当前位置:文档之家› 高中数学讲义 均值不等式

高中数学讲义 均值不等式

高中数学讲义  均值不等式
高中数学讲义  均值不等式

微专题45 利用均值不等式求最值

一、基础知识:

1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n

n

H a a a =

+++L

(2)几何平均数:12n

n n G a a a =L

(3)代数平均数:12n

n a a a A n

+++=

L

(4)平方平均数:222

12n

n a a a Q n

+++=L

2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2

a b

ab +≤

即基本不等式 3、基本不等式的几个变形:

(1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况

(2)2

2a b ab +??

≤ ???

:多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况

(3)2

2

2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈

4、利用均值不等式求最值遵循的原则:“一正二定三等”

(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求

23y x x =+

的最小值。此时若直接使用均值不等式,则2

324y x x x

=+≥右侧依然含有x ,则无法找到最值。

① 求和的式子→乘积为定值。例如:上式中2

4y x x =+

为了乘积消掉x ,则要将3

x

拆为两个2x

,则2223

342222334y x x x x x x x x =+=++≥??=

② 乘积的式子→和为定值,例如3

02

x <<

,求()()32f x x x =-的最大值。则考虑变积为和后保证x 能够消掉,所以()()()2

112329

322322228

x x f x x x x x +-??=-=?-≤= ???(3)

等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点:

① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)

② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围。 5、常见求最值的题目类型

(1)构造乘积与和为定值的情况,如上面所举的两个例子 (2)已知1ax by +=(a 为常数),求

m n

x y

+的最值, 此类问题的特点在于已知条件中变量位于分子(或分母)位置上,所求表达式变量的位置恰好相反,位于分母(或分子)上,则可利用常数“1”将已知与所求进行相乘,从而得到常数项与互为倒数的两项,然后利用均值不等式求解。 例如:已知0,0,231x y x y >>+=,求

32

x y

+的最小值 解:

()3232942366y x x y x y x y x y

??+=++=+++ ???

94121224y x x y =+

+≥+= (3)运用均值不等式将方程转为所求式子的不等式,通过解不等式求解: 例如:已知0,0,24x y x y xy >>++=,求2x y +的最小值

解:()2

2

21

1222

228

x y x y xy x y ++??=??≤

= ?

?? 所以()()

2

224248

x y x y xy x y +++=?++

即()()2

282320x y x y +++-≥,可解得24x y +≥-,即()min 24x y +=-

注:此类问题还可以通过消元求解:42241

x

x y xy y x -++=?=

+,在代入到所求表达式求出最值即可,但要注意0y >的范围由x 承担,所以()0,2x ∈ 二、典型例题:

例1:设1x >-,求函数(5)(2)

1

x x y x ++=+的最小值为_______________

思路:考虑将分式进行分离常数,(5)(2)4

1511

x x y x x x ++==+++++,使用均值不等式可

得:

59y ≥+=,等号成立条件为4

111

x x x +=?=+,所以最小值为9 答案:9

例2:已知0,0x y >>,且11

5x y x y

++

+=,则x y +的最大值是________ 思路:本题观察到所求x y +与

11

x y

+的联系,从而想到调和平均数与算术平均数的关系,即2114

112x y x y x y

x y

+≤

?+≥++,代入方程中可得: ()()

()()2

45540x y x y x y x y ++

≤?+-++≤+,解得:14x y ≤+≤,所以最大值为

4 答案:4

例3:已知实数,m n ,若0,0m n ≥≥,且1m n +=,则22

21

m n m n +++的最小值为( ) A.

14 B. 415 C. 18 D. 13

思路:本题可以直接代入消元解决,但运算较繁琐。考虑对所求表达式先变形再求值,可用

分离常数法将分式进行简化。2241

212121

m n m n m n m n +=-+-++++++,结合分母可将条件1m n +=,变形为()()214m n +++=,进而利用均值不等式求出最值

解:2222441141

21212121

m n m n m n m n m n m n -+-++=+=-++-+++++++

()4141

322121

m n m n m n =+-+

+=+-++++ ()()1214m n m n +=?+++= ()()()41414

1112214121214421n m m n m n m n m n +??+??∴

+=+?+++=+++?? ? ???++++++????

19544

?

≥+= ? 229122144m n m n ∴+≥-=++,即2221m n m n +++的最小值为14

答案:A

例4:已知正实数,x y 满足24xy x y ++=,则x y +的最小值为__________

思路:本题所求表达式x y +刚好在条件中有所体现,所以考虑将x y +视为一个整体,将等式中的项往x y +的形式进行构造,()()()21xy x y xy x x y x y x y ++=+++=+++,而

()1x y +可以利用均值不等式化积为和,从而将方程变形为关于x y +的不等式,解不等式即

解:()()()24414xy x y xy x x y x y x y ++=?+++=?+++=

()()2112x y x y ++??+≤????Q ∴方程变形为:()()2

142x y x y ++??

++≥????

()()2

1416x y x y ∴++++≥????

()()2

6150x y x y ∴+++-

解得:3x y +≥

= 答案:()

x y +的最小值为3 例5:已知20a b >>,则4

(2)

a b a b +

-的最小值为______________

思路一:所求表达式为和式,故考虑构造乘积为定值以便于利用均值不等式,分母为

()2b a b -,所以可将a 构造为()11

2222a a b b ?=?-+???

?,从而三项使用均值不等式即可求

出最小值:

4181(2)3(2)2(2)2a a b b b a b b a b ??+

=-++≥?=??

--?? 思路二:观察到表达式中分式的分母()2b a b -,可想到作和可以消去b ,可得

()()2

222b a b b a b a +-??-≤=????

,从而244(2)a a b a b a +≥+-,设()2

4f a a a =+,可从函数角度求得最小值(利用导数),也可继续构造成乘积为定值:

()24322a a f a a =

++≥= 答案:3

小炼有话说:(1)和式中含有分式,则在使用均值不等式时要关注分式分母的特点,并在变形的过程中倾向于各项乘积时能消去变量,从而利用均值不等式求解 (2)思路二体现了均值不等式的一个作用,即消元

(3)在思路二中连续使用两次均值不等式,若能取得最值,则需要两次等号成立的条件不冲突。所以多次使用均值不等式时要注意对等号成立条件的检验 例6:设二次函数()()24f x ax x c x R =-+∈的值域为[)0,+∞,则19

19

c a +

++的最大值为__________

思路:由二次函数的值域可判定0a >,且04ac ?=?=,从而利用定值化简所求表达式:

199189185

11999913913

a c a c c a ac a c a c a c +++++====+

+++++++++,则只需确定9a c +的范围即可求出19

19

c a +

++的最值。由均值不等式可得:912a c +≥,进而解出最值 解:Q 二次函数()()2

4f x ax x c x R =-+∈的值域为[)0,+∞

16404

0ac ac a ?=-=?=?∴?

>?

()()()991199189185

1191999913913

a c a c a c c a c a ac a c a c a c ++++++++====+

+++++++++++

912a c +≥=Q

1956

11912135

c a ∴

+≤+=+++ 答案:65

例7:已知,,x y z R +

∈,则222

xy yz

x y z

μ+=

++的最大值是________ 思路:本题变量个数较多且不易消元,考虑利用均值不等式进行化简,要求得最值则需要分子与分母能够将变量消掉,观察分子为,xy yz 均含y ,故考虑将分母中的2

y 拆分与2

2

,x z 搭配,即222

22221122xy yz xy yz

x y z x y y z μ++=

=++????+++ ? ?

????

,而222211,22x y z y +

≥=+≥=

,所以μ≤

=

答案:

2

小炼有话说:本题在拆分2

y 时还有一个细节,因为分子,xy yz 的系数相同,所以要想分子分母消去变量,则分母中,xy yz 也要相同,从而在拆分2

y 的时候要平均地进行拆分(因为2

2

,x z 系数也相同)。所以利用均值不等式消元要善于调整系数,使之达到消去变量的目的。 例8:已知正实数,x y 满足3x y xy ++=,若对任意满足条件的,x y ,都有

2()()10x y a x y +-++≥恒成立,则实数a 的取值范围为________

思路:首先对恒成立不等式可进行参变分离,()1

a x y x y

≤++

+。进而只需求得()1

x y x y

++

+的最小值。将x y +视为一个整体,将3x y xy ++=中的xy 利用均值不等式换成x y +,然后解出x y +的范围再求最小值即可 解:()2

1

()()10x y a x y a x y x y

+-++≥?≤++

+ ,0x y >Q 2

2x y xy +??

∴≤ ???

2

32x y x y xy +??

∴++=≤ ?

??

()()2412x y x y ∴++≤+ 解得:6x y +≥或2x y +≤-(舍)

()min 1137666x y x y ??∴++=+=??+?? (在6x y +=时取得) 37

6

a ∴≤

例9:已知1,0,0x y y x +=>≠,则

1

21

x x y +

+的最小值是___________ 思路:观察到所求

1

21

x x y +

+的两项中x 部分互为倒数,所以想到利用均值不等式构造乘积为定值,所以结合第二项的分母变形

1

2x

的分子。因为1x y +=,所以()12y x ++=,则()1111

22244x y x y x x x x

+++=?=+

,所以原式1144144x x y x x

x x y x x +=

++≥+=++,因为要求得最小值,所以0x <时,min

144x

x ??=- ? ??

?,故1

21x x y ++最小值为34 答案:

34

小炼有话说:本题考验学生对表达式特点的观察能力,其中两项的x 互为倒数为突破口,从而联想到均值不等式,在变形时才会奔着分子分母向消出定值的方向进行构造 例10:已知,,,,25,9,m n

m n s t R m n n m s t

+∈+=+=>,且,m n 是常数,又2s t +的最小值是1,则3m n +=________

思路:条件中有

9m n

s t

+=,且有()min 21s t +=,进而联想到求()2s t +最小值的过程中达到的最值条件与,m n 相关:

()(

)(1

12122229

99m n mt sn s t s t m n m n s t s t ????+=++=+++≥++

? ????

?,即2s t

+

的最小值为(1

29m n ++

,所以(1

21925m n m n n m

?++=??+=??>??

,解得12m n =??=?,所以

37m n +=

答案:7

三、历年好题精选

1、(2016,天津河西一模)如图所示,在ABC ?中,DB AD =,点F 在线段CD 上,设AB a =u u u r r

,AC b =u u u r r ,AF xa yb =+u u u r r r ,则1

41++y x 的最小值为( ) A.226+ B.36 C.246+ D.223+ 2、(2016,南昌二中四月考)已知,a b 都是负实数,则

2a b

a b a b

+

++的最小值是( ) A. 5

6

B.

)21 C.

1- D.

)

2

1+

3、(2016,重庆万州二中)已知,a b 为正实数,且2a b +=,则22

221

a b a b ++-+的最小值为________

4、(扬州市2016届高三上期末)已知1a b >>且2log 3log 7a b b a +=,则2

1

1

a b +-的最小值为________

5、已知正项等比数列{}n a 满足7652a a a =+,若存在两项,m n a a

14a =,则

14

m n +的最小值为( ) A. 32 B. 53 C. 256 D. 不存在

6、设()()()1,2,,1,,0,0,0OA OB a OC b a b =-=-=->>u u u r u u u r u u u r

,O 为坐标原点。若,,A B C 三点

共线,则

12

a b

+的最小值是_________ 7、已知(),0,a b ∈+∞,且21a b +=

,则2

2

4s a b =-的最大值是( )

A.

1

2

B. 1

C. 1

D.

1

2

A

8、设,,1,1x y R a b ∈>>,若3,x y

a b a b ==+=,则

11

x y

+的最大值为 9、已知a b >,且1ab =,则22

a b a b

+-的最小值是

习题答案: 1、答案:D

解析:2AF x AB y AC x AD y AC =+=+u u u r u u u r u u u r u u u r u u u r

,因为,,C F D 三点共线,所以21x y +=,根据

()212

x y ++=,所以有:

()14114118212412121y x

x y x y x y x y ????++=+++=+++?? ? ???+++????

,由均值不等式可得:

181y x x y ++≥=+

,所以(

1416312x y +

≥+=++2、答案:B

解析:222222

221

112232323a b a ab b ab a b a b a b a ab b a ab b b a

+++==-=-++++++++ ,0a b

b a

∴是正实数

2a b b a ∴+≥=

(

11322a b a b a b +≥-=--=-++

3

、答案:

3

解析:2222121211a b a b a b a b ++-=++-+-++()21

31

a b a b =++++-+ 21

11

a b =-+

+

+ 2a b +=Q ()13a b ∴++=

()2222112121111131a b a b a b a b a b +??∴+-=-++=-++++?? ??

?+++??

()()2121111213131b b a a a

b a b ++?

???

=-+++

+

=+ ? ?++?

???

133

≥?=

4、答案:3 解析:()2

32log 72log 7log 30log a a a a b b b b

+

=?-+= ()()2log 1log 30a a b b ∴--= 1

log 2

a b ∴=

或log 3a b = 1a b >>Q

1

log log 2

a a

b ∴=

= 2b a =

2111

1113111

a a a

b a a ∴+

=+=-++≥+=--- 5、答案:A

解析:22

765555222a a a q a qa a q q =+?=+?=+

解得:2q =或1q

=-(舍)

1144a a =?=

22166m n m n +-∴=?+=(),m n N *∈

()14114141466n m m n m n m n m n ????

+=++=+++ ? ?????

而44n m m n +

≥= 1493

62

m n ∴

+≥= 下面验证等号成立条件:224426n m

n m n m m n m n ?=

?=?=???+=?

解得:24m n =??

=? 所以等号成立,14m n ∴

+的最小值为3

2

注:本题要注意到,m n N *

∈,在利用均值不等式求最小值的过程中有可能等号成立的条件不满足。所以在变量范围比较特殊时,要注意验证等号成立条件 6、答案:8

解析:,,A B C Q 三点共线

AB AC ∴u u u r u u u r ∥ ()()1,1,1,2AB a AC b =-=--u u u r u u u r

Q

()21121a b a b ∴-=--?+=

()121242228b a a b a b a b a b

??∴+=++=+++≥ ??? 7、

答案:A

解析:222a b +?

=

≤=?

?

()2

2

2

2

2

2142222

a b a b a b +??+=+≥= ??? ()22

142a b ∴-+≤-

1

2

s ∴≤

8、答案:1

解析:3x

y

a b ==Q log 3,log 3a b x y ∴==

3331111log log log log 3log 3

a b a b ab x y ∴+=+=+= 2

2

32a b ab +??≤=

= ???

Q

311

log 31x y

∴+≤=

9、答案:

解析:

2222222

a b a ab b a b a b a b a b

+-++==-+≥---

3.均值不等式(全国卷1)

第三节:均值不等式 1.★★若正数a b c ,,满足24288c bc ac ab +++=,则2a b c ++的最小值为 A. 3 B.23C.2 D.2 2 答案:D 2. ★★(2014 河北唐山二模文)若实数a b c ,,满足2228a b c ++=,则a b c + +的最大值为 A.9 B.23 C.3 2 D.2 答案:D 3. ★★(2014 河北衡水四调理)已知,,,ABC A B C ?∠∠∠中的对边分别为,,a b c ,若 1, 2 2a cosC c b =+=,则ABC ?的周长的取值范围是__________. 答案:](32, 4. ★ (2014 河北衡水三调理)已知,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( ) A .a b c >> B .b c a >> C .b a c >> D .a c b >> 答案:C 5.★★( 2014 河北衡水三调理)已知各项均为正数的等比数列满足, 若存在两项 的最小值为 ( ) A . B . C . D .9 答案:A 6. ★★(2014 河北衡水三调文)已知0,0,lg 2lg8lg 2x y x y >>+=,则113x y +的最小值是. 答案:4 7. ★★(2014 河北衡水四调文)函数2()2l n f x x x b x a =+-+(0,)b a R >∈在点{}n a 7652a a a =+,m n a a 114 4,a m n =+则3 2 539 4

(),()b f b 处的切线斜率的最小值 是( ) A.2 1 答案:A 8. ★★(2014 河北冀州中学月考文)若正实数满足 恒成立,则 的最大值为. 答案:1 9. ★★★(2012 山西襄汾中学高考练兵理)设x 、y 满足约束条件,若目 标函数(00)z ax by a b =+>>其中,的最大值为3,则+的最小值为 A .3 B .1 C .2 D .4 答案:A 10. ★★★(2014 河南郑州2014第一次质量预测理)已知,a b 是两个互相垂直的单位向量,且1c a c b ?=?= ,则对任意的正实数t ,1||c ta b t ++ 的最小值是( ) A .2 B ..4 D .答案:B 11. ★★(2014 河南中原名校期中联考理)已知00x y >,>,若222y x m m x y 8+>+恒成立,则实数m 的取值范围是 A .42m m ≥≤或- B .24m m ≥≤或- C .24m -<< D .42m -<< 答案:D 12. ★(2013 河南许昌市期中理)若实数x y ,满足221x y xy ++=,则x y +的最大值是 . 答案: ,x y 2x y +=M ≥M 23023400x y x y y -+≥?? -+≤??≥? 1a 2 b

高中数学奥赛讲义:竞赛中常用的重要不等式

不等式是数学竞赛的热点之一。由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。 竞赛中常用的重要不等式 【内容综述】 本讲重点介绍柯西不等式、排序不等式、切比雪夫不等式的证明与应用 【要点讲解】 目录§1 柯西不等式 §2 排序不等式 §3 切比雪夫不等式 ★ ★ ★ §1。柯西不等式 定理1 对任意实数组恒有不等式“积和方不大于方和积”,即 等式当且仅当时成立。 本不等式称为柯西不等式。 思路一证不等式最基本的方法是作差比较法,柯西不等式的证明也可首选此法。 证明1 ∴右-左= 当且仅当定值时,等式成立。 思路2 注意到时不等式显然成立,当时,不等式左、右皆正,因此可考虑作商比较法。

证明2 当时等式成立;当时,注意到 =1 故 当且仅当 且 (两次放缩等式成立条件要一致)

即同号且常数, 亦即 思路3 根据柯西不等式结构,也可利用构造二次函数来证明。 证明3 构造函数 。 由于恒非负,故其判别式 即有 等式当且仅当常数时成立。 若柯西不等式显然成立。 例1 证明均值不等式链: 调和平均数≤算术平均数≤均方平均数。 证设本题即是欲证: 本题证法很多,现在我们介绍一种主要利用柯西不等式平证明的方法 (1)先证① 注意到欲证①,即需证 ② 此即 由柯西不等式,易知②成立,从而①真

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

高中数学基本不等式的解法十例

高中数学基本不等式问题求解十例 一、基本不等式的基础形式 1.222a b a b +≥,其中,a b R ∈,当且仅当a b =时等号成立。 2.2a b a b +≥,其中[),0,a b ∈+∞,当且仅当a b =时等号成立。 3.常考不等式: 2 2 2 2112 2a b a b a b a b ++??≥≥≥ ??? + ,其中(),0,a b ∈+∞,当且仅当a b =时等号成立。 二、常见问题及其处理办法 问题1:基本不等式与最值 解题思路: (1)积定和最小:若a b 是定值,那么当且仅当a b =时,()m in 2a b a b +=。其中[),0,a b ∈+∞ (2)和定积最大:若a b +是定值,那么当且仅当a b =时,()2 m a x 2a b a b +??= ??? ,其中,a b R ∈。 例题1:若实数,a b 满足221a b +=,则a b +的最大值是 . 解析:很明显,和为定,根据和定积最大法则可得:2 2 222 221222 4 a b a b a b a b -++?= ??≤≤? ??+≤-? ? ,当且 仅当1a b ==-时取等号。 变式:函数1 (0,1)x y a a a -=>≠的图象恒过定点A ,若点在直线1m x n y +=上,则m n 的最大值为______。 解析:由题意可得函数图像恒过定点()1,1A ,将点()1,1A 代入直线方程1m x n y +=中可得1m n +=,明显,和为 定,根据和定积最大法则可得:2 124m n m n +?? ≤= ? ?? ,当且仅当12m n ==时取等号。 例题2:已知函数()2 122 x x f x +=+ ,则()f x 取最小值时对应的x 的值为__________. 解析:很明显,积为定,根据积定和最小法则可得:2 2 1122212 2 x x x x +++≥? =,当且仅当2 12 12 x x x += ?=-时 取等号。 变式:已知2x >-,则12 x x + +的最小值为 。 解析:由题意可得()120,2 12 x x x +>+ ?= +,明显,积为定,根据和定积最大法则可得: ()1122 222 2 x x x x ++≥+?=++,当且仅当122112 x x x x += ?+=?=- +时取等号,此时可得

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 考点不等式的解法 1不等式ax>b 若a>0,解集为 ? ? ? ? ? ? x| x> b a;若a<0,解集为?? ? ? ? ? x| x< b a;若a=0,当b≥0时,解集为?,当b<0时,解集为R. 2一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式ax2+bx+c>0与ax2+bx+c<0的解集,可归纳为: 判别式 Δ=b2-4ac Δ>0Δ=0Δ<0 二次函数 y=ax2+bx+c (a>0)的图象 一元二次方程 ax2+bx+c=0 (a≠0)的根 有两相异实根 x=x1或x=x2 有两相同实根 x=x1=x2 无实根 一元 二次 不等 式的 解集 ax2+bx+ c>0(a>0) {x|xx2} { x∈R| x≠ - ? ? ? b 2a R ax2+bx+ c<0(a>0) {x|x10(a0≠0,n∈N*,n≥3)可以转化为a0(x-x1)(x-x2)…(x-x n)>0(其中x10时,由于f(x)=a0(x-x1)(x-x2)…(x-x n)的值的符号在上述区间自右至左依次为+、-、+、-、…,所以正值区间为f(x)>0的解集. 4分式不等式的解法 (1) f(x) g(x) >0(<0)?f(x)·g(x)>0(<0); (2) f(x) g(x) ≥0(≤0)? ?? ? ??f(x)·g(x)≥0(≤0), g(x)≠0.

不等式证明方法讲义.doc

学习必备欢迎下载 不等式的证明方法 一、比较法 1. 求证: x2 + 3 > 3 x 证:∵ (x2 + 3) 3x = x2 3x ( 3 ) 2 ( 3 )2 3 (x 3 ) 2 3 0 2 2 2 4 ∴x2 + 3 > 3 x 2. 已知 a, b, m 都是正数,并且 a < b,求证:a m a b m b a m a b(a m) a( b m) m(b a) 证: m b b(b m) b(b m) b ∵ a,b,m 都是正数,并且a 0 , b a > 0 ∴ m(b a) 0 即:a m a b(b m) b m b 变式:若 a > b,结果会怎样?若没有“ a < b”这个条件,应如何判断? 3. 已知 a, b 都是正数,并且 a b,求证: a5 + b5 > a2 b3 + a3b2 证: (a5 + b5 ) (a2b3 + a3b2) = ( a5 a3b2) + ( b5 a2b3 ) = a3 (a2 b2 ) b3 (a2 b2 ) = ( a2 b2 ) (a3 b3) 2 2 2 = ( a + b)(a b) (a + ab + b ) ∵a, b 都是正数,∴ a + b, a2 + ab + b2 > 0 又∵ a b,∴ (a b)2 > 0 ∴ (a + b)(a b)2(a2 + ab + b2) > 0 即: a5 + b5 > a2b3 + a3b2 4. 甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半时间以速度 n 行走;有一半路程乙以速度m 行走,另一半路程以速度n 行走,如果 m n,问:甲乙两人谁先到达指定地点? 解:设从出发地到指定地点的路程为S, 甲乙两人走完全程所需时间分别是t1, t2, t1 t1 n S S 2S , t 2 S( m n) 则:m S, t2 可得: t1 2mn 2 2 2m 2n m n ∴ t1 t2 2S S(m n) S[ 4mn (m n)2 ] S(m n)2 2mn 2(m n)mn 2mn( m n) m n ∵ S, m, n 都是正数,且 m n,∴ t1 t2 < 0 即: t 1 < t2 从而:甲先到到达指定地点。 变式:若m = n,结果会怎样?

均值不等式八法

运用均值不等式的八类拼凑方法 利用均值不等式求最值或证明不等式是高中数学的一个重点。在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。均值不等式等号成立条件具有潜在的运用功能。以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。笔者把运用均值不等式的拼凑方法概括为八类。 一、 拼凑定和 通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。 例1 已知01x <<,求函数321y x x x =--++的最大值。 解:()()()()()()2 2 2111111y x x x x x x x =-+++=+-=+- ()()3 11111322241422327x x x x x x ++?? ++- ?++=???-≤= ? ? ?? 。 当且仅当 112x x +=-,即13x =时,上式取“=”。故max 32 27 y =。 评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系, 求“积”的最大值。 例2 求函数)01y x x =<<的最大值。 解: y == 因()()3 2222221122122327x x x x x x ??++- ???-≤= ? ? ? ?? , 当且仅当()2212x x =-,即3 x =时,上式取“= ”。故max 9y =。 评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。 例3 已知02x <<,求函数()264y x x =-的最大值。 解:() ()()2 2 2 222236418244y x x x x x =-=?-- ()()3 2223 24418818327x x x ??+-+-???≤=???? 。

高中数学不等式解法15种典型例题

不等式解法15种典型例题 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<- 3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2 450)2)(4(050 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--+-+-x x x x 2 12 1 310 2730 132027301320 )273)(132(2 22222><<+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或∴原不等式解集为),2()1,21()31,(+∞??-∞。 解法二:原不等式等价于 0) 2)(13() 1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法”∴原不等式解集为),2()1,2 1()31 ,(+∞??-∞ 典型例题三 例3 解不等式242+<-x x 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义? ??<-≥=)0() 0(a a a a a 二是根据绝对值的性质:a x a x a x a a x >?<<-?<.,或a x -<,因此本题有如下两种解法. 解法一:原不等式?????+<-<-?????+<-≥-?2 40 4240422 22x x x x x x 或 即? ? ?>-<<<-???<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<-+<-) 2(42 422x x x x ∴312132<<<-x x x x 故或. 典型例题四 例4 解不等式 04125 62 2<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组: ?????>-+<+-041205622x x x x 或?????<-+>+-0 4120 562 2x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 若a<0时,可以先将二次项系数化为正数,对照上表求解. 3高次不等式的解法 如果一元 n 次不等式 a o x n + a 1X n 1+ …+ a n >0(a o 工 0, n € N *, n > 3)可以转化为 a °(x — X 1)(x — X 2)…(X — X n )>0(其中X 10时,由于f(x) = a o (x — X 1)(X — X 2)…(X — X n )的值的符号在上述区间自右至 左依次为+、一、+、一、…,所以正值区间为 f(x)>0的解集. 4分式不等式的解法 f x (1) g T>0(<0) ? f(x) g(x)>0(<0); y x f x f x g x > 0 < 0, (2严> 0( < 0)? g x g x 工 0. 总基础点重难点 1 不等式ax>b 若a>0,解集为x | x>-;若a<0,解集为 x | xv-;若a = 0,当b > 0时,解集为?,当b<0 a a — 时,解集为R. 2 一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式 集,可归纳为: ax 2 + bx + c>0 与 ax 2 + bx + c<0 的解 判别式 △= b 2 — 4ac 二次函数 y = ax 2 + bx + c (a>0)的图象 元二次方程 ax 2 + bx + c = 0 有两相异实根 有两相同实根 无实根 二次 不等 式的 解集 (a ^ 0)的根 ax 2 + bx + c>0(a>0) ax 2+ bx + c<0(a>0) X = X 1 或 X = X 2 X = X 1= X 2 {xxX 2} {X|X 1VX

人教A版高中数学必修五讲义及题型归纳:基本不等式

基本不等式 1.均值定理:如果a , b +∈R (+R 表示正实数),那么 2 a b +,当且仅当a b =时,有等号成立. 此结论又称均值不等式或基本不等式. 2 2a b +2 a b +需要前提条件,a b +∈R . 2 a b +叫做a ,b a ,b 3.可以认为基本元素为ab ,a b +,22a b +;其中任意一个为定值,都可以求其它两个的最值. 考点1:常规基本不等式问题 例1.(1)已知0x >,则1 82x x +的最小值为( ) A .2 B .3 C .4 D .5 【解答】解:0x >Q ,1842x x ∴+=… 当且仅当1 82x x =即14x =时取等号, 故选:C . (2)已知3 05 x <<,则(35)x x -取最大值时x 的值为( ) A . 310 B .910 C . 95 D . 12 【解答】解:305 x << Q , 则2115359 (35)5(35)()5 5220 x x x x x x +--=?-?= ?, 当且仅当535x x =-即3 10 x =时取最大值 故选:A . (3)已知函数9 4(1)1 y x x x =-+>-+,当x a =时,y 取得最小值b ,则23a b +等于( ) A .9 B .7 C .5 D .3 【解答】解:1x >-Q ,10x ∴+>,

99 41511 y x x x x ∴=-+ =++-++ 5… 1=, 当且仅当9 11 x x += +,即2x =时取等号, y ∴取得最小值1b =,此时2x a ==, 237a b ∴+=. 故选:B . (4)已知0a >,0b >,且22a b +=,则ab 的最大值为( ) A . 12 B C .1 D 【解答】解:0a >Q ,0b >,且22a b +=, 则21 121(2)()2 222 a b ab a b +=??=g ? , 当且仅当2a b =且22a b +=即12a =,1b =时取得最大值1 2 . 故选:A . 考点2:基本不等式易错点 例2.(1)已知1x y +=,0y >,0x ≠,则1||2||1 x x y ++的最小值是( ) A . 1 2 B . 14 C . 34 D . 54 【解答】解:由1x y +=,0y >得10y x =->, 解得1x <且0x ≠, ①当01x <<时,1||12||121 x x x y x y +=+++, 122242x x x x x x x x +-=+=+ --, 12115()2442424 x x x x -= +++?=-…, 当且仅当 242x x x x -= -即23x =时取等号; ②当0x <时, 1||1()2||121 x x x y x y +=-+++,

高中数学不等式的分类、解法讲解学习

高中数学不等式的分 类、解法

精品文档 收集于网络,如有侵权请联系管理员删除 高中数学简单不等式的分类、解法 一、知识点回顾 1.简单不等式类型:一元一次、二次不等式, 分式不等式,高次不等式,指数、对数不等 式,三角不等式,含参不等式,函数不等式, 绝对值不等式。 2.一元二次不等式的解法 解二次不等式时,将二次不等式整理成首 项系数大于0的一般形式,再求根、结合图像 写出解集 3三个二次之间的关系: 二次函数的图象、一元二次方程的根与一元二次不等式的解集之间的关系(见复习教材P228) 二次函数的零点---对应二次方程的实根----对应二次不等式解集区间的端点 4.分式不等式的解法 法一:转化为不等式组;法二:化为整式不等式;法三:数轴标根法 5.高次不等式解法 法一:转化为不等式组;法二:数轴标根法 6.指数与对数不等式解法 a>1时)()()()(x g x f a a x g x f >?>; 0)()()(log )(log >>?>x g x f x g x f a a 0; ) ()(0)(log )(log x g x f x g x f a a < 7.三角不等式解法 利用三角函数线或用三角函数的图像求解 8.含参不等式解法 根据解题需要,对参数进行分类讨论 9.函数不等式解法 利用函数的单调性求解,化为基本不等式 (有时还会结合奇偶性) 10.绝对值不等式解法(后面详细讨论) 二、练习: (1)23440x x -++>解集为 (2 23x -<< )(一化二算三写) (2)213 022 x x ++>解集为 (R ) (变为≤,则得?)(无实根则配方) 三、例题与练习 例1已知函数)()1()(b x ax x f +?-= ,若不等式0)(>x f 的解集为)3,1(-,则不等式 0)2(<-x f 的解集为 ),2 1 ()23,(+∞--∞Y 解法一:由根与系数关系求出3,1-=-=b a ,得32)(2++-=x x x f ,再得出新不等式,求解

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

均值不等式求最值的十种方法

用均值不等式求最值的方法和技巧 一、几个重要的均值不等式 ①,、)(2 22 22 2 R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 112 +2 a b +≤≤≤2 2 2b a +。 一、拼凑定和 通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。 例1 (1) 当 时,求(82)y x x =-的最大值。 (2) 已知01x <<,求函数321y x x x =--++的最大值。 解:()()()()()()2 2 2111111y x x x x x x x =-+++=+-=+- ()()3 11111322241422327x x x x x x ++?? ++- ?++=???-≤= ? ? ?? 。 当且仅当 112x x +=-,即13x =时,上式取“=”。故max 32 27 y =。 评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系, 求“积”的最大值。 例2 求函数)01y x x =<<的最大值。 解: y ==。 因()()3 2222221122122327x x x x x x ??++- ???-≤= ? ? ? ?? , 当且仅当()2212x x =- ,即x =时,上式取“= ”。故max y =。

高中数学不等式的解法

高中数学不等式的解法 复习目标 1.掌握一元一次不等式(组) ,一元二次不等式,分式不等式,含绝对值的不等式,简单的 无理不等式的解法. 2.会在数轴上表示不等式或不等式组的解集. 3.培养运算能力. 知识回顾 一、一元一次不等式的解法 一元一次不等式 ax b(a 0) 的解集情况是 b b (1)当 a 0 时,解集为 { x | } (2)当 a 0时,解集为 { | } x x x a a 二、一元二次不等式的解法 2 bx c 2 的有 一般的一元二次不等式可利用一元二次方程 ax 0与二次函数 y ax bx c 关性质求解,具体见下表: 2 0 0 0 a 0 , b 4ac 二次函数 y 2 ax b x c 的图象 一元二次方程 有两个相等的实根 有两实根 2 bx c ax 的根 x x 或 1 x x 2 x x 1 x 2 b 2a 无实根 不等式 一 式 元 的 2 bx c ax {x| x x 1或x x 2} { x | x x 1 } R 二 解 次 集 不 的解集 不等式 等 2 bx c ax {x|x 1 x x 2} Φ Φ 的解集

注:1.解一元二次不等式的步骤: (1)把二次项的系数a变为正的.(如果a 0,那么在不等式两边都乘以1,把系 数变为正) 1

(2)解对应的一元二次方程.(先看能否因式分解,若不能,再看△,然后求根)(3)求解一元二次不等式.(根据一元二次方程的根及不等式的方向) 2.当a 0 且0 时,定一元二次不等式的解集的口诀:“小于号取中间,大于号取两边”. 三、含有绝对值的不等式的解法 1.绝对值的概念 a (a 0) a 0 a 0 a a 0 2.含绝对值不等式的解: (1)| x | a(a 0) a x a (2)| x | a(a 0) x a或x a (3)| f (x) | a(a 0) a f (x) a (4)| f (x) | a(a 0) f (x) a或f (x) a 注:当a 0时,| x | a 无解,| x | a的解集为全体实数. 四、一元高次不等式的解法 一元高次不等式 f ( x) 0(或 f (x) 0),一般用数轴标根法求解,其步骤是: (1)将 f ( x) 的最高次项的系数化为正数; (2)将 f ( x) 分解为若干个一次因式的积; (3)将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; (4)根据曲线显现出 f (x) 值的符号变化规律,写出不等式的解集. 如:若a1 a2 3 ,则不等式(x a1)(x a2) (x a n) 0 a a n 或(x 1)(x a ) (x a n ) 0的解法如下图(即“数轴标根法”): a 2 五、分式不等式的解法 ' ' f (x) f ( x) 对于解 a a 或型不等式,应先移项、通分,将不等式整理成 ' g ( x) g'( x)

高一数学必修一均值不等式题型归纳

均值不等式题型归纳 一、拼凑求最值 1.函数y =x ·(3-2x ) (0≤x ≤1)的最大值为______________. 2.已知x ≥52,则f (x )=x 2-4x +52x -4 有( ) A .最大值54 B .最小值54 C .最大值1 D .最小值1 3.当x >1时,不等式x +1x -1 ≥a 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3] 二、“1”的代换 1.若正数x 、y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A .245 B .285 C .5 D .6 三、实际应用 1.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓 储时间为x 8 天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A .60件 B .80件 C .100件 D .120件 2.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价分别为每平方米120元和80元,那么水池的最低总造价为__________元. 3.一批救灾物资随17列火车以v km/h 的速度匀速直达400km 以外的灾区,为了安全起见, 两列火车的间距不得小于(v 20 )2km ,则这批物资全部运送到灾区最少需__________h. 4.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元.试求: (1)仓库面积S 的取值范围是多少? (2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计多长?

高考数学讲义不等式.知识框架

不等式 要求层次 重难点 基本不等式: 2 a b ab +≥(,0a b ≥) C 用基本不等式解决简单的最大(小)值 问题 不等式 要求层次 重难点 一元二次不等式 C 解一元二次不等式 版块一.不等式的性质 1.用不等号()<>≠,,≤,≥,表示不等关系的式子叫做不等式. 2.对于任意两个实数a 和b ,在,,a b a b a b =><三种关系中,有且仅有一种关系成立. 知识内容 高考要求 模块框架 不等式

3.两个实数的大小比较: 对于任意两个实数,a b ,对应数轴上的两点,右边的点对应的实数比左边点对应的实数大. 作差比较法:0a b a b ->?>;0a b a b -,那么b a <;如果b a <,那么a b >. 性质2:(传递性)如果a b >,且b c >,则a c >. 性质3:如果a b >,则a c b c +>+. 推论1:(移项法则)不等式中的任意一项都可以把它的符号变成相反的符号后,从不等 式的一边移到另一边. 推论2:如果,a b c d >>,则a c b d +>+. 我们把a b >和c d >(或a b <和c d <)这类不等号方向相同的不等式,叫做同向不等式. 推论2说明:同向不等式的两边可以分别相加,所得的不等式与原不等式同向. 推广:几个同向不等式的两边分别相加,所得到的不等式与原不等式同向. 性质4:如果a b >,0c >,则ac bc >;如果a b >,0c <,则ac bc <. 实数大小的作商比较法:当0b ≠时,若1a b >,且0b >,则a b >;若1a b >,且0b <, 则a b <. 推论1:如果0,0a b c d >>>>,则ac bd >. 推广:几个两边都是正数的同向不等式的两边分别相乘,所得到的不等式与原不等式同向. 推论2:如果0a b >>,则(,1)n n a b n n +>∈>N . 推论3:如果0a b >>,1)n n +>∈>N <教师备案>1. 对于任意两个实数,a b ,有0a b a b ->?>;0a b a b -

相关主题
文本预览
相关文档 最新文档