当前位置:文档之家› MDI论文:MDI基聚氨酯材料的制备及性能研究

MDI论文:MDI基聚氨酯材料的制备及性能研究

MDI论文:MDI基聚氨酯材料的制备及性能研究
MDI论文:MDI基聚氨酯材料的制备及性能研究

MDI论文:MDI基聚氨酯材料的制备及性能研究

【中文摘要】随着社会经济的发展和人们环保意识的提高,各国开始限制聚氨酯制品中VOC或HAP的含量,溶剂的挥发和残留会对施工人员和消费者的健康构成严重的威胁,溶剂型聚氨酯材料的使用受到了一定程度的约束,如在家装、纺织服装业等。与此同时,水性聚氨酯、无溶剂型聚氨酯、聚氨酯基纳米复合材料等作为新材料正逐步进入人们的视野。在聚氨酯材料领域中主要有脂肪族型和芳香族两大类,由脂肪族异氰酸酯制备的聚氨酯材料具有耐黄变、柔韧性较好,但强度、耐磨性能不如芳香族的。4,4’-二苯基甲烷二异氰酸酯(MDI)以其分子量大、饱和蒸汽压低、毒性低、价格低廉,而且MDI对称的分子结构使采用MDI制备的水性聚氨酯漆膜强度、耐磨性及弹性优于TDI,而且干燥迅速,市场前景广阔。本文第一章以MDI基聚氨酯材料为主线,分别介绍了水性聚氨酯及其功能改性的研究进展以及在防水透湿纺织涂层胶方面的应用情况,另外又介绍了聚氨酯基纳米复合材料的研究进展,改性机理和以后的发展趋势;然后分别介绍了MDI基水性和溶剂型聚氨酯材料的研究现状、制备方法以及工业应用情况。本文第二章以MDI、聚醚二元醇、二羟甲基丙酸(DMPA)等为主要原料合成了稳定的水性聚氨酯(WPU)乳液。通过FT-IR分析、粒度分析、拉伸试验、差示扫描量热仪分析(DSC)、热重分析(TGA)和吸水率等测试,再对水性聚氨酯胶膜的力学性能、耐热性能及耐水性能等进行研究,通过透射电镜(TEM)对刚制备和放置一年后的水性聚氨酯乳液进

行微观形貌对比分析,考察了不同类型的聚醚二醇、扩链剂和交联剂等对水性聚氨酯性能的影响。研究结果表明:当用MDI、1,4-BDO、含4.0wt%的DMPA等作为硬段时,用N220作为软段合成的WPU,乳液稳定性好,胶膜吸水率低,断裂伸长率大,手感柔软、不粘且丰满;用PTMG 作为软段制备的WPU的氢键化程度、结晶度和耐热性较好。本文第三章用有机硅对MDI基水性聚氨酯进行了改性,通过接枝共聚合成了单组分有机硅改性的水性聚氨酯乳液。用红外、核磁表征了水性聚氨酯的结构,核磁表明,有机硅已接到聚氨酯主链上;热分析表明,有机硅的加入降低了聚合物软段的玻璃化转变温度,提高了硬段的玻璃化温度和微观相分离,软段与硬段的相分离更加完善,而且还提高了聚合物在低温区域的耐热性;透射电镜表明,有机硅的加入在一定程度上影响了乳液的微观结构,有机硅在聚氨酯链段中呈梳状,随着疏水有机硅结构的引入,有机硅向表面迁移,虽然分散作用减弱导致乳胶粒径增大,但并不使胶粒结构发生明显的改变,仍能保持球形结构。通过对比几种有机硅改性剂对MDI基水性聚氨酯乳液的影响,并将制备的改性水性聚氨酯乳液外加其他助剂复配成水性织物涂层胶,应用于织物涂层整理,对其防水透湿的性能作了研究。该涂层胶兼有防水和透湿的功能,达到有机统一,能有效的弥补织物在这方面的不足。本文第四章用原位插层聚合法合成了一种有机改性高岭土-聚氨酯纳米复合材料。首先制备了有机插层改性的纳米高岭土,将它作为复合材料中的填料;然后用聚醚插层替代小分子有机溶剂制备聚醚-纳米高岭土复合物,最后加入异氰酸酯制得聚氨酯基纳米复合材料。通过FT-IR

光谱分析、XRD衍射分析、热稳定性能分析、BET分析、SEM电镜分析、拉伸实验等测试分析,研究了纳米高岭土的改性效果和聚氨酯纳米复合材料的力学性能、耐热性等性能,以及纳米高岭土在聚氨酯基体中的分布情况。结果表明,纳米高岭土的改性用超声插层法处理的效果较好;改性纳米高岭土的加入量为3%时,纳米高岭土以剥离形态嵌入到聚氨酯基体中,使PUE软硬段相分离程度增加,使材料增强增韧;加入量较多时,则开始出现片层形态且有团聚现象。

【英文摘要】With the development of economy and society, raising the environmental protection, the content of VOC or HAP in polyurethane products was restricted to using in several countries. The volatilization and vestigital of solvent were harmful for constructor and consumer. The traditional solvent-borne polyurethane materials were forbidden in some industries, for example, family decoration, textiles and clothing, and so on, waterborne polyurethane, non-solvent polyurethane and polyurethane-based nanocomposite as new materials were progressively know by people.There are two categories of aliphatic and aromatic in the field of polyurethane materials at present. The polyurethane materials which are synthesized by aliphatic isocyanates show

anti-yellowing and good flexibility characteristics, being poor intensity and abrasion resistance than the aromatic. The

polyurethane film is superior to TDI in the strength, abrasion resistance and flexibility where the polyurethane film are synthesized by 4,4-diphenyl methane diisocyanate (MDI), which is symmetrical in structure and exhibits the large molecular weight, saturated vapor pressure, low toxicity characteristics and lower price. In addition, the polyurethane film can be dried quickly, suggesting that it has broad market prospects.In the first chapter, MDI based polyurethane materials will be used as the main line, introducing about the progress of study on the polyurethane and their functional modification with the application of waterproof and breathable textile of the coating adhesive respectively. Further, we also introduced the progress of polyurethane nanocomposites, modification mechanism and the tendency of the future development. Then we introduced the current research of MDI water-based and solvent polyurethane materials, preparation and the industrial application respectively.In the second chapter, stable waterborne polyurethane (WPU) emulsion was synthesized from MDI, polyether diol, dimethylolpropionic acid (DMPA), and so on. The properties of WPU were characterized by FT-IR, particle size analysis, tensile testing, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and water

absorption test. Then the emulsion microstructure of latest and one year later was researched by transmission electron microscope (TEM). The influences of types of polyether diol, chain extenders, hydrophilic chain extenders, and

cross-linkers on the mechanical property, thermodynamic property, and water resistance of the prepared WPU dispersion were discussed. From the results, it can be concluded that when use MDI,1,4-BDO,4.0 wt% DMPA as the hard segment, the WPU emulsion, which used N220 as the soft segment, has a well stability, and the film has a lot of excellent feature, such as low water absorption, big elongation at break, very soft, non-stick and fullness; which used PTMG as the soft segment, the degree of hydrogen bonding, crystallinity and heat resistance of WPU were better than others.In the third chapter, silicone was used to modify MDI based WPU, and mono-component silicone modified WPU emulsion was synthesized through graft copolymerization. The polyurethane was characterized by HNMR and IR. The results of HNMR suggested that silicone has been received on the main chain of polyurethane while the thermal analysis demonstrated that the glass transition temperature of the polymer soft segment is reduced by adding silicone and increased in the glass transition temperature of the polymer

hard segment, improving the micro-phase separation which perfected the separation of soft segment and hard segment and enhancing the heat of the polymer at low temperature region. The TEM indicated that the microstructure of the emulsion would be changed by adding silicone to some extent, where silicone was comb in polyurethane chains and silicone moved to the surface with the insertion of the hydrophobic silicon. The colloidal particles didn’t transform obviously and maintained the spherical structure although the reduction of the dispersion will lead to the increase in the size of latex particle. By comparing effects that several silicone modifier acted on MDI polyurethane emulsion, other additives dubbed to water-based fabric coating adhesive were added to the polyurethane emulsion which had been synthesized and modified and then they were applied to the fabric coating, investigating the properties of waterproof and moisture penetration. The plastic coating shows the properties of both waterproof and moisture penetration which could offset effectively the insufficient of the textiles in this field.In the fourth chapter, a novel polyurethane/organic modified kaolinite nanocomposite was prepared by in-situ intercalative

step-polyconsendition. First, nanokaolin as composite

stuffing, which was intercalatived by oganic solvent, and then the micromolecule organic solvent was replaced by polyether to prepared polyether-nanokaolin complex, polyurethane nanocomposite was synthesized by the complex and isocyanate in the end. The modification result of nanokaolin, mechanical properties, heat resistance of nano-composite and the dispersion state of nano-filler in the composites were investigated, which was by FT-IR spectrum analysis, XRD, thermal stability, BET, SEM, tensile test, and so on. The results revealed that the intercalation rate of sonochemistry method was better, and when the content of modified nano-kaolin was 3 wt%, the composite has excellent properties. And the morphology of kaolinite was exfoliated in polyurethane matrix when the content of modified nano-kaolin was lower than 3 wt%, or else, the lamellar and agglomeration of nano-kaolin began to appear.

【关键词】MDI 聚氨酯水性聚氨酯有机硅纳米复合材料

【英文关键词】MDI polyurethane waterborne polyurethane siloxane nanocomposite

【目录】MDI基聚氨酯材料的制备及性能研究摘要

3-5Abstract5-7第一章文献综述10-25 1.1 水性聚氨酯及其功能改性研究进展10-13 1.1.1 共混改性

10-11 1.1.2 共聚改性11-12 1.1.3 互穿聚合物网络技术12-13 1.2 MDI型水性聚氨酯的研究进展

13-15 1.2.1 MDI型水性聚氨酯的研究13-14 1.2.2 MDI 型双组份水性聚氨酯的研究14 1.2.3 MDI型水性聚氨酯的改性研究14-15 1.3 水性聚氨酯在防水透湿纺织涂层胶中的研究进展15-16 1.3.1 织物防水透湿概述15 1.3.2 水性聚氨酯防水透湿作用机理15-16 1.3.2.1 微孔法

15-16 1.3.2.2 无孔法16 1.3.3 水性聚氨酯防水透湿涂层胶的研究进展16 1.4 聚氨酯基纳米复合材料的研究进展16-20 1.4.1 纳米粒子对聚氨酯的改性作用机理

17 1.4.2 聚氨酯基纳米复合材料的制备方法

17-18 1.4.3 聚氨酯/层状硅酸盐纳米复合材料的研究

18-19 1.4.4 聚氨酯/无机刚性粒子纳米复合材料的研究

19-20 1.5 本课题的研究内容和意义20参考文献

20-25第二章 MDI基聚醚型水性聚氨酯结构及性能的研究

25-38 2.1 前言25 2.2 实验部分25-29 2.2.1 实验原料25-26 2.2.2 实验仪器26 2.2.3 化学反应示意图26-27 2.2.4 实验方法27 2.2.5 乳液及胶膜性能测试分析27-29 2.3 结果与讨论29-36 2.3.1 聚合物红外光谱分析29-30 2.3.2 聚醚软段类型对乳液外观及稳定性的影响30 2.3.3 聚醚软段类型对力学性能的影响

30-31 2.3.4 聚醚软段类型对吸水率的影响

31-32 2.3.5 软段类型对耐热性能的影响32-33 2.3.6 异氰酸酯硬段类型对水性聚氨酯的影响33-34 2.3.7 亲水基团DMPA含量对水性聚氨酯的影响34-35 2.3.8 扩链剂类型对水性聚氨酯的影响35-36 2.3.9 水性聚氨酯乳液的电镜分析36 2.4 本章小结36-37参考文献37-38第三章有机硅改性MDI型水性聚氨酯织物涂层胶的研究38-52 3.1 前言38 3.2 实验部分38-42 3.2.1 实验原料

38-39 3.2.2 实验仪器39 3.2.3 实验方法

39-40 3.2.4 SWPU的化学反应(以AEAPS为

例)40-41 3.2.5 分析测试41-42 3.3 结果与讨论

42-50 3.3.1 聚合物结构分析42-44 3.3.1.1 IR图谱分析42-43 3.3.1.2 ~1H-NMR图谱分析43-44 3.3.2 有机硅种类对WPU的热性能的影响44-45 3.3.3 对乳液性能的影响45-46 3.3.4 对胶膜力学性能的影响46-47 3.3.5 对胶膜吸水率和水接触角的影响47-48 3.3.6 改性前后的透射电镜图分析48 3.3.7 对基布耐水压和透湿量的影响

48-50 3.4 本章小结50参考文献50-52第四章聚氨酯基纳米复合材料的制备与表征52-69 4.1 改性纳米高岭土的制备及其表征52-59 4.1.1 前言52 4.1.2 实验部分52-53 4.1.2.1 实验原料52 4.1.2.2 主要设备及仪器52-53 4.1.2.3 实验方法53 4.1.2.4 样品表征

53 4.1.3 结果与讨论53-59 4.1.3.1 FT-IR光谱分析

53-55 4.1.3.2 XRD衍射分析55-56 4.1.3.3 热稳定性能分析56-57 4.1.3.4 BET分析57-58 4.1.3.5 SEM电镜分析58-59 4.2 有机改性高岭土/聚氨酯纳米复合材料的制备与表征59-66 4.2.1 前言59-60 4.2.2 实验部分

60-61 4.2.2.1 实验原料60 4.2.2.2 样品制备

60 4.2.2.3 性能测试60-61 4.2.2.4 聚氨酯层状硅酸盐纳米复合材料结构图61 4.2.3 结果与讨论

61-66 4.2.3.1 红外光谱分析61-62 4.2.3.2 X射线衍射图谱分析62-63 4.2.3.3 改性纳米高岭土含量对复合材料力学性能的影响63-64 4.2.3.4 热分析64-65 4.2.3.5 试样扫面电镜分析65-66 4.3 本章小结66参考文献

66-69第五章结论69-71致谢71-72攻读硕士期间发表的论文和申请的专利

72

聚氨酯介绍

介绍 1、硬质聚氨酯导热系数低,热工性能好。当硬质聚氨酯密度为35~40kg/m3时,导热系数仅为0.018~0.024w/(m.k),约相当于EPS的一半,是目前所有保温材料中导热系数最低的。 2、硬质聚氨酯具有防潮、防水性能。硬质聚氨酯的闭孔率在90%以上,属于憎水性材料,不会因吸潮增大导热系数,墙面也不会渗水。 3、硬质聚氨酯防火,阻燃,耐高温。聚氨酯在添加阻燃剂后,是一种难燃的自熄性材料,它的软化点可达到250摄氏度以上,仅在较高温度时才会出现分解:另外,聚氨酯在燃烧时会在其泡沫表面形成积碳,这层积碳有助隔离下面的泡沫。能有效地防止火焰蔓延。而且,聚氨酯在高温下也不产生有害气体。 4、由于聚氨酯板材具有优良的隔热性能,在达到同样保温要求下,可使减少建筑物外围护结构厚度,从而增加室内使用面积。 5、抗变形能力强,不易开裂,饰面稳定、安全。 6、聚氨酯材料孔隙率结构稳定,基本上是闭孔结构,不仅保温性能优良,而且抗冻融、吸声性也好。硬泡聚氨酯保温构造的平均寿命,在正常使用与维修的条件下,能达到30年以上。能够做到在结构的寿命期正常使用条件下,在干燥、潮湿或电化腐蚀,以及由于昆虫、真菌或藻类生长或者由于啮齿动物的破坏等外因影响,都不会受到破坏。 7、综合性价比高。虽然硬质聚氨酯泡沫材的单价比其它传统保温材料的单价高,但增加的费用将会由供暖和制冷费用的大幅度减少而抵消。 产品用途 本公司生产的硬质聚氨酯保温大板材可广泛用于彩钢夹芯板、中央空调、建筑墙体材料、冷库、冷藏室、保温箱、化工罐体等领域。 特点 ●规格品种多,容重范围:(40—60kg/m3);长度范围:(0.5米—4米);宽度范围:(0.5米—1.2米);厚度范围:(20毫米—200毫米)。 ●切割精度高,厚度误差±0.5mm,从而保证了制成品表面的平整度。 ●泡沫细密,泡孔均匀。 ●容重轻,可以减少制成品的自重量,比传统的产品低30—60%。 ●抗压强度大,可以承受在制造成品过程中的巨大压力。 ●方便质量的检验,由于在切割过程中去掉了四周的表皮,板材的质量一目了然,保证了制成品的保温效果。厚度可按用户要求生产加工。 规格 硬质聚氨酯泡沫泡块(本公司提供不同密度的泡块,用来加工制作各种型材) 品种聚氨酯泡沫泡块(单位mm) 规格4000×1200×1000 2000×1200×1000 硬质聚氨酯泡沫大板材 品种聚氨酯大板材 密度40-60kg/m 规格长度:4000-500mm

聚氨酯材料

聚氨基甲酸酯 百科名片 聚氨基甲酸酯 聚氨酯全称为聚氨基甲酸酯,是主链上含有重复氨基甲酸酯基团的大分子化合物的统称。它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物加聚而成。 目录 聚氨基甲酸酯 聚氨酯涂层剂 行业发展 施工工艺 用作鲨鱼皮泳衣 相关新闻 展开 编辑本段聚氨基甲酸酯 基本信息 中文名:聚氨基甲酸酯;聚氨酯 聚氨基甲酸酯 拼音:jù ān jī jiǎ suān zhǐ 前言聚氨酯全称为聚氨基甲酸酯,是主链上含有重复氨基甲酸酯基团(NHCOO)的大分子化合物的统称。它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基

化合物加聚而成。聚氨酯大分子中除了氨基甲酸酯外,还可含有醚、酯、脲、缩二脲,脲基甲酸酯等基团。聚氨酯的结构 英文名:polyurethane 研发历史 聚氨酯(简称TPU)是由多异氰酸酯和聚醚多元醇或聚酯多元醇或/及小分子多元醇、多元胺或水等扩链剂或交联剂等原料制成的聚合物。通过改变原料种类及组成,可以大幅度地改变产品形态及其性能,得到从柔软到坚硬的最终产品。聚氨酯制品形态有软质、半硬质及硬质泡沫塑料、弹性体、油漆涂料、胶粘剂、密封胶、合成革涂层树脂、弹性纤维等,广泛应用于汽车制造、冰箱制造、交通运输、土木建筑、鞋类、合成革、织物、机电、石油化工、矿山机械、航空、医疗、农业等许多领域。 1937年德国Otto Bayer教授首先发现多异氰酸酯与多元醇化合物进行加聚反应可制得聚氨酯,并以此为基础进入工业化应用,英美等国1945~1947年从德国获得聚氨酯树脂的制造技术于1950年相继开始工业化。日本1955年从德国Bayer公司及美国DuPont公司引进聚氨酯工业化生产技术。20世纪50年代末我国聚氨酯工业开始起步,近lO多年发展较快。 制备来源 由二元或多元异氰酸酯与二元或多元羟基化合物作用而成的高分 聚氨基甲酸酯 子化合物。 聚氨基甲酸酯,是分子结构中含有—NHCOO—单元的高分子化合物,该单元由异氰酸基和羟基反应而成,反应式如下: —N=C=O + HOˉ → —NH-COOˉ 聚氨酯的发现:20世纪30年代,德国Otto Bayer 首先合成了TPU。在1950年前后,TPU作为纺织整理剂在欧洲出现,但大多为溶剂型产品用于干式涂层整理。20世纪60年代,由于人们环保意识的增强和政府环保法规的出台,水系TPU涂层应运而生。70年代以后,水系PU涂层迅速发展,PU涂层织物已广泛应用。80年代以来,TPU的研究和应用技术出现了突破性进展。与国外相比,国内关于PU纺织品整理剂的研究较晚。 主要用途

粉末冶金技术论文..

粉末冶金技术 摘要:粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。粉末冶金材料是指用几种金属粉末或金属与非金属粉末作原料,通过配料、压制成形、烧结等工艺过程而制成的材料。这种工艺过程成为粉末冶金法,是一种不同于熔炼和铸造的方法。其生产过程与陶瓷制品相类似,所以又称金属陶瓷法。粉末冶金法不仅是制取具有某些特殊性能材料的方法,也是一种无切削或少切削的加工方法。它具有生产率高、材料利用率高、节省机床和生产占地面积等优点。但金属粉末和模具费用高,制品大小和形状受到一定限制,制品的韧性较差。粉末冶金法常用于制作硬质合金、减摩材料、结构材料、摩擦材料、难熔金属材料、过滤材料、金属陶瓷、无偏析高速工具钢、磁性材料、耐热材料等。 关键词:粉末冶金、基本工序、应用、发展方向、问题及机遇 Powder metallurgy technology (11 grade material class two) Abstract:Powder metallurgy is used for preparing metal or metal powder (or metal powder and metal powder mixture) as raw material, after forming and sintering, manufacture of metal materials, composite and various types of products technology.Powder metallurgy method and the production of ceramic have similar place, therefore, a series of new powder metallurgy technologies can also be used for preparing ceramic material. Powder metallurgy materials refers to the use of several kinds of metal powder or metal and non metal powder as raw material, through mixing, pressing, sintering process and made of materials.The process to become powder metallurgy method, is different from the melting and casting method.Its production process and ceramic products are similar, so called ceramic metal.Powder metallurgy method not only has some special properties of material preparation method, is also a kind of without cutting or less cutting processing method. It has high productivity, high material utilization rate, saving machine tools and production area etc..But the metal powder and high mold cost, product size and shape are subject to certain restrictions, flexibility is poor.Powder metallurgy method often used for the production of hard alloy, antifriction material, structural material, friction material, refractory metal materials, filter materials, metal ceramic, no segregation in high speed tool steel, magnetic materials, heat resistant materials. Key words:powder metallurgy, basic process, application, development trend, problems and opportunities

聚氨酯结构与性能的相关性

聚氨酯结构与性能的相关性 聚氨酯(简称TPU)是由多异氰酸酯和聚醚多元醇或聚酯多元醇或/及小分子多元醇、多元胺或水等扩链剂或交联剂等原料制成的聚合物。通过改变原料种类及组成,可以大幅度地改变产品形态及其性能,得到从柔软到坚硬的最终产品。聚氨酯制品形态有软质、半硬质及硬质泡沫塑料、弹性体、油漆涂料、胶粘剂、密封胶、合成革涂层树脂、弹性纤维等,广泛应用于汽车制造、冰箱制造、交通运输、土木建筑、鞋类、合成革、织物、机电、石油化工、矿山机械、航空、医疗、农业等许多领域。根据所用原料的不同,可有不同性质的产品,一般为聚酯型和聚醚型两类。可用于制造塑料、橡胶、纤维、硬质和软质泡沫塑料、胶粘剂和涂料等。 聚氨酯由长链段原料与短链段原料聚合而成,是一种嵌段聚合物。一般长链二元醇构成软段,而硬段则是由多异氰酸酯和扩链剂构成。软段和硬段种类影响着材料的软硬程度、强度等性能。 软段对性能的影响 聚醚、聚酯等低聚物多元醇组成软段。软段在聚氨酯中占大部分,不同的低聚物多元醇与二异氰酸酯制备的聚氨酯性能各不相同。 极性强的聚酯作软段得到的聚氨酯弹性体及泡沫的力学性能较好。因为,聚酯制成的聚氨酯含极性大的酯基,这种聚氨酯内部不仅硬段间能够形成氢键,而且软段上的极性基团也能部分地与硬段上的极性基团形成氢键,使硬相能更均匀地分布于软相中,起到弹性交联点的作用。在室温下某些聚酯可形成软段结晶,影响聚氨酯的性能。聚酯型聚氨酯的强度、耐油性、热氧化稳定性比PPG聚醚型的高,但耐水解性能比聚醚型的差。聚四氢呋喃(PTMEG)型聚氨酯,由于PTME G规整结构,易形成结晶,强度与聚酯型的不相上下。一般来说,聚醚型聚氨酯,由于软段的醚基较易旋转,具有较好的柔顺性,优越的低温性能,并且聚醚中不存在相对易于水解的酯基,其耐水解性比聚醚型好。聚醚软段的醚键的α碳容易被氧化,形成过氧化物自由基,产生一系列的氧化降解反应。以聚丁二烯为软

先进制造技术论文

先进制造技术论文 学院:xxx 班级:xxx 姓名:xxx 学号:xxx 目录 ? ? ? ? ? ? ? 概述 摘要:随着我国制造业的的不断发展,先进制造技术得到越来越广泛的应用。介绍了先进制造技术和先进制造模式的内容和发展情况,从两种角度解释其结构特征和关系,并从各种不同角度展望先进制造技术和先进生产模式的发展前景及其趋势特征。 先进制造技术AMT(AdvancedManufacturingTecnology)是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。 当前的金融危机也许还会催生新的先进制造制造技术,特别在生产管理技术方面。先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。 可基本归纳为以下五个方面:

一、先进的工程设计技术 二、先进制造工艺技术 三、制造自动化技术 四、先进生产管理技术、制造哲理与生产模式 五、发展。 一、先进的工程设计技术 先进的工程设计技术包括众多的现代设计理论与方法。包括CAD、CAE、CAPP、CAT、PDM、模块化设计、DFX、优化设计、三次设计与健壮设计、创新设计、反向工程、协同产品商务、虚拟现实技术、虚拟样机技术、并行工程等。 (1)产品(投放市场的产品和制造产品的工艺装备(夹具、刀具、量检具等))设计现代化。以CAD为基础(造型,工程分析计算、自动绘图并提供产品数字化信息等),全面应用先进的设计方法和理念。如虚拟设计、优化设计、模块化设计、有限元分析,动态设计、人机工程设计、美学设计、绿色设计等等; (2)先进的工艺规程设计技术与生产技术准备手段。在信息集成环境下,采用计算机辅助工艺规程设计、即CAPP,数控机床、工业机器人、三坐标测量机等各种计算机自动控制设备设备的计算机辅助工作程序设计即CAM等。 二、先进制造工艺技术 (1)高效精密、超精密加工技术,包括精密、超精密磨削、车削,细微加工技术,纳米加工技术。超高速切削。精密加工一般指加工精度在10~μm(相当于IT5级精度和IT5级以上精度),表面粗糙度Ra值在μm以下的加工方法,如金刚车、金刚镗、研磨、珩磨、超精研、砂带磨、镜面磨削和冷压加工等。用于精密机床、精密测量仪器等制造业中的关键零件加工,如精密丝杠、精密齿轮、精密蜗轮、精密导轨、精密滚动轴承等,在当前制造工业中占有极重要的地位。 超精密加工是指被加工零件的尺寸公差为~μm数量级,表面粗糙度Ra值为μm 数量级的加工方法。此外,精密加工与特种加工一般都是计算机控制的自动化加工。 (2)精密成型制造技术,包括高效、精密、洁净铸造、锻造、冲压、焊接及热处理与表面处理技术。 (3)现代特种加工技术,包括高能束流(主要是激光束、以及电子束、离子束等)加工,电解加工与电火花(成型与线切割)加工、超声波加工、高压水加工等。电火花加工(Electricaldischargemachining(EDM)电火花加工electricsparkmachining)是指在一定介质中,通过工具电极和工件电极之间脉冲放电的电蚀作用对工件进行的加工。能对任何导电材料加工而不受被加工材料强度和硬度的限制。可分为电火花成型加工(EDM)和电火花线切割加工(电火花线切割加工electricaldischargewire–cutting--EDW) 两大类。一般都采用CNC控制。 (4)快速成型制造(RPM).快速成形技术是在计算机控制下,基于离散堆积原理采用不同方法堆积材料最终完成零件的成型与制造的技术。从成型角度看,零件可视为“点”或“面”的叠加而成。从CAD电子模型中离散得到点、面的几何信息,再与成型工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。 (5)先进制造工艺发展趋势 1)采用模拟技术,优化工艺设计; 2)成形精度向近无余量方向发展; 3)成形质量向近无“缺陷”方向发展; 4)机械加工向超精密、超高速方向发展; 5)采用新型能源及复合加工,解决新型材料的加工和表面改性难题; 6)采用自动化技术,实现工艺过程的优化控制;

纳米材料及其关键技术论文

纳米材料及其关键技术 课程名称机械制造技术基础 学院机械工程学院年级2011级专业班机自01班学生姓名陈庆学号20112352 开课时间2013至2014学年第1学期

【摘要】纳米技术是当今世界最优前途的决定性技术。文章简要的概述了纳米材料主要效应、特征和特性已经纳米技术的应用前景 【关键词】纳米技术;纳米材料;效应;特征;特性;应用;前景 一、纳米材料主要效应、特征和特性 (一)纳米材料的效应纳米材料与同质块体材料性质上有很大的差异,引起这种差异的原因可能是多方面的,甚至有些原因至今尚不清楚,但目前学术界普遍认为,纳米材料特殊的物理化学性质与纳米材料四大效应有着密切联系。表面效应:当颗粒的直径减小到纳米尺度范围时,随着粒径减小,比表面积和表面原子数迅速增加。量子尺寸效应:当金属或半导体从三维减小至零维时,载流子在各个方向上均受限,随着粒子尺寸下降到接近或小于某一值(激子玻尔半径)时,费米能级附近的电子能级由准连续能级变为分立能级的现象称为量子尺寸效应。金属或半导体纳米微粒的电子态由体相材料的连续能带过渡到分立结构的能级,表现在光学吸收谱上从没有结构的宽吸收过渡到具有结构的特征吸收。量子尺寸效应带来的能级改变、能隙变宽,使微粒的发射能量增加,光学吸收向短波长方向移动,直观上表现为样品颜色的变化,如CdS微粒由黄色逐渐变为浅黄色,金的微粒失去金属光泽而变为黑色等。同时,纳米微粒也由于能级改变而产生大的光学三阶非线性响应,还原及氧化能力增强,从而具有更优异的光电催化活性。小尺寸效应:当物质的体积减小时,将会出现两种情形:一种是物质本身的性质不发生变化,而只有那些与体积密切相关的性质发生变化,如半导体电子自由程变小,磁体的磁区变小等;另一种是物质本身的性质也发生了变化,当纳米材料的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,材料的磁性、内压、光吸收、热阻、化学活性、催化活性及熔点等与普通晶粒相比都有很大的变化,这就是纳米材料的体积效应,亦即小尺寸效应。这种特异效应为纳米材料的应用开拓了广阔的新领域,例如,随着纳米材料粒径的变小,其熔点不断降低,烧结温度也显著下降,从而为粉末冶金工业提供了新工艺;利用等离子共振频移随晶粒尺寸变化的性质,可通过改变晶粒尺寸来控制吸收边的位移,从而制造出具有一定频宽的微波吸收纳米材料。宏观量子隧道效应:微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如:微粒的磁化强度、量子相干器件中的磁通量以及电荷等也具有隧道效应,它们可以穿越宏观系统中的势垒并产生变化,称为宏观量子隧道效应[8].利用这个概念可以定性解释超细镍粉在低温下继续保持超顺磁性。Awachalsom等人采用扫描隧道显微镜技术控制磁性粒子的沉淀,并研究低温条件下微粒磁化率对频率的依赖性,证实了低温下确实存在磁的宏观量子隧道效应[9]宏观量子隧道效应的研究对基础研究和实际应用都有重要的意义。它限定了磁带、磁盘进行信息存储的时间极限。宏观量子隧道效应与量子尺寸效应,是未来微电子器件的基础,或者说确立了现有微电子器纳米材料研究与纳米技术的应用件进一步微型化的极限。库仑堵塞与量子隧穿:当体系的尺度进入到纳米级(一般金属粒子为几个纳米,半导体粒子为几十纳米),体系是电荷“量子化”的,即充电和放电过程是不连续的,充入一个电子所需的能量Ec为e2/2C,为一个电子的电荷,为小体系的电容,eC体系越小,C越小,能量Ec越大。我们把这个能量称为库仑堵塞能。换句话说,库仑堵塞能是前一个电子对后一个电子的库仑排斥能,这就导致了对一个小体系的充放电过程,电子不能集体传输,而是一个一个单电子的传输。通常把小体系中这种单电子输运行为称为库仑堵塞效应。如果两个量子点通过一个“结”连接起来,一个量子点上的单个电子穿过能垒到另一个量子点上的行为称作量子隧穿。利用库仑堵塞和量子隧穿效应可以设计下一代的纳米结构器件,如单电子晶体管和量子开关等。以上几种效应都是纳米微粒和纳米固体的基本特性,它使纳米微粒和纳米固体呈现出许多奇特的物理和化学性质,出现一些不同于其它大块材料的反常现象。这使纳米材料具有了

材料先进加工技术

1. 快速凝固 快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。 2. 半固态成型 半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings 教授等首先提出了半固态加工技术,打破了传统的枝晶凝固式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压) 3. 无模成型 为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。 4.超塑性成型技术 超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。 5. 金属粉末材料成型加工 粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。 6. 陶瓷胶态成型 20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。 7. 激光快速成型 激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组

提高聚氨酯耐温性.pdf

提高聚氨酯耐温性 聚氨酯弹性体是以二异氰酸酯和低聚物多元醇为基本原料聚合而成的高分子材料,具有机械性能好、耐磨耗、耐油、耐撕裂、耐化学腐蚀、耐射线辐射、粘接性好等优异性能,但其使用温度一般不超过80℃,100℃以上材料会软化变形,机械性能明显减弱,短期使用温度不超过120℃,严重限制了其广泛应用。因此,许多研究机构及学者对聚氨酯弹性体耐热形变性能进行了研究,并制备了许多耐热性能优良的材料,使其在较高的温度下具有较好的机械性能。但是聚氨酯弹性体结构的复杂性,影响其耐热形变因素很多。作者从低聚物多元醇、异氰酸酯、扩链剂、催化剂、聚合工艺条件、引入分子内基团、加入填料、与纳米材料复合等方面综述了弹性体耐热性的影响因素。 1原料对聚氨酯弹性体耐热性影响 聚氨酯弹性体由软段(低聚物多元醇,主要分为聚酯型、聚醚型和聚烯烃型多元醇等)和硬段(二异氰酸酯和扩链剂)组成。低聚物多元醇的相对分子质量是多分散的,而多异氰酸酯往往是多种异构体的混合物,异构体的存在会破坏硬段的规整性,使得弹性体的耐热性降低。严格控制原料的纯度,降低缩二脲和脲基甲酸酯等热稳定性差的基团的摩尔分数,可以提高弹性体耐热性。 1.1低聚物多元醇 不同结构的低聚物多元醇与相同异氰酸酯反应生成的氨基甲酸酯,其热分解温度相差很大,伯醇最高,叔醇最低,这是由于靠近叔碳原子和季碳原子的键最容易断裂的缘故。由于酯基的热稳定性比较

好,而醚基的碳原子上的氢容易被氧化,所以聚酯型聚氨酯耐热性能比聚醚型聚氨酯好。由聚酯所制备的聚氨酯,聚酯类型的不同对热性能几乎没有太大的影响。对于聚醚型聚氨酯,聚醚的类型对其耐热性能有一定的影响,如由甲苯二异氰酸酯(TDI)、3,3'-二氯-4,4'-二苯基甲烷二胺(MOCA)分别与聚氧化丙烯二醇和聚四氢呋喃醚二醇(PTMG)所制备的聚氨酯,放入121℃环境下老化7天后,二者的拉伸强度存在明显差别,前者室温下拉伸强度保留率为44%,而后者保留率为60%。低聚物多元醇相对分子质量或分子链长对聚氨酯热降解的特征分解温度没有明显的影响,刘凉冰研究了聚酯型和聚醚型聚氨酯的降解机理,并分析了影响其耐热性的因素,得出聚酯型聚氨酯弹性体耐热性能优于聚醚型的结论。 1.2异氰酸酯 硬段是影响聚氨酯弹性体耐热性能的主要结构因素。硬段的刚性、规整性、对称性越好,其弹性体的热稳定性亦越高。硬段质量分数增加,形成较多的硬段有序结构和次晶结构,使两相发生逆转,硬段相成为连续相,软段分散在硬段相中,从而提高了高温下弹性体的拉伸强度和耐热性。从分子结构上看,二苯基甲烷二异氰酸酯(MDl)与TDI分子结构类似,均含有NCO基和苯环结构,但是由于结构简洁性、刚性、规整度和对称性较弱,导致其弹性体的微相分离程度不够,制得的弹性体热稳定性均一般。一般情况下,异氰酸酯纯度越高,异构体越少,生成的聚氨酯弹性体规整度、对称性越高,耐热性越好。结构规整的异氰酸酯形成的硬链段极易聚集,提高了微相分离程度,

材料科学与工程前沿中期论文

稀土材料 姓名:牛刚学号:S2******* 稀土被称为工业“味精”,在材料的结构与功能改性方面具有非常重要的意义。稀土元素的4f轨道电子数目是稀土元素之间最明显的差异,正是4f轨道电子数目的差异引发了稀土材料之间的性能差异。纳米材料由于具有表面效应、小尺寸效应和宏观量子隧道效应等具有与其他材料完全不同的许多优良性能。 我国稀土产品主要应用于冶金机械、石油化工和玻璃陶瓷等传统领域,但功能材料在高新技术产业中的应用近年来备受关注,稀土在磁性材料、储氢材料、发光材料、催化材料等领域的应用增长迅速,其应用份额从1990年的13%增长到了2002年的30%。稀土功能材料在高新技术中的应用从70年代开始进入了高速发展阶段,应用和产业化开发的速度愈来愈快,一般以5年左右的周期出现一个震动世界的新成果,并迅速形成了高新技术产业。 1稀土磁性材料 1.1稀土永磁材料稀土永磁材料经历了3个阶段的发展,20世纪60年代发明了RECo5型第一代稀土永磁材料;70年代出现了RE2Co17型第二代稀土永磁材料,其磁能积有了较大提高,特别是温度稳定性好,但由于主要原料是Sm和Co,成本高,一般用于军工等特殊领域;第三代稀土永磁REFeB发明于80年代,是当今磁能积最高的永磁材料。近年来全世界NdFeB产量年均增长率达到25%,2003年我国NdFeB磁体的产量达到15000t左右,位居世界第一。但我国稀土永磁制备技术和磁体性能方面与国外比较还有不少差距,多数厂家的产品因磁体性能较低、一致性难以满足高档用户的要求,因此价格仅为国际市场的1/3~1/2,经济效益不尽人意。随着烧结NdFeB磁体应用领域的不断扩大,对其性能提出了越来越高的要求。因此,近几年来,国内外掀起了一股研发高性能烧结NdFeB磁体的热潮。西方国家大部分采用快冷厚带工艺制备高性能烧结NdFeB磁体。用该工艺生产的磁体磁能积高,性能稳定。国内许多单位都在加速开发此新工艺,北京有色金属研究总院稀土材料国家工程研究中心在国家科技部十五科技攻关项目的支持下,已经开发出了具有自主知识产权的快冷厚带制备工艺,并与设备厂家合作设计制造了一台300kg甩带炉,试运行效果良好,产品已基本达到国外用户要求,近年内将实现规模化生产。近年来,稀土永磁材料的研发主要集中在以下几个方面:(1)制备工艺和设备的改进; (2)通过掺杂Co,Al和稀土Tb等提高矫顽力和改善温度稳定性;(3)通过纳米双相耦合技术提高永磁材料的性能;(4)稀土永磁薄膜材料和新型稀土永磁材料的开发。 据全国稀土永磁材料协作网预测,“十五”期间我国烧结NdFeB磁体总产量将达到50,000t,销售总额达到150亿元。到2010年中国烧结NdFeB磁体产量将达到7万吨,占全球75%,销售额将达到260亿元。在未来10年内,我国将成为世界稀土永磁材料的制造中心。 1.2磁致伸缩材料磁致伸缩材料是在偏磁场和交变磁场同时作用下,发生同频率的机械形变的一种材料。与压电陶瓷(PZT)和传统的磁致伸缩材料Ni,Co相比,稀土超磁致

先进材料成型技术及理论

华中科技大学博士研究生入学考试 《先进材料成形技术与理论》考试大纲 一、《先进材料成形技术及理论》课程概述 编号:MB11001 学时数:40 学分:2.5 教学方式:讲课30、研讨6、实验参观4 二、教学目的与要求: 材料的种类繁多,其加工方法各异,近年来随同科学技术的发展,新材料、材料加工新技术不断出现。本课程将概述材料的分类及其加工方法的选择;重点介绍液态金属精密成形、金属材料塑性精确成形及金属连接成形等研究与应用领域的新技术、新理论;阐述材料加工中的共性与一体化技术。本课程作为材料加工工程专业的学位课,将使研究生对材料加工的新技术与新理论有个全面的了解,引导研究生在大材料学科领域进行思考与分析,为从事材料加工工程技术的研究与发展奠定基础。 三、课程内容: 第一章材料的分类及其加工方法概述 1.1材料的分类及加工方法概述 1.2材料加工方法的选择(不同材料)及不同加工方法的精度比较(同一种材料) 1.3材料加工中的共性(与一体化)技术 1.4材料加工技术的发展趋势 第二章液态金属精密成形理论及应用 2.1 材料液态成形的范畴及概述 2.2 消失模精密铸造原理及应用(原理、关键技术、应用实例、缺陷与防治) 2.3 Corsworth Process新技术(精密砂型铸造:锆英(砂)树脂砂型、电磁浇注、热法旧砂再生) 2.4 半固态铸造成形原理与技术(流变铸造、触变成形、注射成形) 2.5 铝、镁合金的精确成形技术(金属型铸造、压铸、反重力精密铸造、精密熔模铸造等) 2.6 特殊凝固技术(快速凝固、定向凝固、振动凝固) 2.7 金属零件的数字化铸造(铸件三维造型、工艺模拟及优化、样品铸件快速铸造、工业化生产及 其设计) 2.8 高密度粘土砂紧实机理及其成形技术(高压造型、气冲造型、静压造型) 第三章金属材料塑性精密成形工艺及理论 3.1 金属塑性成形种类与概述 3.2金属材料的超塑性及超塑成形(概念、条件、成形工艺) 3.3 复杂零件精密模锻及复杂管件的精密成形(精密模锻、复杂管件成形) 3.4 板料精密成形(精密冲裁、液压胀形、其它板料精密成型) 3.5 板料数字化成形(点(锤)渐进成形、线渐进(快速)成形、无模(面、液压缸作顶模)成形)

材料化学论文

材料化学论文题高温超导材料研 班级:2009级3班 姓名:梁秋菊 学号:200910140315

高温超导材料研究 摘要:简要介绍了高温超导材料及其发展历史,对超导材料的发展现状和用途进行说明,对目前超导材料的主要研制方法进行了分析。 关键词:超导材料研究进展高温应用 一、高温超导材料的发展历史 高温超导材料一般是指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常可以在廉价的液氮(77K)制冷环境中使用,主要分为两种:钇钡铜氧( YBCO和铋锶钙铜氧(BSCCO)钇钡铜氧一般用于制备超导薄膜,应用在电子、通信等领域;铋锶钙铜氧主要用于线材的制造。 1911年,荷兰莱顿大学的卡末林?昂尼斯意外地发现,将汞冷却到-268.98 ° C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林?昂尼斯称之为超导态,他也因此获得了1913年诺贝尔奖。 1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导状态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973 年,发现了一系列A15型超导体和三元系超导体,如Nb s Sn V s Ga Nb s Ge,其中Nb s Ge超导体的临界转变温度(TJ值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuG g 导体,已高于液氮温度(77K) ,高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCu0,再后来又有人将Ca掺人其中,得到Bis尤aCuOg导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了「系高温超导体,将超导临界温度提高到当时公认的最高记录125&瑞士苏黎世的希林等 发现在HgBaCaCi超导体中,临界转变温度大约为133K,使高温超导临界温度取得新的突破。二、高温超导体的发展现状 目前,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K) 以及2001年1月发现的新型超导体二硼化镁(39 K)。其中最有实用价值的是铋系、钇系(YBCO) 和二硼化镁(MgB2)。氧化物高温超导材料是以铜氧化物为组分的具有钙钛矿层状结构的复杂物质,在正常态它们都是不良导体。同低温超导体相比,高温超导材料具有明显的各向异性,在垂

第一章 工程材料与制造技术简论

第一章工程材料与制造技术简论 本章教学学时:2 本章内容主要是为了拓宽学生的知识面,所涉及内容十分丰富。从横向看,内容包括工程材料、材料成型、机械加工、计算机技术、自动化技术、工业管理等系列知识;从纵向看,内容则包括了材料与制造技术的发展历程和相关学科发展对制造技术的积极渗透。可以说本章是工科低年级同学进入本课程学习,也是进入专业学习的起点。建议同学在学习中能跳出本课程,站在技术和社会发展的高度,理解该课程的基础地位和重要性。 本章教学方式:课堂讲课及学生自学 主要内容: 一、工程材料发展简述 世界各国对材料传统的分类:金属材料、无机非金属材料(陶瓷)、有机高分子材料和复合材料四大类。 这四类工程材料不同历史阶段所具有的相对重要性急发债趋势见图1-1。 图1-1 工程材料发展历史虽时间推移的相对重要性示意图(时间是非线性的) (一)金属材料的发展史 (二)金属材料的发展现状及趋势 1.高纯材料以超高纯铁为例,在高纯状态,纯铁不仅有优异的软磁性能,良

好的耐腐蚀性能,残余电阻率高,而且以高纯铁为基础进行合金研制,预计在高真空容器、极低温材料、核反应堆材料等方面的应用将十分引人注目。 2.高强度及超高强度金属材料超高强度是当代材料科学家为减轻重量、节省资源而追求的设计目标,这在航空、航天、原子能、深海潜艇等领域有极大的需求。提高材料强度,严格讲,一是指提高抵抗塑性变形的能力,二是提高材料抵抗破坏的能力。提高抵抗塑性变形的能力通常叫强化,提高材料抵抗破坏的能力叫韧化,两者同时提高,则称强韧化。通常典型超高强材料包括超高强度钢、高强度铝合金、高强度钛合金等。 3.超易切削钢和超高易切削钢金属材料通常要求机械加工,据统计,切削加工费用大约占总成本的75%。若改成超高易切削钢,实验表明刀具寿命可提高30倍,因此零件成本会大幅度下降,甚至可减少一半。其社会效益和经济效益极其显著。 4.硬质合金与金属陶瓷金属陶瓷最早是为耐磨材料而设计,它是金属材料与陶瓷的复合材料。 5.高温合金与难熔合金 很大程度上 6.纤维增强金属基复合材料该类复合材料的比强度极高,其强度σ c 。目前可供选择的纤维较多,如硼纤维,碳纤维、碳化硅纤取决于增强体纤维强度σ f 维、玻璃纤维、氧化铝纤维等。纤维的选择原则是:比重小,弹性模量E大,强度σ f 高。金属复合材料的发展目标是:制备出各种比强度、比弹性模量高的材料。 7.共晶合金定向凝固材料该材料属新型复合材料,是共晶合金在特殊工艺条件下制备出来的复合材料,其性能特点是在超高温情况下呈现更高强度。它是通过温度梯度定向凝固,使共晶各相在本身的相上连续长大而成的复合材料,这种复合也叫原生复合。共晶合金定向凝固材料可广泛用于涡轮叶片等耐热材料,也可以用于偏光材料。 8.快速冷凝金属非晶及微晶材料快速冷凝技术是本世纪下半叶以来材料制备技术中的重大突破,由此产生了一系列非平衡态的金属合金。快速冷凝可以导致非晶和微晶材料。 典型非晶和微晶金属材料: (1)金属玻璃;(2)金属微晶材料 9.有序金属间化合物金属间化合物是新一代高温结构材料,这类化合物与正常价化合物之间的区别在于,金属间化合物的晶体结构中,其构成元素的原子以整数比构成化合物,不是按照化学价的概念,而是按照金属键或部分共价键结合,由于原子在晶体中作长程有序排列,因而也称有序金属间化合物。 10.纳米金属材料纳米金属是泛指颗粒径小于100纳米(nm)的金属材料,大于100纳米的金属颗粒称为粉末,小于2纳米的金属颗粒则称为原子簇,纳米金属颗粒具有一些明显不同于块状金属和一般粉末金属的属性。

医用聚氨酯材料研究进展

本文由灬抱抱熊贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 ■ PU 技术 医用聚氨酯材料研究进展 ◆ 鲍 俊 杰 ,刘 都 宝 ,黎兵,许戈文 安徽大学化学化工学院 PU 技 术 PU Technology 摘 要 :概述了医用聚氨酯材料的发展背景、医用聚氨酯的性能以及分类。综述了医用 聚氨酯材料在人工心脏、人造血管、矫形绷带、计生用品、医用胶粘剂、医用敷料、人工 皮肤、 药物载体等领域的应用, 同时指出了医用聚氨酯目前存在的问题以及未来的发展前 景。 关 键 词 :聚氨酯,医用,进展。 1 . 医用聚氨酯发展背景 1.1 聚氨酯树脂发展史 聚氨酯是在高分子结构主链上含有许多氨基甲酸酯基 团(- NHCOO -)的聚合物,国际上称为 polyurethane, 我国某些资料译为聚氨基甲酸酯、 聚脲烷等。 按行业习惯, 目前我国将此类聚合物通称为聚氨酯, 其系列产品统称为 聚氨酯树脂, 是合成材料中的重要品种, 它已跃居合成材 [1] 料第六位 。 聚氨酯树脂是一种新型的具有独特性能和多方面用途 的高聚物, 已有70多年的发展历史。 它以二异氰酸酯和多 元醇为基本原料加聚而成, 选择不同数目的官能基团和不 同类型的官能基, 采用不同的合成工艺, 能制备出性能各 异、 表现形式各种各样的聚氨酯产品。 有从十分柔软到极 其坚硬的泡沫塑料, 有耐磨性能优异的弹性橡胶, 有高光 泽性的油漆、 涂料, 也有高回弹性的合成纤维、 抗挠曲性 能优良的合成皮革、 粘结性能优良的胶粘剂以及防水涂料 和灌浆材料等, 逐渐形成了一个品种多样、 性能优异的新 [2] 型合成材料系列 。 72 环 球 聚 氨 酯 网 www .puworld. com 由于这种高聚物具有可发泡性、弹性、耐磨性、粘 接性、耐低温性、耐溶剂性、耐生物老化性等,因此,它 是发展较快的一种高分子合成材料, 被广泛用应于工业及 日常生活中, 并几乎渗透到国民经济各个部门。 其产量与 品种与年俱增, 国外有人说: “70年代聚氨酯树脂工业的 地位相当于20年代的钢铁工业、 40年代的聚烯烃。[2]我国 ” 从60年代初在这个领域内开展科研工作, 并逐步建立了工 业生产装置。 到目前为止, 我国的聚氨酯工业从科研到生 产已基本形成体系, 初具规模。 1.2 医用聚氨酯 大量动物实验和急慢性毒性实验证实,医用聚氨酯 无毒、 无致畸变作用, 对局部无刺激性反映和过敏反应, 聚 [3] 氨酯在医学领域上应用具有较好的生物相容性 。 医用聚 氨酯材料有与人体组织相容性和血液相容性好,良好的韧 性、耐溶剂性、耐水解性、耐微生物,无毒性,良好的耐 磨损、 粘结性、 抗曲挠性能,容易成型加工,性能可控等优 异的性能, 并能根据要求生产出透明的产品等等。 这些优 势保证了使用聚氨酯产品无论是生产体内或体外的医疗用 PO LYURETHANE PU 技术?医用聚氨酯材料研究进展 具都能使其发挥出良好的性能。 自20世纪50年代聚氨酯首次应用于生物医学,四十多 年来,聚氨酯在医学上的用途日益广泛, 1958年聚氨酯首 次用于骨折修复材料,而后又成功地应用于血管外科手术缝 合用补充涂层, 70年代开始,聚氨酯作为一种医用材料已 倍受重视。 到了80年代,用聚氨酯弹性体制造人工心脏移 植手术获得成功,使聚氨酯材料在生物医学上的应用得到进 一步的发展[4],近年来,随着科技的进步和研究水平的 提高, 新的医用聚氨酯材料不断涌现, 制品的性能也不断 完善。 1.2.1医用聚氨酯的性能 聚氨酯是由软链段和硬链段交替镶嵌组成的、含有 许多 -NHCOO- 基团的极性高聚物,通过选择适当的软、硬 链段结构及其比例,就可合成出既具有良好的物理机械性 能,又具有血液相容性

先进制造技术论文

随着科学技术的飞速发展和市场竞争日益激烈,越来越多的制造企业开始将大量的人力、财力和物力投入到先进的制造技术和先进的制造模式的研究和实施策略之中。改革开放以来,我国制造科学技术有日新月异的变化和发展,确立了社会主义市场经济体制,但与先进的国家相比仍有一定差距,为了迎接新的挑战,必须认清制造技术的发展趋势,缩短与先进国家的差距,使我国的产品上质量、上效率、上品种和上水平,以增强市场竞争力,因此,对制造技术及制造模式的研究和实施是摆在我们面前刻不容缓的重要任务,以实现我国机械制造业跨入世界先进行列。 一.先进制造技术的概念 (1)先进制造技术的内涵 目前对先进制造技术尚没有一个明确的、一致公认的定义,经过近年来对发展先进制造技术方面开展的工作,通过对其特征的分析研究,可以认为:先进制造技术是制造业不断吸收信息技术和现代管理技术的成果,并将其综合应用于产品设计、加工、检测、管理、销售、使用、服务乃至回收的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称。 (2)先进制造技术的特点 先进制造技术最重要的特点在于,它首先是一项面向工业应用,具有很强实用性的新技术。先进制造技术相对传统制造技术在应用范围上的一个很大不同点在于,传统制造技术通常只是指各种将原材料变成成品的加工工艺,而先进制造技术虽然仍大量应用于加工和装配过程,但由于其组成中包括了设计技术、自动化技术、系统管理技术,因而则将其综合应用于制造的全过程。并且传统制造技术的学科、专业单一独立,相互间的界限分明;先进制造技术由于专业和学科间的不断渗透j交叉、融合,界线逐渐淡化甚至消失,技术趋于系统化、集成化、已发展成为集机械、电子、信息、材料和管理技术为一体的新型交叉学科。随着微电子、信息技术的引入,使先进制造技术还能驾驭信息生成、采集、传递、反馈、调整的信息集成过程。先进制造技术是可以驾驭生产过程的物质流、能量流和信息流的系统工程。为确保生产和经济效益持续稳步的提高,能对市场变化做出更灵捷的反应,以及对最佳技术效益的追求,提高企业的竞争能力,先进制造技术比传统的制造技术更加重视技术与管理的结合,更加重视制造过程组织和管理体制的简化以及合理化,从而产生了一系列先进的制造模式。随着世界自由贸易体制的进一步完善,以及全球交通运输体系和通信网络的建立,制造业将形成全球化与一体化的格局,新的先进制造技术也必将是全球化的模式。 先进性作为先进技术的基础——制造技术,必须是经过优化的先进工艺。因此,先进制造技术的核心和基础必须是优质、高效、低耗、清洁的工艺。它从传统工艺发展起来,并与新技术实现了局部或系统集成。通用性先进制造技术不是单独分割在制造过程的某一环节,它覆盖了产品设计、生产设备、加工制造、维修服务、甚至回收再生的整个过程。系统性随着微电子、信息技术的引入,先进制造技术能驾驭信息生成、采集、传递、反馈、调整的信息流动过程。先进制造技术能驾驭生产过程的物质流、能源流和信息流的系统工程。集成性先进制造技术由于专业、学科间的不断渗透、交叉、融合,界限逐渐淡化甚至消失,技术趋于系统化,已发展成为集机械、电子、信息、材料和管理技术于一体的新兴交叉学科,因此有人称其为制造工程。技术与管理的更紧密结合对市场变化做出更敏捷的反应及对最佳经济效益的追求,使先进制造技术十分重视生产过程的

相关主题
文本预览
相关文档 最新文档