当前位置:文档之家› 沥青路面结构组合设计技术措施

沥青路面结构组合设计技术措施

沥青路面结构组合设计技术措施
沥青路面结构组合设计技术措施

Value Engineering

0引言

沥青混凝土路面具有良好的力学性能和较好的耐久性以及行车舒适性,具有良好的抗滑、防渗坚实耐久、耐疲劳平整的性能和抗高温开裂的温度稳定性适合于各种车辆的通行,在高速公路建设中被广泛采用,但由于种种原因影响了公路的使用性能造成沥青路面早期破坏,仍存在

设计年限内发生的早期破损现象。

不同的路面结构组合层次多和厚度大的路面结构,不同的路面结构组合会产生在寿命和经济上及使用性能都不相同的效果,其使用效果不一定就好。根据实践经验和理论分析,结构组合原则路线、路基和路面要做统筹考虑,路线、路基和路面的设计标准应大体一致。不同等级的道路应铺设相应等级的路面。路线设计时应考虑路基的稳定性和强度,而路基的稳定性和强度又是路面结构和厚度设计的依据。提高土基的抗变形能力,往往比加厚路面结构层更为经济有效。有时在路基设计和施工中达不到某些要求时,也可在路面结构中采用一定的措施,以弥补路基稳定性和强度的不足。所以,应本着“路基稳定、基层坚实、面层耐用”的要求,把路基、垫层、基层和面层作为一个整体,进行路基路面综合设计。

1沥青路面结构设计一般原则1.1合理选材因地制宜原则:路面各结构层用的材料应充分利用当地的工业副产品、加工材料或天然材料尤其是用量大的垫层和基层材料来降低工程造价以减少运输

费用。

注意利用当地材料的特点,并借鉴成功的经验。注意环境保护和施工人员的健康和安全。

1.2方便施工及便于养护原则:考虑施工的技术力量和机械设备,结合施工能力提出结构层的组合方案及施工技术要求。要考虑方便今后的养护,尤其是高等级路面应

保证长期通车的要求。

应尽量考虑采用大型高效的成套机械设备施工,以确保工程质量。为合理使用有限的资金,一般可按近期要求进行路面设计,以后随交通量的增加逐步提高;也可按规定的设计年限进行设计,基层一次铺成,沥

青面层分期修建。

设计时,应选择适当的路面结构和厚度,使前期工程能在后期充分利用。但高速、一级公路路面不宜分期修建,以保证交通畅通,也避免分期修建引起的纵断面变化对行车舒适和安全的影响。

1.3排水设计结合原则:道路排水的好坏,对路基路

面承载能力、

稳定性和耐久性关系极大。有些排水设施如路面边缘渗沟同路面更有直接关系,应同路面结构组合设计同时考虑。改建路面时,也应结合道路排水系统进行综合设计。

1.4根据各结构层功能选择结构层次:面层要求高强耐久性好、抗滑耐磨、如抗剪和抗拉且面层直接经受气候因素和行车荷载的作用,面层材料通常选用强度高与粘结力强的集料作为结合料。面层的等级应越高轴载越重交通

量越大。

在轴载重交通量大的路上特别是城市快速路和一级公路,应采用沥青混凝土面层,常由双层或j 层组成,面层上层为抗滑磨耗层,可选用细粒式或中粒式沥青混凝土,中面层和下面层应据道路等级、沥青层厚、气候条件等选择适当的沥青结构层,一般可采用中、粗粒式沥青混凝土。采用空隙较大的沥青混合料或沥青贯人碎石作面层时,应在面上加设沥青砂或沥青表面处治作封层。基层作为重要的承重层,要有足够的强度、刚度和水稳定性。对于交通繁重的道路,应选用强度和刚度较高的水泥或石灰粉

煤灰稳定粒料、

沥青混合料、贫混凝土等材料做基层,并加设底基层起次要承重作用。一般道路的基层及底基层,还可采用水泥或石灰粉煤灰土、石灰稳定土、石灰煤渣类材料、级配碎石和填隙碎石等适宜的当地材料铺筑。路面应立足于保证路基的稳定性使路面使用年限长有足够的整体强度,要求高速、一级公路的土基回弹模量值大于30MPa ,其他公路的土基回弹模量值大于25MPa ,城市道路的土基回弹模量值大于20MPa 或30MPa 城市快速路。否则,单纯依靠加强增厚面层或基层很不经济合理并不能收到良好的效果,稳定路基最经济最易办到也是最主要措施是达到要求的压实度和加强排水。在路基水温条件较差

——————————————————————

—作者简介:廉香兰(1973-),女,吉林延吉人,大学本科,高级工程

师,主要从事路基路面勘测设计工作。

试论沥青路面结构组合设计技术措施

Combination Design Technical Measures of Asphalt Pavement Structure

廉香兰LIAN Xiang-lan

(延边公路勘测设计有限责任公司,延吉133000)

(Yanbian Highway Survey and Design Co.,Ltd.,Yanji 133000,China )

摘要:沥青路面设计需要依据使用要求并结合当地条件使多层次结构物具有要求的使用性能和使用寿命。作为结构设计选择各结

构层次和材料类型组合成既能经受住行车荷载和自然因素的作用,

又能充分发挥各结构层材料最大效能和经济合理的铺面结构体系。Abstract:Asphalt pavement design needs to be made according to operating requirements and combined with local conditions in order to make multi-level structure have the required operating performance and service life.For the structure design,it choices the layer of structure and material to stand the traffic load and natural factors,and can give full play to the material maximum efficiency of structure layer and economic and reasonable pavement structure system.

关键词:公路工程;沥青路面;结构组合;设计;技术Key words:highway engineering ;asphalt pavement ;structure and combination ;design ;technology 中图分类号:U41文献标识码:A 文章编号:1006-4311(2012)32-0061-02

·61·

沥青路面结构设计与计算书

沥青路面结构设计与计算书 1 工程简介 本路段属于安图至汪清段二级公路.K0+000~K3+500,全线设计时速为60km/h的二级公路,路面采用60km/h的二级公路标准。路基宽度为10m,行车道宽度为2×3. 5m,路肩宽度为2×0.75m硬路肩、2×0.75土路肩。路面设计为沥青混凝土路面,设计年限为12年。路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示;根据沿线工程地质特征及结合当地筑路材料确定路面结构为:路面的面层采用4cm厚细粒式沥青混凝土和6cm厚中粒式沥青混凝土,基层采用20cm厚水泥稳定碎石,底基层采用石灰粉煤灰土。 2 土基回弹模量的确定 本设计路段自然区划位于Ⅱ3区,当地土质为粘质土,由《公路沥青路面设计规范(JTG D50-2004)》表F.2查得,土基回弹模量在干燥状态取39Mpa,在中湿状态取34.5Mpa. 3 设计资料 (1)交通量年增长率:5% 设计年限:12年

。 4 设计任务 4.1 沥青路面结构组合设计 4.2 沥青路面结构层厚度计算,并进行结构层层底拉应力验算 4.3 绘制沥青路面结构图 5 沥青路面结构组合设计 5.1 路面设计以双轮组单轴载100KN 为标准轴载,以BZZ -100表示。标准轴载计算参数如表10-1所示。 5.1.1.1 轴载换算 轴载换算采用如下的计算公式: 35 .41 21∑=? ?? ??=k i i i P P n C C N ,()11 1.211c m =+?-=,计算结果如下表所示。

注:轴载小于25KN 的轴载作用不计 5.1.1.2 累计当量轴次 根据设计规范,二级公路沥青路面设计年限取12年,车道系数η=0.7,γ=5.0% 累计当量轴次: ()[][] 329841405 .07 .005.8113651)05.01(3651112 =???-+=??-+= ηγ γN N t e 次 5.1.2 验算半刚性基层层底拉应力的累计当量轴次 5.1.2.1 轴载验算 验算半刚性基层层底拉应力的轴载换算公式为:

沥青路面结构层组合研究

XX大学 学士学位论文沥青路面结构层组合研究 院系名称: 专业: 学生姓名: 学号: 指导老师: XX大学学位委员会办公室制 二〇一年月日

1 引言 1.1 问题提出及研究 沥青路面因其具有优越的路用性能得以在全世界范围内广泛应用。它作为一种无接缝的连续式路面,因其具有足够的力学强度,能适应各种行车荷载,且行车平稳、舒适、噪音低以及便于维修的特点而在公路路面铺筑中占有很大比例。20世纪90年代以前,我国沥青路面以表处、贯入式及沥青碎石为主。而在我国高等级公路的建设中,沥青混凝土路面成为主要的路面形式。沥青混凝土路面结构设计初始,其主要目的就是为保护路基土使之不经受车辆的直接作用,通过路面传播至土基的应力被扩散而不会造成土基过大的沉降。这点反映在设计思想及设计方法上,主要是控制土基顶面应力及垂直位移量,是用古典土力学公式验算。当古典理论公式无法客观地描述路面结构的实际工作状态时,人们通过大量的野外测试,修筑试验路段对实际车辆形式效果进行系统观察,形成了以车辆荷载作用下确保路面结构承载力能力为核心的经验设计法。我国沥青混凝土路面设计规范《公路沥青路面设计规范》(JTJ D50-2006)采用双圆垂直均布荷载作用下的多层弹性体系理论,以路表回弹弯沉值和沥青混凝土 层弯拉应力、半刚性材料层弯拉应力为设计指标进行路面结构厚度设计。设计完成后,路面结构的路表弯沉与各结构层的弯拉应力均应满足设计指标的极限标准。 沥青路面结构层的组合不同,其受力特性也大大不同。目前所使用的沥青路面结构组合形式由于所用材料的不同、结构层厚度的不同及每层的层间位置的不同,影响整个路面结构的及每层的受力特性,从而影响沥青路面的使用性能。 本研究的目的就是通过改变结构层材料的模量值,对几种不同沥青路面结构层的组合形式进行受力特性分析,以确定沥青路面最佳组合形式。 1.2 研究内容 本研究在充分吸收国内研究成果的基础上结合国内情况讨论对柔性结构层、半刚性结构层、刚性结构层在不同材料模量下的受力特性。主要研究内容有:(1)沥青路面的设计方法及设计指标; (2)基层材料及其特性; (2)基层材料模量对路面结构受力特性的影响; (3)基层厚度对路面结构受力特性的影响; (4)土基模量对路面结构受力特性的影响。

沥青路面结构设计

第四章 路面结构设计 1、1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24、5米,全长5km ,结合近几年济南经济增长及人口增长得情况,根据近期得交通量预测该路段得年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13、8℃,无霜期178天,最高月均温27、2℃(7月),最低月均温-3、2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=1、3;因此该 路基处于干燥状态,根据公路自然区划可知济南绕城高速处于5Ⅱ 区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5、1、4-1可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

1、2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载得计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 得各级轴载Pi 得作用次数Ni 按下式换算成标准轴载P 得当量作用次数N 得计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算得车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型得各级轴载(kN ); C1——被换算车型得各级轴载系数,当其间距大于3m 时,按单独得一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1、2(m-1); C2——被换算车型得各级轴载轮组系数,单轮组为6、4,双轮组为1、0, 四轮组为0、38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709、00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为18、5,双轮组为1、0,四轮组为0、09。 注:轴载小于50KN 得特轻轴重对结构得影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

沥青砼路面施工技术方案

沥青砼路面施工技术方案 第一节、总则 1.1、为确保本工程沥青砼路面质量,统一规范沥青砼路面施工,做到有章可循,减少盲目性,避免质量隐患或损失,特制定《机场路景观改造及南干道改扩建工程沥青砼路面施工技术方案》。 1.2、工程地点 机场路西起机场站前中央环岛,东至107国道机场立交,道路全长约1公里,红线宽41~51.5米,主要以拓宽改造及景观改造为主,由现状的4—6车道改为8—10车道;机场北干道北接现状机场北干道--机场七道路口,南与机场站前中央环岛相接,道路长约800米,以路面改造为主,其中机场站前中央环岛内北干道约400米归入机场路; 机场南干道为城市次干道,北起机场站前中央环岛,南至机场南路菱形立交,道路全长约3.41公里,红线宽度40米,为道路改扩建和新建道路,改造为双向6车道。 1.3、编制依据 1)施工图及承包合同等文件。 2)本合同工程现场考察情况。 3)本公司承建类似规模工程施工经验及拟投入本合同工程的施工技术力量和机械设备。 4)现行国标的《市政道路工程质量检验评定标准》《沥青路面施工及验收规范》和行业标准《公路沥青路面施工技术规范》、《公路工程沥青及沥青混合料试验规程》《公路路 基路面现场测试规程》《公路工程质量检验评定标准》等现行有关规程。 1.4、沥青路面施工必须做好前期准备工作,合理安排路面排水、防护工程、地下管线、交通安全等附属设施施工。不得污染已施工的路面。 1.5、妥善处理施工废料,不得随地抛弃废料,造成环境污染,工程完成后必须按照合同文件要求清理场地。 1.6、安全生产、文明施工,制定严格的安全管理制度,准备必要的安全设施和劳动保护手段。 1.7、制定详细的施工组织技术,铺筑生产试验路,并通过试验路面施工达到以下目的: 1)验证沥青路面各层的混合料目标配合比,确定正式施工的最佳沥青混合料配合比。 2)通过试验段路面施工确定合理的施工机械、型号、数量、组合方式,落实技术培训、技术岗位及最佳工艺流程和生产效率。 3)通过试拌确定拌和机的上料速度,拌和数量、时间及温度,以及沥青与集料变化波动的调控

沥青路面结构及类型

沥青路面结构及类型 一、沥青路面结构组成 1.沥青路面结构层可由面层、基层、底基层、垫层组成。 2.面层是直接承受车轮荷载反复作用和自然因素影响的结构层,可由1~3层组成。表面层应根据适用要求设置抗滑耐磨、密实稳定的沥青层;中面层、下面层应根据公路等级、沥青层厚度、气候条件等选择适当的沥青结构层。 3.基层是设置在面层之下,并对面层一起将车轮荷载的反复作用传布到底基层、垫层、土基,起主要承重作用的层次。基层材料的强度指标应有较高的要求。基层视公路等级或交通量的需要可设置一层或两层。当基层较厚需分两层施工时,可分别称为上基层、下基层。 4.底基层是设置在基层之下,并与面层、基层一起承受车轮荷载反复作用,起次要承重作用的层次。底基层材料的强度指标要求可比基层材料略低。底基层视公路等级或交通量的需要可设置一层或两层。底基层较厚需分两层施工时,可分别称为上底基层、下底基层。 5.垫层是设置在底基层与土基之间的结构层,起排水、隔水、防冻、防污等作用。 二、沥青路面分类 (一)按技术品质和使用情况分类 1.沥青混凝土路面:由适当比例的各种不同大小颗粒的集料、矿粉和沥青,加热到一定温度后拌和,经摊铺压实而成的路面面层。沥青混凝土路面适用于各级公路面层。 2.沥青碎石路面:用沥青碎石作面层的路面 3.沥青贯入式:用沥青贯入碎(砾)石作面层的路面,即把沥青浇洒在铺好的主层集料上,再分层撒布嵌缝石屑和浇洒沥青,分层压实,形成一个较致密的沥青结构层。 4.沥青表面处治:用沥青和集料按层铺法或拌和法铺筑而成的厚度不超过3cm的沥青面层,表面处治按浇洒沥青和撒布集料的遍数不同,分为单层式、双层式、三层式。 (二)按组成结构分类 1、密实—悬浮结构 2、骨架—空隙结构 3、密实—骨架结构 (三)按矿料级别分类 1.密级配沥青混凝土混合料 2.半开级配沥青混合料 3.开级配沥青混合料 4.间断级配沥青混合料 (四)按矿料粒径分类 1.砂砾式沥青混合料:矿料最大粒径等于或小于4.75mm(圆孔筛5mm)的沥青混合料。也称为沥青石屑或沥青砂。 2.细粒式沥青混合料:矿料最大粒径为9.5mm或1 3.2mm(圆孔筛10mm或15mm)的沥青混合料。 3.中粒式沥青混合料:矿料最大粒径为16mm或19mm(圆孔筛20mm或25mm)的沥青混合料。 4.粗粒式沥青混合料:矿料最大粒径为26.5mm或31.5mm(圆孔筛30~40mm)的沥青混合料。 5.特粗粒式沥青混合料:矿料最大粒径等于或大于37.5mm(圆孔筛45mm)的沥青混合料。(五)按施工温度分类 1.热拌热铺沥青混合料:沥青与矿料经加热后拌和,并在一定的稳定下完成摊铺和碾压施工过程的混合料 2.常温沥青混合料:采用乳化沥青或稀释沥青在常温下(或者加热温度很低)与矿料拌和,并在常温下完成摊铺和碾压过程的混合料。

沥青路面结构设计

第四章路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度cω=1.3;因此该路基处于干燥状态,根据公路自然区划可知济南绕城高速处于5Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa。 (3)交通资料 交通组成及各车型汽车参数表1-1

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 表1-2 ○1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN的各级轴载Pi的作用次数Ni按下式换算成标准轴载P的当量作用次数N的计算公式为:

35 .41 21∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0,四 轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N =4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2 C '——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当量换 算。 沥青路面营运第一年双向日平均当量轴次: 8 121 k i i i P N C C N P =?? '''= ? ??∑=4978.00(次/d )

路面结构组合设计

路面结构组合设计 1.1设计说明 1.1.1工程概况 (1)工程所在地:湖南省境内 (2)公路自然区划:区,由地下水位资料可知该路基为潮湿状态; (3)公路等级:一级公路(双向四车道、设中央分隔带); (4)路线总长度:1223.061m。 1.1.2设计内容 沥青混凝土路面 (1)拟定路面结构组合方案,进行方案比较。 (2)进行轴载换算(手算和程序计算),确定路面设计弯沉值。 (3)确定路基路面结构层设计参数。 (4)各结构层材料组成设计。 1.1.3设计成果 (1)设计说明书; (2)沥青路面结构设计图。 1.2 主要技术经济指标 1.2.1交通组成 经调查预测,本路竣工后第一年双向平均日交通量下表(辆/d)

预测交通组成表表2 备注:依据规范,轴重小于25KN的车辆不计入计算; 使用期内交通量平均增长率为4.7%,沥青混凝土路面设计使用年限15年。 2. 沥青混凝土路面结构设计 2.1轴载换算 路面设计以双轮组单轴载100KN为标准轴载,小客车不考虑轴载。 2.1.1 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次,昼夜交通量(辆/日)为双向车道年平均日通行车辆数。 ①轴载换算 轴载换算采用如下的计算公式: 式中:轴数系数 轮组系数 其中: 计算结果如下表(表3)所示:

轴载换算结果表 表3 注:轴载小于25KN 不计 ②累计当量轴次 根据设计规范,一级公路沥青路面的设计年限15年,四车道的车道系数取0.45。 累计当量轴次: 式中:第一年双向日平均当量轴次(次/日) 设计年限内交通量的平均增长率(%) 设计车道的车轮轮迹横向分布系数 2.1.2 验算半刚性基层底拉应力中的累计当量轴次

沥青路面结构设计示例

7.2路面结构设计 7.2.1路面结构设计步骤 新建沥青路面按以下步骤进行路面结构设计: (1) 根据设计任务书和路面等级及面层类型,计算设计年限内一个车道的累计当量轴次和设计弯沉值。 (2) 按路基土类型和干湿状态,将路基划分为几个路段,确定路段回弹模量值。 (3) 根据已有经验和规范推荐的路面结构,拟定几中可能的路面结构组合及厚度方案,根据选用的材料进行配合比实验及测定结构层材料的抗压回弹模量、抗拉强度,确定各结构层材料设计参数。 (4) 根据设计弯沉值计算路面厚度。对二级公路沥青混凝土面层和半刚性基层材料的基层、底基层,应验算拉应力是否满足容许拉应力的要求。如不满足要求,或调整路面结构层厚度,或变更路面结构层组合,或调整材料配合比,提高材料极限抗拉强度,再重新计算。 7.2.2 路面结构层计算 该路位于中原黄河冲积平原区,地质条件一般为a)第一层:冲积土;b)第二层:粘质土;c)第三层:岩石。平原区二级汽车专用沥青混凝土公路,路面使用年限为12年,年预测平均增长率为6%。 (1)轴载分析 本设计的累计当量轴次的计算以双轮组单轴载100kN为标准轴载,以BZZ-100表示。标准轴载的计算参数按表7-1确定。 表7-1标准轴载计算参数 表7-2起始年交通量表

1)以设计弯沉为指标及验算沥青层层底拉应力 ① 轴载换算 各级轴载换算采用如下计算公式: 4.35 1121( )k i i i p N c c n p ==∑ (7-1) 式中:N 1—标准轴载的当量轴次,次/日; n i —被换算车辆的各级轴载作用次数,次/日; P —标准轴载,kN ; P i —被换算车辆的各级轴载,kN ; k —被换算车辆类型; C 1—轴数系数,C 1=1+1.2(m -1),m 是轴数。当轴间距大于3m 时,按单独的一个轴载计算,当轴间距小于3m 时,应考虑轴系数; C 2—轮组系数,单轮组为6.4,双轮组为1.0,四轮组为0.38。 计算结果如下表7-3所示。 表7-3 轴载换算结果表(弯沉) 注:轴载小于25kN 的轴载作用不计。 ② 累计当量轴次为:

沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取 70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表 A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

沥青路面结构组合设计技术措施

Value Engineering 0引言 沥青混凝土路面具有良好的力学性能和较好的耐久性以及行车舒适性,具有良好的抗滑、防渗坚实耐久、耐疲劳平整的性能和抗高温开裂的温度稳定性适合于各种车辆的通行,在高速公路建设中被广泛采用,但由于种种原因影响了公路的使用性能造成沥青路面早期破坏,仍存在 设计年限内发生的早期破损现象。 不同的路面结构组合层次多和厚度大的路面结构,不同的路面结构组合会产生在寿命和经济上及使用性能都不相同的效果,其使用效果不一定就好。根据实践经验和理论分析,结构组合原则路线、路基和路面要做统筹考虑,路线、路基和路面的设计标准应大体一致。不同等级的道路应铺设相应等级的路面。路线设计时应考虑路基的稳定性和强度,而路基的稳定性和强度又是路面结构和厚度设计的依据。提高土基的抗变形能力,往往比加厚路面结构层更为经济有效。有时在路基设计和施工中达不到某些要求时,也可在路面结构中采用一定的措施,以弥补路基稳定性和强度的不足。所以,应本着“路基稳定、基层坚实、面层耐用”的要求,把路基、垫层、基层和面层作为一个整体,进行路基路面综合设计。 1沥青路面结构设计一般原则1.1合理选材因地制宜原则:路面各结构层用的材料应充分利用当地的工业副产品、加工材料或天然材料尤其是用量大的垫层和基层材料来降低工程造价以减少运输 费用。 注意利用当地材料的特点,并借鉴成功的经验。注意环境保护和施工人员的健康和安全。 1.2方便施工及便于养护原则:考虑施工的技术力量和机械设备,结合施工能力提出结构层的组合方案及施工技术要求。要考虑方便今后的养护,尤其是高等级路面应 保证长期通车的要求。 应尽量考虑采用大型高效的成套机械设备施工,以确保工程质量。为合理使用有限的资金,一般可按近期要求进行路面设计,以后随交通量的增加逐步提高;也可按规定的设计年限进行设计,基层一次铺成,沥 青面层分期修建。 设计时,应选择适当的路面结构和厚度,使前期工程能在后期充分利用。但高速、一级公路路面不宜分期修建,以保证交通畅通,也避免分期修建引起的纵断面变化对行车舒适和安全的影响。 1.3排水设计结合原则:道路排水的好坏,对路基路 面承载能力、 稳定性和耐久性关系极大。有些排水设施如路面边缘渗沟同路面更有直接关系,应同路面结构组合设计同时考虑。改建路面时,也应结合道路排水系统进行综合设计。 1.4根据各结构层功能选择结构层次:面层要求高强耐久性好、抗滑耐磨、如抗剪和抗拉且面层直接经受气候因素和行车荷载的作用,面层材料通常选用强度高与粘结力强的集料作为结合料。面层的等级应越高轴载越重交通 量越大。 在轴载重交通量大的路上特别是城市快速路和一级公路,应采用沥青混凝土面层,常由双层或j 层组成,面层上层为抗滑磨耗层,可选用细粒式或中粒式沥青混凝土,中面层和下面层应据道路等级、沥青层厚、气候条件等选择适当的沥青结构层,一般可采用中、粗粒式沥青混凝土。采用空隙较大的沥青混合料或沥青贯人碎石作面层时,应在面上加设沥青砂或沥青表面处治作封层。基层作为重要的承重层,要有足够的强度、刚度和水稳定性。对于交通繁重的道路,应选用强度和刚度较高的水泥或石灰粉 煤灰稳定粒料、 沥青混合料、贫混凝土等材料做基层,并加设底基层起次要承重作用。一般道路的基层及底基层,还可采用水泥或石灰粉煤灰土、石灰稳定土、石灰煤渣类材料、级配碎石和填隙碎石等适宜的当地材料铺筑。路面应立足于保证路基的稳定性使路面使用年限长有足够的整体强度,要求高速、一级公路的土基回弹模量值大于30MPa ,其他公路的土基回弹模量值大于25MPa ,城市道路的土基回弹模量值大于20MPa 或30MPa 城市快速路。否则,单纯依靠加强增厚面层或基层很不经济合理并不能收到良好的效果,稳定路基最经济最易办到也是最主要措施是达到要求的压实度和加强排水。在路基水温条件较差 —————————————————————— —作者简介:廉香兰(1973-),女,吉林延吉人,大学本科,高级工程 师,主要从事路基路面勘测设计工作。 试论沥青路面结构组合设计技术措施 Combination Design Technical Measures of Asphalt Pavement Structure 廉香兰LIAN Xiang-lan (延边公路勘测设计有限责任公司,延吉133000) (Yanbian Highway Survey and Design Co.,Ltd.,Yanji 133000,China ) 摘要:沥青路面设计需要依据使用要求并结合当地条件使多层次结构物具有要求的使用性能和使用寿命。作为结构设计选择各结 构层次和材料类型组合成既能经受住行车荷载和自然因素的作用, 又能充分发挥各结构层材料最大效能和经济合理的铺面结构体系。Abstract:Asphalt pavement design needs to be made according to operating requirements and combined with local conditions in order to make multi-level structure have the required operating performance and service life.For the structure design,it choices the layer of structure and material to stand the traffic load and natural factors,and can give full play to the material maximum efficiency of structure layer and economic and reasonable pavement structure system. 关键词:公路工程;沥青路面;结构组合;设计;技术Key words:highway engineering ;asphalt pavement ;structure and combination ;design ;technology 中图分类号:U41文献标识码:A 文章编号:1006-4311(2012)32-0061-02 ·61·

低温地区沥青路面结构设计分析

低温地区沥青路面结构设计分析 发表时间:2019-05-23T11:01:43.723Z 来源:《防护工程》2019年第1期作者:潘攀 [导读] 因此对沥青路面进行结构设计具有非常重要的意义,特别是针对低温地区的沥青路面,合理的结构设计有助于提高道路使用寿命与质量。 中铁四局集团有限公司设计研究院 230000 摘要:本文就低温地区沥青路面结构破坏类型及低温影响效果进行简单分析,并从沥青混合料、基层结构、联结层结构及表面层结构四个方面展开设计研究,旨在为低温地区沥青路面结构设计提供参考建议。 关键词:低温地区;沥青路面;结构设计 沥青路面具有平坦整洁、环保美观、舒适安全、维修养护简单等特点,因此逐渐成为世界道路桥梁建设工程首要选择,调查发现沥青路面在我国道路建设项目所占比重也呈现逐渐增加的趋势。因此对沥青路面进行结构设计具有非常重要的意义,特别是针对低温地区的沥青路面,合理的结构设计有助于提高道路使用寿命与质量。 一、低温地区沥青路面结构破坏研究 1、沥青路面结构破坏类型 通过对部分沥青道路调研发现,虽然道路结构、材料配比及使用年限存在较大差异,但道路路面呈现的结构破坏类型及特点却大致相同,具体表现在于:低温地区大多存在周期性冻土现象,道路基层在冻胀融缩的物理作用下容易出现结构变异,破坏道路结构引起不同程度的路面开裂问题。图1展示的就是低温地区常见的沥青路面结构破坏类型。 (a)路面剪裂(b)温缩开裂(c)反射开裂 图1 沥青论结构破坏类型 2、低温对沥青路面结构影响 道路建设需要应用到多种建筑材料,这些材料若长期处于低温状态会出现不同程度的收缩现象,由此产生较大拉应力,若拉应力超过材料拉伸强度将会导致材料结构被破坏进而出现开裂问题。道路路面纵向长度远大于横向长度,因此低温收缩引起的裂缝往往呈现为横向间隔,严重时才会出现纵向裂缝。种类各异的沥青基层对应特定的温度拉应力,因此结合实际情况选择合适的沥青材料显得尤为重要。 二、低温地区沥青路面结构设计研究 对低温地区沥青路面进行结构设计研究的时候需要针对基层耐受性、面层抗车辙、表面层抗裂性进行综合考量,因此需要对沥青混合料配比、基层温差、联结层荷载、表面层开裂等内容进行重点分析,以便确保结构设计的科学合理。 图2 沥青路面基本结构图 1、基于感温性能的沥青混合料设计 进行沥青混合料配比设计时需要综合考虑混合料所在位置及耐受特点,进而实现最优设计。图2展示的是沥青路面基本结构,分析可知表面层及联结层处于主要压力承载的高压应力区域,在进行建筑设计时需要选择抗磨损、高模量的沥青混合料,联结层处于表面层与基层的过度位置,最好选择传导效果优异的沥青材料,以便做好路面压力疏导工作。基层结构承受较大的拉应变,就整个路面而言担负着路面压力的重任,因此就沥青道路基层而言结构设计需要围绕荷载疲劳展开,研究发现沥青占比高的混合基层能够承受更大的荷载压力,有效避免了疲劳裂缝的出现。对于处于低温地区的沥青路面设计还需要着重考虑混合料感温性能,不同类型的沥青混合料其感温性能存在差异,在此基础上计算获得代表其粘弹性的劲度抗压指标,进而明确沥青混合料在特定温度时的物理特性。 2、基于大温差作用的沥青基层设计 沥青路面各结构在低温大温差的作用下会沿着路面横向出现不均衡温度场,此时的沥青路面这一受约整体在温度场作用下将产生温度

沥青路面基层施工技术方案

沥青路面基层施工技术方案 1.0材料 1.1路用的水泥、石子、砂等材料必须监理工程师批准。未经批准的不允许进场,更不准使用。 1.2水泥:选用终凝时间较长(宜在6小时以上),且宜用325#矿渣及普通硅酸盐水泥。快硬水泥、早强水泥以及受潮变质的水泥严禁使用。水泥品牌的选用应考虑其质量稳定性、生产数量、运距等各种因素。水泥每次进场前应有合格证书,每200T应对水泥的凝结时间、标号进行抽检。 1.3碎石:要求其压碎值不超过30%,最大粒径不大于30mm.碎石的颗粒组成应符合JTJ034——93中第 2.2.1.6中2#级配要求。为了施工方便,宜采用10——30mm的粗集料、5——10mm的中集料,0——5mm的石屑细集料三种粒料配合。其粗集料的压碎值、各种粒料的筛分(主要检查所进料的颗粒级配的偏差情况),0.5mm以下细土的塑性指数,小于0.075mm的颗粒含量应符合JTJ034——93中的要求,上述材料进场后的试验项目每2000m3做2个样品试验。 1.4水:凡人或牲畜的饮用水均可用于水泥碎石的施工。 2.0混合料的组成设计 2.1组成设计原则:①粉料含量不宜过多。②在达到强度的前提下,采用最小水泥剂量,但不小于4.0%.③改善集料级配,减少水泥用量,使水泥用量不大于6%.

2.2水泥剂量的配制可采用4%、4.5%、5%、5.5%、6%五种剂量。 2.3每种剂量的试件制取9个(最小数量)。 2.4试件必须在规定的温度(20±2℃)保湿养生6天,浸水养生1天后进行无侧限抗压强度,并计算试验结果的平均值、偏差系数,并计算RX(1-1.645Cv)是否大于Rd(本工程设计强度为 3.5MPa)。设计剂量要选用满足强度的最小剂量,并不超过6%. 2.5根据设计剂量做延迟时间对混合料强度的影响试验,并通过试验确定应该控制的延迟时间。 2.6工地实际采用的水泥剂量与原设计相同。 3.0水泥稳定碎石的质量控制标准。 3.1具体检测技术指标: 3.2每一作业段碾压完成后,立即各项指标的检测,整理好内业资料向监理人员报验(24小时内)强度指标单独报验。监理人员应在现场及时抽检,发现问题及时通知处理。 3.3各分项工程按照《河北省公路工程质量检验评定标准》、《河北省公路工程质量监督检查评比办法》进行评分。各项工程评分必须在97分以上。达不到此要求的不准交工。 4.0施工工艺要点 4.1水泥碎石的施工工艺详见JTJ034-93《公路路面基层施工技术规范》中2.5-2.7条中的内容。 4.2底基层检测及培土模

(完整word版)沥青路面结构设计

第四章 路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km ,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=1.3;因此该路基 处于干燥状态,根据公路自然区划可知济南绕城高速处于5 Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0, 四轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

沥青路面结构组合设计浅析

沥青路面结构组合设计浅析 郑 刘 (青海省公路科研勘测设计院 西宁 810001) 摘 要 在我国高等级公路的建设中,沥青混凝土路面已成为主要的路面形式。然而由于各地区气候环境、交通量及经济条件存在显著差异,对沥青路面性能要求不尽同,因此沥青路面结构组合设计的合理性显得尤为重要。 关键词 道路工程 沥青路面 结构 设计 沥青路面结构层次的合理选择和组合,是整个路面结构能否在设计使用年限里承受行车荷载和自然因素的共同作用,同时又能发挥各结构层的最大效能,使整个路面结构经济合理的关键。沥青面层混合料类型选择,包括对沥青面层各层次混合料级配类型、集料公称最大粒径以及厚度的综合选择,集料公称最大粒径与厚度应相匹配。混合料的最大公称粒径的选择主要依据交通荷载来确定,交通荷载越大,应选择公称最大粒径越大的混合料。在进行沥青路面混合料类型选择时,应因地制宜,综合考虑气候、交通量、经济等诸方面因素,选出最适宜的沥青混合料类型。 根据理论分析和多年的使用情况,在路面结构组合设计中可遵循下列原则。 1 常用沥青混合料的适用性 密集配沥青混合料可分为粗型(AC—C)和细型(AC—F)。粗级配是以粗集料为主,具有表面粗糙,构造深度较大,抗车辙、变形性能较好的优点,适用于多雨炎热、交通量较大地区的表面层。中、下面层也可以使用,以增强抗车辙能力,但应注意加强压实。 细级配因细集料较多,施工和易性较好,水稳定性、低温抗开裂及抗疲劳开裂性能等较好。但是,表面致密,构造深度较小,高温稳定性较差,适宜于抗疲劳结构层或干旱少雨、交通量较少,气候严寒、积雪较多地区的公路。 S MA沥青路面相对于传统的密级配沥青混凝土路面性能优越,但对材料的要求较高,造价也有所提高,适用于重交通、高等级道路的上面层或中面层。 OG FC沥青路面一般适用于沥青路面的表层,其优点是改善雨天高速行驶的抗滑性能,减少汽车行驶后部产生雨雾,提高行车安全和降低噪声。但由于相对的可渗透性,存在着水损害的隐患。 2 适应行车荷载作用的要求 作用在路面上的行车荷载,通常包括垂直力和水平力。路面在垂直力作用下,内部产生的应力和应变随深度向下递减。水平力作用产生的应力、应变,随深度递减的速率更快。路面表面还同时承受车轮的磨耗作用,因此,要求路面面层具有足够的强度和抗变形能力,其下各层的强度和抗变形能力可自上而下逐渐减小。在进行路面结构组合时,各结构层宜按强度和刚度自上而下递减的规律安排,以使各结构层材料的效能得到充分发挥。 按照这种原则组合路面时,结构层的层数越多越能体现强度和刚度沿深度递减的规律。但就施工工艺、材料规格和强度形成原理而言,层数又不宜过多,也就是不能使结构层的厚度过小。适宜的结构层厚度需结合材料供应、施工工艺确定,从强度要求和造价考虑,宜自上而下由薄到厚。 沥青路面相邻结构层材料的模量比对路面结构的应力分布有显著影响,是合理确定结构层层数,选定适宜结构层材料的重要考虑因素。根据理论分析,沥青层的回弹模量一般小于半刚性基层材料的回弹模量,若沥青层与半刚性基层材料之间是连续体系时,沥青层多数处于受压状态或出现较小的拉应力,半刚性基层材料主要承受拉应力。上下层间模量比越小,下层拉应力越大,故半刚性基层的刚度不宜太大。选用各结构层间模量逐渐递减的材料组合,层间适当的模量比,可使结构层受力更合理。对半刚性基层沥青路面,基层与面层的模量比宜控制在1.5~3之间,基层与底基层的模量比不宜大于3,底基层与土基的模量比宜为2.5~12.5之间。 3 在各种自然因素作用下稳定性要好 如何保证沥青路面的水稳性,是路面结构层选择与组合需要解决的重要问题。在潮湿和某些中湿路段上修筑沥青路面时,晴天时由于沥青层透气性较差,使路基和基层中水份蒸发的通路被隔断,水份向基层积聚;雨天时雨水经沥青层中的空隙下渗,渗入基层中。如果基层材料中含土量较大,尤其是土的塑性指数较大时,遇水变软,强度和刚度急剧下降,结果导致路面 95 青海交通科技 2009—1

沥青路面施工技术方案[1]

一、编制依据和原则 1、编制依据 施工进度计划依据锦屏水电站对外交通专用公路金林乡、羊房沟段合同文件(合同编号:JPIC-200411、12)和设计补充通知、现行的与本工程相关的公路工程施工规范以及我公司的施工经验和专项工程施工能力编制。 2、编制原则 根据本合同工程(包括金林乡、羊房沟两个合同段,以下简称本合同段)的施工特点和施工技术总体规划,结合在以往类似工程中的施工经验,初拟施工总进度编制原则如下: 1、严格按照招标文件规定的合同控制工期,充分发挥在公路工程施工中的技术优势,科学合理安排施工程序及施工进度,确保合同总工期如期实现。 2、统筹安排、合理编制施工程序,组织好全线平行交叉作业和流水作业。 3、充分考虑现场各种施工干扰因素、突发因素对工期的影响,采用适中的施工强度指标安排进度计划,对施工中的不可预见因素皆有回旋余地。 二、路面工程进度计划 根据我公司的施工进度计划安排原则、施工程序,以及发包人对本工程的工期要求,结合我公司的机械化施工能力和施工水平,具体进度计划见:《施工进度计划横道图》。 1、施工进度安排 根据本标段工程特点,就各项目工程施工工期具体安排如下: 1、施工准备 从2005年11月25日开始着手组织路面工程的施工,并在30天完成本合同段所需的全部临建设施的建设安装,以确保本合同工程顺利施工。

2、路面基层 本分项工程包括水泥稳定土基层、级配碎石底基层施工,计划于2005年12月15开工,2006年3月15日完工。具体工程进度安排见“施工总进度计划横道图”。 3、路面铺筑 本分项工程按通知要求初拟于2005年12月25日开工,2006年3月31日完工。具体工程进度安排见“施工总进度计划横道图”。 8、其他附属工程 本分项工程初拟于2006年3月1日开工,2006年5月31日完工,具体工程进度安排见“施工总进度计划横道图”。

沥青路面结构设计之1

第三章沥青路面结构设计 路面结构由路基(顶部)、垫层、基层和面层组成,是道路工程中最直接承受荷载和环境作用的部分。对路面的最基本要求是耐久、平整和抗滑。耐久是指路面具有足够长的使用寿命,这要求整个路面结构具有足够的强度和抗变形能力;事实上,迄今为止所有的设计方法都是围绕着耐久性这个核心而提出的。平整性是为了保证行驶舒适性;对高等级公路,由于行车速度快,保证平整度尤为必要。要做到路面长期平整,就必须有正确的厚度设计、正确的材料设计和正确的施工方法。抗滑是为了保证行驶安全性的要求,传统上不属于路面结构设计的内容,主要通过表层材料的选择和材料的设计予以保证。路面设计应遵守下列原则: 1)路面设计应认真做好现场的资料收集、掌握沿线路基特点,在查明不良地质路段的基础上,密切结合当地实践经验,采取必要的路基处理措施,进行路基路面综合设计。 2)在满足交通量和使用要求的前提下,应遵循因地制宜、合理选材、节约投资的原则,进行路面设计方案的技术经济比较,选择技术先进、经济合理、安全可靠、方便施工的路面结构方案。 3)结合当地条件,在路面设计方案中应积极地、慎重地推广新材料、新工艺、新技术,并认真铺筑试验段,总结经验,不断完善,逐步推广。 4)路面设计方案应符合国家环境保护的有关规定,注意施工中废弃料的处理,积极推动旧沥青面层、破碎水泥砼板和旧基层材料的再生利用,以及保护施工人员的健康和安全。 沥青路面是在柔性基层、半刚性基层上,铺筑一定厚度的沥青混合料作面层的路面结构。沥青路面设计的任务是根据使用要求及气候、水文、土质等自然条件,密切结合当地实践经验,设计确定经济合理的路面结构,使之能承受交通荷载和环境因素的作用,在预定的使用期限满足各级公路相应的承载能力、耐久性、舒适性、安全性的要求。路面设计应包括原材料的选择、混合料配合比设计和设计参数的测试与确定,路面结构层组合与厚度计算,以及路面结构的方案比选等内容。路面设计除行车道部分的路面外,对高速公路、一级公路还应包括路缘带、硬路肩、加减速车道、紧急停车带、收费站和服务区的场面设计以及路面排水系统的设计,对其它各级公路应包括路肩加固、路缘石和路面排水设计。 §3.1 路面结构的破坏状态和设计标准 3.1.1 路面结构的损坏模式 路面破坏的形式是多种多样的,常见的有沉陷、弹软、横裂(收缩破裂)、纵裂、龟裂、车辙、隆起、推移、波浪、老化开裂、磨耗、松散、泛油以及目前出现的一些新的损坏类型,过多的路面损坏意味着路面寿命的终结;限制、延迟这些损坏的发生和发展是路面设计的主要任务。路面破坏原因也是多方面的。从外因来说,有行车因素和自然因素两方面,前者包括车辆荷载及其重复性;后者包括水分、气温、冰冻等。从内因来说,主要是路面材料的物理力学性质。 就路面的破坏类型来看,大致可分为两类。第一类是早期破坏,这是指路面在尚未达到使用年限之前发生的破坏,这类破坏往往在车辆荷载作用次数很少情况下就出现,它与荷载的重复性几乎无关。破坏的原因一是在荷载作用下,路面或土基中产生的应力超过了材料的强度;二是与荷载无关的,环境变化引起的路面应力大于材料的强度。第二类是晚期破坏,属于此类的有疲劳破坏和车辙等。这类破坏是在应力不超过材料极限强度(指一次荷载下的强度)的情况下发生的,因此与荷载的重复性有关;因路面基本达到了设计寿命,应该说是属于正常破坏。而第一类破坏,是路面设计时应主要考虑的因素,必须采用相应的控制指标,采取必要的技术措施加以预防。 分析路面的破坏现象必须全面地综合考虑各项因素,透过外观现象查明破坏的主要原因及发生的部位,从而找出防止的措施。实践证明,在形式多样的路面破坏现象中,有几种是基本的,它们各自的形成原因有性质上的区别,其他一些破坏现象则是这些基本形式的复合形态或发展了的形态。

相关主题
文本预览
相关文档 最新文档