当前位置:文档之家› AD603程控增益调整放大器

AD603程控增益调整放大器

AD603程控增益调整放大器
AD603程控增益调整放大器

AD603程控增益调整放大器

AGC电路常用于RF/IF电路系统中,AGC电路的优劣直接影响着系统的性能。因此设计了AD603和AD590构成的3~75dBAGC电路,并用于低压载波扩频通信系统中的数据集中器。

在很多信号采集系统中,信号变化的幅度都比较大,那么放大以后的信号幅值有可能超过A/D转换的量程,所以必须根据信号的变化相应调整放大器的增益。在自动化程度要求较高的系统中,希望能够在程序中用软件控制放大器的增益,或者放大器本身能自动将增益调整到适当的范围。AD603正是这样一种具有程控增益调整功能的芯片。它是美国ADI公司的专利产品,是一个低噪、90MHz带宽增益可调的集成运放,如增益用分贝表示,则增益与控制电压成线性关系,压摆率为275V/μs。管脚间的连接方式决定了可编程的增益范围,增益在-11~+30dB时的带宽为90Mhz,增益在+9~+41dB时具有9MHz带宽,改变管脚间的连接电阻,可使增益处在上述范围内。该集成电路可应用于射频自动增益放大器、视频增益控制、A/D转换量程扩展和信号测量系统。

AD603的特点、内部结构和工作原理

(1)AD603的特点

AD603是美国AD公司继AD600后推出的宽频带、低噪声、低畸变、高增益精度的压控VGA芯片。可用于RF/IF系统中的AGC电路、视频增益控制、A/D范围扩展和信号测量等系统中。

(2)ad603引脚排列是、功能及极限参数

AD603的引脚排列如图1所示,表1所列为其引脚功能。

引脚1 增益控制输入“高”电压端(正电压控制)

引脚2 增益控制输入“低”电压端(负电压控制)

引脚3 运放输入

引脚4 运放公共端

引脚5 反馈端

引脚6 负电源输入

引脚7 运放输出

引脚8 正电源输入

●电源电压Vs:±7.5V;

●输入信号幅度VINP:+2V;

●增益控制端电压GNEG和GPOS:±Vs;

●功耗:400mW;

●工作温度范围;

AD603A:-40℃~85℃;

AD603S:-55℃~+125℃;

●存储温度:-65℃~150℃

(3)AD603内部结构及原理

AD603内部结构图如图2所示。AD603由一个可通过外部反馈电路设置固定增益GF(31.07~51.07)的放大器、0~-42.14dB的宽带压控精密无源衰减器和40dB/V的线性增益控制电路构成。

图2 AD603内部结构图

AD603利用了X-AMP由一个0~-42.14dB的可变衰减器及一个固定增益放大器构成。其中,可变衰减器由一个七级R-2R梯形网络构成,每级的衰减量为6.02dB,可对输入信号提供0~-42.14dB的衰减。X-AMP 结构的一个重要优点是优越的噪声特性,在1MHz宽带,最大不失真输出为1Vrms时,输出x信噪比为86.6dB。

连续控制下的输入增益控制计算

AD603的简化原理框图如上图2所示,它由无源输入衰减器、增益控制界面和固定增益放大器三部分组成。图中加在梯型网络输入端(VINP)的信号经衰减后,由固定增益放大器输出,衰减量是由加在增益控制接口的电压决定。增益的调整与其自身电压值无关,而仅与其差值VG有关,由于控制电压GPOS/GNEG端的输入电阻高达50MΩ,因而输入电流很小,致使片内控制电路对提供增益控制电压的外电路影响减小。以上特点很适合构成程控增益放大器。图2中的“滑动臂”从左到右是可以连接移动的。当VOUT和FDBK两管脚的连接不同时,其放大器的增益范围也不一样。

当脚5和脚7短接时,AD603的增益为40Vg+10,这时的增益范围在-10~30dB。当脚5和脚7断开时,其增益为40Vg+30,这时的增益范围为10~50dB。

如果在5脚和7脚接上电阻,其增益范围将处于上述两者之间。

AD603的增益控制接口的输入阻抗很高,在多通道或级联应用中,一个控制电压可以驱动多个运放;同时,其增益控制接口还具有差分输入能力,设计时可根据信号电平和极性选择合适的控制方案。(4)工作原理概述

信号从精密无源梯形网络的输入短输入,对输入信号的衰减量由高阻(50兆欧)低偏流差分输入的增益控制电路的控制电压VG(VGPOS-VGNEG)决定,即由VG控制梯形网络的“滑动触点”至相应的“节点”处,可实现0~-42.14dB的衰减。

固定增益放大器的增益GF通过VOUT与FDBK端连接形式确定,当VOUT与FDBK端短路连接时,GF=31.07dB;当VOUT与FDBK之间开路时,GF=5.07dB;在OUT与FDBK之间外接意的电阻REXT,可将GF设置为31.07~51.07dB之间的任意值。值得注意的是,在该模式下其增益精度有所降低,当外接电阻为2千欧左右时,增益误差最大。若在VOUT与FDBK端连接一个电阻可获得一个稍高的增益,最大增益约为60dB。超过Thr30℃时,OT端输出低电平(过热关闭信号)。图9中 WARN信号及OT信号都输入微控制器uC中。其温度特性与输出特性如图10示。图9中的FANON为风扇开控制端,当此端口低电平时,不管温度是多少,风扇被打开(一般正常工作时,此端接Vdd)。VT1可驱动12V直流无刷电机,工作电流可达250mA.

(5)带风扇故障检测的风扇控制器

带风扇故障检测的风扇控制器的工作原理如图11所示。当温度超过阀值温度Thr时,比较器P1输出高电平,VT导通,风扇工作。VT的集电极电流Ic通过检测电阻Rsen到地,在Rsen上端的电压Vsen=Ic*Rsen。当电机正常时,Vsen电压大于P2的基准电压,P2输出高电平;当电机绕组断线(或VT 损坏),Vsen=0,P2的基准电压大于Vsen,P2输出低电平, 表示电机有故障(或VT损坏了),此信号一般送至uC。

计算机需要更高的控制精度

中央处理器需要高达±1℃的精度测量技术才能使系统控制的温度精度由以往的±6℃提高到±3℃,这样也可缩小上下限控制温度范围,使中央处理器的工作性能更好。

这对于便携式计算机来说,上下限控制温度范围越小,不仅性能更好,而开动散热风扇所消耗的电能也越小,这点是十分重要的。

为了满足这个要求,各半导体器件公司纷纷推出各种新型风扇控制器,如AD公司开发的ADM1030/ADM 公司开发的LM86,MAXIM公司开发的MAX6654及MICROCHIP公司的TC652/653等,这些器件在70~100℃或60~100℃温度内远程温度测量精度都可达±1范围,满足Intel公司提出的要求,它们采用11位A/D 变换器,其分辨率可达0.125℃。

设计AD603的增益,可设置位三种形式。

模式一:将VOUT与FDBK短路,即为宽频带模式(90MHz宽频带),AD603的增益设置为

-11.07dB~+31.07dB.

模式二:VOUT与FDBK之间外接一个电阻REXT,FDBK与COMN端之间接一个5.6uF的电容频率补偿。根据放大器的增益关系式,选取合适的REXT,可获得所需要的模式一与模式三之间的增益值。当

REXT=2.15千欧时,增益范围为-1~+41dB。

模式三:VOUT与FDBK之间开路,FDBK对COMN连接一个18uF的电容用于扩展频率响应,该模式为高增益模式,其增益范围为+8.92~+51.07dB,带宽为9MHz.

在以上三种模式中,增益G(dB)与控制电压VG的关系曲线如图2所示。当VG在-500mV~+500mV

范围内以40dB/V(既25mV/dB)进行线性增益控制,增益G(dB)与控制电压VG之间的关系为:GdB)

=40VG+Goi(i=1,2,3),其中VG=VGPOS-VGNEG(单位为伏特),Goi分别为三种不同模式的增益常量:GO1=10dB,GO2=10~30dB(由REXT决定,当REXT=2.15千欧时,GO2=20dB),GO3=30dB。

当VG<-500mV或VG>+500mV时,增益(dB)与控制电压VG之间不满足线性关系,当VG=-526mV时,Gmin(dB)=GF-42.14;VG=+526mV时,Gmax(dB)=GF。

高增益要求下AD603级联应用

在要求高增益的场合,可采用两片或多片AD603级联的形式,级间通常采用电容耦合。两片AD603级联时,总增益控制范围为84.28dB=(42.14*2).在级联应用中,有两种增益控制连接方式,即顺序控制方式和并联控制方式。可根据实际应用情况选择,其选择取决于是要获得最高即时噪比还是优化增益误差波动。

顺序控制方式(优化S/N)两片AD603级联的顺序控制方式是将两片AD603的两个正增益控制输入端(GPOS)以并联形式由一个正电压VG(GPOS对地的电压)驱动,而两级的负增益控制输入端(GNEG)分别加一个稳定的电压,使VG1 和VG2满足2*0.526V的点位差是,则第一级的增益达到最大值是,第二级的增益才从最小值开始提高。在顺序控制方式中,ISNR(即时信噪比)在增益控制范围内维持可能的最高水平。

并联控制方式两片AD603级联的控制方式是将两级的正增益控制输入端(GPOS)以并联的形式由一个正电压VG驱动,而两级的负增益控制输入端(GNEG)以并联形式接地或加一个稳定的电压,即VG1=VG2,于是两级的增益同步变化,并联控制方式在线性范围内的控制能力为80dB/V(40dB/V*2),即在较小的控制电压下便可获得较高的增益,其总增益是单片AD603的两倍。但在并联方式工作时其增益误差是顺序控制方式的两倍,输出信造币随着增益的提高而线性降低。

低增益波动方式(最小增益误差方式)由于即使在增益温度状态下也存在一定的增益误差,且呈现周期性的纹波状态,若设置两片AD603级联时所对应的VG1和VG2间存在合适的电位差(约93.75mV),即可使两级的增益误差相互抵消,以实现在所需增益范围内总增益误差最小。

AGC实用电路

AD603的原理可知,其增益控制VG若与输入信号成反比,便可实现AGC功能,获得AGV电路的增益控制电压,通常采用半波检测电路或RMS(有效值)电路。本文结合实际应用给出了一种利用AD590与一只三极管等组成宽范围温度补偿的半波检测电路和两片AD603级联而构成的AGC实用电路,如图3所示。

宽范围温度补偿的半波检测电路由温度传感器AD590(典型值为1A)、Q、R2和CAV构成,基本原

理为:在VOUT为正半周时Q截止,在VOUT为负半周时Q导通,流入CAV的平均电流Icav=Iad590-Iqc (温度在300K时,Iad590=300uA),当增益控制电压Vcav处于稳定状态时,在一个周期内Q中的整流电流的平均值必须与Iad590保持平衡,如果AD603的输出幅度太小以至于不满足改条件,则Vcav将迅速上升,引起增益提高,最终使Q充分导通。R2的选取由带隙基准原理所确定,适当选择R2使之满足VOUT=VBE+VR2=1.2V(即VR2=500mV)时,VOUT在较宽的温度范围内将是稳定的。对方波而言,在输入

信号稳定时,Vcav应保持稳定,则Q在导通的半个周期内发射极电流应为600uA,于是的R2=833欧,实际应用中时正弦波并非方波,R2的推荐值为806欧。由于AD590、R2和Q的配合适用,在很宽的温度范围内将使VOUT保持稳定。C2用于改善频率特性。另外,改变CAV的值可改变AGC的时间常数,CAV的

取值一般在0.1~1uF之间。

两片AD603以并联控制方式连接,两级的GNEG端布并联接于0.5V的电平上,GPOS端并联,由半波检测电路的控制。两级的VOUT与FBDK之间均接10千欧电阻,即为模式二工作方式,其输出幅度为1.2Vrms,增益范围为+3~+75dB。频带不小于20MHz。

图3是由两级AD603构成的具有自动增益控制的放大电路,图中由Q1和R8组成一个检波器,用于检测输出信号幅度的变化。由CAV形成自动增益控制电压VAGC,流进电容CAV的电流Q2和Q1两管的集电极电流之差,而且其大小随A2输出信号的幅度大小变化而变化,这使得加在A1、A2放大器1脚的自动增益控制电压VAGC随输出信号幅度变化而变化,从而达到自动调整放大器增益的目的。

图4是AD603在信号采集系统中的应用电路,两级AD603构成程控增益放大器。该电路采用二级AD603顺序级联构成,其输出经过高速A/D采样后,由DSP计算需调节的增益量并控制A/D以获得调节增益控制电压,从而精确地控制放大器的增益。图中的C16、C17、C18、C19用于电源去耦;C20、C21、C26为放大器的级间耦合电容;C23,C25用于AD603频响的高频提升。

AD603注意事项

在AD603的应用中要注意以下几点:

(1)供电电压一般应选为±5V,最大不得超过±7.5V。

(2)在±5V供电情况下,加在输入端VINP的额定电压有效值应为1V,峰值为±1.4V,最大不得超过±2V。如要扩大测量范围,应在AD603的前面加一级衰减。这样可使输出电压峰值的典型值达到±3.0V。因此AD603后面通常要加一级放大才能接A/D转换器。

(3)电压控制端所加的电压必须非常稳定,否则将造成增益的不稳定,从而增加放大信号的噪声。

(4)信号必须直接连在放大器的脚4,否则将由于阻抗较大而引起放大器精度的降低。

晶体管中频小信号选频放大器设计(高频电子线路课程设计)

课程设计任务书 学生姓名:专业班级:电子1001班 指导教师:韩屏工作单位:信息工程学院题目:晶体管中频小信号选频放大器设计 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务: 1.采用晶体管或集成电路完成一个调幅中频小信号放大器的设计; 2.放大器选频频率f0=455KHz,最大增益200倍,矩形系数不大于5; 3.负载电阻R L=1KΩ时,输出电压不小干0.5V,无明显失真; 4.完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 1.2013年12月10日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。 2.2013年12月11日至2013年12月26日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。 3. 2013年12月27日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 摘要............................................................................................................. I Abstract ...................................................................................................... I I 一、绪论 (1) 二、中频小信号放大器的工作原理 (2) 三、中频选频放大器的设计方案 (3) 3.1 稳定性分析 (3) 3.2 提高放大器稳定性的方法 (4) 3.3中频选频放大 (5) 3.4 信号负反馈 (6) 四、电路仿真与分析 (7) 4.1 multisim仿真软件简介 (7) 4.2 中频选频放大部分仿真 (7) 五、实物制作及调试 (9) 六、个人体会 (12) 参考文献 (13) 附录I 元件清单 (14) 附录II总电路图 (15)

程控放大器的设计与实现

程控放大器的设计与实现 摘要 本文介绍了一种可通过程序改变增益的放大器。它与ADC相配合,可以自动适应大范围变化的模拟信号电平。系统以89S51单片机作微处理器,运用NE5532芯片组成运放电路,采用CD4052芯片担任增益切换开关,通过软件控制开关的闭合或断开来达到改变电路的增益。 文章首先对系统方案进行论证,然后对硬件电路和软件设计进行了说明,最后重点阐述了系统的调试过程,并且对调试过程中遇到的问题以及解决方案进行了详细说明。该系统设计达到了预期要求,实现了最大放大60db的目的。 关键词 程控放大器;运算器放大器;单片机;增益 The Design and Realization of Program-Controll Amplifier Abstract This article introduces a amplifier which changes the gain through the software. It coordinates with ADC and adapts the simulated signal level with wide range change automatically. The system uses the 89s51 SCM as the core. The NE5532 chip composes the operational circuit and the CD4052 chip composes the gain switch. The gain of the circuit is changed by software which can control switch closed or disconnect. The article first demonstrates the system plan, then introduces the hardware and the software, finally explains the debugging process of the system with emphasis. It also especially analogizes the problem in the debugging process and the resolutions. This system design has achieved anticipative request and realized enlarged 60db most greatly the goal. Key words Program-controlled amplifier; operational Amplifier; SCM; gain

自动增益控制的原理图

自动增益控制的原理图 自动增益控制的原理 [导读] 自动增益控制的原理自动增益控制电路的作用是:当输入信号电压变化很大时,保持接收机输出电压恒定或基本不变。具体地说,当 关键词:增益控制左手665收藏时间:2015年4月23日20:17 自动增益控制的原理 自动增益控制电路的作用是:当输入信号电压变化很大时,保持接收机输出电压恒定或基本不变。具体地说,当输入信号很弱时,接收机的增益大,自动增益控制电路不起作用;当输入信号很强时,自动增益控制电路进行控制,使接收机的增益减小。这样,当接收信号强度变化时,接收机的输出端的电压或功率基本不变或保持恒定。因此对AGC电路的要求是:在输入信号较小时,AGC电路不起作用,只有当输入信号增大到一定程度后,AGC电路才起控制作用,使增益随输入信号的增大而减少。 为实现上述要求,必须有一个能随外来信号强弱而变化的控制电压或电流信号,利用这个信号对放大器的增益自动

进行控制。由上述分析可知,调幅中频信号经幅度检波后,在它的输出中除音频信号外,还含有直流分量。直流分量大小与中频载波的振幅成正比,也即与外来高频信号成正比。因此,可将检波器输出的直流分量作为AGC控制信号。AGC电路工作原理:可以分为增益受控放大电路和控制电压形成电路。增益受控放大电路位于正向放大通路,其增益随控制电压U0而改变。控制电压形成电路的基本部件是AGC 整流器和低通平滑滤波器,有时也包含门电路和直流放大器等部件。 放大器及AGC电路 上图是由两级AD603构成的具有自动增益控制的放大电路, 图中由Q1 和R8 组成一个检波器,用于检测输出信号幅度的变化。由CA V 形成自动增益控制电压V A GC , 流进电容CA V 的电流Q2 和Q1两管的集电极电流之差, 而且其大小随A2 输出信号的幅度大小变化而变化, 这使得加在A1、A2 放大器1 脚的自动增益控制电压V A GC 随输出信号幅度变化而变化, 从而达到自动调整放大器增益的目的。 左手665收藏时间:2015年4月23日20:17

AD603程控增益调整放大器

AD603程控增益调整放大器 AGC电路常用于RF/IF电路系统中,AGC电路的优劣直接影响着系统的性能。因此设计了AD603和AD590构成的3~75dBAGC电路,并用于低压载波扩频通信系统中的数据集中器。 在很多信号采集系统中,信号变化的幅度都比较大,那么放大以后的信号幅值有可能超过A/D转换的量程,所以必须根据信号的变化相应调整放大器的增益。在自动化程度要求较高的系统中,希望能够在程序中用软件控制放大器的增益,或者放大器本身能自动将增益调整到适当的范围。AD603正是这样一种具有程控增益调整功能的芯片。它是美国ADI公司的专利产品,是一个低噪、90MHz带宽增益可调的集成运放,如增益用分贝表示,则增益与控制电压成线性关系,压摆率为275V/μs。管脚间的连接方式决定了可编程的增益范围,增益在-11~+30dB时的带宽为90Mhz,增益在+9~+41dB时具有9MHz带宽,改变管脚间的连接电阻,可使增益处在上述范围内。该集成电路可应用于射频自动增益放大器、视频增益控制、A/D转换量程扩展和信号测量系统。 AD603的特点、内部结构和工作原理 (1)AD603的特点 AD603是美国AD公司继AD600后推出的宽频带、低噪声、低畸变、高增益精度的压控VGA芯片。可用于RF/IF系统中的AGC电路、视频增益控制、A/D范围扩展和信号测量等系统中。 (2)ad603引脚排列是、功能及极限参数 AD603的引脚排列如图1所示,表1所列为其引脚功能。 引脚1 增益控制输入“高”电压端(正电压控制) 引脚2 增益控制输入“低”电压端(负电压控制) 引脚3 运放输入 引脚4 运放公共端 引脚5 反馈端 引脚6 负电源输入 引脚7 运放输出 引脚8 正电源输入 ●电源电压Vs:±7.5V; ●输入信号幅度VINP:+2V; ●增益控制端电压GNEG和GPOS:±Vs; ●功耗:400mW; ●工作温度范围; AD603A:-40℃~85℃; AD603S:-55℃~+125℃; ●存储温度:-65℃~150℃ (3)AD603内部结构及原理 AD603内部结构图如图2所示。AD603由一个可通过外部反馈电路设置固定增益GF(31.07~51.07)的放大器、0~-42.14dB的宽带压控精密无源衰减器和40dB/V的线性增益控制电路构成。

自动增益控制放大器

摘要 自动增益控制电路已广泛用于各种接收机、录音机和信号采集系统中,另外在光纤通信、微波通信、卫星通信等通信系统以及雷达、广播电视系统中也得到了广泛的应用。 本课题主要研究应用于音频放大的前级电压放大,因此设计的电路需容纳的频带范围应较宽,以至于使语音信号通过。由于语音信号的频带范围为300hz-3400hz,所以该电路所应设计的频带范围应在300hz-3400hz之间,并且电路应该实现增益的闭环调节,通过此电路可以实现增益的自动调整,以至于使音频信号强时自动减小放大器的倍数,信号弱时自动增大放大器的倍数,从而实现音量的自动调节。 本课题介绍了自动增益控制的概念原理以及对自动增益控制放大器各部分的工作原理,最后对系统的测试结果以及设计与实现中应该注意的问题也做了详细分析。 关键词:放大器;自动增益控制;电压跟随器;滤波器 目录 摘要 (1) 第1章引言 (4) 第2章自动增益控制 (4) 2. 1自动增益控制 (4) 2.1.1自动增益控制基本概念 (4) 2.1.2自动增益控制的原理 (5) 2. 2自动增益控制放大器 (5) 2. 3本课题的研究内容 (5) 第3章自动增益控制放大器的电路设计 (6) 3. 1方案选择 (6) 3. 2压随器工作原理 (8) 3. 3整流电路工作原理 (8) 3. 4滤波 (9) 3. 5增益控制工作原理 (9) 3. 6电路元器件选择 (10) 3.6.1运算放大器 (10) 3.6.2场效应管的选择 (11) 3.6.3其他元器件的选择 (11)

第4章放大器电路的调试及实验结果 (12) 4. 1放大器电路的调试 (12) 4. 2实验结果及存在问题 (12) 第5章总结 (14) 参考文献 (15) 附录 (15) 致谢 (16) 第1章引言 随着微电子技术、计算机网络技术和通信技术等行业的迅速发展,自动增益 控制电路越来越被人们熟知并且广泛的应用到各个领域当中。自动增益控制线路,简称AGC线路,A是AUTO(自动),G是GAIN(增益),C是CONTROL(控制)。它是输出限幅装置的一种,是利用线性放大和压缩放大的有效组合对输出信号进 行调整。当输入信号较弱时,线性放大电路工作,保证输出声信号的强度;当输 入信号强度达到一定程度时,启动压缩放大线路,使声输出幅度降低,满足了对 输入信号进行衰减的需要。也就是说,AGC功能可以通过改变输入输出压缩比例自 动控制增益的幅度,扩大了接收机的接收范围,它能够在输入信号幅度变化很大 的情况下,使输出信号幅度保持恒定或仅在较小范围内变化,不至于因为输入信 号太小而无法正常工作,也不至于因为输入信号太大而使接收机发生饱和或堵塞。在电路设计中,这种线路被大量的运用,从尖端的雷达技术到日常的广播电视系统,自动增益控制无疑很好的解决了各种技术中存在的信号强度问题。目前,实 现自动增益控制的手段有很多,在本文中,主要研究的是如何以放大器来实现自 动增益控制的目的,也就是自动增益控制放大器。 第2章自动增益控制 2. 1自动增益控制 2. 1. 1自动增益控制的基本概念 接收机的输出电平取决于输入信号电平和接收机的增益。由于各种原因,接 收机的输入信号变化范围往往很大,信号弱时可以是一微伏或几十微伏,信号强 时可达几百毫伏,最强信号和最弱信号相差可达几十分贝。这个变化范围称为接 收机的动态范围。 影响接收机输入信号的因素很多,例如:发射台功率的大小、接收机离发射 台距离的远近、信号在传播过程中传播条件的变化(如电离层和对流层的骚动、天

电子综合课程设计题目资料

电子综合课程设计题目汇总 1、水温控制系统设计 任务:设计并制作一个水温自动控制系统,控制对象为1升净水,容器为搪瓷器皿。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。 要求: 1)基本要求 (1)温度设定范围为40~90℃,最小区分度为1℃,标定温度≤1℃。(2)环境温度降低时(例如用电风扇降温)温度控制的静态误差≤1℃。(3)用十进制数码管显示水的实际温度。 2)发挥部分 (1)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。 (2)温度控制的静态误差≤0.2℃。 (3)在设定温度发生突变(由40℃提高到60℃)时,自动打印水温随时间变化的曲线。 2、语音提示系统 设计任务: 1)基本要求 设计并制作一个语音提示系统,能对出入口人员进行实时提示。 A. 能检测人员的进出方向。 B. 能够根据人员不同的进出方向发出不同的提示音。 C.具有录音功能。根据不同的场合,录制不同的提示音。录音时间大于4秒。 2)发挥部分 A.统计一天的人流量,通过按键显示。 B.显示当前时间。 C.在语音提示的同时能用灯光显示。 D.录音时间大于等于8秒。 3、程控音频OCL功率放大器

任务:设计一个功率可程控、有输出功率显示的OCL 音频功率放大器电路。后级OCL 功率放大部分用分立元件制作,供电电源为±15V ,输入信号电压幅度为(10~1000)mV rms ,负载为为8欧电阻。其结构框图如下图所示。 Ω =8L R 要求: 1)基本要求 用仿真软件对电路进行验证,使其满足以下要求: (1)失真度≤3%时,输出功率P 0≥7.5W ; (2)频率响应为(20~22000)Hz ; (3)在信号源的幅度和频率固定为某一值时,可以设置输出功率,并实时测量、显示输出功率,显示的输出功率(P s )与设定功率(P g )的相对误差()3%s g g P P P -≤; 2)发挥部分 制作一个正弦波信号发生器的实物,使其完成以下功能: A 失真度≤10%时,输出功率P 0≥6W ; B 频率响应为(30~10000)Hz ; C 在输入端交流短路接地时,输出端交流信号≤20mVpp ; D 在信号源的幅度和频率固定为某一值时,可以设置输出功率,并实时测量、显示输出功率。 说明: 1)设计报告必须包括建模仿真结果,发挥部分可以选作。 2)因为有的竞赛题目不易进行建模仿真,参赛者可以针对两道不同题目分别进行建模仿真与实物制作,评分时,仿真结果与实物制作各自的得分相加,作为参赛者的最后总分。此时,只需要提交针对仿真结果的设计报告。 4、程控高增益选频放大器设计 任务:

自动增益控制(AGC)放大器..

自动增益控制放大器(AGC)设计 摘要:本设计以程控增益调整放大器AD603为核心,通过单片机MSP430控制各模块,实现电压增益连续可调,输出电压基本恒定。系统由5个模块组成:前级缓冲模块,电压增益调整模块,峰值检测模块,后级输出缓冲模块,控制与显示模块。将输入信号经前级缓冲电路输入给程控增益调整放大器AD603,将信号放大输出,通过峰值检测电路检测输出信号,并送给单片机AD采样,与理想输出信号数值进行比较,若有多偏差,则通过调整对AD603的增益控制电压,来调整放大倍数,从而实现输出信号的稳定。整个设计使用负反馈原理,实现了自动增益的控制。 关键字:AD603 MSP430 峰值检测自动增益控制 一、方案设计与论证 1.1整体方案 方案一:采用纯硬件电路实现,由AD603和运放构成的电压比较器和减法电路实现。把实际电压与理论电压的差值通过适当幅值和极性的处理,作为AD603的控制信号,从而实现放大倍数的自动调整,实现输出电压恒定。 优点:该方案理论简单,制作起来也相对容易,只有硬件电路。 缺点:理论低端,精度不够,没有创新,通用性不好。 方案二:采用AD603和单片机结合,通过单片机对输出信号AD采样并转化为数字量,与理论输出电压值进行比较,得到差值转换为控制电压,通过DA转化,对程控增益放大器AD603的放大倍数惊醒调整,从而实现输出电压的恒定。 优点:该方案控制精确,自动控制速度快,系统可移植性强,功能改变和增加容易,对后期改善和提升电路性能有益。 缺点:需要软硬件配合,系统稍复杂。 通过对两个方案的综合对比,我们选用方案二。 1.2控制模块 方案一:采用MCS-51。Intel公司的MCS-51的发展已经有比较长的时间,以其典型的结构、完善的总线、SFR的集中管理模式、位操作系统和面向控制功能的丰富的指令系统,为单片机的发展奠定了良好的基础,应用比较广泛,各种技术都比较成熟。 MCS-51优点是控制简单,二缺点也明显因为资源有限,功能实现有困难,而

增益可控射频放大器

增益可控射频放大器 一、系统方案 1、方案分析与比较 方案1:以高增益精度的压控VGA芯片AD603作为核心放大器,但频率再高时,效果很不理想,并且在级联时,很容易产生自激现象。 方案2:采用宽带可变增益FET放大电路,其缺点是增益步进控制难以实现,高频时频率的稳定性不好,在75MHz~108MHZ增益起伏较大,不能满足要求。 方案3:采用射频放大器AD8321+衰减器HMC472+放大器AD809的形式。第一级为AD8321三级级联,使增益倍数达到52dB。考虑到输入信号为高频信号,随着频率增加,幅度衰减增大,所以第二级加上可设置分贝衰减器,衰减器随着频率升高衰减效果明显,通过这样的方式使输出幅度稳定。但考虑实际拟合后,增益会稍微下降,最后通过第三级放大器将增益值稳定至输入增益。AD8321是一款低成本、数字控制式可变增益放大器,所需输出增益由8比特串行字决定,方便STM32程控,输出增益范围为-27.4dB~26dB,增益变化为0.75 dB/LSB。具有极低输出噪声电平,上行带宽高达235 MHz(最小增益),符合题目200MHz要求。 综上考虑,AD8321具有频带宽、噪声低、增益可编程,易于与STM32进行串行通信等优点,选用方案3。 2、系统整体设计 根据题目要求,本系统主要由:键盘控制,液晶显示、语音播报模块,三级AD8321级联,衰减器,第二级放大模块,滤波器电路,电压转换电路组成。总体设计框图如图一所示:

图一 二、理论分析与计算 1、射频放大器设计 按照本设计要求,带宽为40MHz~200MHz ,电压增益为52dB 。所以采用AD8321三级级联的方式。8321最大增益为26dB ,理论上总增益=26+26+26=78dB ,符合设计要求。并且阻抗之间已经匹配,级联时无需额外电阻网络。为了防止高频走线间干扰,采用贴片式电路,原理图是根据器件手册的应用电路来设计。 2、频带内增益起伏控制 造成通频带内增益起伏的原因有很多,包括带内波动、运放幅频响应不平坦及供电电源电压不稳等,为了降低增益波动,在三级放大输出加上衰减器,利用衰减器HMC472随着频率增高衰减效果明显的特性,使频带内增益起伏得到控制。对幅度衰减特性进行补偿,最后再加一级AD809,将增益稳定。 3、射频放大器稳定性 由于本系统的处理对象是高频信号,所以整个系统对噪声的处理要求很高才能保证射频放大器的稳定性。噪声来源包括:电源、外界环境、级间干扰,以及走线间相互干扰等。针对不同的噪声,采用了不同的处理措施: (1)电源干扰:使用电感、电容构成滤波电路,能有效滤除纹波。在每个运放的电源引脚并联去耦电容。 (2)外界环境干扰,为了防止外界干扰,可以将电源线和地线加宽,并且在制PCB 板时加以覆铜;对自动增益级及功率放大级增加屏蔽罩,提高其抗干扰性能。 (3)级间干扰,各级之间,采用了高低频电容来滤除高低频噪声。 DC-DC (9V ) DC-DC (5V ) AD8321 AD8321 AD8321 STM32 液晶显示 键盘 直流稳压电源 输入 输出 语音播报 AD809 滤波器 衰减器

集中选频放大器概述教案.

小信号调谐放大器虽然有增益高、矩形系数好等优点而应用较广,但也还存在着一些缺点:如多级放大器中因谐振回路多,每级都要调谐,故调整不方便;回路直接与有源器件相联,其频率特性会受到来自晶体管参数、分布参数变化的影响,使其不能满足某些特殊频率特性的要求,如频带很窄,或者要求通频带外衰减很大的场合。 随着集成电路技术的飞速发展,许多具有不同功能特点的新的集成放大电路不断出现,给电子电路开发与应用提供了极为有利的条件。对干采用集成放大电路构成高频选频放大器来说,通常是采用集中滤波和宽频带集成放大电路相结合的方式来实现,它被称为集中选频式放大器。因多用于中频段,故又称为集成中频放大器。 目前,宽频带集成放大电路的型号很多,各自的性能和适应范围也有所不同。使用时可根据放大器的技术指标要求查阅有关的集成电路手册,选用合适的集成电路。对干集中滤波器可选用频率特性合适的陶瓷滤波器、晶体滤波器、声表面波滤波器或LC 滤波器。 一、集成中频放大器的组成 图2-2-1是集中选频式放大器的组成示意框图。它是由线性宽带放大器和集中滤波器组成,宽带放大器多用集成宽频带放大器,它体积小,性能好,可靠性高。由于集中滤波器通常是固定频率的,所以其宽放的频带也只需比滤波器的通频带宽些就可以了,如接收机的中频放大器。图(a)中,集中滤波器接在高增益宽带放大器的后面。这里宽带放大器只是表示放大器本身的频带宽度比放大的信号频带以及集中滤波器的频带更宽一些。 (a)(b) 前放大 宽放大 集滤波 (a)(b) 图2-2-1 集成中频放大器组成框图 当集成选频式放大器用于接收机中放时,为了避免有用信号频率附近的干扰信号在宽带放大器中产生的非线性作用,通常将集中滤波器放在高增益放大器之前,如图(b)所示。若集中滤波器衰减较大时,为避免使中放噪声系数加大,可在集中滤波器前加低噪声的前置放大器,以补偿滤波器的损耗。 起选频作用的部件是一个具有高选择性的集中滤波器,常用的有LC 带通滤波器、晶体滤波器、陶瓷滤波器、声表面波滤波器等等。目前,这些滤波器已得到广泛应用。因晶体滤波器特性与陶瓷滤波器相似,下面简单介绍陶瓷滤波器和声表面波滤波器。

高速高增益运算放大器的设计及应用

2008 年 4 月 JOURNAL OF CIRCUITS AND SYSTEMS April, 2008 文章编号:1007-0249 (2008) 02-0031-05 高速高增益运算放大器的设计及应用* 朱颖,何乐年,严晓浪 (浙江大学超大规模集成电路设计研究所,浙江杭州 310027) ??ǖ本文设计了一种高速高增益放大器,该放大器通过增加全差分的共源共栅电路作为辅助放大器来提高运放增益,并采用频率补偿和钳位管相结合的技术改善运放的频响特性,使得运放在通频带范围内类似于单极点运放,大大减少了运放的转换时间。采用SMIC的0.35μm工艺模型进行仿真,结果表明,运放的直流增益达到110dB,带宽266MHz(负载电容C load=1pF),相位裕度55°,只需10ns即可达到0.1%的稳定精度,因而是一种有效的高速高精度运放的实现途径。 ???ǖ运算放大器;高增益;高速 ?????ǖTN401 ?????ǖA 1 引言 随着数模混和电路应用的发展,对模拟电路的速度和精度提出了越来越高的要求。模拟电路的速度和精度与运算放大器的性能有关,为了得到更快的速度和更高的精度,要求运算放大器具有更宽的单位增益带宽和更高的直流电压增益。 本文设计的运放用于光电鼠标芯片中的A/D变换的采样放大级。整体设计要求采样放大器的采样速率为12~40MHz,直流电压增益100dB。它的输入信号是CMOS图像传感器经双差分采样后的输出信号,幅度为±0.4V,经过开关电容电路构成的精确放大两倍的电路后,输出信号幅度为±0.8V。 以上是本文提出的对运放的速度和精度的要求。在通常的情况下,两级运算放大器在实现高精度的同时无法实现高速度[1],共源共栅结构的运放在实现高速的同时无法实现高精度[1]。常规的高增益运算放大器可以实现很高的精度[1],但是零极点对的存在严重影响了运放的稳定性和速度。为了同时满足速度和精度的要求,本文提出了一种改进的套筒型增益提高运算放大器,该运放采用频率补偿和钳位管相结合的技术改善运放的频响特性,减少运放的转换时间。另外为了达到加大输出摆幅的目的,还增加了一级增益接近于1的线性输入/输出特性电路。仿真表明,运放的直流增益达到110dB,带宽266MHz(负载电容C load=1pF),相位裕度55°,只需10ns即可达到0.1%的稳定精度,完全满足光电鼠标芯片采样放大级的要求。 2 电路结构 增益提高运算放大器使用折叠式共源共栅电路作为其辅助放大器,其实质就是通过反馈增加输出阻抗,从而达到增加增益的目的。增益提高放大器的常规电路图如图1(a)所示,改进电路图如图1(b)所示。常规的增益提高运算放大器的稳定性和转换时间常常受到零极点对的影响。如果零极点对所对应的频率小于闭环运放的主极点,需要的转换时间便大大延长。 为了加快转换时间,在辅助放大器的输出端增加了补偿电容,使得零点和极点尽可能地接近甚至对消。频率补偿后运放所表现的转换特性接近于单极点运放的转换特性,大大加快了运放的转换时间,具体将在3.1和3.2.1中论述。 对于折叠式共源共栅电路来说,针对其特点,在辅助放大器输出端增加了一对栅漏短接的NMOS 管,它们只在辅助放大器输出端的差值大于V th时导通,起钳位作用并加快了运放的转换速率。而且 * ????ǖ2005-01-25 ????:2005-07-03

程控增益放大器_电子技术基础课程设计

辽宁工业大学 模拟电子技术基础课程设计(论文) 题目:程控增益放大器 院(系):电子与信息工程学院 专业班级:通信101班 学号: 学生姓名 指导教师: 教师职称: 起止时间:

课程设计(论文)任务及评语

目录 第一章程增益放大器设计方案论证 (1) 1.1程控增益放大器的应用意义 (1) 1.2程控增益放大器设计的要求及技术指标 (1) 1.3 设计方案论证 (1) 1.4 总体设计方案框图及分析 (2) 第二章程控增益放大器各单元电路设计 (2) 2.1 编码开关的设计 (2) 2.2 集成电路运算放大器的设计 (5) 2.3增益调整电路设计 (8) 第三章程控增益放大器整体电路设计 (8) 3.1 整体电路图及工作原理 (8) 3.2 电路参数计算 (9) 3.3 整机电路的仿真 (9) 第四章课程设计的总结 (9) 参考文献 (10) 附录:器件清单 (11)

第一章程控增益放大器设计方案论证 1.1程控增益放大器的应用意义 程控增益放大器按输出信号的特点分类,可分为模拟式和数字式可编程放大器。可以通过数字电路控制模拟放大电路的放大倍数。可以自己设计电路,或者使用一些公司的现成的集成芯片实现。具体实行的电路很多。比如DAC+OP运放;OP运放+模拟开关;电阻分压网络+模拟开关+OP运放;集成芯片PGA102;PGA103;AD621;等等。利用拨码开关的数码代替电位器刻度,具有线性度好、精度高、直观,可直接或间接取代一般线性电位器或多圈线性电位器。放大器的增益的变化是由数字信号控制其反馈电阻完成的。程控增益放大器是一种在多通道多参数空间一个测量放大器,多通道放大器的信号的大小并不相同,都是放大至A/D交换器输入要求的标准是电压,因此对各个通路要求测量放大器的增益也不同。 1.2程控增益放大器设计的要求及技术指标 1.2.1设计要求: 1 .分析设计要求,明确性能指标。必须仔细分析课题要求、性能、指标及应用环境等,广开思路,构思出各种总体方案,绘制结构框图。 2 .确定合理的总体方案。对各种方案进行比较,以电路的先进性、结构的繁简、成本的高低及制作的难易等方面作综合比较,并考虑器件的来源,敲定可行方案。 3 .设计各单元电路。总体方案化整为零,分解成若干子系统或单元电路,逐个设计。 4.组成系统。在一定幅面的图纸上合理布局,通常是按信号的流向,采用左进右出的规律摆放各电路,并标出必要的说明。 1.2.2技术指标 1.电压放大倍数N由拨码开关控制,199 ≤N。 ≤ 2.输出电压绝对值在1—10V范围。输入电阻Ω ≤20 Ro。 Ri8,输出电阻Ω ≥M 1.3设计方案论证 程控增益放大器通用的方法: 1)运放+模拟开关+电阻分压网络。 2)拨码开关+数字电位器+运放。 其中,第一种方法利用模拟开关切换电阻反馈网络,从而改变放大电路的闭环增益。这种方法的电路比较复杂,。第二种方案采用固态数字电位器来控制放大电路的增益,线路较为简单。而精度较为高,所以我们采用的是第二种方法设计的放大电路。

自动增益控制放大器

自动增益控制放大器 --设计文档 一、设计要求 设计一个根据输入信号及环境噪声幅度自动调节音量的自动增益控制音响放大器。 (1)放大器输入端从mp3或信号源输入音频(100Hz~10kHz)信号,输出端带600Ω负载或驱动8Ω喇叭(2~5W)。 (2)当输入信号幅度在10mV~5V间变化时,放大器输出默认值保持在2V±0.2V内,波动越小越好。 (3)能够显示输入信号幅度大小及频率高低。 (4)能够在1V~3V范围内步进式调节放大器输出幅度,步距0.2V。 (5)能够根据环境噪声调整自动调节放大器输出幅度。 二、系统框图

三、设计说明 1)系统说明 本系统以AD603为核心芯片,2片AD603级联,控制器采用32位的STM32作为主控芯片。因为AD603的输入电压不超过2V,所以先对输入信号进行5倍的衰减,然后送入AD603的输入端。同时,对输入信号进行幅值与频率的采样,将输入信号通过峰值检波电路得出幅值送入ADC采样,显示出幅值。因为信号含有负电压,所以利用加法器将输入信号提高,送入ADC采样得出频率,通过频谱显示出来。输出信号的采集也与输入信号相同。 AD603的增益与控制电压关系满足G(dB)=80Vg+20,同时它的输出电压最大不超过2V,我们设定AD603最大增益时输出1.5V,后级加一个固定放大倍数为2的功放,同时可实现功率的放大。通过上面的公式可求出稳定在2V或者1~3V内步进可调时的控制电压,进而求出增益。同时,我们加入闭环反馈系统,通过检测实际输出电压与预设值的比较,来自动调整增益,达到稳定输出电压的作用。 后级功率放大采用集成功放,同时可放大电压。运用集成运放电路简单同时带负载能力强。在AD603的前级与功放前级加入电压跟随器,一是用作输入缓冲,二是起到前后级隔离,减小干扰。 2)模块说明 分压电路 分压电路由一个4k与一个1k精密电阻构成,将输入信号衰减5倍,输入信号幅值变为2mV~1V,这样输入信号小于AD603的最大输入电压,可以将输入信号送入AD603。 检波电路 检波电路采用精密整流,运用TL062运放搭建,通过电容的充放电以及二极管反向截止的特点达到输出一直为峰值的目的。 加法器电路 因为输入信号有正有负,当处于负半轴时,ADC无法进行频率采样,所以将信号整体抬高,使得完全处于正半轴,从而可以测量。 自动增益电路 自动增益控制放大器采用AD603作为程控增益芯片,由2片AD603级联。总增益控制范围为84 .28dB ( 4 .2 1 4 x 2)。在级联应用中, 有两种增益控制连接方式, 即顺序控制方式和并联控制方式。我们采取并联控制方式。 两片AD603 级联的并联控制方式是将两级的正增益控制输入端(GPOS)以并联形式由一个正电压Vc驱动, 而两级的负增益控制输人端(GNEG) 以并联形式加一个稳定的电压, 即VG1=VG2, 于是两级的增益同步变化,并联控制方式在线性范围内的控制能力为80dB/v, 即在较小的控制电压下便可获得较高的增益, 其总增益是单片AD603的两倍。其增益计算公式

窄带选频放大器

电子课程设计电子课程设计报告 课题题目指导老师学生姓名学生学号完成时间: : : : : 窄带选频放大器 0808060413 2010.6.9

目录 摘要: (4) 1系统概述 (4) 1.1选频电路: (5) 1.2放大器: (5) 1.3低通滤波器: (5) 2单元电路设计与分析 (5) 2.1双T选频网络: (6) 2.2运算放大器 (7) 2.3低通滤波器 (8) 3电路的安装与调试 (9) 4结束语 (10) 4.1设计简单介绍 (10) 4.2设计调试中的难点 (11) 4.3改善及改进意向 (11) 4.4收获与体会 (11) 附上元件明细表及参考资料 (11)

(题目:窄带选频放大器) 摘要: 有源滤波器具有与rlc 串联谐振电路相同的特性曲线,利用数值计算的方法,得出两级级联的滤波器在临界偏调时各级中心频率f 0与q 值的关系,分析了电路不同q 值与平顶宽度的关系,在本设计中采用了RC 电路;据此,设计并制作了具有平顶特性的窄带通滤波器。仿真结果表明其特性与理论计算曲线大致相似。在制作过程中,为达到仿真效果及理论计算结果,不断对电路进行调试,还对电路的选择性、误差进行了分析。 关键词: 选频网络;运算放大器;低通滤波器;反馈电路。 1系统概述 本设计电路由选频电路、放大器和低通滤波器组成。 + + A + + A 2 3 2 3 6 4 5 5

1.1选频电路: 由UA741及电阻电容构成的双T选频网络构成,将输入的多种频率信号进行选频,运算放大器A1的反馈电路中,接入了窄频带滤波器,谐振频率f=1/2πRC=2KHz。 1.2放大器: 由UA741运算放大器构成半波整流器,输出正半周信号。 1.3低通滤波器: 由电阻电容构成,将高频经电容滤去,输出低频信号,因而该放大器仅选择2KHz(T=0.5ms)频率信号经放大后变为交流输出,其输出可接自动示波器显示输出波形。 2单元电路设计与分析

运算放大器的参数选择

运算放大器的参数选择

运算放大器的参数指标 1.开环电压增益Avd 开环电压增益(差模增益)为运算放大器处于开环状态下,对小于200Hz的交流输入信号的放大倍数,即输出电压与输入差模电压之比。它一般为104~106,因此它在电路分析时可以认为无穷大。 2.闭环增益A F 闭环增益是运算放大器闭环应用时的电压放大倍数,其大小与放大电路的形式有关,与放大器本身的参数几乎无关,只取决于输入电组和反馈电阻值的大小。 反相比例放大器,其增益为 A F=- RF RI 3.共模增益Avc和共模抑制比 当两个输入端同时加上频率小于200Hz的电压信号Vic时,在理想情况下,其输出电压应为零。但由于实际上内部电路失配而输出电压不为

零。此时输出电压和输入电压之比成为共模增益Avc。 共模抑制比Kcmr= Avc Avd 共模增益 运算放大器的差模增益, 通常以对数关系表示:Kcmr=20log Avc Avd 共模增益 运算放大器的差模增益共模抑制比一般在80~120Db范围内,它是衡量放大器对共模信号抑制能力高低的重要指标。这不仅是因为许多应用电路中要求抑制输入信号中夹带的共模干扰,而且因为信号从同相端输入时,其两个输入端将出现较大的共模信号而产生较大的运算误差。 4.输入失调电压 在常温(25℃)下当输入电压为零时,其输出电压不为零。此时将其折算到输入端的电压称为输入失调电压。它一般为±(0.2~15)mV。 这就是说,要使放大器输出电压为零,就必须在输入端加上能抵消Vio的差值输入电压。5.输入偏置电流 在常温(25℃)下输入信号为零(两个输入端均接地)时,两个输入端的基极偏置电流的平均值称为输入偏置电流,即 I IB= 2 1( I IB -+I IB+)

三菱伺服增益调整方法及参数设置_V2

2020三菱伺服增益调整方法及参数设置 参数设置基于三菱MR-J系列伺服

01.序文 02.自动调整模式 03响应性设定目录 03.响应性设定 content 04.手动调整模式

三菱伺服增益调整方法及参数设置 伺服放大器内置有实时自动调整功能,能实时地推断机械特性(负载惯量比并根据推断的结果自动设定最优的增益值利这个功能惯量比),并根据推断的结果自动设定最优的增益值。利用这个功能可以容易地调整伺服放大器的增益。

三菱伺服增益调整方法及参数设置 (1) 自动调整模式1 伺服放大器在出厂状态下设定为自动调整模式1。 在此模式下,伺服放大器实时推断机械的负载惯量比,自动设定最优的增益。 通过自动调整模式1自动调整的参数如下表所示。

三菱伺服增益调整方法及参数设置 (2) 自动调整模式2 自动调整模式2在自动调整模式1下不能进行正常的增益调整时使用。此模式下由于不能进行负载惯量比的推断,所以请设定正确的负载惯量比(参数No.PB06)的值。 通过自动调整模式2自动调整的参数如下表所示。

三菱伺服增益调整方法及参数设置 (3) 调整步骤 ①使伺服电机加减速运行,负载惯量比推断机构会根据伺服电机的电流和电机速 度实时推断负载惯量比。推断的结果被写入参数No.PB06(对伺服电机负载惯 量比)。这个结果可在伺服放大器设置软件的状态显示画面下确认。 ②在已经知道负载惯量比的值和不能很好地进行推断时,设定为“自动调整模式 2”(参数No.PA08:0002),使负载惯量比的推断停止,请手动设定负载惯量 比(参数No.PB06)。

集成选频放大器实验

实验二集成选频放大器 一、实验目的 1、熟悉集成放大器的内部工作原理 2、熟悉陶瓷滤波器的选频特性 二、实验内容 1、测量集成选频放大器的增益。 2、测量集成选频放大器的通频带。 3、测量集成选频放大器的选择性。 三、实验仪器 1、信号源模块1块 2、频率计模块1块 3、2 号板1块 4、双踪示波器1台 5、万用表1块 6、扫频仪(可选)1台 四、实验原理 1、集成选频放大器的原理图见下图

图2-1 集成选频放大器电路原理图 由上图可知,本实验中涉及到的集成选频放大器是带AGC(自动增益控制)功能的选频放大器,放大IC用的是Motorola公司的MC1350。 2、MC1350放大器的工作原理 图2-2为MC1350单片集成放大器的电原理图。这个电路是双端输入、双端输出的全差动式电路,其主要用于中频和视频放大。

图2-2 MC1350内部电路图 输入级为共射-共基差分对,Q1和Q2组成共射差分对,Q3和Q6组成共基差分对。除了Q3和Q6的射极等效输入阻抗为Q1、Q2的集电极负载外,还有Q4、Q5的射极输入阻抗分别与Q3、Q6的射极输入阻抗并联,起着分流的作用。各个等效微变输入阻抗分别与该器件的偏流成反比。增益控制电压(直流电压)控制Q4、Q5的基极,以改变Q4、Q5分别和Q3、Q6的工作点电流的相对大小,当增益控制电压增大时,Q4、Q5的工作点电流增大,射极等效输入阻抗下降,分流作用增大,放大器的增益减小。 五、实验步骤 1、据电路原理图熟悉实验板电路,并在电路板上找出与原理图相对应的的各测试点及 可调器件(具体指出)。 2、按下面框图(图2-3)所示搭建好测试电路。

运算放大器增益稳定性1-一般系统分析

运算放大器增益稳定性 第 1 部分:一般系统分析 作者:Miroslav Oljaca,德州仪器(TI) 高级应用工程师和Henry Surtihadi,模拟设计工程师 稳态正弦波分析和Bode 图 在讨论本文的主题以前,我们最好简要回顾一下正弦频率分析和Bode 图的概念。在本系列文章中将不断用到这两个概念。 通过测定其正弦输入信号响应来描述某个电路的方法一般较为有用。通过求和各种频率的正弦信号,傅里叶分析可用于重构任何周期信号。因此,电路设计人员可以通过描述其宽频率范围正弦激励响应,收集电路对各种输入信号响应的相关信息。 某个线性电路由具体频率的正弦输入信号驱动时,该输出信号也为相同频率的正弦信号。正弦波形的复合图可用于将输入信号表示为: V1(t) =V1 x e j(ωt+φ1), 而输出信号可表示为: V2(t)= V2 x e j(ωt+φ2) V1和V2分别为输入和输出信号的振幅;φ1 和φ2 分别为输入和输出信号的相位。输出信号与输入信号的比为传输函数,即H(jω)。在正弦稳态分析中,传输函数可以表示为: H( jω) =|H( jω)|×e jφ(ω)(1) 其中|H( jω)|为传输函数的振幅,而φ 为相位。两个均为频率的函数。 描述传输函数的振幅和相位如何随频率变化的一种方法是将它们绘制成图。传输函数的振幅和相位图被称作“ Bode 图”。Bode 图的振幅部分将方程式 2 给出的表达式以线性标尺绘制成图: |H( jω)|dB= 20 log10|H( jω)|(2) Bode 图的相位部分将方程式3 给出的表达式绘制成图(同样为线性标尺): φ = H( jω) ∠(3) 沿对数频率轴,绘制振幅和相位图。

程控放大器的设计方案

长江大学电子系统设计竞赛参赛方案作品名称程控放大器 姓名周健(电气1083)、高秀龙(电气1083) 所在院系电子信息学院 完成时间2011.5.29

程控放大器 摘要:本设计以LF353、ATMEGA16、DAC0832芯片为核心,加以其它辅助电路实现对宽带电压放大器的电压放大倍数、输出电压进行精确控制。放大器的电压放大倍数从0.5倍到127.5倍,以±0.5倍为最小步进可设定增益步进,控制误差不大于5%,放大器的带宽大于200KHz。键盘和显示电路实现人机交互,完成对电压放大倍数和输出电压的设定和显示。 关键字:程控放大器、高精度、控制电压、电压变换、D/A、A/D。 一、系统方案设计与论证 1、方案的比较 程控放大器在信号调整与控制电路具有广泛的用途,如音响设备中音量的控制,电子设备中信号的准确放大,信号处理电路中输出信号的自动稳幅等。 准确程控增益可调放大器的实现方法通常有以下几种方案可供选用。 方案一:利用可程控的模拟开关和电阻网络构成放大器的反馈电阻,通过接入不同的电阻来实现放大器的放大倍数改变,以达到程控增益的目的。 此方案的优点是控制简单,电路实现较为容易。缺点是多路模拟开关使用频率较低,其导通电阻对信号传输精度影响较为明显,漂移较大,输入阻抗不高,对于较为精确的控制其影响难以进行后期修正,切换时抖动引起的误差比较大,切换速度较慢。控制精度增加一位,电阻网络就增加一级,电阻网络的电阻选择也较为困难,很难做到高精度控制。 方案二:利用数字电位器作为放大器的反馈电阻,实现放大器的放大倍数改变。

此方案和方案一原理基本相同,都是通过调节反馈电阻来实现对增益的控制,不同的是选用数字电位器来实现,缺点是数字电位器为了扩大使用电压范围,内部附加了由振荡器组成的充电泵,因而会产生有害的高频噪声,它同样不能满足高精度控制要求。 方案三:利用电流型DAC自身的乘法功能,可以实现程控放大器。此方案实现较为容易,控制精确较高,一般不能做到宽频使用。 方案四:利用新型单片集成电压控制放大器实现程控放大器。 此方案实现也较为容易,控制电路成本较低,使用频率受限于放大器本身。 方案五:利用D/A转换器与仪表放大器一起可组成程控增益放大器。 该方案电路简单,增益可调范围大,稳定性好,性价比高,其增益由输入数字量控制,电路很容易和计算机或单片机相连,组成自动测试系统。 2、方案确定 分析上述五种方案的优缺点,在满足要求的条件下,方案五具有更大的优越性和灵和性,因此我们采用D/A转换器与仪表放大器一起可组成程控增益放大器。 二、放大器的基本原理 1、D/A转换器原理

相关主题
文本预览
相关文档 最新文档