当前位置:文档之家› 混沌摆实验报告

混沌摆实验报告

混沌摆实验报告
混沌摆实验报告

非线性混沌电路实验报告

非线性电路混沌及其同步控制 【摘要】 本实验通过测量非线性电阻的I-U特性曲线,了解非线性电阻特性,,从而搭建出典型的非线性电路——蔡氏振荡电路,通过改变其状态参数,观察到混沌的产生,周期运动,倍周期与分岔,点吸引子,双吸引子,环吸引子,周期窗口的物理图像,并研究其费根鲍姆常数。最后,实验将两个蔡氏电路通过一个单相耦合系统连接并最终研究其混沌同步现象。 【关键词】 混沌现象有源非线性负阻蔡氏电路混沌同步费根鲍姆常数 一.【引言】 1963年,美国气象学家洛伦茨在《确定论非周期流》一文中,给出了描述大气湍流的洛伦茨方程,并提出了著名的“蝴蝶效应”,从而揭开了对非线性科学深入研究的序幕。非线性科学被誉为继相对论和量子力学之后,20世界物理学的“第三次重大革命”。由非线性科学所引起的对确定论和随机论、有序和无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻的影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 迄今为止,最丰富的混沌现象是非线性震荡电路中观察到的,这是因为电路可以精密元件控制,因此可以通过精确地改变实验条件得到丰富的实验结果,蔡氏电路是华裔科学家蔡少棠设计的能产生混沌的最简单的电路,它是熟悉和理解非线性现象的经典电路。 本实验的目的是学习有源非线性负阻元件的工作原理,借助蔡氏电路掌握非线性动力学系统运动的一般规律性,了解混沌同步和控制的基本概念。通过本实

验的学习扩展视野、活跃思维,以一种崭新的科学世界观来认识事物发展的一般规律。 二.【实验原理】 1.有源非线性负阻 一般的电阻器件是有线的正阻,即当电阻两端的电压升高时,电阻内的电流也会随之增加,并且i-v呈线性变化,所谓正阻,即I-U是正相关,i-v曲线的 斜率 u i ? ? 为正。相对的有非线性的器件和负阻,有源非线性负阻表现在当电阻两 端的电压增大时,电流减小,并且不是线性变化。负阻只有在电路中有电流是才会产生,而正阻则不论有没有电流流过总是存在的,从功率意义上说,正阻在电路中消耗功率,是耗能元件;而负阻不但不消耗功率,反而向外界输出功率,是产能元件。 一般实现负阻是用正阻和运算放大器构成负阻抗变换器电路。因为放大运算器工作需要一定的工作电压,因此这种富足成为有源负阻。本实验才有如图1所示的负阻抗变换器电路,有两个运算放大器和六个配置电阻来实现。 图1 有源非线性负阻内部结构 用电路图3以测试有源非线性负阻的i-v特性曲线,如图4示为测试结果曲线,分为5段折现表明,加在非线性元件上的电压与通过它的电流就行是相反的,

物理演示实验

大连海事大学 《物理演示实验》课程教学大纲 Syllabus for INTRODUCTION OF PHYSICAL DEMONSTRATION EXPERIMENT 课程编号新 000000000 原13012200 学时/学分18/1 开课单位物理系考核方式考查 适用专业全校各专业执笔者牟恕德 编写日期 2008年3月 一、本课程的性质与任务 物理学是一门实验科学。所有物理定律的形成和发展都是建立在对客观自然现象的观察和研究的基础上,物理演示实验可以使学生加深对物理教学内容的理解,巩固记忆,激发兴趣,诱导思考,纠正错误观念,能使学生真实感地看到支配物理现象的规律如何起作用,通过对实验现象的观察分析,学习物理实验知识,从理论和实践的结合上加深对物理学原理的理解。 1、培养和提高学生基本的科学实验能力,其中包括: 自学能力:通过自行阅读实验教材和其它资料,能正确概括出实验内容、方法和要求,做好实验前的准备; 动手能力:借助教材《物理演示实验》和仪器说明书,正确调整和使用仪器;安排实验操作顺序,把握主要实验技能,排除实验故障;掌握常规物理实验仪器的使用,掌握科学实验的数据处理方法和科学实验报告的形成,为进一步学习和从事科学实验研究打下坚实的基础。 分析能力:运用所学物理知识,对实验现象和结果进行观察分析判断,得出结论; 表达能力:正确记录和处理实验数据,绘制曲线,正确表达实验结果,撰写合格的实验报告; 2、培养和提高学生科学实验素养:要求学生养成理论联系实际和实事求是的科学作风,严肃认真的工作态度,主动研究的探索精神和创新意识,遵守纪律、遵守操作规程、爱护公共材物、团结协作的优良品德。 物理演示实验是面向全校各年级学生的开放式实验选修课,共18学时;学生可自主安排在计划课表内任何时段来上课。 二、课程简介 《物理演示实验》将日常生活或生产实践中不易观察到的或习以为常而未引起注意的物理现象突出地显示出来,把实际较为复杂的现象,在课堂演示的条件下分解出有意义的部分,从兴趣和提高关注度出发,培养学生的探索精神,引导学生观察、思考、建立物理思想,培养学生根据物理原理分析解决实际问题的能力。演示实验片广开学生眼界,介绍现代科学技术前沿的新技术、新发明、新材料、新探索、新成果,分享现代科学技术飞跃发展的喜悦。 INTRODUCTION OF PHYSICAL DEMONSTRATION EXPERIMENT displays the physical phenomenon which is unobservable in daily life and production practice, or is accustomed and thus not given attention. It draws out the significative parts from real complex phenomenon through the demonstration in class. In view of the students' interest,physical demonstration experiement may cultivate students' exploring spirit and inducts them to observe and think so that they can found physical idea and possess the abilities to analyse and solve questions according the physical theories. Physical demonstration experiment introduces new technique, new invention, new exploration and new production in modern technology and so widen students' eyereach and make students enjoy the flying development of modern technology

大学物理演示实验报告

实验一锥体上滚 【实验目的】: 1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。 2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。 【实验仪器】:锥体上滚演示仪 图1,锥体上滚演示仪 【实验原理】: 能量最低原理指出:物体或系统的能量总是自然趋向最低状态。本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。实验现象仍然符合能量最低原理。【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚;

2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。 【注意事项】: 1.移动锥体时要轻拿轻放,切勿将锥体掉落在地上。 2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。

实验二陀螺进动 【实验目的】: 演示旋转刚体(车轮)在外力矩作用下的进动。 【实验仪器】:陀螺进动仪 图2陀螺进动仪 【实验原理】: 陀螺转动起来具有角动量L,当其倾斜时受到一个垂直纸面向里的重力矩(r ×mg)作用,根据角动量原理, 其方向也垂直纸面向里。

下一时刻的角动量L+△L向斜后方,陀螺将不会倒下,而是作进动。 【实验步骤】: 用力使陀螺快速转动,将其倾斜放在支架上,放手后陀螺不仅绕其自转轴转动,而且自转轴还会绕支架旋转。这就是进动现象。 【注意事项】: 注意保护陀螺,快要停止转动时用手接住,以免掉到地上摔坏。 实验三弹性碰撞仪 【实验目的】: 1. 演示等质量球的弹性碰撞过程,加深对动量原理的理解。 2. 演示弹性碰撞时能量的最大传递。 3. 使学生对弹性碰撞过程中的动量、能量变化过程有更清晰的理解。 【实验仪器】:弹性碰撞仪 图3,弹性碰撞仪

混沌摆实验报告

篇一:大学物理演示实验报告 大学物理演示实验报告 1、锥体上滚 【实验目的】: 1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。 2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。 【实验仪器】:锥体上滚演示仪 【实验原理】:能量最低原理指出:物体或系统的能量总是自然趋向最低状态。本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。实验现象仍然符合能量最低原理。 【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚; 2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。2、混沌摆 【实验目的】:通过摆的运动演示该力学系统的混沌性质。 【实验仪器】:混沌摆 【实验原理】:一个动力学系统如果描述他的运动状态的动力学方程是线性的,只要初始条件给定,就可预见以后任意时刻的运动状态。我们的动力学系统描述它的运动状态的动力学方程是非线性的,具有内在的随机性,它的运动状态对初始条件具有很强的敏感性,系统运动的外观表现是随机的,是一种貌似无规律的运动 【实验步骤】:手持轴柄给系统施一力矩,系统开始运动,运动情况复杂,前一时间难于预言后一时刻的运动状态。重新启动,由于起始冲量矩总有所不同,雇系统的运动情况差别很大、这反映了系统运动的混沌性质。 初始状态 运动中篇二:混沌摆实验讲义 混沌摆实验 【实验目的】 ⒈了解非线性系统混沌现象的形成过程; ⒉通过振荡周期的分岔与混沌现象的观察,加深对混沌现象的认识和理解⒊理解“蝴蝶效应”。【预习思考题】 1、什么是混沌现象? 2、何谓蝴蝶效应? 【实验器材】 ci-6538转动传感器、me-8750机械振荡器/驱动器、me-8735大型杆支座、se-9442多用夹、se-9720直流电源、ci-6552a功率放大器 【实验原理】 ⒈分岔与混沌理论 ⑴逻辑斯蒂映射 为了认识混沌(chaos)现象,我们首先介绍逻辑斯蒂映射,即一维线段的非线性映射,因为非线性微分方程的解通常可转化为非线性映射。 考虑一条单位长度的线段,线段上的一点用0和1之间的数x表示。逻辑斯蒂映射是 x?kx(1?x)

大学物理演示实验报告

大学物理演示实验报告 大学物理演示实验报告 工作报告实验报告大学物理演示实验报告 大学物理演示实验报告 实验目的:通过演示来了解弧光放电的原理实验原理:给存在一定距离的两电极之间加上高压,若两电极间的电场达到空气的击穿电场时,两电极间的空气将被击穿,并产生大规模的放电,形成气体的弧光放电。雅格布天梯的两极构成一梯形,下端间距小,因而场强大。其下端的空气最先被击穿而放电。由于电弧加热(空气的温度升高,空气就越易被电离,击穿场强就下降),使其上部的空气也被击穿,形成不断放电。结果弧光区逐渐上移,犹如爬梯子一般的壮观。当升至一定的高度时,由于两电极间距过大,使极间场强太小不足以击穿空气,弧光因而熄灭。简单操作:打开电源,观察弧光产生。并观察现象。(注意弧光的产生、移动、消失)。实验现象:两根电极之间的高电压使极间最狭窄处的电场极度强。巨大的电场力使空气电离而形成气体离子导电,同时产生光和热。热空气带着电弧一起上升,就象圣经中的雅各布(aob以色列人的祖先)梦中见到的天梯。注意事项:演示器工作一段时间后,进入保护状态,自动断电,稍等一段时间,仪器恢复后可继续演示,实验拓展:举例说明电弧放电的应用大学物理演示实验报告相关内容:诗词诵读基本模式研究实验报告《亲近母语小学语文课外阅读教学基本模式实践与研究》之子课题《诗词诵读基本模式研究实验报告》浩友慧全

一、课题提出所谓儿童经典背诵,是指在0-13岁这一人生中记忆力最好的年龄段里,各国儿童们通过诵读古今中外最经典的篇章以达到文化。 大学物理演示实验报告 学物理演示实验报告--避雷针 一、演示目的气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。 二、原理首先让尖端电极和球型电极与平板电极的距离相等。 小学中高年级作文系列训练实验报告 小学中高年级作文系列训练实验报告 一、提出问题培养小学生的作文能力,是小学语文学科诸项任务中既重要又困难的任务。从目前农村小学作文教学的现状来看,仍存在着序列不明,路子不清,方法不当等问题,影响了作文教学质量的提高。 网页制作实验报告 网页制作实验报告实验一:站点设置 一、实验目的及要求本实例是通过“站点定义为”对话框中的“高级”选项卡创建一个新站点。 二、仪器用具 1、生均一台多媒体电脑,组建内部局域网,并且接入国际互联网。 例谈科学探究实验与实验报告

大物演示实验报告关于辉光球的研究和利用

大物演示实验报告关于辉光球的研究和利用 篇一:辉光球实验报告 辉光球 【实验目的】 1. 了解气体分子的激发、碰撞、电离、复合的物理过程。 2. 了解低压气体中伴有辉光出现的自激导电。 3. 探究低气压气体在高频强电场中产生辉光的放电现象和原理。 【实验装置】 【实验原理】 球内充有稀薄的惰性气体(如氩气等),玻璃球中央有一个黑色球状电极,球的底部有一块震荡电路板,使产生高压高频电压并加在电极上。通电后,震荡电路产生高频电压电场,由于球内稀薄气体受到高频电场的电离作用而光芒四射,产生神秘色彩。 【实验现象】装置、、 辉光球工作时,在球中央的电极周围形成一个类似于点电荷的场。当用手(人与大地相连)触及球时,人体即为另一电极,球周围的电场、电势分布也就不再均匀对称,气体在这两极间电场中电离、复合、而发生辉光。故辉光在手指的周围处变得更为明亮,产生的弧线顺着手的触摸移动而游动扭曲。 【实验步骤】

1. 实验前首先要连接好电源; 2. 闭合辉光球前面板上的开关,观察现象,调节强度旋纽,再观察现象; 3. 用手指接触球面并在球面上移动,观察球内辉光变化现象; 4. 实验完毕,断开开关并关掉电源,将仪器摆放整齐。 辉光球 【实验目的】 4. 了解气体分子的激发、碰撞、电离、复合的物理过程。 5. 了解低压气体中伴有辉光出现的自激导电。 6. 探究低气压气体在高频强电场中产生辉光的放电现象和原理。 【实验装置】 【实验原理】 球内充有稀薄的惰性气体(如氩气等),玻璃球中央有一个黑色球状电极,球的底部有一块震荡电路板,使产生高压高频电压并加在电极上。通电后,震荡电路产生高频电压电场,由于球内稀薄气体受到高频电场的电离作用而光芒四射,产生神秘色彩。 【实验现象】装置、、 辉光球工作时,在球中央的电极周围形成一个类似于点电荷的场。当用手(人与大地相连)触及球时,人体即为另一电极,球周围的电场、电势分布也就不再均匀对称,气体在这两极间电场中电离、复合、而发生辉光。故辉光在手指的周围处变得更为明亮,产生的弧线顺着手的触摸移动而游动扭曲。

大学物理演示实验报告正式版

For the things that have been done in a certain period, the general inspection of the system is also a specific general analysis to find out the shortcomings and deficiencies 大学物理演示实验报告正 式版

大学物理演示实验报告正式版 下载提示:此报告资料适用于某一时期已经做过的事情,进行一次全面系统的总检查、总评价,同时也是一次具体的总分析、总研究,找出成绩、缺点和不足,并找出可提升点和教训记录成文,为以后遇到同类事项提供借鉴的经验。文档可以直接使用,也可根据实际需要修订后使用。 实验目的:通过演示来了解弧光放电的原理 实验原理:给存在一定距离的两电极之间加上高压,若两电极间的电场达到空气的击穿电场时,两电极间的空气将被击穿,并产生大规模的放电,形成气体的弧光放电。 雅格布天梯的两极构成一梯形,下端间距小,因而场强大(因)。其下端的空气最先被击穿而放电。由于电弧加热(空气的温度升高,空气就越易被电离,击穿场强就下降),使其上部的空气也被击穿,形成

不断放电。结果弧光区逐渐上移,犹如爬梯子一般的壮观。当升至一定的高度时,由于两电极间距过大,使极间场强太小不足以击穿空气,弧光因而熄灭。 简单操作:打开电源,观察弧光产生。并观察现象。(注意弧光的产生、移动、消失)。 实验现象: 两根电极之间的高电压使极间最狭窄处的电场极度强。巨大的电场力使空气电离而形成气体离子导电,同时产生光和热。热空气带着电弧一起上升,就象圣经中的雅各布(yacob以色列人的祖先)梦中见到的天梯。 注意事项:演示器工作一段时间后,

混沌摆演示实验

混沌摆 【实验目的】:通过摆的运动演示该力学系统的混沌性质。 【实验仪器】:混沌摆 【实验原理】: 一个动力学系统如果描述他的运动状态的动力学方程是线性的,只要初始条件给定,就可预见以后任意时刻的运动状态。我们的动力学系统描述它的运动状态的动力学方程是非线性的,具有内在的随机性,它的运动状态对初始条件具有很强的敏感性,系统运动的外观表现是随机的,是一种貌似无规律的运动 【实验步骤】: 手持轴柄给系统施一力矩,系统开始运动,运动情况复杂,前一时间难于预言后一时刻的运动状态。重新启动,由于起始冲量矩总有所不同,雇系统的运动情况差别很大、这反映了系统运动的混沌性质。 【混沌摆简介】 一个运动体系(实验展品为一个主摆和三个副摆)的运动状态由起动时的初始条件(主、副摆的初始位置和起动速度)所决定。单摆的运动很容易预测,由于这个大摆有三个小摆与之相连,它的运动就更为复杂。其中每个摆都会影响其它摆的运动,因而使整个运动混沌无序,无法预测。 混沌现象是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性一不可重复、不可预测,这就是混沌现象。进一步研究表明,混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。牛顿确定性理论能够充分处理的多为线性系统,而线性系统大多是由非线性系统简化来的。因此,在现实生活和实际工程技术问题中,混沌是无处不在的。

“混沌”是近代非常引人注目的热点研究,它掀起了继相对论和量子力学以来基础科学的第三次革命。科学中的混沌概念不同于古典哲学和日常语言中的理解,简单地说,混沌是一种确定系统中出现的无规则的运动。混沌理论所研究的是非线性动力学混沌,目的是要揭示貌似随机的现象背后可能隐藏的简单规律,以求发现一大类复杂问题普遍遵循的共同规律。

大学物理演示实验报告.doc

大学物理演示实验报告 学物理演示实验报告--避雷针 一、演示目的 气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。 二、原理 首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 三、装置 一个尖端电极和一个球型电极及平板电极。 四、现象演示 让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生

五、讨论与思考 雷电暴风雨时,最好不要在空旷平坦的田野上行走。为什么? 学物理演示实验报告--避雷针 一、演示目的 气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。 二、原理 首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 三、装置 一个尖端电极和一个球型电极及平板电极。 四、现象演示 让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发

实验报告:混沌同步控制与图像加密

混沌同步控制与图像加密 ――― 《混沌实验教学平台的设计与实现》中期期报告 (华南师范大学物理与电信工程学院指导老师:李军学生:王龙杰、张丹伟、杨土炎)摘要:基于混沌系统的某些独特性质,如初值敏感性,本文讨论了混沌理论的两个重要运用,即基于Lorenz 混沌系统的同步控制和基于Logistic 混沌映射的图像加密。在讨论与分析的基础上,利用MA TLAB 软件进行数值计算与模拟,得到较好的效果。 关键词:Lorenz 混沌系统;同步控制;Logistic 混沌映射;图像加密;MATLAB 基于Lorenz 混沌系统的同步控制 一.引言 混沌是自然界及人类社会中的一种普遍现象,至今为止,在学术界对“混沌”还没有统一的被普遍接受的定义。混沌运动是确定性和随机性的对立统一, 即它具有确定性和随机性, 所谓确定性是指混沌运动是在确定性系统中发生的,可以用动力学方程形式表述, 这与完全随机运动有着本质的区别; 所谓运动具有随机性, 是指不能像经典力学中的机械运动那样由某时刻状态可以预言以后任何时刻的运动状态, 混沌运动倒是像其他随机运动或噪声那样, 其运动状态是不可预言的, 换言之, 混沌运动在相空间中没有确定的轨道。混沌运动对初始状态(条件)具有敏感的依赖性, 只要对系统施加非常微小的扰动,就可能把系统从一个不稳定的周期运动转变到另一个不稳定的周期运动上去,也可能转变到另一稳定的运动状态上, 通 过这个特性, 我们可以利用混沌有意义的一面, 而避其有害的一面。Lorenz 系统作为第一个混沌模型,是混沌发展史上的一个里程碑, 具有举足轻重的地位。对Lorenz 系统的深入研究无疑已经极大地推动了混沌学的发展。 人们发现混沌控制在众多领域中有着广阔的应用前景, 尤其在电子学、电力系统、保密 通信和振荡发生器设计等领域有着巨大的应用前景, 因此引起了广泛的重视。由于混沌行为对初始状态的敏感依赖性, 受到噪声、干扰以及系统不稳定的影响, 特别是在混沌同步中, 实 际系统中很难观测到混沌同步。自从1990 年, Pecora 和Carroll 提出了混沌同步的概念和 方法以后,随着混沌同步研究的不断深入, 混沌控制与同步的研究工作得到了长足的发展, 并 逐渐成为混沌与控制领域研究的热点。对于相近的混沌轨道, 通过相同的非线性系统控制, 最终可能导致完全不相关的状态。但在实际应用中, 往往要求控制得到相关的状态或所需要的同步结果, 本文采用了加入反馈控制量的方法使其耦合, 最终达到所要求的同步。在计算机上的仿真结果显示, 能在短时间内实现耦合同步控制。

大学物理演示实验报告文档2篇

大学物理演示实验报告文档2篇College physics demonstration experiment report docu ment 编订:JinTai College

大学物理演示实验报告文档2篇 小泰温馨提示:实验报告是把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报。本文档根据实验报告内容要求展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意修改调整及打印。 本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】 1、篇章1:大学物理演示实验报告文档 2、篇章2:大学物理演示实验报告文档 篇章1:大学物理演示实验报告文档 院系名称:纺织与材料学院 专业班级:轻化工程11级03班 鱼洗是中国三大青铜器之一,在鱼洗内注入清水后摩擦其两耳,如果频率恰当,就会出现水面产生波纹,发出嗡嗡的声音并有水花跃出的现象。经验表明,湿润的双手比干燥的双手更容易引起水花飞跃。

鱼洗的原理应该是同时应用了波的叠加和共振。摩擦的 双手相当于两个相干波源,他们产生的水波在盆中相互叠加,形成干涉图样。这与实验中观察到的现象相同。按照我的分析,如果振动的频率接近于鱼洗的固有频率,才会产生共振现象。通过摩擦输入的能量才会激起水花。 令人不解的是,事实上鱼洗是否能产生水花与双手的摩 擦频率并没有关系。在场的同学试着摩擦的时候,无论是缓慢的摩擦还是快速的摩擦,都能引起水花四溅。通过查阅资料得知,鱼洗的原理其实是摩擦引起的自激振动。(就像用槌敲锣一样,敲击后锣面的振动频率并不等于敲击频率。)外界能量(双手的摩擦)输入鱼洗时,就会引起其以自己的固有频率震动。(正如在锣面上敲一下。) 为什么湿润的双手更容易引起鱼洗的振动呢?从实践的 角度,可能是因为湿润的双手有更小的摩擦系数,因为摩擦起来更流畅,不会出现干燥双手可能会出现的“阻塞”情况,这只是我个人猜想,并没有发现资料有关于这方面的讨论。 离心力演示仪是一个圆柱形仪器,中间有一个细柱,细 柱穿过一段闭合的硬塑料带上的两个正对小孔。塑料带的一段固定,静止时,系统为一个竖直平面的圆,中间由细柱传过。当摁下仪器上的按钮时,细柱带动塑料带在水平面旋转起来。

非线性系统中混沌的控制及同步及其应用前景_一_

第1 6 卷第1 期物理学进展o l.16, N o. 1 V 1996 年 3 月PRO GR E S S I N PH Y S I C S M ac r ch , 1996 非线性系统中混沌的控制与同步 Ξ 及其应用前景(一) 方锦清 ( 中国原子能科学研究院, 北京102413) 提要 全文系统地综述了非线性科学中一个富有挑战性及具有巨大应用前景的重大课题——非线性系统中混沌的控制与同步及其应用的主要进展, 包括了作者关于超混沌同步及其控制等方面的研究成果。我们对现有的各种混沌的控制方法和混沌的同步原理提出了分类和评述。概述了实验与应用的现状, 指出了发展前景, 全文分为( 一) ( 二) 两篇, 第( 一) 篇以混沌控制的机理和方法为主要论题展开广泛的讨论; 第(二) 篇以混沌的同步、超混沌的同步及其控制为论题, 同时包括众多的实验应用的研究, 进行较详尽的综述和分析评论, 比较完整地概括了迄今国内外该课题的发展现状和主要趋势。 总论 混沌, 当今举世瞩目的前沿课题及学术热点, 它揭示了自然界及人类社会中普遍存在的复杂性, 有序与无序的统一, 确定性与随机性的统一, 大大拓广了人们的视野, 加深了对客观世界的认识。它在自然科学及社会科学等领域中, 覆盖面之大、跨学科之广、综合性之强, 发展前景及影响之深远都是空前的。国际上誉称混沌的发现, 乃是继本世纪相对论与量子力学问世以来的第三次物理学大革命, 这场革命正在冲击和改变着几乎所有科学和技术领域, 向我们提出了巨大的挑战ΞΞ。 混沌的发现已过而立之年。首要的问题是, 混沌究竟有什么应用和发展前景? 这是摆在人们面前的一个重大课题及普遍关注的问题。特别是, 在我国改革开放和振兴经济的大潮面前, 这类提问和呼声更为强烈, 这确实也是深入开展混沌研究的巨大推动力。由于混沌的奇异特性, 特别是对初始条件极其微小变化的高度敏感性及不稳定性, 所 谓“差之毫厘失之千里”的缘故, 长期以来有些人总觉得混沌是不可控的、不可靠的, 因而 Ξ 本课题是国家留学回国人员重大科技资助项目、国家核科学工业基金资助项目及I A EA 科研合同课题。 ΞΞ 混沌发现的重要性论述请参阅: 詹姆斯·格莱克著,“混沌开创新科学”( 张淑誉译, 郝柏林校) , 1990, 上海译文出版社。

混沌通讯实验报告

篇一:近代物理实验混沌通信----实验报告 近代物理实验—— 混沌电路及其在加密通信中的应用 预习报告: 蔡氏电路虽然简单,但具有丰富而复杂的混沌动力学特性,而且它的理论分析、数值模拟和实验演示三者能很好地符合,因此受到人们广泛深入的研究。 自从1990年pecora和carroll首次提出混沌同步的概念,研究混沌系统的完全同步以及广义同步、相同步、部分同步等问题成为混沌领域中非常活跃的课题,利用混沌同步进行加密通信也成为混沌理论研究的一个大有希望的应用方向。 我们可以对混沌同步进行如下描述:两个混沌动力学系统,如果除了自身随时间的烟花外,还有相互耦合作用,这种作用既可以是单向的,也可以是双向的,当满足一定条件时,在耦合的影响下,这些系统的状态输出就会逐渐趋于相近,进而完全相等,称之为混沌同步。实现混沌同步的方法很多,本实验介绍利用驱动响应方法实现混沌同步。实验电路如图1所示。图1 由图中所见,电路由驱动系统、响应系统和单向耦合电路3部分组成。其中,驱动系统和相应系统两个参数相同的蔡氏电路,单向耦合电路由运算放大器组成的隔离器和耦合电阻构成,实现单向耦合和对耦合强度的控制。当耦合电阻无穷大(即单向耦合电路断开)时,驱动系统和响应系统为独立的两个蔡氏电路,分别观察电容??1和电容??2上的电压信号组成的相图????1?????2,调节电阻r,使系统处于混沌状态。调节耦合电阻????,当混沌同步实现时,即????(1)?????(2),两者组成的相图为一条通过原点的45°直线。 影响这两个混沌系统同步的主要因素是两个混沌电路中元件的选择和耦合电阻的大小。在实验中当两个系统的各元件参数基本相同时(相同标称值的元件也有±10%的误差),同步态实现较容易。 而在混沌同步的基础上,可以进行加密通信实验。由于混沌信号具有非周期性、类噪声、宽频带和长期不可预测等特点,所以适用于加密通信、扩频通信等领域。 (1)利用混沌掩盖的方法进行模拟信号加密通信实验混沌掩盖是较早提出的一种混沌加密通信方式,又称混沌掩盖或混沌隐藏。其基本思想是在发送端利用混沌信号作为载体来隐藏信号或遮掩所要传送的信息,使得消息消息信号难以从混合信号中提取出来,从而实现加密通信。在接收端则利用与发送端同步的混沌信号解密,恢复出发送端发送的信息。混沌信号和消息信号结合的主要方法有相乘、相加或加乘结合。实验电路如图2所示。 图2 需要指出的是,在实验中采用的是信号直接相加进行混沌掩盖,当消息信号幅度比较大,而混沌信号相对比较小时,消息信号不能被掩蔽在混沌信号中,传输信号中就能看出消息信号的波形,因此,实验中要求传送的消息信号幅值比较。 (2)利用混沌键控的方法进行数字信号加密通信实验混沌键控方法则属于混沌数字通信技术,是利用所发送的数字信号调制发送端混沌系统的参数,是其在两个值中切换,将信息编码在两个混沌吸引子中;接受端则由与发送端相同的混沌系统构成,通过检测发送与接受混沌系统的同步误差来判断所发送的消息。实验电路如图3所示。 图3 实验中所用仪器为ni pci-6221型数据采集卡和tl082双运放芯片,以及面包板和其他电路元件若干。 数据处理: 1. 测量非线性电阻的伏安特性实验中所测数据记录如下: 图4

大学物理尖端放电演示实验

实验名称:尖端放电 演示内容:演示尖端放电原理的应用:避雷针。 仪器装置:高压电源、模拟避雷针装置。 【实验原理】 当避雷针演示仪接通静电高压电源后,绝缘支架上的两个金属板带电了。在极板间电压超过1万伏时,由于导体尖端处电荷密度大于金属球处,所以金属尖端附近形成了强电场,在强电场的作用下,空气分子被电离,致使极板和金属尖端之间处于连续的电晕放电状态,即尖端放电现象。而金属球与极板间的电场不能达到火花放电的数值,故金属球不放电。在实际应用中,尖端导体与大地相连接,云层中的电荷通过导体与大地中和,因而避免了人身和物体遭到雷电等静电的伤害。如高层建筑物顶端都安有高于屋顶物体的金属避雷针。 【实验操作与现象】 1.将静电高压电源正、负极分别接在避雷针演示仪的上下金属板上,把带支架的金属球放在金属板两极之间。接通电压,金属球与上极板间形成火花放电,可听到劈啪声音,并看到火花。若看不到火花,可将电源电压逐渐加大。演示完毕后,关闭电源。 2.用带绝缘柄的电工钳将带支架的顶端呈圆锥状(尖端)的金属物体也放在金属板两极之间,此时金属球和尖端的高度一致。接通静电高压电源,金属球火花放电现象停止了,但可听到丝丝的电晕放电声,看到尖端与上极板之间形成连续的一条放电火花细线。若看不到放电火花细线,将电源电压提高。演示完毕后,关闭电源。 【注意事项】 1.由于电源电压较高,关闭电源后,不能完全充分放电,故每一步演示后都应取下电源任一极与另一极接头相碰触人工进行放电,以确保仪器设备和操作者的安全。 2.晴天演示电源电压应降低些,阴天演示电源电压应提高些。 3.静电高压电源是用一号电池供电,改变电池伏数(即改变电池电压输出电

混沌通信实验

混沌通讯实验 实验一:非线性电阻的伏安特性实验 1.实验目的:测绘非线性电阻的伏安特性曲线 2.实验装置:混沌通信实验仪。 3.实验对象:非线性电阻模块。 4.实验原理框图: 图1 非线性电阻伏安特性原理框图 5.实验方法: 第一步:在混沌通信实验仪面板上插上跳线J01、J02,并将可调电压源处电位器旋钮逆时针旋转到头,在混沌单元1中插上非线性电阻NR1。 第二步:连接混沌通讯实验仪电源,打开机箱后侧的电源开关。面板上的电流表应有电流显示,电压表也应有显示值。 第三步:按顺时针方向慢慢旋转可调电压源上电位器,并观察混沌面板上的电压表上的读数,每隔0.2V记录面板上电压表和电流表上的读数,直到旋钮顺时针旋转到头。 第四步:以电压为横坐标、电流为纵坐标用第三步所记录的数据绘制非线性电阻的伏安特性曲线如图2所示。 第五步:找出曲线拐点,分别计算五个区间的等效电阻值 6.实验数据:

易知第一区间是(-13.41,-1.7)至(-10.4,4.9),等效电阻为456.1 第二区间是(-10.4,4.9)至(-1.6,1.2),等效电阻为2378.4 第三区间是(-1.6,1.2)至(1.6,-1.2),等效电阻为1333.3 第四区间是(1.6,-1.2)至(9.8,-4.6),等效电阻为2588.2 第五区间是(9.8,-4.6)至(13,1.7),等效电阻为523.8 实验二:混沌波形发生实验 1.实验目的:调节并观察非线性电路振荡周期分岔现象和混沌现象。 2.实验装置:混沌通信实验仪、数字示波器1台、电缆连接线2根。3.实验原理图: 4.实验方法:

第一步:拔除跳线J01、J02,在混沌通信实验仪面板的混沌单元1中插上电位器W1、电容C1、电容C2、非线性电阻NR1,并将电位器W1上的旋钮顺时针旋转到头。 第二步:用两根Q9线分别连接示波器的CH1和CH2端口到混沌通信实验仪面板上标号Q8和Q7处。打开机箱后侧的电源开关。 第三步:把示波器的时基档切换到X-Y。调节示波器通道CH1和CH2的电压档位使示波器显示屏上能显示整个波形,逆时针旋转电位器W1直到示波器上的混沌波形变为一个点,然后慢慢顺时针旋转电位器W1并观察示波器,示波器上应该逐次出现单周期分岔(见图4)、双周期分岔(见图5)、四周期分岔(见图6)、多周期分岔(见图7) 、单吸引子(见图8)、双吸引子(见图9)现象。 5.实验数据 单周期分岔双周期分岔 四周期分岔多周期分岔 单吸引子双吸引子

大学物理演示实验报告

【实验名称】弹性碰撞演示仪 【实验目的】 本实验用于演示正碰撞和动量守恒定律,形象地显现弹性碰撞的情形。 【实验原理】 根据动量守恒定律可知,如果正碰撞的两球,撞前速度分别为V10和V20,碰撞后的速度分别为V1和V2,质量分别为m1和m2. 则 (1) 由碰撞定律可知:(2) 若e=1时,则分离速度()等于接近速度() 解式(1)和式(2)可得: (3) (4) 若m1=m2=m;e=1则v1=0,v2=v10 即球1正碰球2时,球1静止,球2继续以V10的速度正碰球3,等等以此类推,实现动量的传递。【实验器材】 1、实验装置如实验原理图示: 1一底座 2—支架 3—钢球 4—拉线 5—调节螺丝 2、技术指标 钢球质量:m=7×0.2kg 直径:l=7×35mm 拉线长度:L=55Omm 【实验操作与现象】 l、将仪器置于水平桌面放好,调节螺丝,使七个钢球的球心在同一水平线上。 2、将一端的钢球拉起后,松手,则钢球正碰下一个钢球,末端的钢球弹起,继而,又碰下一个钢球,另一端的钢球弹起,循环不已,中间的五个钢球静止不动。但在一般情况下,两球碰撞时,总要损失一部分能量,故两端的钢球摆动的幅度将逐渐减弱。 【注意事项】 操作前一定将七个钢球的球心调至同一水平线上,否则现象不明显。 在理想情况下,物体碰撞后,形变能够恢复,不发热、发声,没有动能损失,这种碰撞称为弹性碰撞(elastic collision),又称完全弹性碰撞。真正的弹性碰撞只在分子、原子以及更小的微粒之间才会出现。生活中,硬质木球或钢球发生碰撞时,动能的损失很小,可以忽略不计,通常也将它们的碰撞看成弹性碰撞。碰撞时动量守恒。当两物体质量相同时,互换速度。 大型闪电盘(辉光盘)演示实验 【实验目的】: 观察平板晶体中的高压辉光放电现象。

大学物理演示实验报告

【实验目的】:借助视觉暂留演示声波。 【实验仪器】:声波可见演示仪。 【实验原理】:不同长度,不同张力的弦振动后形成的驻波基频、协频各不相同,即合成波形各不相同。本装置产生的是横波,可借助滚轮中黑白相间的条纹和人眼的视觉暂留作用将其显示出来。 【实验步骤】: 1、将整个装置竖直放稳,用手转动滚轮。 2、依次拨动四根琴弦,可观察到不同长度,不同张力的弦线上出现不同基频与协频的驻波。 3、重复转动滚轮,拨动琴弦,观察弦上的波形。 【注意事项】: 1、滚轮转速不必太高。 2、拨动琴弦切勿用力过猛。 【实验目的】:演示翼形升力的产生。 【实验仪器】:飞机升力演示仪。 【实验原理】:一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。当气流迎面流过机翼时,流线分布情况如图。原来是一股气流,由于机翼的插入,被分成上下两股。通过机翼后,在后缘又重合成一股。由于机翼上表面拱起,使上方的那股气流的通道变窄,流速加快。根据伯努利原理可以得 知:流速大的地方压强小。机翼上方的压强比机翼下方的压强小,也就是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。 【实验步骤】: 1.打开位于底座前方的电源开关,用手感受一下出风口处的气流; 2.把手移开,观察到小球从管内升起; 3.用手挡住出风口,小球立即从管内下落; 4.重复操作2、3,观察小球在管内的起落。 5.实验结束,关闭电源。 【注意事项】: 如果小球不能从管内升起,适当调节机翼的高度,使机翼的上部对准气咀,使流过机翼上部的气流最大。【思考】: 飞机的机翼为何做成上凸下平的形状?

【实验目的】: 1.通过观察与思考双锥体沿斜面轨道上滚的现象, 使学生加深了解在重力场中物体总是以降低重心,趋 于稳定的运动规律。 2.说明物体具有从势能高的位置向势能低的位置运 动的趋势,同时说明物体势能和动能的相互转换。 【实验仪器】:锥体上滚演示仪 【实验原理】:能量最低原理指出:物体或系统的能 量总是自然趋向最低状态。本实验中在低端的两根导 轨间距小,锥体停在此处重心被抬高了;相反,在高 端两根导轨较为分开,锥体在此处下陷,重心实际上 降低了。实验现象仍然符合能量最低原理。 【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚; 2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。 【注意事项】: 1.不要将锥体搬离轨道。 2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。 【实验目的】:了解扫描成像原理及视觉暂留现象。 【实验仪器】:扫描成像原理演示仪。 【实验原理】:本仪器中的铝盘上沿螺旋线均匀排布小孔,目的是使盘旋转时小孔能够从上到下依次扫过画面,有如电视机中的逐行扫描.画面虽然是被依次扫过, 只要扫过整个画面的时间短于人眼的视觉暂留时间,人眼看到的就是一幅完整的画面. 【实验步骤】: 1、接上电源,打开仪器电源开关; 2、观察窗口处铝盘小孔及其后面的图画,此时看不到完整的的画面; 3、顺时针旋转仪器正面板右下角的调速旋钮,使铝盘转起来.先使旋钮上的箭头旋至“起动”位置,待铝盘转动平稳后再将旋钮上的箭头旋至“运行”位置; 4、透过铝盘上的小孔观察其后面的图画,发现可看到一幅完整的画面; 5、注意在铝盘转速由慢变快的过程中,其后面的图画由看不见,到断续看见,到连续看见一幅完整画面的过程. 【注意事项】: 1、因铝盘的转动惯量较大,起动时需加较大电压,一旦启动就要把电压调到正常值,以免转速过大,仪器不稳.

蔡氏电路混沌控制与同步实验研究_钟双英

蔡氏电路混沌控制与同步实验研究 钟双英,刘 崧,戚小平,李 鸿 (南昌大学理学院,江西南昌 330031 )摘 要:利用Multisim仿真软件研究了电路元件参数对称和不对称情况下蔡氏电路的混沌控制与同步。仿真结果综合表明:耦合电阻的大小及电路元件参数匹配对混沌信号控制与同步效果产生严重的影响。给出了混沌信号同步的耦合电阻参数范围,对进一步开展电路混沌创新性物理实验教学具有理论的指导意义。关键词:蔡氏电路;混沌控制;混沌同步;Multisim 中图分类号:G642.0 文献标志码:A 文章编号:1002- 4956(2012)11-0032-03Experimental study  on control and synchronization of chaos in Chua’s circuitZhong  Shuangying,Liu Song,Qi Xiaoping,Li Hong(School of Science,Nanchang University,Nanchang  330031,China)Abstract:This paper deals mainly with the experimental study on control and synchronization of chaos inChua’s circuit with the symmetry and dissymmetry circuit parameters by means of Multisim.The simulationresults indicate that the size of coupling resistance and the parameter matching of circuit have a great effect onsynchronization of chaos,and the parameter range of getting synchronization is given,which presents a theo-retical sig nificance for the future work.Key  words:Chua’s circuit;chaos control;chaes synchronization;Multisim收稿日期:2012-02-21 修改日期: 2012-04-26基金项目:江西省高等学校教学改革研究课题(JXJG-11-1- 29);南昌大学教学改革课题 作者简介:钟双英(1968—) ,女,江西广丰,博士,副教授,主要从事物理实验教学及非线性物理研究. zhongshuangying @ncu.edu.cn 混沌现象是自然界中普遍存在[1] 的非线性动力系 统的独特行为, 具有明显的不可预测性,对初始条件敏感,混沌同步现象广泛地应用于生物、医学、电子学和 保密通信等领域[2- 7]。在物理实验教学中,可以借助非 线性电路来模拟各种非线性动力系统,直观地观察到 非线性动力系统随时间演化的趋势[ 8- 13]。本文基于Multisim仿真软件研究参数对称和不对称的蔡氏电 路的双涡旋混沌信号的控制与同步,观察耦合电阻及电路参数对混沌信号同步效果的影响。 1 蔡氏仿真电路建模 蔡氏电路结构简单,是研究混沌现象的一种典型的非线性电路,非线性电阻(RN)可由二极管和运算放大器构成,如图1所示,RN的伏安特性测试曲线如图2所示 。 图1 非线性电阻RN 构造示意图 图2 非线性电阻RN伏安特性测试曲线 ISSN  1002-4956CN11-2034/T 实 验 技 术 与 管 理Experimental Technology  and Management 第29卷 第11期 2012年11月Vol.29 No.11 Nov.2012

相关主题
文本预览
相关文档 最新文档