当前位置:文档之家› 毕设英文翻译英文版

毕设英文翻译英文版

毕设英文翻译英文版
毕设英文翻译英文版

72页

Machine Tools Objectived.

Machine tools are the main engines of the manufacturing industry. This chapter covers a few of the details that are common to all classes of machine tools discussed in this book. After completing the chapter, the reader will be able to

>understand the classification of the various machine tools used in manufacturing industries.

>identify the differences between generating and forming of surfaces. > identify various methods used to generate different types of surfaces. >distinguish between the different accuracies and surface finishes that are achievable with different machine tools.

>understand the different components of the machine tools and their functions.

>learn about the different support structures used in the machine tools. >understand the various actuation systems that are useful to generate the required surfaces.

>Learn the different types of guideways used in the machine tools.

>understand the work holding requirements.

3.1 INTRODUCTION

The earliest known machine tools are the Egyptian foot-operated lathes.

These machine tools were developed essentially to allow for the introduction of accuracy in manufacturing.

A machine tool is defined as one which while holding the cutting tools, would be able to remove metal from a workpiece in order to generate the requisite job of given size, configuration, and finish. It is different from a machine, which is essentially a means of converting the source of power from one form to the other. The machine tools are the mother machines since without them, no components can be produced in their finished form. They are very old and the industrial revolution owes its success to them.

A machine tool is required to provide support to the workpiece and cutting tools as well as provide motion to one or both of them in order to generate the required shape on the workpiece. The form generated depends upon the type of machine tool used.

In the last two centuries, the machine tools have been developed substantially. The machine tool versatility has grown to cater to the varied needs Of the new inventors coming with major developments. For example,James Watt's steam engine could be proven only after a satisfactory method was found to bore the engine cylinder with a boring bar by Wilkinson around 1775.

A machine tool is designed to perform certain primary

functions,but the extent to which it can be exploited to perform secondary functions is a measure of its flexi bility.Generally,the flexibility of the machine tool is inc reased by the use of secondary functional attachments,s uch as radius or spherical turning attachment for a cent re lathe.Alternatively,to improve productivity,special atta chments are added,which also reduce the flexibility.

3.2CLASSIFICATION OF MACHINE TOOLS

There are many ways in which the machine tools can be classified.One such classification based on the produc tion capability and application is shown below:

1.General purpose machine tools(GPM)are those designed to perform a variety of machining operations on a wide range of components.By the very nature of generalisation,the general purpose machine tools are thou gh capable of carrying out a variety of tasks,would no t be suitable for large production,since the setting time for any given operation is large.Thus,the idle time on the general purpose machine tools is more and the mac hine utilisation is poor.The machine utilisation may be termed as the percentage of actual machining or chip g enerating time to the actual time available.This is muc

h lower for the general purpose machine tools.They m ay also be termed as the basic machine tools. Further,skilled operators would be required to run the general purpose machine tools.Hence,their utility is in job shops,such as catering to small batch and large v ariety job production,where the requirement is versatility rather than production capability.Examples are lathe,shaper,and milling machine.

2Production machine tools are those where a number of functions of the machine tools are automated such t hat the operator skill required to produce the component is reduced.Also,this would help in reducing the idle t ime of the machine tool,thus improving the machine ut ilisation.It is also possible that a general purpose machi ne tool may be converted into a production machine to ol by the utilisation of jigs and fixtures for holding the workpiece.These have been developed from the basic m achine tools.Some examples are capstan lathes,turret la thes,automats,and multiple spindle drilling ma chines. The setting time for a given job is more.Also,tooling design for a given job is more time consuming and ex pensive.Hence the production machine tools can only be

used for large volume production.

3.Special purpose machine tools(SPM)are those mac hine tools in which the setting operation for the job a nd tools is practically eliminated and complete automationi s achieved.ms greatly reduces the actual manufacturing t ime of a component and helps in the reduction of cos ts.These tools are used for mass manufacturing.These machine tools are expensive compared to the general pur pose machines since they are specifically designed for the given application,and are restrictive in their application c apabilities.Examples are cam shaft grinding machine,conn ecting rod twin boring machine,and piston turning lathe.

4.Single purpose machine tools are those,which ar

e designed specifically for doing a single operation on

a class of jobs or on a single job.These tools ha ve the

highest amount of automation and are used for really high rates of production.These are used specifically for one product only,and thus have the least flexibili ty.However,these do not require any manual interven tion and

are most cost effective.Examples are transfer lines

composed of unit heads for completely machining any given product.

The application of the above four types can be shown graphically in Fig. 3.1.

Fig. 3.1Application of machine tools based on the capability. 3.3GENERATING AND FORMING

Generally,the component shape is produced in machine tools by two different techniques,generating and forming. Generating is the technique in which the required pr ofile is obtained by manipulating the relative motions

of the workpiece and the cutting tool edge.Thus,the obtained contour would not be identical to the shape of the cutting tool edge.This is generally used for a majority of the general profiles required.The type of surface generated depends on the primary motion of

the workpiece as well as the secondary or feed motio n of the cutting tool.

For example,when the workpiece is rotated and a single point tool is moved along a straight line paralle l to the axis ofrotation of the workpiece,a helical s urface is generated,as shown in Fig. 3.2(a).If the pitch of the helix or feed rate is extremely small,or the surface generated may be approximated to a cylin der.This is carried out in ladles and is called turning or cylindrical turning.

Fig. 3.2Generating and forming of surfaces by machine tools.

An alternate method of obtaining the given profile is called forming in which,the shape of the cutting tool

is impressed upon the workpiece,as shown in fig. 3.2 (b).Thus,the accuracy Of the obtained shape depend

upon the accuracy of the form of the tool used.

However,many of the machine tool operations are

actually combinations of the above two.For example. when a dove tail is cut,the actual profile is obtained by sweeping the angular cutter along the straight line. Thus,it involves forming(angular cutter profile)and gene rating(sweeping along a line),as shown in Fig. 3.3.

Fig3.3Generation of surface.

3.4METHODS OF GENERATING SURFACES

Fig. 3.4Classification of machine tools using single point cutting

tools.

A large number of surfaces can be generated or formed with the help of the motions given to the tool

and the workpiece.The shape of the tool also makes

a very important contribution to the final surface obtaine d Basically,there are two types of motions given in a machine tool.The primary motion given to the workpiece or cutting tool constitutes the cutting speed,which cause s a relative motion between the tool and workpiece suc h that the face of the cutting tool approaches the mat erial to be https://www.doczj.com/doc/1312591000.html,ually,the primary motion consum es most of the cutting power.The secondary motion is one which feeds the tool relatively past the workpiece. The combination of the primary and secondary motions is responsible for the generation of specific surfaces.Someti mes,there would be a tertiary movement in between the

cuts for specific surfaces.

A classification of machine tools based on the motions is shown in Fig. 3.4,for single point tools,an d Fig. 3.5for multi-point tools.In the case of job rot ation,cylindrical surfaces would be generated,as shown i n Fig. 3.6,when a tool is fed in a direction parallel

to the axis of rotation.When the feeding direction is not parallel to the axis of rotation,complex surfaces, such as cones(Fig. 3.7),or contours(Fig. 3.8)can be

generated.The tools used in the above cases are of si ngle point.If the tool motion is perpendicular to the a xis of rotation,a plane surface would be generated,as shown in Fig. 3.9.However,if a cutting tool of a giv en form is fed in a direction perpendicular to the axis of rotation,also called plunge cutting,a contour surface of revolution would be obtained,as shown in Fig. 3.10.

Fig. 3.5Classification of machine tools using multi-point cutting tools. Plane surface generation in shaping Plane surfaces can be generated when the job or tool reciprocates for the primary motion,as shown in Fig. 3.11,without any rota tion.

With the multi-point tools generally plane surfaces aregene rated,as shown in Fig. 3.12.However,in this situation, a combination of forming and generating,is used to get a variety of complex surfaces,which are otherwise i mpossible to get through the single-point tool operations. Some typical examples are the spur gear hobbing and spiral milling of formed cavities.

3.5ACCURACY AND FINISH ACHIEVABLE

It is necessary to select a given machine tool or m chining operation for a job such that it is the lowest cost option.There are various operations possible for a given type of surface and each one has its own charac teristics in terms of possible accuracy,surface finish,and cost.This selection is made at the time of process pla nning.The obtainable accuracy for various types of machi ne tools is shown in Table 3.1.The surface finish expe cted from the various processes is shown in Fig. 3.13.

The values presented in Table 3.1and Fig. 3.13are

only a rough guide.The actual values greatly vary depe nding on the condition of the machine tool,the cutting tool used,and the various cutting process parameters.

80

Manufacturing Technology

BASIC ELEMENTS OF MACHINE TOOLS

3.6 BASIC ELEMENTS OF MACHINE TOOLS

The various components that are present in all the mac hine tools may be identified as follows:

?Work holding device to hold the workpiece in the correct orientation to achieve the required in manufacturin g,for example chuck.

?Tool holding device to hold the cutting tool in the correct position with respect to the workpiece,and provi de enough holding force to counteract the cutting forces acting on the tool,example tool

?Work motion mechanism to provide the necessary sp eed to the workpiece for generating the surface,example head stock.

?Tool motion mechanism to provide the various motio ns needed for the tool in conjunction with workpiece m otion in order to generate the required surface profiles, example carriage.

?Support structure to support all the mechanisms sho wn above,and maintain their relative position with respe ct to each other,and allow for relative movement betw een the various parts to obtain the*requisite part pr ofile and accuracy,example bed.

The type of device or mechanism used varies depending on the type of machine tool and the function it is expected to serve.In this chapter,some

of the more common elements would be discussed.How ever,further details may be found in the chapters wher e the actual machine tools are discussed.

The various motions that need to be provided in the machine tool are cutting speed and feed.The range of speed and feed rates to be provided in a given machi ne tool depends on the capability of the machine tool and the range of work materials that are expected to be processed.Basically,the actual speed and feed chosen depends upon the

?work material,

?required production rate,

?required surface finish,and

?expected accuracy.

The drive units in a machine tool are expected to provide the required speed and convert the rotational sp eed into linear motion.Details of these may be found

in books dealing with machine tool design.

3.7 SUPPORT STRUCTURES

The broad categories of support structures found in vario us machine tools are shown in Fig. 3.14.They may be classified as beds(horizontal structures)or columns(vertic al structures).

The main requirements of the support structure are ?Rigidity

?Accuracy of guideways

?Impact resistance

?Wear resistance

Bed provides a support for all the elements present

in a machine tool.It also provides the true relative po sitions Of all units in machine tools.Some of these un its may be sliding on the bed or fixed.For the purpo se Of sliding,accurate guideways are provided.Bed weig ht is approximately half the total weight of the machine tool.

The basic construction of a bed is like a box,to provide the highest possible rigidity with low weight.To increase the rigidity,the basic box structure is added wi th various types of ribs,as shown in Fig. 3.15.The a ddition of ribs complicates the manufacturing process for the beds.

Beds are generally constructed using cast iron or alloy c ast iron consisting of alloying elements,such as nickel,c hromium,and molybdenum.With cast iron,because of t he intricate designs of the beds,the casting defects may not be fully eliminated.

Alloy steel structure is also used for making beds. The predominant manufacturing method used is welding.T he following advantages can be claimed for steel constru ction:(a)With steels,the wall thickness can be reduced .Thus,greater strength and stiffness for the same weight would be possible with alloy steel bed construction.

(b)Walls of different thicknesses can be conveniently welded.Whereas in casting,this would create problems.

(c)Repair of welded structures would be easier.

(d)Large machining allowances would have to be provi ded for casting to remove the defects and hard Concrete is also tried as bed material.Its choice is ma inly because of the large damping capacity.For precision machine tools and measuring machines,granite is also us ed as the bed material.

The major types of bed styles used in the machine tools are shown in Fig. 3.16.

毕设外文资料翻译.

理工学院 毕业设计外文资料翻译 专业:计算机科学与技术 姓名:马艳丽 学号: 12L0752218 外文出处:The Design and Implementation of 3D Electronic Map of Campus Based on WEBGIS 附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 基于WebGIS的校园三维电子地图的设计与实现 一.导言 如今,数字化和信息化是当今时代的主题。随着信息革命和计算机科学的发展,计算机技术已经渗透到科学的各个领域,并引起了许多革命性的变化,在这些科目,古代制图学也不例外。随着技术和文化的不断进步,地图变化的形式和内容也随之更新。在计算机图形学中,地理信息系统(GIS)不断应用到Web,制作和演示的传统方式经历了巨大的变化,由于先进的信息技术的发展,地图的应用已经大大延长。在这些情况下,绘图将面临广阔的发展前景。电子地图是随之应运而生的产品之一。随着计算机技术,计算机图形学理论,遥感技术,航空摄影测量技术和其他相关技术的飞速发展。用户需要的三维可视化,动态的交互性和展示自己的各种地理相关的数据处理和分析,如此多的关注应支付的研究三维地图。东北石油大学及其周边地区的基础上本文设计并建立三维电子地图。 二.系统设计 基于WebGIS的校园三维电子地图系统的具有普通地图的一般特性。通过按键盘上的箭头键(上,下,左,右),可以使地图向相应的方向移动。通过拖动鼠标,可以查看感兴趣的任何一个地方。使用鼠标滚轮,可以控制地图的大小,根据用户的需求来查看不同缩放级别的地图。在地图的左下角会显示当前鼠标的坐标。在一个div层,我们描绘了一个新建筑物的热点,这层可以根据不同的地图图层的显示,它也可以自动调整。通过点击热点,它可以显示热点的具体信息。也可以输入到查询的信息,根据自己的需要,并得到一些相关的信息。此外,通过点击鼠标,人们可以选择检查的三维地图和卫星地图。 主要功能包括: ?用户信息管理:检查用户名和密码,根据权限设置级别的认证,允许不同权限的用户通过互联网登录系统。 ?位置信息查询:系统可以为用户提供模糊查询和快速定位。

机械毕业设计英文外文翻译460数字控制 (2)

附录 科技译文: Numerical Control Numerical Control(NC) is a method of controlling the movements of machineComponents by directly inserting coded instructions in the form of numerical data(numbers and data ) into the system.The system automatically interprets these data and converts to output signals. These signals ,in turn control various machine components ,such as turning spindles on and off ,changing tools,moving the work piece or the tools along specific paths,and turning cutting fluits on and off. In order to appreciate the importer of numerical control of machines ,let’s briefly review how a process such as machining has been carried out traditionally .After studying the working drawing of a part, the operator sets up the appropriate process parameters(such as cutting speed ,feed,depth of cut,cutting fluid ,and so on),determines the sequence of operations to be performed,clamps the work piece in a workholding device such as chuck or collet ,and proceeds to make the part .Depending on part shape and the dimensional accuracy specified ,this approach usually requires skilled

机械工程英语翻译

Unit1 1、What is the difference between an alloy and a pure metal? Pure metals are elements which come from a particular area of the periodic table. Examples of pure metals include copper in electrical wires and aluminum in cooking foil and beverage cans. 合金与纯金属的区别是什么?纯金属是在元素周期表中占据特定位置的元素。例如电线中的铜和制造烹饪箔及饮料罐的铝。 Alloys contain more than one metallic element. Their properties can be changed by changing the elements present in the alloy. Examples of metal alloys include stainless steel which is an alloy of iron, nickel, and chromium; and gold jewelry which usually contains an alloy of gold and nickel. 合金包含不止一种金属元素。合金的性质能通过改变其中存在的元素而改变。金属合金的例子有:不锈钢是一种铁、镍、铬的合金,以及金饰品通常含有金镍合金。 2、 Why are metals and alloys used? Many metals and alloys have high densities and are used in applications which require a high mass-to-volume ratio. 为什么要使用金属和合金?许多金属和合金具有高密度,因此被用在需要较高质量体积比的场合。 Some metal alloys,such as those based on aluminum, have low densities and are used in aerospace applications for fuel economy. Many alloys also have high fracture toughness, which means they can withstand impact and are durable. 某些金属合金,例如铝基合金,其密度低,可用于航空航天以节约燃料。许多合金还具有高断裂韧性,这意味着它们能经得起冲击并且是耐用的。 3、The atomic bonding of metals also affects their properties. In m etals, the outer valence electrons are shared among all atoms, and ar e free to travel everywhere. Since electrons conduct heat and electri city, metals make good cooking pans and electrical wires. 金属的原子连结对它们的特性也有影响。在金属内部,原子的外层阶电子由所有原子共享并能到处自由移动。由于电子能导热和导电,所以用金属可以制造好的烹饪锅和电线。 It is impossible to see through metals, since these valence electrons absorb any photons of light which reach the metal. No photons pass through. 因为这些阶电子吸收到达金属的光子,所以透过金属不可能看得见。没有光子能通过金属. 4、Some of the useful properties of ceramics and glasses include high melting temperature, low density, high strength, stiffness, hardness, wear resistance, and corrosion resistance. 陶瓷和玻璃的特性高熔点、低密度、高强度、高刚度、高硬度、高耐磨性和

毕业设计外文翻译附原文

外文翻译 专业机械设计制造及其自动化学生姓名刘链柱 班级机制111 学号1110101102 指导教师葛友华

外文资料名称: Design and performance evaluation of vacuum cleaners using cyclone technology 外文资料出处:Korean J. Chem. Eng., 23(6), (用外文写) 925-930 (2006) 附件: 1.外文资料翻译译文 2.外文原文

应用旋风技术真空吸尘器的设计和性能介绍 吉尔泰金,洪城铱昌,宰瑾李, 刘链柱译 摘要:旋风型分离器技术用于真空吸尘器 - 轴向进流旋风和切向进气道流旋风有效地收集粉尘和降低压力降已被实验研究。优化设计等因素作为集尘效率,压降,并切成尺寸被粒度对应于分级收集的50%的效率进行了研究。颗粒切成大小降低入口面积,体直径,减小涡取景器直径的旋风。切向入口的双流量气旋具有良好的性能考虑的350毫米汞柱的低压降和为1.5μm的质量中位直径在1米3的流量的截止尺寸。一使用切向入口的双流量旋风吸尘器示出了势是一种有效的方法,用于收集在家庭中产生的粉尘。 摘要及关键词:吸尘器; 粉尘; 旋风分离器 引言 我们这个时代的很大一部分都花在了房子,工作场所,或其他建筑,因此,室内空间应该是既舒适情绪和卫生。但室内空气中含有超过室外空气因气密性的二次污染物,毒物,食品气味。这是通过使用产生在建筑中的新材料和设备。真空吸尘器为代表的家电去除有害物质从地板到地毯所用的商用真空吸尘器房子由纸过滤,预过滤器和排气过滤器通过洁净的空气排放到大气中。虽然真空吸尘器是方便在使用中,吸入压力下降说唱空转成比例地清洗的时间,以及纸过滤器也应定期更换,由于压力下降,气味和细菌通过纸过滤器内的残留粉尘。 图1示出了大气气溶胶的粒度分布通常是双峰形,在粗颗粒(>2.0微米)模式为主要的外部来源,如风吹尘,海盐喷雾,火山,从工厂直接排放和车辆废气排放,以及那些在细颗粒模式包括燃烧或光化学反应。表1显示模式,典型的大气航空的直径和质量浓度溶胶被许多研究者测量。精细模式在0.18?0.36 在5.7到25微米尺寸范围微米尺寸范围。质量浓度为2?205微克,可直接在大气气溶胶和 3.85至36.3μg/m3柴油气溶胶。

机械毕业设计英文外文翻译204机电一体化

附录 INTEGRATION OF MACHINERY (From ELECTRICAL AND MACHINERY INDUSTRY)ABSTRACT Machinery was the modern science and technology development inevitable result, this article has summarized the integration of machinery technology basic outline and the development background .Summarized the domestic and foreign integration of machinery technology present situation, has analyzed the integration of machinery technology trend of development. Key word:integration of machinery ,technology,present situation ,product t,echnique of manufacture ,trend of development 0. Introduction modern science and technology unceasing development, impelled different discipline intersecting enormously with the seepage, has caused the project domain technological revolution and the transformation .In mechanical engineering domain, because the microelectronic technology and the computer technology rapid development and forms to the mechanical industry seepage the integration of machinery, caused the mechanical industry the technical structure, the product organization, the function and the constitution, the production method and the management system has had the huge change, caused the industrial production to enter into “the integration of machinery” by “the machinery electrification” for the characteristic development phase. 1. Integration of machinery outline integration of machinery is refers in the organization new owner function, the power function, in the information processing function and the control function introduces the electronic technology, unifies the system the mechanism and the computerization design and the software which constitutes always to call. The integration of machinery development also has become one to have until now own system new discipline, not only develops along with the science and technology, but also entrusts with the new content .But its basic characteristic may summarize is: The integration of machinery is embarks from the system viewpoint, synthesis community technologies and so on utilization mechanical technology, microelectronic technology, automatic control technology,

机械工程专业英语翻译合集

1.我们可以把钢再次加热到临界温度以下的某一温度,然后在慢慢让其冷却。We can heat the steel again to a temperature below the critical temperature, then cool it slowly. 2.无论任何简单的机床,都是由单一元件即通称为机械零件或部件组成的。However simple, any machine is a combination of individual components generally referred to as machine elements or parts. 3.这些金属不都是好的导体。 All these metals are not good conductors. 4. 在做带电实验的时候,再怎么小心都不为过。 You can't be too careful in performing an experiment. 5.利用发电机可以把机械能转变成电能。 The mechanical energy can be changed back into electrical energy by means of a generator or dynamo. 6.假定电源输入的电压保持不变。 Assume that the voltage input of the power supply remains the same. 7.化石燃料是发电过程中最为频繁使用的能源。 Fossil fuels are most frequently used source daring the power generation process. 8单个机械零件的可靠性成为评估整台机器使用寿命的基本因素。 The individual reliability of machine elements becomes the basis for estimating the overall life 9.说我们生活在一个电子时代,这一点都不夸张。 It's no exaggeration to say that we live in an electronic age. 10.发动机的转速不应超过最大允许值。 Engine revolution should not exceed the maximum permissible. 11.如能从大型核电站获得成本极低的电力,电解氢的竞争能力就会增强。(Electrolytic hydrogen)。 If extremely low-cost power were ever to become available from large nuclear power plants, electrolytic hydrogen would become competitive. 12.电子技术提供了一种新的显示时间的方法。 A new way of displaying time has been given by electronics. 13.远距离输电需要高压,安全用电需要低压。 High voltage is necessary for long transmission line while low voltage for safe use. 14.铝的电阻大约是同等尺寸的铜的1.5倍。 The resistance of aluminum is approximately half again as great as that of copper for the same dimensions = size 15.In fact,it is impossible for no force to be exerted on a body,since in this world everything is subject to the for ce of gravity. 事实上,物体不受外力作用是不可能的,因为在这个世界上任何物体都要受到重力的作用。 16.In a thermal power plant,all the chemical energy is not

毕业设计英文翻译

使用高级分析法的钢框架创新设计 1.导言 在美国,钢结构设计方法包括允许应力设计法(ASD),塑性设计法(PD)和荷载阻力系数设计法(LRFD)。在允许应力设计中,应力计算基于一阶弹性分析,而几何非线性影响则隐含在细部设计方程中。在塑性设计中,结构分析中使用的是一阶塑性铰分析。塑性设计使整个结构体系的弹性力重新分配。尽管几何非线性和逐步高产效应并不在塑性设计之中,但它们近似细部设计方程。在荷载和阻力系数设计中,含放大系数的一阶弹性分析或单纯的二阶弹性分析被用于几何非线性分析,而梁柱的极限强度隐藏在互动设计方程。所有三个设计方法需要独立进行检查,包括系数K计算。在下面,对荷载抗力系数设计法的特点进行了简要介绍。 结构系统内的内力及稳定性和它的构件是相关的,但目前美国钢结构协会(AISC)的荷载抗力系数规范把这种分开来处理的。在目前的实际应用中,结构体系和它构件的相互影响反映在有效长度这一因素上。这一点在社会科学研究技术备忘录第五录摘录中有描述。 尽管结构最大内力和构件最大内力是相互依存的(但不一定共存),应当承认,严格考虑这种相互依存关系,很多结构是不实际的。与此同时,众所周知当遇到复杂框架设计中试图在柱设计时自动弥补整个结构的不稳定(例如通过调整柱的有效长度)是很困难的。因此,社会科学研究委员会建议在实际设计中,这两方面应单独考虑单独构件的稳定性和结构的基础及结构整体稳定性。图28.1就是这种方法的间接分析和设计方法。

在目前的美国钢结构协会荷载抗力系数规范中,分析结构体系的方法是一阶弹性分析或二阶弹性分析。在使用一阶弹性分析时,考虑到二阶效果,一阶力矩都是由B1,B2系数放大。在规范中,所有细部都是从结构体系中独立出来,他们通过细部内力曲线和规范给出的那些隐含二阶效应,非弹性,残余应力和挠度的相互作用设计的。理论解答和实验性数据的拟合曲线得到了柱曲线和梁曲线,同时Kanchanalai发现的所谓“精确”塑性区解决方案的拟合曲线确定了梁柱相互作用方程。 为了证明单个细部内力对整个结构体系的影响,使用了有效长度系数,如图28.2所示。有效长度方法为框架结构提供了一个良好的设计。然而,有效长度方法的

毕设英文翻译英文版

72页 Machine Tools Objectived. Machine tools are the main engines of the manufacturing industry. This chapter covers a few of the details that are common to all classes of machine tools discussed in this book. After completing the chapter, the reader will be able to >understand the classification of the various machine tools used in manufacturing industries. >identify the differences between generating and forming of surfaces. > identify various methods used to generate different types of surfaces. >distinguish between the different accuracies and surface finishes that are achievable with different machine tools. >understand the different components of the machine tools and their functions. >learn about the different support structures used in the machine tools. >understand the various actuation systems that are useful to generate the required surfaces. >Learn the different types of guideways used in the machine tools. >understand the work holding requirements. 3.1 INTRODUCTION The earliest known machine tools are the Egyptian foot-operated lathes.

机械类毕业设计外文翻译

本科毕业论文(设计) 外文翻译 学院:机电工程学院 专业:机械工程及自动化 姓名:高峰 指导教师:李延胜 2011年05 月10日 教育部办公厅 Failure Analysis,Dimensional Determination And

Analysis,Applications Of Cams INTRODUCTION It is absolutely essential that a design engineer know how and why parts fail so that reliable machines that require minimum maintenance can be designed.Sometimes a failure can be serious,such as when a tire blows out on an automobile traveling at high speed.On the other hand,a failure may be no more than a nuisance.An example is the loosening of the radiator hose in an automobile cooling system.The consequence of this latter failure is usually the loss of some radiator coolant,a condition that is readily detected and corrected.The type of load a part absorbs is just as significant as the magnitude.Generally speaking,dynamic loads with direction reversals cause greater difficulty than static loads,and therefore,fatigue strength must be considered.Another concern is whether the material is ductile or brittle.For example,brittle materials are considered to be unacceptable where fatigue is involved. Many people mistakingly interpret the word failure to mean the actual breakage of a part.However,a design engineer must consider a broader understanding of what appreciable deformation occurs.A ductile material,however will deform a large amount prior to rupture.Excessive deformation,without fracture,may cause a machine to fail because the deformed part interferes with a moving second part.Therefore,a part fails(even if it has not physically broken)whenever it no longer fulfills its required function.Sometimes failure may be due to abnormal friction or vibration between two mating parts.Failure also may be due to a phenomenon called creep,which is the plastic flow of a material under load at elevated temperatures.In addition,the actual shape of a part may be responsible for failure.For example,stress concentrations due to sudden changes in contour must be taken into account.Evaluation of stress considerations is especially important when there are dynamic loads with direction reversals and the material is not very ductile. In general,the design engineer must consider all possible modes of failure,which include the following. ——Stress ——Deformation ——Wear ——Corrosion ——Vibration ——Environmental damage ——Loosening of fastening devices

机械工程专业英语 翻译

2、应力和应变 在任何工程结构中独立的部件或构件将承受来自于部件的使用状况或工作的外部环境的外力作用。如果组件就处于平衡状态,由此而来的各种外力将会为零,但尽管如此,它们共同作用部件的载荷易于使部件变形同时在材料里面产生相应的内力。 有很多不同负载可以应用于构件的方式。负荷根据相应时间的不同可分为: (a)静态负荷是一种在相对较短的时间内逐步达到平衡的应用载荷。 (b)持续负载是一种在很长一段时间为一个常数的载荷, 例如结构的重量。这种类型的载荷以相同的方式作为一个静态负荷; 然而,对一些材料与温度和压力的条件下,短时间的载荷和长时间的载荷抵抗失效的能力可能是不同的。 (c)冲击载荷是一种快速载荷(一种能量载荷)。振动通常导致一个冲击载荷, 一般平衡是不能建立的直到通过自然的阻尼力的作用使振动停止的时候。 (d)重复载荷是一种被应用和去除千万次的载荷。 (e)疲劳载荷或交变载荷是一种大小和设计随时间不断变化的载荷。 上面已经提到,作用于物体的外力与在材料里面产生的相应内力平衡。因此,如果一个杆受到一个均匀的拉伸和压缩,也就是说, 一个力,均匀分布于一截面,那么产生的内力也均匀分布并且可以说杆是受到一个均匀的正常应力,应力被定义为 应力==负载 P /压力 A, 因此根据载荷的性质应力是可以压缩或拉伸的,并被度量为牛顿每平方米或它的倍数。 如果一个杆受到轴向载荷,即是应力,那么杆的长度会改变。如果杆的初始长度L和改变量△L已知,产生的应力定义如下: 应力==改变长△L /初始长 L 因此应力是一个测量材料变形和无量纲的物理量 ,即它没有单位;它只是两个相同单位的物理量的比值。 一般来说,在实践中,在荷载作用下材料的延伸是非常小的, 测量的应力以*10-6的形式是方便的, 即微应变, 使用的符号也相应成为ue。 从某种意义上说,拉伸应力与应变被认为是正的。压缩应力与应变被认为是负的。因此负应力使长度减小。 当负载移除时,如果材料回复到初始的,无负载时的尺寸时,我们就说它是具有弹性的。一特定形式的适用于大范围的工程材料至少工程材料受载荷的大部分的弹性, 产生正比于负载的变形。由于载荷正比于载荷所产生的压力并且变形正比于应变, 这也说明,当材料是弹性的时候, 应力与应变成正比。因此胡克定律陈述, 应力正比于应变。 这定律服从于大部分铁合金在特定的范围内, 甚至以其合理的准确性可以假定适用于其他工程材料比如混凝土,木材,非铁合金。 当一个材料是弹性的时候,当载荷消除之后,任何负载所产生的变形可以完全恢复,没有永久的变形。

毕设外文翻译

英文翻译 题目: 通过分析变压器中溶解气体而进行故障诊断的专家系统 姓名: 宋日成 学院: 工学院 专业: 自动化 班级: 自动化112 班学号: 32211218 指导教师: 陆静职称: 讲师 2015年3月14日 南京农业大学教务处制

An Expert System for Transformer Fault Diagnosis Using Dissolved Gas Analysis W. S. Chan ·Y. L. Xu ·X. L. Ding ·W. J. Dai Received: 9 November 2005 / Accepted: 11 August 2006 / Published online: 7 September 2006? Springer-Verlag 2006 Abstract In order to automate the transformer fault diagnosis, improve the accuracy of judgment, the introduction of artificial intelligence expert system fault diagnosis. The system is based on fuzzy reasoning confidence by observing the information, the use of knowledge to reach a conclusion. Test proved this method reduces the randomness of judgment, improved diagnosis. Keywords:Expert System Transformer Troubleshooting 1 Introduction The power transformer is a major apparatus in a power system, and its correct functioning is vital to system operations. In order to minimize system outages,many devices have evolved to monitor the serviceability of power transformers. These devices, such as, Buchholz relays or differential relays, respond only to a severe power failure requiring immediate removal of the transformer from service, in which case, outages are inevitable. Thus, preventive techniques for early detection faults to avoid outages would be valuable. In this way, analysis of the mixture of the faulty gases dissolved in insulation oil of power transformer has received worldwide recognition as an effective method for the detection of incipient faults. Many researchers and electrical utilities have reported on their experience and developed interpretative criteria on the basis of DGA. However, criteria tend to vary from utility to utility. Each approach has limitations and none of them has a firm mathematical description. Therefore, transformer diagnosis is still in the heuristic stage. For this reason, knowledge-based programming is a suitable approach to implement in such a diagnostic problem. Based on the interpretation of DGA, a prototype of an expert system for diagnosis of suspected transformer faults and their maintenance procedures is proposed. The significant source in this knowledge base is the gas ratio method. Some limitations of this approach are overcome by incorporating the diagnostic procedure and the synthetic expertise method. Furthermore, data bases adopted from TPCS gas records of transformers are incorporated into the expert system to increase the practical performance. Uncertainty of diagnosis is managed by using fuzzy set concepts. This expert system is constructed with rule based knowledge representation, since it can be expressed by experts. The expert system building tool, Knowledge Engineering System (KES), is used in the development of the knowledge system

机械类毕业设计外文文献翻译

沈阳工业大学工程学院 毕业设计(论文)外文翻译 毕业设计(论文)题目:工具盒盖注塑模具设计 外文题目:Friction , Lubrication of Bearing 译文题目:轴承的摩擦与润滑 系(部):机械系 专业班级:机械设计制造及其自动化0801 学生姓名:王宝帅 指导教师:魏晓波 2010年10 月15 日

外文文献原文: Friction , Lubrication of Bearing In many of the problem thus far , the student has been asked to disregard or neglect friction . Actually , friction is present to some degree whenever two parts are in contact and move on each other. The term friction refers to the resistance of two or more parts to movement. Friction is harmful or valuable depending upon where it occurs. friction is necessary for fastening devices such as screws and rivets which depend upon friction to hold the fastener and the parts together. Belt drivers, brakes, and tires are additional applications where friction is necessary. The friction of moving parts in a machine is harmful because it reduces the mechanical advantage of the device. The heat produced by friction is lost energy because no work takes place. Also , greater power is required to overcome the increased friction. Heat is destructive in that it causes expansion. Expansion may cause a bearing or sliding surface to fit tighter. If a great enough pressure builds up because made from low temperature materials may melt. There are three types of friction which must be overcome in moving parts: (1)starting, (2)sliding, and(3)rolling. Starting friction is the friction between two solids that tend to resist movement. When two parts are at a state of rest, the surface irregularities of both parts tend to interlock and form a wedging action. To produce motion in these parts, the wedge-shaped peaks and valleys of the stationary surfaces must be made to slide out and over each other. The rougher the two surfaces, the greater is starting friction resulting from their movement . Since there is usually no fixed pattern between the peaks and valleys of two mating parts, the irregularities do not interlock once the parts are in motion but slide over each other. The friction of the two surfaces is known as sliding friction. As shown in figure ,starting friction is always greater than sliding friction . Rolling friction occurs when roller devces are subjected to tremendous stress which cause the parts to change shape or deform. Under these conditions, the material in front of a roller tends to pile up and forces the object to roll slightly uphill. This changing of shape , known as deformation, causes a movement of molecules. As a result ,heat is produced from the added energy required to keep the parts turning and overcome friction. The friction caused by the wedging action of surface irregularities can be overcome

相关主题
文本预览
相关文档 最新文档