传感器 2.编写避障机器人程序 3.模拟仿真机器人避障 4.搭建与调试避障机器人 重点编写避障机器人程序 难点搭建与调试避障机器人 教学过程 教学环节教师活动学生活动设计意图 导入新课要让机器人避开障碍物,首先要给机器人装上“眼睛”,使它具有能感知障碍物的“器官”;然 后设计避障程序,让机器人根据检测到的情况选择 前进或者转弯。 女:给机器装上“眼睛”—红外线传感器,机器人检测到障碍物的时候,就可以想办法避开了。 男:哇!你是怎么做到的呢? 认真听讲,仔 细思考,交流 分享自己的看 法。 激发学生兴趣, 导入课题。 讲授新课一、认识红外避障传感器 红外避障传感器相当于机器人的“眼镜”,它是由一个红外线发射管和一个红外线接受管组成 的,如下图所示,它的主要功能是检测红外线发射 管的前方是否有物体存在。 介绍了红外避障传感器的组成:红外线接受管、红外线发射管、可调电阻、传感器的连接线。 同学们,为了然机器人避开前进过程中的障碍物,你们知道红外避障传感器应该安装在哪个地方 吗? 长见识: 当红外线发射管发射出去的红外光遇到物体时会反射给接收管,接收管会把这个信息传输给机 器人的微电脑。认真听讲、仔 细思考,动手 操作程序,总 结经验。 提高学生的动手 能力,让学生了 解红外避障传感 器的原理,激发 学生对编程机器 人的兴趣。

二、编写避障机器人程序 男:我给机器人装上了红爱避障传感器,为什么它还是不会避开障碍物呢? 女:因为机器人只是装上了红外避障传感器,却没有把它激活。我们要通过程序,让机器人使用红外避障传感器检测障碍物并告诉他遇到障碍物时应该怎样避开。 思考:同学们,你们在走路的时候,是一直睁着眼睛看周围的环境,还是一会儿后,闭着眼睛行走呢?当遇到障碍物的时候,你是怎么做的? 给机器人装上红外避障机器人以后,还要让机器人会使用它来检测障碍物。这需要为机器人设计一个检测障碍物的程序,让机器人不停地使用红外避障传感器检测障碍物。这个程序中除了用到“红外避障传感器”模块以外,还要用到“永久循环”模块。 讲解:永久循环地作用类似于将循环次数设定为无限次地循环,永久循环体内的操作会被不停地重复直行。 编写检测障碍物程序,让机器人不停地通过红外避障传感器检测前方是否有障碍物,我们一起来看吧! 1. 参考下图地操作,将“永久循环模块添加到程序中”。 2. 打开“数字传感器”模块库,参考下图,将“红外避障传感器”模块添加程序中,并作相关设置,让机器人使用它检测前方是否有障碍物。“选择变量”中的红外避障变量1、2、3、4分别用来储存机器人前、左右、后四个方向的红外避障传感器信号。若检测到有障碍物,则红外避障变量中储存“1”,否则储存“0”.“选择端口”中的6个

相关主题
文本预览
相关文档 最新文档