当前位置:文档之家› 控制系统综合实验模板

控制系统综合实验模板

控制系统综合实验模板
控制系统综合实验模板

科技学院

综合实验报告

( -- 第1 学期)

名称: 控制系统综合实验

题目: 水位控制系统综合实验

院系: 动力工程系

班级: 自动化09K1

学号: 09191 116

学生姓名: 秦术员

指导教师: 平玉环

设计周数: 1周

成绩:

日期: 1月7日

《控制系统》综合实验

任务书

一、目的与要求

本综合实验是自动化专业的实践环节。经过本实践环节, 使学生对实际控制系统的结构、系统中各环节的关系、数字控制器的应用和控制系统的整定等建立起完整的概念。培养学生利用所学理论知识分析、解决实际问题的能力。

1. 了解单容水箱水位控制系统的实际结构及各环节之间的关

系。

2. 学会数字控制器组态方法。

3. 掌握控制系统整定方法, 熟悉工程整定的全部内容。

二、主要内容

1.熟悉紧凑型过程控制系统, 并将系统调整为水位控制状态。

2.对数字控制器组态。

3.求取对象动态特性。

4.计算调节器参数。

5.调节器参数整定。

6.做扰动实验, 验证整定结果。

7.写出实验报告。

三、进度计划

四、实验成果要求

完成实验报告, 实验报告包括:

1.实验目的

2.实验设备

3.实验内容, 必须写出参数整定过程, 并分析控制器各参数的作用, 总结出一般工程整定的步骤。

4.实验总结, 此次实验的收获。

以上内容以打印报告形式提交。

五、考核方式

根据实验时的表现、及实验报告确定成绩。

成绩评分为经过以及不经过。

学生姓名: 秦术员

指导教师: 平玉环

1月7日

一、综合实验的目的与要求

本综合实验是自动化专业的实践环节。经过本实践环节, 使学生对实际控制系统的结构、系统中各环节的关系、数字控制器的应用和控制系统的整定等建立起完整的概念。培养学生利用所学理论知识分析、解决实际问题的能力。

1. 了解单容水箱水位控制系统的实际结构及各环节之间的关

系。

2. 学会数字控制器组态方法。

3. 掌握控制系统整定方法, 熟悉工程整定的全部内容。

二、实验正文

1. 实验设备

紧凑型过程控制系统; 上位机

2. 液位控制系统

2.1 液位控制系统流程图, 如图1

图1 液位控制系统流程图

2.2液位控制系统流程

如图1所示, 被控对象为水箱2, 被控参数为水箱2的液位, 执行器为水泵。水泵将水箱1的液体输送到水箱2, 水箱2的液位经过水箱上方的超声波传感器测得, 并将信号输入到控制器, 控制器将测量信号与给定信号比较运算后, 向水泵发出控制信号, 控制水泵的转速, 使液位控制在给定数值上。

控制系统仿真与CAD 实验报告

《控制系统仿真与CAD》 实验课程报告

一、实验教学目标与基本要求 上机实验是本课程重要的实践教学环节。实验的目的不仅仅是验证理论知识,更重要的是通过上机加强学生的实验手段与实践技能,掌握应用 MATLAB/Simulink 求解控制问题的方法,培养学生分析问题、解决问题、应用知识的能力和创新精神,全面提高学生的综合素质。 通过对MATLAB/Simulink进行求解,基本掌握常见控制问题的求解方法与命令调用,更深入地认识和了解MATLAB语言的强大的计算功能与其在控制领域的应用优势。 上机实验最终以书面报告的形式提交,作为期末成绩的考核内容。 二、题目及解答 第一部分:MATLAB 必备基础知识、控制系统模型与转换、线性控制系统的计算机辅助分析 1. >>f=inline('[-x(2)-x(3);x(1)+a*x(2);b+(x(1)-c)*x(3)]','t','x','flag','a','b','c');[t,x]=ode45( f,[0,100],[0;0;0],[],0.2,0.2,5.7);plot3(x(:,1),x(:,2),x(:,3)),grid,figure,plot(x(:,1),x(:,2)), grid

2. >>y=@(x)x(1)^2-2*x(1)+x(2);ff=optimset;https://www.doczj.com/doc/122663716.html,rgeScale='off';ff.TolFun=1e-30;ff.Tol X=1e-15;ff.TolCon=1e-20;x0=[1;1;1];xm=[0;0;0];xM=[];A=[];B=[];Aeq=[];Beq=[];[ x,f,c,d]=fmincon(y,x0,A,B,Aeq,Beq,xm,xM,@wzhfc1,ff) Warning: Options LargeScale = 'off' and Algorithm = 'trust-region-reflective' conflict. Ignoring Algorithm and running active-set algorithm. To run trust-region-reflective, set LargeScale = 'on'. To run active-set without this warning, use Algorithm = 'active-set'. > In fmincon at 456 Local minimum possible. Constraints satisfied. fmincon stopped because the size of the current search direction is less than twice the selected value of the step size tolerance and constraints are satisfied to within the selected value of the constraint tolerance. Active inequalities (to within options.TolCon = 1e-20): lower upper ineqlin ineqnonlin 2 x = 1.0000 1.0000 f =

(完整word版)自动控制原理选择题(48学时)有答案要点

自动控制原理选择题(48学时) 1.开环控制方式是按 进行控制的,反馈控制方式是按 进行控制的。 (A )偏差;给定量 (B )给定量;偏差 (C )给定量;扰动 (D )扰动;给定量 ( B ) 2.自动控制系统的 是系统正常工作的先决条件。 (A )稳定性 (B )动态特性 (C )稳态特性 (D )精确度 ( A ) 3.系统的微分方程为 222 )()(5)(dt t r d t t r t c ++=,则系统属于 。 (A )离散系统 (B )线性定常系统 (C )线性时变系统 (D )非线性系统 ( D ) 4.系统的微分方程为)()(8)(6)(3)(2233t r t c dt t dc dt t c d dt t c d =+++,则系统属于 。 (A )离散系统 (B )线性定常系统 (C )线性时变系统 (D )非线性系统 ( B ) 5.系统的微分方程为()()()()3dc t dr t t c t r t dt dt +=+,则系统属于 。 (A )离散系统 (B )线性定常系统 (C )线性时变系统 (D )非线性系统 ( C ) 6.系统的微分方程为()()cos 5c t r t t ω=+,则系统属于 。 (A )离散系统 (B )线性定常系统 (C )线性时变系统 (D )非线性系统 ( D ) 7.系统的微分方程为 ττd r dt t dr t r t c t ?∞-++=)(5)(6 )(3)(,则系统属于 。 (A )离散系统 (B )线性定常系统 (C )线性时变系统 (D )非线性系统 ( B ) 8.系统的微分方程为 )()(2t r t c =,则系统属于 。 (A )离散系统 (B )线性定常系统 (C )线性时变系统 (D )非线性系统 ( ) 9. 设某系统的传递函数为:,1 2186)()()(2+++==s s s s R s C s G 则单位阶跃响应的模态有: (A )t t e e 2,-- (B )t t te e --, (C )t e t sin - (D )t t te e 2,-- ( ) 10. 设某系统的传递函数为:,2 2186)()()(2+++==s s s s R s C s G 则单位阶跃响应的模态有:

最新实验三 控制系统综合

实验三 控制系统设计 一、 实验目的 掌握串联频域校正以及极点配置等控制系统常用设计方法。 二、 实验题目 1.考虑一个单位负反馈控制系统,其前向通道传递函数为: ) 2(k )(0+=s s s G a) 试分别采用串联超前和串联滞后装置对该系统进行综合,要求系统 的速度误差系数为20(1/s ),相角裕量大于50。。 b) 对比两种设计下的单位阶跃响应、根轨迹图以及bode 图的区别。 采用串联超前装置 实验代码 t=[0:0.01:2]; w=logspace(-1,2); kk=40; Pm=50; ng0=kk*[1]; dg0=[1,2,0]; g0=tf(ng0,dg0); %原系统开环传递函数? [ngc,dgc]=fg_lead_pm(ng0,dg0,Pm,w); %调用子函数fg_lead_pm? gc=tf(ngc,dgc) %超前校正装置传递函数? g0c=tf(g0*gc); %校正后系统开环传递函数? b1=feedback(g0,1);%校正前系统闭环传递函数? b2=feedback(g0c,1); %校正后系统闭环传递函数? step(b1,'r--',b2,'b',t); %绘制校正前后系统阶跃响应曲线? grid on, %绘制校正前后系统伯德图? figure,bode(g0,'r--',g0c,'b',w); %绘制校正前后系统伯德图? grid on rlocus(g0c) %绘制校正后系统根轨迹图? [gm,pm,wcg,wcp]=margin(g0c) 执行结果 dgc = 0.0545 1.0000 gc = 0.2292 s + 1 ------------- 0.05452 s + 1 Continuous-time transfer function.

《控制系统计算机仿真》实验指导书

实验一 Matlab使用方法和程序设计 一、实验目的 1、掌握Matlab软件使用的基本方法; 2、熟悉Matlab的数据表示、基本运算和程序控制语句 3、熟悉Matlab绘图命令及基本绘图控制 4、熟悉Matlab程序设计的基本方法 二、实验内容 1、帮助命令 使用help命令,查找sqrt(开方)函数的使用方法; 2、矩阵运算 (1)矩阵的乘法 已知A=[1 2;3 4]; B=[5 5;7 8]; 求A^2*B (2)矩阵除法 已知A=[1 2 3;4 5 6;7 8 9]; B=[1 0 0;0 2 0;0 0 3]; A\B,A/B (3)矩阵的转置及共轭转置 已知A=[5+i,2-i,1;6*i,4,9-i]; 求A.', A' (4)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9]; 求A中第3列前2个元素;A中所有列第2,3行的元素; (5)方括号[] 用magic函数生成一个4阶魔术矩阵,删除该矩阵的第四列 3、多项式 (1)求多项式p(x) = x3 - 2x - 4的根 (2)已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] , 求矩阵A的特征多项式; 求特征多项式中未知数为20时的值; 4、基本绘图命令 (1)绘制余弦曲线y=cos(t),t∈[0,2π] (2)在同一坐标系中绘制余弦曲线y=cos(t-0.25)和正弦曲线y=sin(t-0.5),t∈[0,2π] 5、基本绘图控制 绘制[0,4π]区间上的x1=10sint曲线,并要求: (1)线形为点划线、颜色为红色、数据点标记为加号; (2)坐标轴控制:显示范围、刻度线、比例、网络线 (3)标注控制:坐标轴名称、标题、相应文本; 6、基本程序设计 (1)编写命令文件:计算1+2+?+n<2000时的最大n值; (2)编写函数文件:分别用for和while循环结构编写程序,求2的0到n次幂的和。 三、预习要求 利用所学知识,编写实验内容中2到6的相应程序,并写在预习报告上。

控制系统综合实验模板

科技学院 综合实验报告 ( -- 第1 学期) 名称: 控制系统综合实验 题目: 水位控制系统综合实验 院系: 动力工程系 班级: 自动化09K1 学号: 09191 116 学生姓名: 秦术员 指导教师: 平玉环 设计周数: 1周 成绩: 日期: 1月7日

《控制系统》综合实验 任务书 一、目的与要求 本综合实验是自动化专业的实践环节。经过本实践环节, 使学生对实际控制系统的结构、系统中各环节的关系、数字控制器的应用和控制系统的整定等建立起完整的概念。培养学生利用所学理论知识分析、解决实际问题的能力。 1. 了解单容水箱水位控制系统的实际结构及各环节之间的关 系。 2. 学会数字控制器组态方法。 3. 掌握控制系统整定方法, 熟悉工程整定的全部内容。 二、主要内容 1.熟悉紧凑型过程控制系统, 并将系统调整为水位控制状态。 2.对数字控制器组态。 3.求取对象动态特性。 4.计算调节器参数。 5.调节器参数整定。 6.做扰动实验, 验证整定结果。 7.写出实验报告。 三、进度计划

四、实验成果要求 完成实验报告, 实验报告包括: 1.实验目的 2.实验设备 3.实验内容, 必须写出参数整定过程, 并分析控制器各参数的作用, 总结出一般工程整定的步骤。 4.实验总结, 此次实验的收获。 以上内容以打印报告形式提交。 五、考核方式 根据实验时的表现、及实验报告确定成绩。 成绩评分为经过以及不经过。 学生姓名: 秦术员 指导教师: 平玉环 1月7日

一、综合实验的目的与要求 本综合实验是自动化专业的实践环节。经过本实践环节, 使学生对实际控制系统的结构、系统中各环节的关系、数字控制器的应用和控制系统的整定等建立起完整的概念。培养学生利用所学理论知识分析、解决实际问题的能力。 1. 了解单容水箱水位控制系统的实际结构及各环节之间的关 系。 2. 学会数字控制器组态方法。 3. 掌握控制系统整定方法, 熟悉工程整定的全部内容。 二、实验正文 1. 实验设备 紧凑型过程控制系统; 上位机 2. 液位控制系统 2.1 液位控制系统流程图, 如图1

过控控制系统综合设计实验

过程控制系统综合设计实验报告 项目:过程控制系统综合设计 班级:自动化133 姓名: 学号: 指导老师: 一:实验目的及要求 目的: 1.结合比值控制系统、串级控制系统、前馈反馈控制系统、解耦控 制系统的实施,掌握DDC系统应用,以及安装; 2.掌握P900系列智能调节器的参数整定与操作; 3.掌握各类标准信号的测定方法; 4.掌握传感器、执行器的使用; 5.掌握数学建模方法以及PID参数的整定方法。

要求: 1、按照实验指导书上的任务完成实验内容; 2、记录数据以及实验结果,保存实验结果图; 3、完成实验报告的设计,撰写,分析并处理实验结果; 4、进行答辩。

二:实验过程及实验结果 实验一、长滞后环节温度PID 控制实验 一、实验目的 1、熟悉纯滞后(温度)对象的数学模型及其阶跃响应曲线。 2、根据由实际测得的纯滞后(温度)阶跃响应曲线,分析加热系统的飞升特性。 二、实验器材 CS4100型过程控制实验装置 配置:C3000过程控制器、实验连接线。 三、实验原理 整个纯滞后系统如图4-1所示,加热水箱为纯滞后水箱提供热水,在加热水箱的出水口即纯滞后水箱的进水口装有温度传感器。纯滞后水箱,中间固定有一根有机玻璃圆柱,9块隔板呈环形排布在圆柱周围,将整个水箱分隔为9个扇形区间,热水首先流入A 区间,再由底部进入B 区间,流过B 区间后再由顶部进入C 区间,如此再依次流过D 、E 、F 、G 、H 最后从I 区间流出,测温点设在E 、H 区间,当A 区间进水水温发生变化时,各区间的水温要隔一段时间才发生变化,当进水水流流速稳定在1.5L/Min 时,与进水水温T1相比E 区间的水温T2滞后时间常数τ约为4分钟,H 区间的水温T3滞后时间常数τ约为8分钟。各隔板的上沿均低于水箱的外沿,这样如果水流意外过大则会漫过各隔板直接进入I 区间再流出。 A B C D E F G H I t2 t3 六号纯滞后水箱 五号加热水箱 调压 模块 手动设定 Q t1 图3-1 纯滞后系统示意图

实验三控制系统的稳定性分析

实验三控制系统的稳定性分析 实验报告 1画出步骤5的模拟电路图。 2 ?画出系统增幅或减幅振荡的波形图。 C=1uf 时: R3=50K K=5: 段弋三?LSn:rKim^- VunV rlRr^lK :IQ口口 关粹:远口口f IQ tn; R3=100KK=10 ltirn SODO '6 ODO[□MJ gciao lc aod -1DC0 -2DC0 -3DC0 Xl ¥l a xa 5?g Yz eg ■5QW looaa

D lU'.O ZDOC JOO0 驷 口。 5OD0 6OOD [C ? 6DQO gciao lc aod R3=200K K=20: D 10QO tDdC E0C0 瓦鲨三 HIMPZ : K IM - * UhV 目佗证■ iooa mV 灵禅:HCICICI 十 io tn ; ■QW 3 oco -2-QC€ >3000 ■叫 DC 口 TWM Xi a xa mg locaa ¥1 5oca TE 卫oc IrIXlOO ?;0M 4 口 Cd 30M 1DCC a -1DC0 -2DCO ?3DCC ■叫口 t 口 Xl Y1 a Xi 50da Tg gg -■5QW looaa jrIXIg 6OCD R CPO B DQ 4 ?oao

■Z DbDCll - T ;CKJC&- S£DOOS TA DO&OT ?scr EX D TX 0 口口CH ODQkd wag 00091 口口QE OQQE ODQa OCDT a :>izis=ed :鑒缈劇蓊

C=0.1uf 时: R3=50k: ltirn 1OO J SODO '6 ODO [□MJ gciao lc aod sow段弋三?LSn:rKim^- VunV 同:1 ana mV 共.桿;H£I口口f ia tn; 35M -1DCO -2DCQ -SDC-Cl ■^.OCQ Xl Y1 口Xl 5DC0 TS■5Q0C iooaa JrIXIg R3=100K: a iaao EDQO WP 4£三和t(E; ?C K TK-V Ltn# 冃用宅 压:IMQ inv 石祥:IOQO ia tXl£ Hl DOO ^□OD5OO 口 6OOD ?ooe B DOO lc^io - ■Da e 2DCO long -3 口爾 ■■二? 口口Cl ■300 c MD00 -?.DCO Xl Y1 1'KOC 50dQ T2 locao i- ooaa

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

自动控制系统分类

1-3自动控制系统的分类 本课程的主要内容是研究按偏差控制的系统。为了更好的了解自动控制系统的特点,介绍一下自动控制系统的分类。分类方法很多,这里主要介绍其中比较重要的几种: 一、按描述系统的微分方程分类 在数学上通常可以用微分方程来描述控制系统的动态特性。按描述系统运动的微分方程可将系统分成两类: 1.线性自动控制系统描述系统运动的微分方程是线性微分方程。如方程的系数为常数,则称为定常线性自动控制系统;相反,如系数不是常数而是时间t的函数,则称为变系数线性自动控制系统。线性系统的特点是可以应用叠加原理,因此数学上较容易处理。 2.非线性自动控制系统描述系统的微分方程是非线性微分方程。非线性系统一般不能应用叠加原理,因此数学上处理比较困难,至今尚没有通用的处理方法。 严格地说,在实践中,理想的线性系统是不存在的,但是如果对于所研究的问题,非线性的影响不很严重时,则可近似地看成线性系统。同样,实际上理想的定常系统也是不存在的,但如果系数变化比较缓慢,也可以近似地看成线性定常系统。 二、按系统中传递信号的性质分类 1.连续系统系统中传递的信号都是时间的连续函数,则称为连续系统。 2.采样系统系统中至少有一处,传递的信号是时间的离散信号,则称为采样系统,或离散系统。 三、按控制信号r(t)的变化规律分类 1.镇定系统() r t为恒值的系统称为镇定系统(图1-2所示系统就是一例)。 2.程序控制系统() r t为事先给定的时间函数的系统称为程序控制系统(图1-11所示系统就是一例)。 3.随动系统() r t为事先未知的时间函数的系统称为随动系统,或跟踪系统,如图1-7所示的位置随动系统及函数记录仪系统。

SGS-51B型PLC可编程控制系统、单片机实验开发系统、自动控制原理综合实验装置(功能增强型)

SGS-51B型PLC可编程控制系统、单片机实验开发系统、自动控制原理综合实验装置(功能增强型) 一、概述 SGS-51B型PLC可编程控制系统、单片机实验开发系统、自动控制原理综合实验台是在“SGS-51 PLC可编程控制器实验系统”的基础上增加“单片机实验开发系统”和“自动控制理论实验系统“,做到一机多用、资源共享、便于管理。单片机实验开发系统可完成51/96/8088/8086等CPU的单片机、微机的全部软、硬件实验。在单片机仿真实验系统的基础上,增加8088十六位微机原理和接口实验。一体化设计,只需更换不同的CPU卡,即可支持多种CPU的实验开发。提供两种操作平台,既可独立工作,也可与PC机联机工作。一机在手,别无他求。它适用于《MSC-51单片机原理与接口》、《MCS-96单片机原理与接口》、《单片机接口技术》、《十六位微机原理与接口》等课程教学。 由MCS-51/96CPU卡组成的单片机仿真实验系统,除实验功能外,还具有仿真开发功能,可仿真8031/32、87/89/51/52、89C1051/2051、80C196KB等CPU,外部仿真空间达64K。实验时指导书中详细叙述了各实验的目的、内容,列出了接线图,程序接口框图和程序软盘,省去了教师和实验辅导老师为设计、准备调试实验线路和实验程序所需的工作量,节约了课堂时间,从事单片机应用开发教学实验的科研人员根据各自的实际需要选择使用该实验系统,可帮助使用者以最短的时间准确有效地完成开发与实验任务。全套装置设计合理。 自动控制理论实验系统是配合院校开设自动化类专业的“自动控制理论”、“过程控制”、“自动控制系统”、“化工自动化”、“计算机控制”等课程而设计的小型电子实验模拟教学实验装置,使用简单、方便、参数选择范围大,可灵活地对控制系统进行电子模拟。全套装置设计合理、功能强大、操作简单方便。 二、系统构成

控制系统仿真实验报告1

昆明理工大学电力工程学院学生实验报告 实验课程名称:控制系统仿真实验 开课实验室:年月日

实验一 电路的建模与仿真 一、实验目的 1、了解KCL 、KVL 原理; 2、掌握建立矩阵并编写M 文件; 3、调试M 文件,验证KCL 、KVL ; 4、掌握用simulink 模块搭建电路并且进行仿真。 二、实验内容 电路如图1所示,该电路是一个分压电路,已知13R =Ω,27R =Ω,20S V V =。试求恒压源的电流I 和电压1V 、2V 。 I V S V 1 V 2 图1 三、列写电路方程 (1)用欧姆定律求出电流和电压 (2)通过KCL 和KVL 求解电流和电压

四、编写M文件进行电路求解(1)M文件源程序 (2)M文件求解结果 五、用simulink进行仿真建模(1)给出simulink下的电路建模图(2)给出simulink仿真的波形和数值

六、结果比较与分析

实验二数值算法编程实现 一、实验目的 掌握各种计算方法的基本原理,在计算机上利用MATLAB完成算法程序的编写拉格朗日插值算法程序,利用编写的算法程序进行实例的运算。 二、实验说明 1.给出拉格朗日插值法计算数据表; 2.利用拉格朗日插值公式,编写编程算法流程,画出程序框图,作为下述编程的依据; 3.根据MATLAB软件特点和算法流程框图,利用MATLAB软件进行上机编程; 4.调试和完善MATLAB程序; 5.由编写的程序根据实验要求得到实验计算的结果。 三、实验原始数据 上机编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,在整个插值区间上采用拉格朗日插值法计算(0.6) f,写出程序源代码,输出计算结果: 四、拉格朗日插值算法公式及流程框图

(完整版)自动控制原理知识点总结

@~@ 自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。 2.自动控制系统的两种常用控制方式是什么?(填空) 开环控制和闭环控制 3.开环控制和闭环控制的概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。 掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点? (分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力 (2)、快速性:通过动态过程时间长短来表征的 e来表征的 (3)、准确性:有输入给定值与输入响应的终值之间的差值 ss 第二章 1.控制系统的数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2.了解微分方程的建立? (1)、确定系统的输入变量和输入变量 (2)、建立初始微分方程组。即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边 3.传递函数定义和性质?认真理解。(填空或选择)

实验三 控制系统仿真分析

实验三控制系统仿真分析 一、实验目的和要求: 1、通过Matlab求取系统的零极点增益模型直接获得系统的零极点,对控制系统的稳定性及是否为最小相位系统作出判断; 2、控制系统的典型分析方法(时域、频域分析)是目前控制系统界进行科学研究的主要方法,是进行控制系统设计的基础,要求熟练掌握Matlab单位阶跃响应、波特图等常用命令的使用; 3、根轨迹分析是求解闭环特征方程根的简单的图解方法,要求熟练掌握Matlab根轨迹的绘制。 二、实验内容: 1、控制系统稳定性分析 (1)代数法稳定性判据:(用求分母多项式的根和routh函数两种方法) 已知系统的开环传递函数为: 试对系统闭环判别其稳定性 (2)根轨迹法判断系统稳定性: 已知一个单位负反馈系统开环传递函数为: 试在系统的闭环根轨迹图上选择一点,求出该点的增益及其系统的闭环极点位置,并判断在该点系统闭环的稳定性。 (3)Bode图法判断系统稳定性: 已知两个单位负反馈系统的开环传递函数分别为: ; 用Bode图法判断系统闭环的稳定性。 2、系统分析方法 (1)时域分析 ①根据下面传递函数模型:绘制其单位阶跃响应曲线并从图上读取最大超调量,绘制系统的单位脉冲响应、零输入响应曲线。

②典型二阶系统传递函数为: 当ζ=0.7,ωn取2、4、6、8、10、12的单位阶跃响应。 ③典型二阶系统传递函数为: 当ωn =6,ζ取0.2、0.4、0.6、0.8、1.0、1.5、2.0的单位阶跃响应。 (2)频域分析 ①典型二阶系统传递函数为: 当ζ=0.7,ωn取2、4、6、8、10、12的伯德图 ②典型二阶系统传递函数为: 当ωn =6,ζ取0.2、0.4、0.6、0.8、1.0、1.5、2.0的伯德图。 3、古典控制系统设计——根轨迹法分析 (1)根据下面负反馈系统的开环传递函数,绘制系统根轨迹,并分析系统稳定的K值范围。 (2)设单位负反馈系统的开环传递函数为:

控制系统数字仿真实验报告

控制系统数字仿真实验报告 班级:机械1304 姓名:俞文龙 学号: 0801130801

实验一数字仿真方法验证1 一、实验目的 1.掌握基于数值积分法的系统仿真、了解各仿真参数的影响; 2.掌握基于离散相似法的系统仿真、了解各仿真参数的影响; 3.熟悉MATLAB语言及应用环境。 二、实验环境 网络计算机系统(新校区机电大楼D520),MATLAB语言环境 三实验内容 (一)试将示例1的问题改为调用ode45函数求解,并比较结果。 实验程序如下; function dy = vdp(t,y) dy=[y-2*t/y]; end [t,y]=ode45('vdp',[0 1],1); plot(t,y); xlabel('t'); ylabel('y');

(二)试用四阶RK 法编程求解下列微分方程初值问题。仿真时间2s ,取步长h=0.1。 ?????=-=1 )0(2y t y dt dy 实验程序如下: clear t0=0; y0=1; h=0.1; n=2/h; y(1)=1; t(1)=0; for i=0:n-1 k1=y0-t0^2; k2=(y0+h*k1/2)-(t0+h/2)^2; k3=(y0+h*k2/2)-(t0+h/2)^2;

k4=(y0+h*k3)-(t0+h)^2; y1=y0+h*(k1+2*k2+2*k3+k4)/6; t1=t0+h; y0=y1; t0=t1; y(i+2)=y1; t(i+2)=t1; end y1 t1 figure(1) plot(t,y,'r'); xlabel('t'); ylabel('y'); (三)试求示例3分别在周期为5s的方波信号和脉冲信号下的响应,仿真时间20s,采样周期Ts=0.1。

自动控制完整系统综合实验综合实验报告

综合实验报告 实验名称自动控制系统综合实验 题目 指导教师 设计起止日期2013年1月7日~1月18日 系别自动化学院控制工程系 专业自动化 学生姓名 班级 学号 成绩

前言 自动控制系统综合实验是在完成了自控理论,检测技术与仪表,过程控制系统等课程后的一次综合训练。要求同学在给定的时间内利用前期学过的知识和技术在过程控制实验室的现有设备上,基于mcgs组态软件或step7、wincc组态软件设计一个监控系统,完成相应参数的控制。在设计工作中,学会查阅资料、设计、调试、分析、撰写报告等,达到综合能力培养的目的。

目录 前言 (2) 第一章、设计题目 (4) 第二章、系统概述 (5) 第一节、实验装置的组成 (5) 第二节、MCGS组态软件 (11) 第三章、系统软件设计 (14) 实时数据库 (14) 设备窗口 (16) 运行策略 (19) 用户窗口 (21) 主控窗口 (30) 第四章、系统在线仿真调试 (32) 第五章、课程设计总结 (38) 第六章、附录 (39) 附录一、宇光智能仪表通讯规则 (39)

第一章、设计题目 题目1 单容水箱液位定值控制系统 选择上小水箱、上大水箱或下水箱作为被测对象,实现对其液位的定值控制。 实验所需设备:THPCA T-2型现场总线控制系统实验装置(常规仪表侧),水箱装置,AT-1挂件,智能仪表,485通信线缆一根(或者如果用数据采集卡做,AT-4 挂件,AT-1挂件、PCL通讯线一根)。 实验所需软件:MCGS组态软件 要求: 1.用MCGS软件设计开发,包括用户界面组态、设备组态、数据库组态、策略组态等,连接电路, 实现单容水箱的液位定值控制; 2.施加扰动后,经过一段调节时间,液位应仍稳定在原设定值; 3.改变设定值,经过一段调节时间,液位应稳定在新的设定值。

《MATLAB与控制系统。。仿真》实验报告

《MATLAB与控制系统仿真》 实验报告 班级: 学号: 姓名: 时间:2013 年 6 月

目录实验一MATLAB环境的熟悉与基本运算(一)实验二MATLAB环境的熟悉与基本运算(二)实验三MATLAB语言的程序设计 实验四MATLAB的图形绘制 实验五基于SIMULINK的系统仿真 实验六控制系统的频域与时域分析 实验七控制系统PID校正器设计法 实验八线性方程组求解及函数求极值

实验一MATLAB环境的熟悉与基本运算(一) 一、实验目的 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 二、实验基本原理 1.熟悉MATLAB环境: MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。 2.掌握MATLAB常用命令 表1 MATLAB常用命令 变量与运算符 3.1变量命名规则 3.2 MATLAB的各种常用运算符 表3 MATLAB关系运算符 表4 MATLAB逻辑运算符

| Or 逻辑或 ~ Not 逻辑非 Xor逻辑异或 符号功能说明示例符号功能说明示例 :1:1:4;1:2:11 . ;分隔行.. ,分隔列… ()% 注释 [] 构成向量、矩阵!调用操作系统命令 {} 构成单元数组= 用于赋值 的一维、二维数组的寻访 表6 子数组访问与赋值常用的相关指令格式 三、主要仪器设备及耗材 计算机 四.实验程序及结果 1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符) 2、启动MATLAB,将该文件夹添加到MATLAB路径管理器中。 3、学习使用help命令。

(修改后) 系统仿真综合实验指导书(2011[1].6)

系统仿真综合实验指导书 电气与自动化工程学院 自动化系 2011年6月

前言 电气与自动化工程学院为自动化专业本科生开设了控制系统仿真课程,为了使学生深入掌握MATLAB语言基本程序设计方法,运用MATLAB语言进行控制系统仿真和综合设计,同时开设了控制系统仿真综合实验,30学时。为了配合实验教学,我们编写了综合实验指导书,主要参考控制系统仿真课程的教材《自动控制系统计算机仿真》、《控制系统数字仿真与CAD》、《反馈控制系统设计与分析——MATLAB语言应用》及《基于MATLAB/Simulink的系统仿真技术与应用》。

实验一MATLAB基本操作 实验目的 1.熟悉MATLAB实验环境,练习MATLAB命令、m文件、Simulink的基本操作。 2.利用MATLAB编写程序进行矩阵运算、图形绘制、数据处理等。 3.利用Simulink建立系统的数学模型并仿真求解。 实验原理 MATLAB环境是一种为数值计算、数据分析和图形显示服务的交互式的环境。MATLAB有3种窗口,即:命令窗口(The Command Window)、m-文件编辑窗口(The Edit Window)和图形窗口(The Figure Window),而Simulink另外又有Simulink模型编辑窗口。 1.命令窗口(The Command Window) 当MATLAB启动后,出现的最大的窗口就是命令窗口。用户可以在提示符“>>”后面输入交互的命令,这些命令就立即被执行。 在MATLAB中,一连串命令可以放置在一个文件中,不必把它们直接在命令窗口内输入。在命令窗口中输入该文件名,这一连串命令就被执行了。因为这样的文件都是以“.m”为后缀,所以称为m-文件。 2.m-文件编辑窗口(The Edit Window) 我们可以用m-文件编辑窗口来产生新的m-文件,或者编辑已经存在的m-文件。在MATLAB 主界面上选择菜单“File/New/M-file”就打开了一个新的m-文件编辑窗口;选择菜单“File/Open”就可以打开一个已经存在的m-文件,并且可以在这个窗口中编辑这个m-文件。 3.图形窗口(The Figure Window) 图形窗口用来显示MATLAB程序产生的图形。图形可以是2维的、3维的数据图形,也可以是照片等。 MATLAB中矩阵运算、绘图、数据处理等内容参见教材《自动控制系统计算机仿真》的相关章节。 Simulink是MATLAB的一个部件,它为MATLAB用户提供了一种有效的对反馈控制系统进行建模、仿真和分析的方式。 有两种方式启动Simulink:

自动控制的系统作业本

作业本 姓名: 班级: 10电本 科目:自动控制系统 黑龙江煤炭职业技术学院成人教育系

作业1 一、简答题 1、过程控制系统按其基本结构形式可分为几类?其中闭环系统中按设定值的不同形式又可分为几种? 答: 2、试述热电阻测温原理,常用热电阻的种类有哪些? R各为多少? 答: 3、试述过程控制系统中常用的控制规律及其特点。 答: 4、下图为异步电动机矢量变换与电流解耦数学模型,A,B分别为坐标变换模块,请指出它们分别表示什么变换?(8分)这些变换的等效原则是什么(2分)?

二、分析与计算题 1如下图,转速、电流双闭环调速系统中,ASR 、ACR 均采用PI 调节器。已知参数:电动机:KW P N 7.3=, V U N 220=,A I N 20=,min /1000r n N =,电枢回路总电阻Ω=5.1R ,设V U U im nm 10* * ==,电枢回路最大电流 为 A I dm 30=,电力电子变换器的放大系数40=s K 。 试求: (1) 电流反馈系数β和转速反馈系数α;(5分) (2) 突增负载后又进入稳定运行状态,则ACR 的输出 电压c U 、变流装置输 出电压d U ,电动机转速n ,较之负载变化前是增加、减 少,还是不变?为什么?(5分) (3) 如果速度给定* n U 不变时,要改变系统的转速, 可调节什么参数?(5分) (4) 若要改变系统起动电流应调节什 么参数?此时,设 *n U 为正电压信号,在右图ASR 中应调节中 哪个电位器?(5分) (5) 当电动机在最高转速发生堵转时 的c i i d U U U U ,,,* 值;(10分)

运动控制系统实验指导书分解

运动控制系统 实验指导书 赵黎明、王雁编 广东海洋大学信息学院自动化系

直流调速 实验一不可逆单闭环直流调速系统静特性的研究 一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图6-7。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33(A)组件或MCL—53组件。 4.MEL-11挂箱 5.MEL—03三相可调电阻(或自配滑线变阻器)。 6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件)。 7.直流电动机M03。 8.双踪示波器。 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。 4.三相主电源连线时需注意,不可换错相序。 5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1

即可正常工作。 6.系统开环连接时,不允许突加给定信号U g起动电机。 7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。 8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 六.实验内容 1.移相触发电路的调试(主电路未通电) (a)用示波器观察MCL—33(或MCL—53,以下同)的双脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V~2V 的双脉冲。 (b)触发电路输出脉冲应在30°~90°范围内可调。可通过对偏移电压调节单位器及ASR输出电压的调整实现。例如:使ASR输出为0V,调节偏移电压,实现α=90°;再保持偏移电压不变,调节ASR的限幅电位器RP1,使α=30°。 2.求取调速系统在无转速负反馈时的开环工作机械特性。 a.断开ASR的“3”至U ct的连接线,G(给定)直接加至U ct,且Ug调至零,直流电机励磁电源开关闭合。 b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=200V。 注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同。 c.调节给定电压U g,使直流电机空载转速n0=1500转/分,调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载的范围内测取7~8点,读取整流装置输出电压U d 3.带转速负反馈有静差工作的系统静特性 a.断开G(给定)和U ct的连接线,ASR的输出接至U ct,把ASR的“5”、“6”点短接。 b.合上主控制屏的绿色按钮开关,调节U uv,U vw,U wu为200伏。 c.调节给定电压U g至2V,调整转速变换器RP电位器,使被测电动机空载转速n0=1500转/分,调节ASR的调节电容以及反馈电位器RP3,使电机稳定运行。 调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载范围内测取7~8

控制系统仿真和设计实验报告

控制系统仿真与设计实验报告 姓名: 班级: 学号: 指导老师:峰

7.2.2控制系统的阶跃响应 一、实验目的 1.观察学习控制系统的单位阶跃响应; 2.记录单位阶跃响应曲线; 3.掌握时间相应的一般方法; 二、实验容 1.二阶系统G(s)=10/(s2+2s+10) 键入程序,观察并记录阶跃响应曲线;录系统的闭环根、阻尼比、无阻尼振荡频率;记录实际测去的峰值大小、峰值时间、过渡时间,并与理论值比较。 (1)实验程序如下: num=[10]; den=[1 2 10]; step(num,den); 响应曲线如下图所示: (2)再键入: damp(den); step(num,den); [y x t]=step(num,den); [y,t’] 可得实验结果如下:

实际值理论值峰值 1.3473 1.2975 峰值时间 1.0928 1.0649 过渡时间+%5 2.4836 2.6352

+%2 3.4771 3.5136 2. 二阶系统G(s)=10/(s2+2s+10) 试验程序如下: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[10]; den1=[1 6.32 10]; step(num1,den1); hold on; num2=[10]; den2=[1 12.64 10]; step(num2,den2); 响应曲线:

(2)修改参数,分别实现w n1= (1/2)w n0和w n1= 2w n0响应曲线 试验程序: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[2.5]; den1=[1 1 2.5]; step(num1,den1); hold on; num2=[40]; den2=[1 4 40]; step(num2,den2); 响应曲线如下图所示: 3.时作出下列系统的阶跃响应,并比较与原系统响应曲线的差别与特点,作出相应的实验分析结果。

相关主题
文本预览
相关文档 最新文档